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1 Introduction

The nonlinear autoregressive distributed lag (NARDL) model proposed by Shin, Yu, and Greenwood-

Nimmo (2014, hereafter SYG) is an asymmetric generalization of the ARDL model of Pesaran and Shin

(1998) and Pesaran et al. (2001). It is a single-equation error-correction model that has been widely applied

to accommodate asymmetry in the long-run equilibrium relationship and/or the short-run dynamic coeffi-

cients via the use of partial sum decomposition of the explanatory variable(s). The NARDL approach has

grown in popularity, with applications in fields including criminology (Box et al., 2019), economic growth

(Eberhardt and Presbitero, 2015), energy economics (Hammoudeh et al., 2015), exchange rates and trade

(Brun-Aguerre et al., 2017), financial economics (He and Zhou, 2018), health economics (Barati and Farid-

itavana, 2020), and political science (Ferris et al., 2020), to list only a few.See Cho et al. (2023b) for an

extensive survey. Despite its popularity, the theoretical foundations for estimation of and inference on the

NARDL model have yet to be fully developed. It is this issue that we address.

SYG show that the parameters of the NARDL model can be estimated in a single step by ordinary least

squares (OLS), though the positive and negative partial sums of the regressors are dominated by determin-

istic trends that are asymptotically perfectly collinear. But, these collinear trends introduce an asymptotic

singularity that represents a barrier to the development of asymptotic theory for the single- step estimator,

frustrating efforts to derive its limit distribution. Consequently, SYG only conduct Monte Carlo simulations

to validate the properties of the single-step OLS estimator in finite samples.

To address this important issue, we first consider a bivariate model with a scalar dependent variable, yt,

and a scalar explanatory variable, xt. In this case, the asymmetric long-run relationship is expressed among

the level of the dependent variable and the positive and negative cumulative partial sums of the regressor,

denoted x+
t and x−t , respectively, the latter of which share asymptotically collinear trends. But, the long-

run relationship can be expressed equivalently via a one-to-one transformation as a relationship between yt,

xt and x+
t . By excluding one partial sum process, the asymptotic singularity in the long-run relationship

is resolved. It is important to realize, however, that this reparameterization is insufficient to resolve the

singularity problem associated with the single-step NARDL estimator; in fact, we show that it introduces a

further asymptotic singularity problem, once again frustrating efforts to obtain the necessary limit theory.

In this regard, our solution is to adopt a two-step estimation framework. In the first step, the parameters

of the transformed long-run relationship are estimated using any consistent estimator with a convergence

rate faster than the square root of the sample size,
√
T . We advocate the use of the fully-modified (FM)

estimator of Phillips and Hansen (1990) in the first step, which we show to follow an asymptotic mixed
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normal distribution that facilitates standard inference on the long-run parameters. Moreover, FM is robust

to potential endogeneity of the regressors and to residual serial correlation. Given the super-consistency of

the FM estimator, the error correction term can be treated as known in the second step, where OLS provides

a consistent and asymptotically normal estimator for the short-run dynamic parameters.

Notwithstanding its simplicity, the two-step estimator described above cannot be directly applied to

estimating the NARDL model with multiple explanatory variables, where a further singular matrix problem

arises when estimating the reparameterized long-run equation due to the collinearity of the trends in x+
t

and/or xt. To resolve this issue, we propose to first detrend x+
t by OLS and then to use the OLS residuals

as a regressor together with a time trend and xt. This modified two-step procedure allows for estimation of

the long-run relationship without any singularity problem in models with multiple regressors. The short-run

parameters can be estimated by OLS in a final step.

Because the NARDL model allows for asymmetry in both the long-run equilibrium relationship and the

short-run dynamic parameters, we develop Wald tests for symmetry in the long run and in the short run. We

establish that the null distribution of the Wald statistics weakly converges to a chi-squared distribution. A

suite of Monte Carlo simulations confirm that the Wald tests of both the short- and long-run symmetry are

well-sized with high power even in small samples.

We demonstrate the utility of our approach with an application to the asymmetric relationship between

R&D intensity and physical investment using quarterly data in the U.S. covering the period from 1960q1

to 2019q4. The potentially asymmetric relationship between research and development (R&D) expenditure

and investment has received little attention, despite the growing literature on innovation and growth (e.g.,

Romer, 1990; Agarwal and Audretsch, 2001; Aghion et al., 2009; Chung and Shin, 2020). In the Online Sup-

plement we develop a theory relating early-stage innovative and later-stage managerial R&D expenditures to

physical investment. We derive a theoretical prediction that innovative R&D is a complement to investment

while managerial R&D is a substitute and develop the testable hypothesis that innovative R&D expenditure

is positively related with investment by virtue of complementarity while the relationship between manage-

rial R&D expenditure and investment may be negative due to their nature as substitutes. Overall, we find

that investment responds positively to R&D expenditures in the long run when their growth rate exceeds the

growth rate of GDP, but negatively when they grow more slowly than GDP. This supports our theoretical

predictions regarding the nature of innovative (managerial) R&D expenditure as a complement to (substi-

tute for) physical investment. Furthermore, we find that investment is more sensitive to changes in R&D

intensity when managerial R&D activity prevails.

This paper proceeds in 7 sections. In Section 2, we introduce the NARDL model and analyze the
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asymptotic singularity problem. Sections 3 and 4 introduce the two-step estimation framework and develop

Wald tests for the null hypotheses of the short-run and long-run symmetry. In Section 5, we scrutinize

the finite sample properties of the tests by simulation. Section 6 is devoted to our empirical application,

and Section 7 concludes. Proofs of the main claims, further singularity issues associated with the one-step

NARDL estimator, the theory relating early-stage innovative and later-stage managerial R&D expenditures

to investment, and additional simulation/empirical results are relegated to the Online Supplement.

2 The NARDL Model

Consider the NARDL(p, q) process: yt = γ∗ +
∑p

j=1 φj∗yt−j +
∑q

j=0(θ+′
j∗x

+
t−j + θ−′j∗x

−
t−j) + et, where

xt ∈ Rk, x+
t :=

∑t
j=1 ∆x+

j , x−t :=
∑t

j=1 ∆x−j , ∆x+
t := max[0,∆xt], and ∆x−t := min[0,∆xt], such

that ∆xt is a stationary process. The corresponding error-correction model is given by

∆yt = γ∗ + ρ∗yt−1 + θ+′
∗ x

+
t−1 + θ−′∗ x

−
t−1 +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et, (1)

for some ρ∗, θ+
∗ , θ−1

∗ , γ∗, ϕj∗ (j = 1, 2, . . . , p− 1), π+
j∗, and π−j∗ (j = 0, 1, . . . , q − 1), where {et,Ft} is a

martingale difference sequence and Ft is the smallest σ-algebra driven by {yt−1,x
+
t ,x

−
t , yt−2, x

+
t−1,x

−
t−1,

. . .}. If yt is cointegrated with (x+′
t ,x

−′
t )′, then we may rewrite it as

∆yt = γ∗ + ρ∗ut−1 +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et, (2)

where ut−1 := yt−1 − β+′
∗ x

+
t−1 − β

−′
∗ x
−
t−1 is the cointegrating error, β+

∗ := −(θ+
∗ /ρ∗) and β−∗ :=

−(θ−∗ /ρ∗). Here, ut is a stationary process that may be correlated with ∆xt.

The NARDL process can capture a cointegrating relationship between a deterministic time trend process

driven by a unit-root process and other unit-root processes, possibly associated with a time trend. Suppose

that E[∆xt] ≡ 0 and thatµ+
∗ := E[∆x+

t ] andµ−∗ := E[∆x−t ]. It follows thatµ+
∗ +µ−∗ ≡ 0 by construction.

Therefore, if we further let s+
t := ∆x+

t − µ+
∗ and s−t := ∆x−t − µ−∗ , then x+

t = µ+
∗ t +

∑t
j=1 s

+
j and

x−t = µ−∗ t+
∑t

j=1 s
−
j . It is clear that x+

t and x−t are deterministic time-trend processes driven by unit-root

processes. It follows that ∆yt is not necessarily distributed around zero even if xt is a unit-root process
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without a deterministic trend. Note that ρ∗ := 1−
∑p

j=1 φj∗. From the NARDL(p, q) process, we find that

δ∗ := E[∆yt] = − 1

ρ∗

 q∑
j=0

(θ+
j∗)
′µ+
∗ +

q∑
j=0

(θ−j∗)
′µ−∗

 .
Therefore, if we define dt := ∆yt − δ∗, then yt = δ∗t +

∑t
j=1 dj , which shows that yt is a deterministic

time-trend process driven by a unit-root process if δ∗ 6= 0. This has the important implication that the

NARDL model can analyze an asymmetric cointegrating relationship between two integrated variables even

with the mismatched drifts without the need to include a deterministic time trend in the model.

SYG propose to estimate the parameters of the NARDL model, (1) in a single step by OLS. As shown in

Lemma 1, the OLS estimation suffers from the asymptotic singularity of the inverse matrix associated with

the one-step NARDL estimator.

We make the following assumptions:

Assumption 1. (i) {(∆x′t, ut)′} is the (k+1)×1 vector of globally covariance stationary mixing processes

with φ of size −r/(2(r − 1)) or α of size −r/(r − 2) and r > 2; (ii) E[∆xt] = 0, E[|∆xti|r] < ∞ (i =

1, 2, . . . , k), E[|ut|r] < ∞, and E[|et|2] < ∞; (iii) limT→∞ var[T−1/2
∑T

t=1(∆x′t, ut)
′] exists and is pos-

itive definite (PD); and (iv) for some (ρ∗,θ
+′
∗ ,θ

−′
∗ , γ∗, ϕ1∗, . . . , ϕp−1∗,π

+′
0∗ , . . . ,π

+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗)

′,

∆yt is generated by (1) such that {et,Ft} is a martingale difference sequence and Ft is the smallest σ-

algebra driven by {yt−1,x
+
t ,x

−
t , yt−2,x

+
t−1, x

−
t−1, . . .}. �

Let zt := [z′1t
... z′2t]

′ := [yt−1,x
+′
t−1,x

−′
t−1

... 1, ∆y′t−1,∆x
+′
t , . . . ,∆x

+′
t−q+1,∆x

−′
t , . . . ,∆x

−′
t−q+1]′, where

∆yt−1 := [∆yt−1,∆yt−2, . . . , ∆yt−p+1]′. Note that zt is partitioned into nonstationary and stationary

variables. z2t is further partitioned as z2t := [1
...w′t]

′ := [1
...w′1t

...w′2t
...w′3t]

′ := [ 1
... ∆y′t−1

... ∆x+′
t , . . . ,

∆x+′
t−q+1

... ∆x−′t , . . . ,∆x
−′
t−q+1]′. Next, we define α∗ := [α′1∗

...α′2∗]
′ := [ρ∗,θ

+′
∗ ,θ

−′
∗

... γ∗,ϕ′∗,π
+′
0∗ , . . . ,

π+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗]

′, where ϕ∗ := [ϕ1∗, ϕ2∗, . . . , ϕp−1∗]
′. Then, the OLS estimator is:

α̂T :=

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt = α∗ +

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztet.

Inference using α̂T is challenging because
∑T

t=1 ztz
′
t is asymptotically singular as shown in Lemma 1.

Lemma 1. Under Assumption 1, (i) T−3
∑T

t=1 zt1z
′
t1

P→ M11 := 1
3n1n

′
1; (ii) T−2

∑T
t=1 z1t z

′
2t

P→
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M12 := 1
2n1n

′
2; and (iii) T−1

∑T
t=1 z2tz

′
2t

P→M22, where

M22 :=

 1 n
(1)′
2

n
(1)
2 E[wtw

′
t]

 ,
n1 := [δ∗,µ

+′
∗ ,µ

−′
∗ ]′, n2 := [1,n

(1)
2 ] and n(1)

2 := [δ∗ι
′
p−1, ι

′
q ⊗ µ+′

∗ , ι
′
q ⊗ µ−′∗ ]′ with ιa being an a × 1

vector of ones. �

Lemma 1 implies that, if we let DT := diag[T 3/2I2+2k, T
1/2Ip+2qk], then D−1

T (
∑T

t=1 ztz
′
t) D−1

T
P→M∗,

where M∗ is 2 × 2 block matrix, whose i-th row and j-th column block is Mij and M21 = M′
12. As

M∗ is singular, it is difficult to derive the limit distribution of α̂T directly, unless we can derive the limit

distribution of the determinant of
∑T

t=1 ztz
′
t, which is analytically challenging.

3 Asymptotic Theory for the Two-step NARDL Estimator

We propose an analytically tractable two-step estimation procedure that draws on the work of Engle and

Granger (1987) and Phillips and Hansen (1990) and derive the relevant limit distributions. For clarity of

exposition, we treat the cases with k = 1 and k > 1, separately.

3.1 The Two-step NARDL Estimation with k = 1

3.1.1 Estimation of the Long-Run Parameters

First Step Estimation by OLS. Recall that the long-run relationship is written as yt = α∗ + β+
∗ x

+
t +

β−∗ x
−
t + ut. In line with the two-step estimation framework of Engle and Granger (1987), we may esti-

mate the long-run parameters by OLS. Define D̄T := diag[T 1/2, T 3/2I2] and vt := (1, x+
t , x

−
t )′ such that

D̄−1
T

(∑T
t=1 vtv

′
t

)
D̄−1
T

P→M11. By Lemma 1(i), this is a singular matrix due to the collinear trends in x+
t

and x−t .

We propose to reparameterize the long-run relationship as yt = α∗ + λ∗x
+
t + η∗xt + ut, where xt ≡

x+
t +x−t , λ∗ = β+

∗ −β−∗ and η∗ = β−∗ . It follows that β+
∗ = λ∗+η∗ and β−∗ = η∗. Then, the OLS estimator

of %∗ := (α∗, λ∗, η∗)
′ is given by %̂T := (α̂T , λ̂T , η̂T )′ := arg minα, λ, η

∑T
t=1(yt − α − λx+

t − ηxt)2,

where we can recover β̂+
T := λ̂T + η̂T and β̂−T = η̂T .
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Letting qt := (1, x+
t , xt)

′, then %̂T = %∗ + (
∑T

t=1 qtq
′
t)
−1(
∑T

t=1 qtut). Define

Σ∗ := lim
T→∞

T−1
T∑
t=1

T∑
s=1

E[gtgs] and [Bx(·),Bu(·)]′ := Σ
1/2
∗ [Wx(·),Wu(·)]′ ,

where gt := [∆xt, ut]
′ and [Wx(·),Wu(·)]′ is a 2 × 1 vector of independent Wiener processes. Let

σ
(i,j)
∗ be the i, t-th element of Σ∗. If {ut} is serially uncorrelated and independent of {∆xt}, then Σ∗

and [Bx(·),Bu(·)]′ are simplified to diag
[
σ2
x, σ

2
u

]
and [σxWx(·), σuWu(·)]′, respectively, where σ2

x :=

limT→∞ T
−1
∑T

t=1

∑T
s=1 E[∆xt∆xs] and σ2

u := E[u2
t ].

Lemma 2 provides the limit behaviors of the components of the OLS estimator.

Lemma 2. Under Assumption 1, if k = 1 and Σ∗ is PD, then

(i) Q̂T := D̃−1
T

(
T∑
t=1

qtq
′
t

)
D̃−1
T ⇒Q :=


1 1

2µ
+
∗

∫
Bx

1
2µ

+
∗

1
3µ

+
∗ µ

+
∗ µ+

∗
∫
rBx∫

Bx
∫
rBxµ+

∗
∫
BxBx

 ,

where D̃T := diag[T 1/2, T 3/2, T ]; and (ii) if υ∗ := limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite, then

ÛT := D̃−1
T (
∑T

t=1 qtut)⇒ U := [
∫
dBu, µ+

∗
∫
rdBu,

∫
BxdBu + υ∗]. �

All integrals are evaluated with respect to r ∈ [0, 1]. For example,
∫
rBx denotes

∫ 1
0 rBx(r)dr. As Q is

nonsingular with probability 1, the limit distribution of %̂T is obtained as a product of Q−1 and U , as stated

in Corollary 1.

Corollary 1. Under Assumption 1, if k = 1 and Σ∗ is PD, then D̃T (%̂T − %∗)⇒Q−1U .1 �

Corollary 1 has important implications. First, by the reparameterization, the collinearity between x+
t and

x−t can be avoided because
∑T

t=1 xt = OP(T 3/2) and
∑T

t=1 x
+
t = OP(T 2) lead to different convergence

1Alternatively, the same limit distribution can be obtained using a rotation matrix:

A :=

1 0 0
0 1 0
0 1 1

 , so that (A′)−1

 α̂T − α∗β̂+
∗ − β+

∗

β̂−∗ − β−∗

 =

 α̂T − α∗
(β̂+
∗ − β+

∗ )− (β̂−∗ − β−∗ )

β̂−∗ − β−∗

 = %̂T − %∗.

Then,

D̃T (%̂T − %∗) = D̃T (A′)−1

 α̂T − α∗β̂+
∗ − β+

∗

β̂−∗ − β−∗

 =

(
D̃−1
T

T∑
t=1

Avtv
′
tA
′D̃−1

T

)−1(
D̃−1
T

T∑
t=1

Avtut

)

=

(
D̃−1
T

T∑
t=1

qtq
′
tD̃
−1
T

)−1(
D̃−1
T

T∑
t=1

qtut

)
⇒Q−1U ,

where the third equality holds by noting that Avt = qt.
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rates for λ̂T and η̂T , viz., λ̂T − λ∗ = OP(T−3/2) and η̂T − η∗ = OP(T−1). Second, to derive the limit

distribution of %̂T , we apply the FCLT only to
∑T (·)

t=1 gt where gt := [∆xt, ut]
′, not to

∑[T (·)]
t=1 (x+

t − µ+
∗ ).

Third, using the definition of λ̂T , we have: T{(β̂+
T − β̂

−
T ) − (β+

∗ − β−∗ )} = OP(T−1/2), implying that the

limit distributions of T (β̂+
T − β+

∗ ) and T (β̂−T − β−∗ ) are asymptotically equivalent. Finally, as the long-run

parameter estimator is super-consistent, β̂+
T and β̂−T can be treated as given when estimating the short-run

dynamic parameters.

Theorem 1 presents the limit distribution of the OLS estimator of the long-run parameters.

Theorem 1. For k = 1, under Assumption 1, T [(β̂+
T − β+

∗ ), (β̂−T − β−∗ )]′ ⇒ ι2 ⊗ SQ−1U , where S :=

[01×2, 1]. �

Due to its dependence on the nuisance parameters Σ∗ and υ∗, the OLS estimator of the long-run param-

eters in Theorem 1 does not follow a normal distribution asymptotically. Except in the special case where

{ut} is independent of {∆xt} and/or serially uncorrelated, the OLS estimator of the long-run parameter

exhibits an asymptotic bias determined by υ∗.

First Step Estimation by FM. Phillips and Hansen (1990) propose the FM estimator, which is shown to

be free from asymptotic biases even in the presence of endogenous regressors and/or serial correlation, and

which follows an asymptotic mixed normal distribution. Hence, we advocate the use of FM to estimate the

long-run parameters in the first step.

Suppose that Σ∗ is consistently estimated by a heteroskedasticity and autocorrelation consistent covari-

ance matrix estimator, Σ̃T with σ̃(i,j)
T being (i, j)-th element. For example, following Newey and West

(1987), we have

Σ̃T :=
1

T

T∑
t=1

ĝtĝ
′
t +

1

T

∑̀
k=1

ω`k

T∑
t=k+1

{ĝt−kĝ
′
t + ĝtĝ

′
t−k},

where ĝt := [∆xt, ût]
′, ω`k := 1 − k/(1 + `), ` = O(T 1/4) and ût := yt − α̂T − β̂+

T x
+
t − β̂

−
T x
−
t . Under

mild regularity conditions, it is straightforward to show that the asymptotic bias, υ∗ in U , can be consistently

estimated by Π̃T := 1
T

∑`
k=0

∑T
t=k+1 ĝt−kĝ

′
t. Let π̃(i,j)

T be the (i, j)-th element of Π̃T . Define the long-run

parameter estimator by

%̃T := (α̃T , λ̃T , η̃T )′ :=

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtỹt − TS′υ̃T

)
,

where ỹt := yt −∆xt(σ̃
(1,1)
T )−1σ̃

(1,2)
T and υ̃T := π̃

(1,2)
T − π̃(1,1)

T (σ̃
(1,1)
T )−1 σ̃

(1,2)
T . Then, the FM estimators

of the long-run parameters are obtained as β̃+
T := λ̃T + η̃T and β̃−T := η̃T .
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To derive the limit distribution of the FM estimator, we make the following assumptions.

Assumption 2. (i) Σ∗ is finite and PD and Σ̃T
P→ Σ∗; and (ii) Π∗ is finite and Π̃T

P→ Π∗, where

Π∗ := limT→∞
1
T

∑T
t=1

∑t
i=1 E[gig

′
t].

Let π(i,j)
∗ be the (i, j)-th element of Π∗ such that π(1,2)

∗ is identical to υ∗. Lemma 3 provides the limit

behavior of the components of the FM estimator.

Lemma 3. Under Assumptions 1 and 2 and for k = 1, ŨT := D̃−1
T {
∑T

t=1 qt(ut−∆xt(σ̃
(1,1)
T )−1 σ̃

(1,2)
T )−

TS′υ̃T } ⇒ Ũ := τ∗[
∫
dWu, µ

+
∗
∫
rdWu,

∫
BxdWu]′, where τ2

∗ := plimT→∞τ̃
2
T and τ̃2

T := σ̃
(2,2)
T −

σ̃
(2,1)
T (σ̃

(1,1)
T )−1σ̃

(1,2)
T . �

By Lemma 2(i), Q̂T ⇒Q, which is nonsingular with probability 1. Therefore , the limit distribution of

%̃T can be obtained as the product of Q−1 and Ũ :

Corollary 2. Under Assumption 1 and for k = 1, D̃T (%̃T − %∗)⇒Q−1Ũ . �

Corollary 2 has several implications. First, the limit distribution of the FM-OLS estimator is mixed

normal. Conditional on σ{Bx(r), r ∈ (0, 1]}, the limit distribution of D̃T (%̃T − %∗) is N(0, τ2
∗Q−1).

Consequently, the null limit distribution of a Wald test constructed using the FM estimator will be chi-

squared. Second, we have: T (β̃+
T − β+

∗ ) = T (β̃−T − β−∗ ) + oP(1), implying that the limit distribution of β̃+
T

is equivalent to that of β̃−T , where the limit distribution of β̃−T is given by that of η̃T . Third, the convergence

rates of β̃+
T and β̃−T are T , enabling us to estimate the short-run parameters in the second stage by replacing

ut−1 with ũt−1 := yt−1 − α̃T − β̃+
T x

+
t−1 − β̃

−
T x
−
t−1.

Theorem 2 formally presents the limit distribution of the FM estimator:

Theorem 2. Under Assumptions 1 and 2 and for k = 1, T [(β̃+
T − β+

∗ ), (β̃−T − β−∗ )]′ ⇒ ι2 ⊗ SQ−1Ũ . �

3.1.2 Estimation of the Short-Run Parameters

As the long-run coefficients are super-consistent, we can treat them as known when estimating the short-run

parameters in (2), which can be expressed compactly as ∆yt = ζ′∗ht + et, where ζ∗ := (ρ∗,β
′
2∗)
′, β2∗ :=

(γ∗, ϕ1∗, . . . , ϕp−1∗, π
+′
0∗ , . . . , π

+′
q−1∗, π

−′
0∗ , . . . , π

−′
q−1∗, )

′ and ht := (ut−1, z
′
2t)
′. Because all variables in this

equation are stationary, the short-run dynamic parameters can be estimated by the OLS estimator:

ζ̂T :=

(
T∑
t=1

hth
′
t

)−1 T∑
t=1

ht∆yt = ζ∗ +

(
T∑
t=1

hth
′
t

)−1 T∑
t=1

htet.

Lemma 4 shows the limit behaviors of the components of ζ̂T .
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Lemma 4. Under Assumption 1, (i) Γ̂T := T−1
∑T

t=1 hth
′
t

P→ Γ∗ := E[hth
′
t]; (ii) T−1/2

∑T
t=1 htet

A∼

N [0,Ω∗] where Ω∗ := E[e2
thth

′
t]; and (iii) Ω∗ simplifies to σ2

∗Γ∗ in the special case where E[e2
t |ht] = σ2

∗ .

�

Using Lemma 4, we derive the limit distribution of ζ̂T in Theorem 3.

Theorem 3. Suppose that Γ∗ and Ω∗ are PD. Under Assumption 1, (i)
√
T (ζ̂T − ζ∗)

A∼ N(0,Γ−1
∗ Ω∗Γ

−1
∗ )

and (ii) further if E[e2
t |ht] = σ2

∗ , then
√
T (ζ̂T − ζ∗)

A∼ N(0, σ2
∗Γ
−1
∗ ). �

3.2 The Two-step NARDL Estimation with k > 1

If there are multiple explanatory variables in the NARDL model, then the two-step estimation procedure

described in Section 3.1 needs to be modified as follows.

Let xt ≡ x+
t + x−t , λ∗ = β+

∗ − β−∗ and η∗ = β−∗ with k > 1. Then, we have: yt = α∗ + λ′∗x
+
t +

η′∗xt + ut. By extending Lemma 2, we have:

Q̂T := D̃−1
T

(
T∑
t=1

qtq
′
t

)
D̃−1
T ⇒Q :=


1 1

2µ
+
∗

∫
B′x

1
2µ

+
∗

1
3µ

+
∗ µ

+′
∗ µ+

∗
∫
rB′x∫

Bxdr
∫
rBxµ

+′
∗

∫
BxB′x

 ,

where qt := (1,x+′
t ,x

′
t)
′, D̃T := diag[T 1/2, T 3/2Ik, T Ik], Bx(·) is a k×1 vector of Brownian motions with

[Bx(·)′,Bu(·)]′ := Σ
1/2
∗ [Wx(·)′,Wu(·)′]′ and [Wx(·)′,Wu(·)]′ being a (k + 1)× 1 vector of independent

Wiener processes, and Σ∗ := limT→∞ T
−1
∑T

t=1

∑T
s=1 E[gtgs] with gt := [∆xt, ut]

′. The blocks on

the second row of Q form a sub-matrix with rank equal to unity. That is, [1
2µ

+
∗ ,

1
3µ

+
∗ µ

+′
∗ ,µ

+
∗
∫
rB′x] =

µ+
∗ [1

2 ,
1
3µ

+′
∗ ,
∫
rB′x], implying that Q is singular with probability 1. Consequently, the two-step procedure

in Section 3.1 cannot be directly applied to estimating the long-run parameters.

3.2.1 Estimation of the Long-Run Parameters

First-Step Transformed OLS Estimator. To address the above singularity issue,2 let mt :=
∑t

j=1 s
+
j ,

which is a unit-root process with zero-mean increments. Thus, if we regress x+
t against t, then we estimate

µ+
∗ by µ̂+

T := (
∑T

t=1 t
2)−1

∑T
t=1 tx

+
t = µ+

∗ + (
∑T

t=1 t
2)−1

∑T
t=1 tmt, and obtain m̂t := x+

t − µ̂
+
T t.

Consequently, mt = m̂t + tdT , where dT := (
∑T

t=1 t
2)−1

∑T
t=1 tmt. Then, x+

t = m̂t + δ∗T t, where

δ∗T := µ+
∗ + dT . Under regularity conditions, dT = OP(T−1/2) and thus δ∗T = µ∗ + OP(T−1/2).

2Cho et al. (2023a) allow E(∆xt) 6= 0 and propose a substantial modification to the estimation and inference procedure.
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Rewriting the long-run relationship as yt = α∗ + ξ∗T t + λ′∗m̂t + η′∗xt + ut, where ξ∗T := λ′∗δ∗T , we

can estimate λ∗ and η∗ by regressing yt on rt := (1, t, m̂′t,x
′
t)
′. Let $̈T := (α̈T , ξ̈∗T , λ̈

′
T , η̈

′
T )′ be the

OLS estimator of $∗T := (α∗, ξ∗T ,λ
′
∗,η
′
∗)
′. The long-run estimators of β+

∗ and β−∗ can be obtained as

β̈+
T := λ̈T + η̈T and β̈−T := η̈T . Let:

S̈ :=

 0k×1 0k×1 Ik Ik

0k×1 0k×1 0k×k Ik

 , then

 β̂+

T

β̂
−
T

 = S̈$̈T .

We refer to this as the first-step transformed OLS (TOLS) estimator. The intuition is straightforward; as it is

the collinear trend in x+
t that results in the singularity of Q, which, in turn, renders the first-step estimation

by OLS and FM inoperable, we detrend x+
t prior to estimation.

The limit distribution of the first-step TOLS estimator is obtained similarly to that of the first-step

OLS estimator. Note that $̈T = $∗T + (
∑T

t=1 rtr
′
t)
−1
∑T

t=1 rtut. To characterize the limit behav-

iors of the components, we define Σ̈∗ := limT→∞
1
T

∑T
t=1

∑T
s=1 E[g̈tg̈

′
t] and [Bm(·)′,Bx(·)′,Bu(·)]′

:= Σ̈
1/2
∗ [Wm(·)′,Wx(·)′,Wu(·)]′, where g̈t := [∆m′t,∆xt, ut]

′ and [Wm(·)′, Wx(·)′,Wu(·)]′ is a

(2k + 1)× 1 vector of independent Wiener processes.

Lemma 5. Suppose that Σ̈∗ is PD. Under Assumption 1, (i) R̈T := D̈−1
T (
∑T

t=1 rtr
′
t)D̈

−1
T ⇒R, where R

is defined as:


1 1

2

∫
(1− 3

2r)B
′
m

∫
B′x

1
2

1
3 01×k

∫
rB′x∫

(1− 3
2r)Bm 0k×1

∫
BmB′m − 3

∫
rBm

∫
rB′m

∫
BmB′x − 3

∫
rBm

∫
rB′x∫

Bx

∫
rBx

∫
BxB′m − 3

∫
rBx

∫
rB′m

∫
BxB′x

 ,

and D̈T := diag[T 1/2, T 3/2, T I2k]; and (ii) if υx∗ := limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆xiut] and υm∗ :=

limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆miut] are finite, then ÜT := D̈−1

T (
∑T

t=1 rtut) ⇒ Ü := [
∫
dBu,

∫
rdBu,∫

B′mdBu − 3
∫
rdBu

∫
rB′m + υ′m∗,

∫
B′xdBu + υ′x∗]

′. �

R is no longer singular because
∑[T (·)]

t=1 g̈t obeys the FCLT using partially correlated increments.

Corollary 3. Under Assumption 1, D̈T ($̈T −$∗T )⇒R−1Ü and T 1/2(ξ̂T − λ′∗µ+
∗ )⇒ 3λ′∗

∫
rBm. �

The first part of Corollary 3 follows from the structure of the first-step TOLS estimator. For the second part,

notice that ξ̂T is not of primary interest.While the convergence rate of (ξ̂T − ξ∗T ) is T 3/2, ξ∗T := λ′∗δ∗T

converges to λ′∗µ
+
∗ at rate

√
T . This implies that T 1/2(ξ̂T−λ′∗µ+

∗ ) is asymptotically bounded in probability.
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Theorem 4 provides the limit distribution of the TOLS estimator.

Theorem 4. Suppose that Σ̈∗ is PD. Under Assumption 1, T [(β̈+
T − β

+
∗ )′, (β̈−T − β

−
∗ )′]′ ⇒ S̈R−1Ü . �

First-Step Transformed FM Estimator. The limit distribution of the TOLS estimator in Theorem 4 does

not provide a basis for inference, as it exhibits asymptotic biases driven by υ∗m and υ∗x. Thus, we provide

the first-step transformed FM (TFM) estimator.

We make the following assumptions:

Assumption 3. (i) For finite and PD Σ̈∗ there exists a consistent estimator of Σ̈∗:

Σ̄T :=

 Σ̄
(1,1)
T σ̄

(1,2)
T

σ̄
(2,1)
T σ̄

(2,2)
T

 P→ Σ̈∗ :=

 Σ̈
(1,1)
∗ σ̈

(1,2)
∗

σ̈
(2,1)
∗ σ

(2,2)
∗

 ;

and (ii) if we let Π̄T := T−1
∑`

k=0

∑T
t=k+1 ḡt−kḡ

′
t, then

 Π̄
(1,1)
T π̄

(1,2)
T

π̄
(2,1)
T π̄

(2,2)
T

 := Π̄T
P→ Π̈∗ :=

 Π̈
(1,1)
∗ π̈

(1,2)
∗

π̈
(2,1)
∗ π

(2,2)
∗

 := lim
T→∞

1

T

T∑
t=1

t∑
i=1

E[g̈tg̈
′
t],

which is finite, where ḡt := [∆m̂′t,∆x
′
t, üt]

′ and üt := yt − α̈T − β̈+′
T x

+
t − β̈

−′
T x
−
t . �

Assumption 3 corresponds to Assumption 2 for k > 1. The TFM estimator is defined as

$̄T := (ᾱT , ξ̄T , β̄
+′
T , β̄

−′
T )′ :=

(
T∑
t=1

rtr
′
t

)−1( T∑
t=1

rtȳt − T S̄′ῡT

)
,

where ȳt := yt − `′t(Σ̄
(1,1)
T )−1σ̄

(1,2)
T , `t := (∆m̂′t,∆x

′
t)
′, ῡT := π̄

(1,2)
T − Π̄

(1,1)
T (Σ̄

(1,1)
T )−1σ̄

(1,2)
T and

S̄ := [02k×2, I2k]. The limit distribution of the TFM estimator is obtained in a similar way to that of the FM

estimator.

Lemma 6. Under Assumptions 1 and 3, ŪT := D̈−1
T {
∑T

t=1 rt(ut − `
′
t(Σ̄

(1,1)
T )−1σ̄

(1,2)
T ) − T S̄′ῡT } ⇒

Ū := τ̈ [
∫
dWu,

∫
rdWu,

∫
B′mdWu− 3

∫
rdWu

∫
rB′m,

∫
B′xdWu]′, where τ̈2 := plimT→∞τ̄

2
T and τ̄2

T :=

σ̄
(2,2)
T − σ̄(2,1)

T (Σ̄
(1,1)
T )−1σ̄

(1,2)
T . �

By Lemmas 5 and 6, the limit distribution of the TFM estimator is obtained as the product of R−1 and

Ū . Letting [β̄+′
T , β̄

−′
T ]′ := S̈$̄T , we obtain its weak limit as follows:

Theorem 5. Under Assumptions 1 and 3, D̈T ($̄T −$̄∗T )⇒R−1Ū and T [(β̄+
T −β

+
∗ )′, (β̄−T −β

−
∗ )′]′ ⇒

S̈R−1Ū . �
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The limit distribution of the TFM estimator is mixed normal. That is, conditional on σ{(Bm(r)′,Bx(r)′)′, r

∈ (0, 1]}, D̄T ($̄T − $̄∗T )⇒ N(0, τ̈2R−1).

3.2.2 Estimation of the Short-Run Parameters

We can treat the TFM estimator of the long-run parameters as known when estimating the short-run param-

eters in the second step because it has a convergence rate faster than
√
T . Let ut−1 := yt−1 − β+′

∗ x
+
t−1 −

β−′∗ x
−
t−1 = yt−1 − λ′∗µ+

∗ (t − 1) − λ′∗mt−1 − η′∗xt−1, where λ∗, µ+
∗ , and η∗ are assumed to be known.

This allows us to employ (2) in Section 3.1.2, and estimate the short-run parameters by the OLS estimator.

Then, Theorem 3 can be applied.

4 Hypothesis Testing

We develop the testing procedure for the presence of asymmetries.

4.1 Hypothesis Testing with k = 1

4.1.1 Testing for Symmetry of the Long-Run Parameters

Consider H ′0 : (β+
∗ − β−∗ ) = r vs. H ′1 : (β+

∗ − β−∗ ) 6= r for some r ∈ R. By setting r = 0, we can test

whether β+
∗ = β−∗ . As λ∗ := β+

∗ − β−∗ , we can restate the hypothesis as H ′′0 : λ∗ = r vs. H ′′1 : λ∗ 6= r,

from which the long-run symmetry restriction, β+
∗ = β−∗ , is equivalent to the restriction, λ∗ = 0. It is

straightforward to test this restriction if λ∗ is estimated by FM, because the FM estimator is asymptotically

mixed-normal. Thus, the Wald test follows an asymptotic chi-squared distribution under the null. This is an

important advantage of FM over OLS.

Corollary 2 provides the limit distribution of λ̃T . Letting S` := [0, 1, 0], then T 3/2(λ̃T − λ∗) =

S`D̃T (%̃T − %∗) ⇒ S`Q−1Ũ , implying that T 3/2(λ̃T − r) ⇒ S`Q−1Ũ under H ′′0 . The Wald test is

constructed as

W(`)
T := T 3(λ̃T − r)2(τ̃2

TS`Q̂
−1
T S′`)

−1.

Notice, however, that this Wald statistic may be inappropriate to test other forms of hypothesis. For example,

consider H ′′′0 : Rβ∗ = r vs. H ′′′1 : Rβ∗ 6= r for some R ∈ Rr×2 and r ∈ Rr (r ∈ {1, 2}), where

β∗ := (β+
∗ , β

−
∗ )′. Let

R̃` :=

 0 1 1

0 0 1

 .
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These hypotheses can be rewritten asH ′′′0 : R̃%∗ = r vs. H ′′′1 : R̃%∗ 6= r, where R̃%∗ = β∗ and R̃ := RR̃`.

Then, we construct the Wald test as

W̃(`)
T := (R̃%̃T − r)′(τ̃2

T R̃Q−1
T R̃′)−1(R̃%̃T − r),

where QT :=
∑T

t=1 qtq
′
t.

Theorem 6 describes the limit behavior of W̃(`)
T :

Theorem 6. Under Assumptions 1 and 2, W(`)
T

A∼ X 2
1 under H ′′0 and W̃(`)

T
A∼ X 2

2 under H ′′′0 . For any

sequence, cT and c̃T , such that cT = o(T 3) and c̃T = o(T 2), P(W(`)
T > cT )→ 1 under H ′′1 and P(W̃(`)

T >

c̃T )→ 1 under H ′′′1 . �

4.1.2 Testing for Symmetry of the Short-Run Parameters

In the NARDL literature, it is common to test for additive symmetry of the short-run dynamic parameters.3

Consider H0 : Rsζ∗ = r vs. H1 : Rsζ∗ 6= r, where Rs ∈ Rr×(1+p+2q) and r ∈ Rr (r ∈ N) are

selection matrices. The null hypothesis of additive short-run symmetry can be tested against the alternative

hypothesis of asymmetry: H0 :
∑q−1

j=0 π
+
j∗ =

∑q−1
j=0 π

−
j∗ vs. H1 :

∑q−1
j=0 π

+
j∗ 6=

∑q−1
j=0 π

−
j∗. Letting Rs :=[

0′1+p, ι
′
q,−ι′q

]
and r = 0, then the Wald test is constructed as

W(s)
T := T (Rsζ̂T − r)′(RsΓ̂

−1

T Ω̂T Γ̂
−1

T R′s)
−1(Rsζ̂T − r),

where Ω̂T := T−1
∑T

t=1 ê
2
thth

′
t is a consistent estimator of Ω∗. Further, if the condition in Lemma 4(iii)

holds, the Wald test reduces to W(s)
T := T (Rsζ̂T − r)′(σ̂2

e,TRsΓ̂
−1

T R′s)
−1(Rsζ̂T − r), where σ̂2

e,T :=

T−1
∑T

t=1 ê
2
t and êt := ∆yt − ζ̂

′
Tht.

Theorem 7 establishes that the null and alternative limit distributions of the Wald test are standard.

Theorem 7. Suppose that Γ∗ and Ω∗ are PD. Under Assumption 1, W(s)
T

A∼ X 2
r under H0. For any

sequence, cT such that cT = o(T ), P(W(s)
T > cT )→ 1 under H1. �

4.2 Hypotheses Testing with k > 1

3The literature has considered several forms of short-run symmetry restrictions, including pairwise symmetry ofπ+
j∗ andπ−j∗ for

j = 0, . . . , q− 1 (SYG) and impact symmetry defined by π+
0∗ and π−0∗ (Greenwood-Nimmo and Shin, 2013). It is straightforward

to test these alternative restrictions by appropriately specifying selection matrices, Rs and r.

13



4.2.1 Testing for Symmetry of the Long-Run Parameters

Define β∗ := (β+′
∗ ,β

−′
∗ )′ and consider H(4)

0 : Rβ∗ = r vs. H(4)
1 : Rβ∗ 6= r for some R ∈ Rr×2k and

r ∈ Rr (r ≤ 2k). We then construct the Wald test as ẄT := T 2(Rβ̄T−r)′{τ̄2
TRS̈R̈−1

T S̈′R′}−1(Rβ̄T−r),

where β̄T := (β̄+′
T , β̄

−′
T )′.

Theorem 8 describes the limit behavior of ẄT .

Theorem 8. Under Assumptions 1 and 3, Ẅ(`)
T

A∼ X 2
r under H(4)

0 . For any sequence cT such that cT =

o(T 2), P(Ẅ(`)
T > cT )→ 1 under H(4)

1 . �

4.2.2 Testing for Symmetry of the Short-Run Parameters

To test for additive symmetry of the short-run dynamic parameters, we consider H0 : Rsζ∗ = r vs. H1 :

Rsζ∗ 6= r, where Rs ∈ Rr×(1+p+2qk) and r ∈ Rr are selection matrices, and ζ∗ := (ρ∗, γ∗, ϕ1∗, . . . , ϕp−1∗,

π+′
0∗ , . . . ,π

+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗), which generalizes our prior definition of ζ∗ for k = 1 in Section 4.1.2.

Let Rs :=
[
0k×(1+p), ι

′
q ⊗ Ik,−ιq ⊗ Ik

]
and r = 0, then we can test the null hypothesis of additive short-

run symmetry as H0 :
∑q−1

j=0 π
+
j∗ =

∑q−1
j=0 π

−
j∗ vs. H1 :

∑q−1
j=0 π

+
j∗ 6=

∑q−1
j=0 π

−
j∗. If the cointegration

residuals are obtained as in Section 3.2.2, then we can employ the same Wald test described in Section

4.1.2, because both TOLS and TFM estimators are super-consistent.

5 Monte Carlo Simulations

We conduct stochastic simulations to examine the finite sample properties of the Wald tests described in

Section 4.4

5.1 Simulations Results for k = 1

Consider the NARDL(1,0) data generating process (DGP): ∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+
∗ ∆x+

t +

π−∗ ∆x−t + et, where ut−1 := yt−1 − α∗ − β+
∗ x

+
t−1 − β−∗ x

−
t−1, ∆xt := κ∗∆xt−1 +

√
1− κ2

∗vt, and

(et, vt)
′ ∼ IIDN(02, I2).

Testing Restrictions on the Long-Run Parameters. We focus on the case where the FM estimator is

used in the first step and set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2). We

test H(`)
0 : β+

∗ − β−∗ = 0 vs. H(`)
1 : β+

∗ − β−∗ 6= 0 by allowing ϕ∗ to vary over −1/2, −1/4, 0, 1/4 and 1/2.

4In Section D of the Online Supplement we investigate the finite sample bias and mean squared error of the two-step NARDL
estimators, and show that they are consistent.
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The simulation results reported in Table 1 reveal some size distortion in small samples for negative val-

ues of ϕ∗. Nonetheless, as T increases, the distribution of the Wald test becomes well-approximated by the

X 2
1 distribution. To examine the power of the Wald test, we generate data with (α∗, β

+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ ,

π−∗ , κ∗) = (0, 1.01, 1, 0,−2/3, ϕ∗, 1/3, 1/2, 1/2) and allow ϕ∗ to vary as above. The simulation results

reported in Table 2 confirm that the forW(`)
T statistic is consistent under the alternative hypothesis. Further-

more, its power patterns are largely insensitive to the value of ϕ∗.

— Insert Tables 1 and 2 Here —

Testing Restrictions on the Short-Run Parameters. To examine the empirical levels of the Wald test,

we set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1/2, 1/2, 1/2) and allow ϕ∗ to vary as

above. We first estimate the long-run parameters by FM and compute ût before estimating the short-run

parameters by OLS. We then test H(s)
0 : π+

∗ − π−∗ = 0 vs. H(s)
1 : π+

∗ − π−∗ 6= 0 using W(s)
T with the

heteroskedasticity consistent covariance estimator, Ω̂T .

The simulation results reported in Table 3 reveal that the finite sample distribution of W(s)
T is well

approximated by the chi-squared distribution. Its empirical level tends to the nominal level once the number

of observations reaches 500. Furthermore, the empirical sizes display little sensitivity to the value of ϕ∗ even

for small T . Next, we examine the empirical powers of the Wald test. We maintain the same hypotheses

but update the parameters to (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2). Two

points are noteworthy in Table 4. First, the empirical power of the Wald test rises with T , indicating that the

test is consistent. Second, the power of the Wald test exhibits little sensitivity to the degree of autocorrelation

captured by the value of ϕ∗.

— Insert Tables 3 and 4 Here —

5.2 Simulations Results for k = 2

We generate the following NARDL(1,0) DGP: ∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+′
0∗∆x

+
t + π−′0∗∆x

−
t +

et, where ut−1 := yt−1 − α∗ − β+′
∗ x

+
t−1 − β

−′
∗ x
−
t−1, ∆xt := κ∗∆xt−1 +

√
1− κ2

∗vt, and (et,vt)
′ ∼

IIDN(03, I3).

Testing Restrictions on the Long-Run Parameters. We confine our attention to the case where the

TFM estimator is used in the first step. We set (α∗, γ∗, ρ∗, ϕ∗, κ∗) = (0, 0,−1, ϕ∗, 0.5), (β+′
∗ ,β

−′
∗ )′ =

(−1, 0.5, 0.75,−1.5)′, and (π+′
0∗ ,π

−′
0∗)
′ = (0.5,−0.5,−1, 1)′. We test Ḣ(`)

0 : ι′2β
+
∗ = −0.50 and ι′2β

−
∗ =

−0.75 vs. Ḣ(`)
1 : ι′2β

+
∗ 6= −0.50 or ι′2β

−
∗ 6= −0.75 by allowing ϕ∗ to vary over −0.3, −0.1, 0, 0.1 and 0.3.
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The simulation results are reported in Table 5. As T rises, the distribution of the Wald test becomes

well approximated by the X 2
2 distribution. If ϕ∗ = 0.3, then a larger sample size is required to achieve a

satisfactory approximation. To examine the empirical powe, we test Ḣ(`)
0 : ι′2β

+
∗ = −0.40 and ι′2β

−
∗ =

−0.65 vs. Ḣ(`)
1 : ι′2β

+
∗ 6= −0.40 or ι′2β

−
∗ 6= −0.65. Table 6 shows that the Wald test is consistent and its

empirical rejection rates converge to 100% for all values of ϕ∗.

— Insert Tables 5 and 6 Here —

Testing Restrictions on the Short-Run Parameters. We generate the DGP with (α∗, γ∗, ρ∗, ϕ∗, κ∗) =

(0, 0,−1, ϕ∗, 0.5), (β+′
∗ ,β

−′
∗ )′ = (−1, 0.5, 0.75, −1.5)′, and (π+′

0∗ ,π
−′
0∗)
′ = (0.5, 0.2, 0.5, 0.2)′, while al-

lowing ϕ∗ to vary as before. We focus on the case in which the long-run parameters are estimated by TFM

and construct ût prior to estimating the short-run parameters by OLS. We test Ḣ(s)
0 : π+

0∗ − π
−
0∗ = 0 vs.

Ḣ
(s)
1 : π+

0∗ − π
−
0∗ 6= 0, using the Wald test with the heteroskedasticity consistent covariance estimator Ω̂T .

The simulation results in Table 7 display that the finite sample distribution of the Wald test is well ap-

proximated by the X 2
2 distribution. Its empirical level is approximately correct for large T while displaying

little sensitivity to ϕ∗ even for small T . Next, to examine the empirical power of the Wald test, we work

with the same DGP and test Ḧ(s)
0 : π+

0∗ − π
−
0∗ = 0.3ι vs. Ḧ(s)

1 : π+
0∗ − π

−
0∗ 6= 0.3ι. From the simulation

results in Table 8 we find that the Wald test becomes consistent with T , and exhibits little sensitivity to the

degree of autocorrelation measured by ϕ∗.

— Insert Tables 7 and 8 Here —

6 Empirical Application: Asymmetric Relationship between R&D Intensity

and Investment

Following Schumpeter’s seminal 1942 work on creative destruction, a large literature on R&D activities

has been developed, though the potentially asymmetric relationship between R&D expenditure and physical

investment has received little attention. The product life cycle literature distinguishes between early-stage

R&D (referred to as innovative R&D) that is often associated with new product development, and later-stage

R&D (referred to as managerial R&D) that tends to focus on scaling production and achieving efficiency

(e.g., Gort and Wall, 1986; Audretsch, 1987).5 Early-stage (innovative) R&D focuses on the development

5A number of studies differentiate between innovative and managerial R&D activities and their effects on other economic
variables (e.g., Klepper, 1996; Zif and McCarthy, 1997; Agarwal and Audretsch, 2001; Comin and Philippon, 2005; Aghion et al.,
2009; Chung and Shin, 2020).
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of a new product/technology, leading to a large-scale investment. By contrast, later-stage (managerial) R&D

focuses on production efficiency such that it does not exceed the expected increase in output, resulting in a

smaller-scale investment. Overall, R&D expenditure rises sharply in the early stage before leveling off or

decreasing at the later stage.

Our empirical specification is grounded in two stylized features of innovative and managerial R&D ex-

penditures highlighted in the theory developed in Section E.2 of the Online Supplement. First, as innovative

R&D expenditures tend to focus on product innovation, their scale is often large relative to output, suggest-

ing that R&D expenditure is expected to grow faster than output in the early stage, where start-up costs are

large and the scale of production typically small. Next, managerial R&D expenditures focus on enhancing

production efficiency such that their scale is typically smaller than output.

Let rt denote aggregate R&D intensity in the t-th period, defined as a ratio of aggregate R&D ex-

penditure to GDP. As aggregate R&D expenditure incorporates the spectrum of R&D activities conducted

throughout the economy, the sign of ∆rt may determine the relative prevalence of innovative and managerial

R&D activities. If ∆rt ≥ 0, then R&D expenditure grows as fast as output, indicating a prevalence of inno-

vative R&D activity. By contrast, if ∆rt < 0, then output grows faster than R&D expenditure, representing

a prevalence of managerial R&D activity. Given the different characteristics of innovative and managerial

R&D, we derive a theoretical prediction that innovative R&D expenditure is a complement to physical in-

vestment while managerial R&D expenditure is a substitute. We then develop a testable hypothesis that

innovative R&D expenditure is positively related with investment by virtue of complementarity while the

relationship between managerial R&D expenditure and investment may be negative due to their nature as

substitutes (see Section E.2 of the Online Supplement for details).

We examine the asymmetric relationship between R&D intensity and physical investment using quar-

terly U.S. data covering the period from 1960q1 to 2019q4, collected from the Federal Reserve Economic

Data service at the Federal Reserve Bank of St. Louis. R&D intensity (rt) is measured as 100 times the

ratio of seasonally adjusted nominal R&D expenditure to seasonally adjusted nominal GDP. Investment (it)

is the log of seasonally adjusted real gross private domestic investment in 2012 prices (GPDI). The National

Income and Product Accounts (NIPAs) separately aggregate R&D expenditure and GPDI, so there is no

double-counting of R&D expenditure.6

The Phillips and Perron (1988) unit root test results indicate that both rt and it are nonstationary, and

we thus report descriptive statistics for the first differences of both series (see Section F in the Online Sup-

6The Bureau of Economic Analysis constructs a partial R&D satellite account and revises the NIPAs by treating R&D expendi-
ture as part of investment (see Fraumeni and Okubo, 2005).
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plement). While the growth rate of R&D intensity is well approximated by a normal distribution centered

at zero, the GPDI growth rate exhibits a non-zero mean with negative skewness and excess kurtosis. This

implies that it is a unit-root process with a time drift, but rt is a driftless unit-root process.7 As described

in Section E.3 in the Online Supplement, the NARDL model can capture an asymmetric cointegrating re-

lationship between two integrated variables with different drifts without the need to include a deterministic

time trend in the model, (3) below.

We estimate the NARDL model using the two-step procedure described in Section 3, using the FM

estimator in the first step. By selecting the lag order by the Akaike Information Criterion (AIC), we consider

the following NARDL(2,2) error-correction model:

∆it = γ∗ + ρ∗ut−1 + ϕ∗∆it−1 + π+
0∗∆r

+
t + π−0∗∆r

−
t + π+

1∗∆r
+
t−1 + π−1∗∆r

−
t−1 + et, (3)

where it = β+
∗ r

+
t +β−∗ r

−
t +ut. When applying the Phillips and Perron (1988) unit root test to the residuals,

we reject the null hypothesis of no cointegration with a p-value of 0.01, concluding that there exists an

asymmetric long-run relationship between it, r+
t and r−t .

The long-run parameter estimates reported in Table 9 are not only different in magnitude, but they also

display opposite signs: β̃+
∗ is positive and β̃−∗ is negative with both being highly significant. Furthermore,

the null hypothesis of long-run symmetry is strongly rejected.8 Our results indicate that an increase in R&D

spending equivalent to 1% of GDP is associated with an increase of 2.7% in real investment in the long run

when R&D growth exceeds GDP growth (i.e. innovative R&D is prevalent). On the other hand, when R&D

growth is slower than GDP growth (i.e. managerial R&D is prevalent), an increase in R&D spending of 1%

of GDP reduces real investment by 6.4%.9 This is consistent with our theoretical prediction that β+
∗ > 0

due to the complementarity of innovative R&D expenditure and investment, whilst β−∗ < 0 is consistent

with the nature of managerial R&D expenditure and investment as substitutes. We find that the substitution

effect will be stronger than the complementary effect in the long run.

Next, from the short-run dynamic estimation results reported in Table 10, we find no evidence of residual

autocorrelation up to order 4, with the p-value of the Breusch-Godfrey Lagrange multiplier (LM) test being

0.39. But, the Breusch-Pagan LM test rejects the conditional homoskedasticity with a p-value of 0.035.

Thus, we report the robust standard errors obtained using the HAC covariance matrix estimator. We observe

7We observe that the time trend coefficient is significantly different from zero for it, but not for rt.
8Due to the reparamerization the Wald test of H0 : β+

∗ = β−∗ versus H1 : β+
∗ 6= β−∗ is equivalent to a t-test of H0 : λ∗ = 0

versus H1 : λ∗ 6= 0, which returns a p-value almost identical to zero.
9The average of U.S. R&D intensity over our sample period is 2.69% of GDP with a standard deviation of 0.2%. Hence, a shock

equivalent to 1% of GDP is relatively large by historical standards.
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that disequilibrium errors are corrected significantly at 6.8% per quarter, but do not find any evidence of

short-run asymmetry.10

— Insert Tables 9 and 10 Here —

In Figure 1, we report the cumulative dynamic multipliers associated with an increase in R&D intensity

equal to 1% of GDP in each regime (i.e. when R&D grows faster (slower) than GDP). We also display the

difference between these two dynamic multipliers as a measure of asymmetry at each horizon with an em-

pirical 95% confidence interval obtained from 5,000 iterations of a moving block bootstrap procedure with a

block length of T 1/3. In Figure 1(a), when R&D growth exceeds GDP growth (i.e. innovative R&D predom-

inates), we find that a 1% increase in R&D intensity initially reduces real investment with a peak reduction

of 6.7% after one quarter. From the perspective of creative destruction, this initial reduction may reflect that

large innovative R&D expenditures focus on new product development, creating a degree of obsolescence in

existing technologies and promoting an incentive to reduce investment in those technologies. The dynamic

multiplier rises steadily and becomes positive after 8 quarters, as newly developed technologies begin to

mature and scale. In the long run, the impact of innovative R&D expenditure on real physical investment

reaches the long-run multiplier at 2.7%. Figure 1(b) shows that when managerial R&D predominates, a

1% increase in R&D intensity leads to an immediate reduction of -3.6% in the real investment, reflecting

short-term substitution. The dynamic multiplier effect is then indistinguishable from zero until horizon 11,

after which it converges to a long-run multiplier at -6.4%. Overall, an economic environment that favors

managerial R&D expenditure is conducive to decreased real investment in the long run, as the efficiency

gains derived from managerial R&D raise the return on each dollar invested.

In Figure 1(c), we characterize the asymmetry between the cumulative dynamic multipliers associated

with innovative and managerial R&D expenditures by constructing the difference between the cumulative

dynamic multiplier reported in panels (a) and (b) with 95% bootstrap confidence intervals, that can be used

to test for asymmetry at any horizon. In the short run, we observe substantial negative asymmetry that is

significant at the 10% level, suggesting that real investment is more responsive to innovative than managerial

R&D in the short run. In the long run, however, we observe positive asymmetry as the substitution effect

associated with managerial R&D becomes stronger than the complementary effect of innovative R&D. This

pattern is generally in line with the product life cycle, where large innovative R&D occurs early often

exerting a disruptive influence on existing products. Once the new product becomes established, managerial

10The Wald test for the of impact symmetry, H0 : π+
0∗ = π−0∗ vs. H1 : π+

0∗ 6= π−0∗, returns a p-value of 0.677. Moreover, the null
hypothesis of additive short-run symmetry, H0 : π+

0∗ + π+
1∗ = π−0∗ + π−1∗, is not rejected against H1 : π+

0∗ + π+
1∗ 6= π−0∗ + π−1∗,

with a p-value of 0.146.
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R&D focuses on scaling-up production and delivering efficiency gains. Collectively, these results have

important implications for the endogenous growth literature, where linear functional forms are routinely

imposed to characterize the relationship between the stock of knowledge and R&D intensity (e.g. Romer,

1990). Our main findings suggest that the imposition of a linear functional form may produce misleading

results.

— Insert Figure 1 Here —

Next, we present the additional estimation results obtained using the single-step OLS estimation proce-

dure popularized by SYG, which are summarized in Figure 2. This exercise sheds light on the performance

of the single-step estimation of SYG relative to our two-step counterpart. In general, we find that both pro-

cedures yield similar estimation and testing results. This indicates that they may be used interchangeably in

practice. However, the two-step framework yields greater precision in the estimation of the long-run param-

eters, as it is not subject to the influence of nuisance parameters. This may improve one’s ability to detect

long-run asymmetry, particularly in small samples. This represents an important practical benefit of our

two-step estimation framework, given that NARDL models are often used in macroeconomic applications,

where a low sampling frequency and relatively short time period necessitate the use of small samples.

— Insert Figure 2 Here —

7 Concluding Remarks

We have analyzed the potentially asymmetric relationship between R&D intensity and physical investment

using the quarterly data in the U.S. over the period, 1960q1–2019q4. We have developed a theoretical

model that exploits documented differences in innovative and managerial R&D characteristics, establishing

that there exists an asymmetric relationship between R&D intensity and investment. We have also developed

the testable hypothesis that innovative (managerial) R&D expenditure is a complement to (a substitute for)

physical investment.

We have proposed a corresponding empirical NARDL specification in which real investment is regressed

on the positive and negative partial sums of R&D intensity. While the NARDL model has been widely

applied to the analysis of asymmetric relationships (see Cho et al., 2023b), the asymptotic theory for the

single-step NARDL estimator has yet to be fully developed due to asymptotic singularity issues. In the

first step, we estimate the parameters of a reparameterized long-run relationship using the FM estimator

that accounts for serial correlation and potential endogeneity of the regressors and that facilitates standard
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inference. In the second step, the short-run dynamic parameters are estimated by OLS, treating the error-

correction term as given. We derive the asymptotic distributions of the two-step NARDL estimators and

develop Wald tests for inference on the short- and long-run parameters. A suite of Monte Carlo simulations

demonstrates that our asymptotic results offer good approximations in finite samples.

Employing the U.S. quarterly data covering the period from 1960q1 to 2019q4, we find comprehensive

empirical evidence in favor of the asymmetric relationship between R&D intensity and investment. In the

long run, investment responds positively to R&D expenditures when their growth rate exceeds the growth

rate of GDP and negatively when they grow more slowly than GDP. This supports theoretical predictions

that the innovative (managerial) R&D expenditure is a complement to (substitute for) physical investment.

Furthermore, we find that investment is more sensitive to changes in R&D intensity when the growth rate of

R&D expenditure is lower than GDP growth.

Our work opens several avenues for continuing research. On the methodological side, there is scope to

generalize our approach to accommodate trending regressors or to estimate an unknown threshold parameter

in the construction of the partial sum processes. On the empirical side, our results motivate the study

of potential asymmetries in other areas of the innovation literature, such as in the knowledge production

function that is routinely estimated in linear form in the endogenous growth literature.
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(a) Cumulative response of it+h to a +1 unit shock to r+t in period 1

(b) Cumulative response of it+h to a +1 unit shock to r−t in period 1

(c) Asymmetry across horizons

Figure 1: CUMULATIVE DYNAMIC MULTIPLIERS BASED ON THE TWO-STEP ESTIMATOR. Panels (a) and
(b) present the cumulative dynamic multipliers with respect to unit shocks to r+

t and r−t , respectively. Panel
(c) shows the asymmetry at each horizon, i.e., the difference between the cumulative dynamic multipliers in
panel (a) and those in panel (b). We also report empirical 95% confidence intervals that are obtained using
a moving block bootstrap procedure with 5,000 replications.
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(a) Cumulative response of it+h to a +1 unit shock to r+t in period 1

(b) Cumulative response of it+h to a +1 unit shock to r−t in period 1

(c) Asymmetry across horizons

Figure 2: CUMULATIVE DYNAMIC MULTIPLIERS BASED ON THE ONE-STEP ESTIMATOR. Panels (a) and
(b) present the cumulative dynamic multiplier effects with respect to unit shocks to r+

t and r−t , respectively,
occurring in period 1. Panel (c) shows the asymmetry at each horizon, i.e., the difference between the
cumulative dynamic multipliers in panel (a) and those in panel (b). We also report empirical 95% confidence
intervals that are obtained using a moving block bootstrap procedure with 5,000 replications.
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ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 12.40 5.06 2.38 1.82 1.44

5% 23.34 12.88 7.96 7.70 5.90
10% 31.50 21.04 14.08 13.22 11.46

-0.25 1% 8.74 3.80 2.54 1.74 1.18
5% 19.06 11.10 8.44 6.62 5.48

10% 27.22 18.36 14.96 11.68 10.48
0.00 1% 4.96 2.92 1.84 1.72 1.42

5% 13.86 9.76 7.20 6.60 6.12
10% 21.40 16.28 13.02 12.20 11.34

0.25 1% 3.32 1.62 1.34 1.22 1.06
5% 10.38 6.24 5.56 5.66 5.60

10% 17.28 11.42 10.96 11.22 10.70
0.50 1% 1.70 0.86 0.78 0.66 0.72

5% 5.82 4.06 4.60 4.30 4.22
10% 10.74 8.20 9.88 9.08 9.12

Table 1: EMPIRICAL LEVELS OF THE WALD TEST FOR LONG-RUN SYMMETRY. This table reports the
empirical level (in %) of the Wald test for the symmetry of the long-run parameters estimated by FM in the
first step. The data is generated by ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + (1/3)∆x+

t + (1/2)∆x−t + et, where
ut := yt − x+

t − x
−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2). H(`)
0 : β+

∗ − β−∗ = 0

vs. H(`)
1 : β+

∗ − β−∗ 6= 0.

ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 9.80 20.76 83.66 97.34 99.76

5% 20.00 35.78 89.36 98.54 99.96
10% 27.66 44.70 91.98 98.92 99.96

-0.25 1% 7.90 26.04 88.16 98.44 99.82
5% 17.98 41.74 92.88 99.32 99.92

10% 25.08 51.30 94.58 99.60 99.94
0.00 1% 5.74 32.24 91.22 99.20 99.86

5% 14.72 49.46 95.12 99.68 99.96
10% 22.40 58.54 96.66 99.80 99.98

0.25 1% 4.4 34.46 92.36 99.38 99.96
5% 12.08 52.82 96.04 99.70 100.0

10% 19.2 61.96 97.22 99.82 100.0
0.50 1% 2.92 25.40 90.96 99.16 99.98

5% 9.44 47.06 95.40 99.70 100.0
10% 16.08 58.68 96.98 99.82 100.0

Table 2: EMPIRICAL POWER OF THE WALD TEST FOR LONG-RUN SYMMETRY. This table shows the
empirical power (in %) of the Wald test for the symmetry of the long-run parameters estimated by FM in the
first step. The data is generated by ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + (1/3)∆x+

t + (1/2)∆x−t + et, where
ut := yt−1.01x+

t −x
−
t , ∆xt = 0.5∆xt−1+

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2). H(`)
0 : β+

∗ −β−∗ = 0

vs. H(`)
1 : β+

∗ − β−∗ 6= 0.
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ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 2.44 1.60 0.98 1.18 1.12

5% 8.06 6.06 5.42 5.46 6.02
10% 13.82 11.00 10.90 10.36 10.94

-0.25 1% 2.38 1.74 1.46 1.30 1.14
5% 7.38 6.44 6.02 5.36 5.30

10% 12.90 11.38 11.28 10.54 10.48
0.00 1% 2.12 1.18 1.22 1.26 0.98

5% 7.30 5.86 5.76 6.00 5.20
10% 13.40 11.26 10.94 11.16 10.22

0.25 1% 2.28 1.42 1.36 0.96 0.82
5% 7.32 6.14 5.84 5.12 4.68

10% 13.42 11.40 10.96 9.76 9.50
0.50 1% 2.02 1.80 0.98 1.10 1.22

5% 6.64 6.44 5.44 5.52 5.54
10% 11.84 11.54 10.62 10.60 10.74

Table 3: EMPIRICAL LEVELS OF THE WALD TEST FOR SHORT-RUN SYMMETRY. This table reports the
empirical levels (in %) of the Wald test for the symmetry of the short-run parameters, where FM is used in
the first step and OLS used in the second step. The data is generated as ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 +
(1/2)∆x+

t +(1/2)∆x−t +et, where ut := yt−2x+
t −x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼
IIDN(02, I2). H(s)

0 : π+
∗ − π−∗ = 0 vs. H(s)

1 : H0 : π+
∗ − π−∗ 6= 0.

ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 17.86 44.00 78.48 93.50 98.40

5% 35.38 66.66 91.82 98.44 99.76
10% 45.56 76.70 95.76 99.34 99.92

-0.25 1% 17.58 44.84 79.40 93.70 98.32
5% 34.96 66.66 91.90 98.26 99.72

10% 46.04 76.64 95.96 99.14 99.86
0.00 1% 17.26 43.16 78.56 93.28 98.60

5% 35.66 66.68 92.38 98.14 99.72
10% 46.62 76.14 96.06 99.18 99.90

0.25 1% 17.90 43.02 78.76 93.34 98.72
5% 35.02 66.14 92.12 98.32 99.68

10% 45.80 76.24 95.48 99.34 99.98
0.50 1% 17.50 42.82 77.82 92.94 98.54

5% 34.20 65.78 91.32 98.28 99.78
10% 44.90 76.06 94.90 99.26 99.92

Table 4: EMPIRICAL POWER OF THE WALD TEST FOR SHORT-RUN SYMMETRY. This table reports the
empirical rejection rates (in %) of the Wald test for the symmetry of the short-run parameters, where FM
is used in the first step and OLS is used in the second step. The data is generated as follows: ∆yt =
−(2/3)ut−1 + ϕ∗∆yt−1 + ∆x+

t + (1/2)∆x−t + et, where ut := yt − 2x+
t − x

−
t , ∆xt = 0.5∆xt−1 +√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2). H(s)

0 : π+
∗ − π−∗ = 0 vs. H(s)

1 : H0 : π+
∗ − π−∗ 6= 0.
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ϕ∗ sample size 100 250 500 1,000 3,000 5,000
-0.30 1% 45.20 17.06 7.46 2.62 1.10 1.32

5% 58.92 30.68 17.62 9.50 5.64 5.86
10% 65.82 40.08 25.76 16.40 11.72 10.62

-0.10 1% 42.96 18.12 8.12 3.32 1.48 1.24
5% 57.82 31.10 19.04 10.76 6.02 5.48
10% 65.34 39.20 26.66 17.48 11.64 10.34

0.00 1% 42.50 16.78 8.44 4.30 1.42 1.28
5% 56.38 29.90 19.20 11.62 5.80 5.60
10% 64.06 38.70 28.20 18.74 11.36 10.76

0.10 1% 41.24 16.18 8.56 4.02 1.68 1.18
5% 56.14 30.00 19.30 11.32 6.68 5.56
10% 63.30 38.78 27.12 19.24 12.50 11.26

0.30 1% 40.10 15.72 6.94 3.92 2.16 1.84
5% 54.52 28.24 17.16 12.52 8.00 7.34
10% 63.44 36.76 24.94 19.10 14.24 12.88

Table 5: EMPIRICAL LEVELS OF THE WALD TEST FOR LONG-RUN SYMMETRY. This table reports the
empirical level (in %) of the Wald test for the symmetry of the long-run parameters estimated by the TFM
estimator in the first step. The data is generated by ∆yt = −ut−1 +ϕ∗∆yt−1 +π+′

0∗∆x
+
t +π−′0∗∆x

−
t + et,

where ut := yt − β+′
∗ x

+
t − β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼ IIDN(03, I3).

Ḣ
(`)
0 : ι′2β

+
∗ = −0.5 and ι′2β

−
∗ = −0.75 vs. Ḣ(`)

1 : ι′2β
+
∗ 6= −0.5 or ι′2β

−
∗ 6= −0.75.

ϕ∗ sample size 100 200 300 400 500
-0.30 1% 47.46 70.16 90.44 98.10 99.74

5% 62.40 80.76 94.26 99.00 99.88
10% 70.16 85.42 96.18 99.32 99.92

-0.10 1% 48.98 71.36 91.30 98.24 99.70
5% 63.08 81.32 95.26 99.10 99.88

10% 70.12 86.22 96.76 99.36 99.94
0.00 1% 47.32 70.54 90.56 98.20 99.78

5% 61.72 81.70 94.02 99.12 99.94
10% 69.78 86.56 95.44 99.46 99.94

0.10 1% 46.36 69.20 90.22 98.06 99.86
5% 60.26 79.82 94.00 98.98 99.96

10% 67.16 84.56 95.86 99.36 99.98
0.30 1% 43.10 63.52 88.70 97.58 99.44

5% 56.98 75.22 93.74 98.88 99.78
10% 65.50 80.66 95.68 99.18 99.88

Table 6: EMPIRICAL POWER OF THE WALD TEST FOR LONG-RUN SYMMETRY This table shows the
empirical power (in %) of the Wald test for the symmetry of the long-run parameter estimated by the TFM
estimator in the first step. The data is generated by ∆yt = −ut−1 +ϕ∗∆yt−1 +π+′

0∗∆x
+
t +π−′0∗∆x

−
t + et,

where ut := yt − β+′
∗ x

+
t − β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼ IIDN(03, I3).

Ḧ
(`)
0 : ι′2β

+
∗ = −0.4 and ι′2β

−
∗ = −0.65 vs. Ḧ(`)

1 : ι′2β
+
∗ 6= −0.4 or ι′2β

−
∗ 6= −0.65.
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ϕ∗ sample size 100 200 400 600 800 1,000
-0.30 1% 10.62 4.16 1.58 1.66 1.28 1.56

5% 23.24 11.90 7.28 6.78 5.88 5.74
10% 31.96 18.88 13.34 12.26 11.34 10.80

-0.10 1% 10.58 3.72 2.02 1.34 1.20 1.22
5% 22.50 11.12 7.56 6.36 6.06 5.84
10% 32.18 18.66 13.38 12.28 11.38 10.94

0.00 1% 10.90 3.92 2.00 1.54 1.48 1.28
5% 23.34 11.80 7.90 6.36 6.64 5.50
10% 31.46 19.30 13.96 11.36 12.46 10.50

0.10 1% 10.80 3.98 2.00 1.36 1.44 1.26
5% 22.60 11.96 7.36 6.54 6.46 5.40
10% 30.78 18.68 12.74 12.38 12.16 10.82

0.30 1% 11.04 4.14 1.84 1.72 1.38 1.10
5% 22.68 11.56 7.60 7.20 6.74 5.14
10% 32.22 18.98 13.06 12.56 12.34 10.62

Table 7: EMPIRICAL LEVELS OF THE WALD TEST FOR SHORT-RUN SYMMETRY. This table reports
the empirical levels (in %) of the Wald test for the symmetry of the short-run parameters, where the TFM
estimator is used in the first step and OLS in the second step. The data is generated as ∆yt = −ut−1 +
ϕ∗∆yt−1 +π+′

0∗∆x
+
t +π−′0∗∆x

−
t +et, where ut := yt−β+′

∗ x
+
t −β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt,

and (et,v
′
t)
′ ∼ IIDN(03, I3). Ḣ(s)

0 : π+
0∗ − π

−
0∗ = 02 vs. Ḣ(s)

1 : π+
0∗ − π

−
0∗ 6= 02.

ϕ∗ sample size 100 200 400 600 800 1,000
-0.30 1% 20.96 21.94 39.98 60.80 77.26 86.48

5% 36.20 39.78 62.62 80.76 91.16 95.32
10% 45.90 51.10 73.52 87.68 94.76 97.76

-0.10 1% 21.56 22.94 41.36 61.54 76.68 86.96
5% 37.70 41.56 63.86 80.14 91.18 95.40
10% 46.98 52.92 74.76 87.70 95.16 97.72

0.00 1% 21.04 23.38 42.32 61.96 76.86 86.66
5% 36.70 42.28 64.08 81.12 90.50 95.58
10% 46.52 53.74 74.38 88.60 94.46 97.34

0.10 1% 20.04 24.42 40.92 61.14 76.30 86.52
5% 35.20 42.46 63.34 80.60 90.32 95.54
10% 45.34 53.40 73.86 87.96 94.84 97.78

0.30 1% 20.48 23.32 42.08 62.02 76.58 86.82
5% 36.56 42.84 63.60 80.88 90.20 95.28
10% 46.76 53.20 73.78 87.98 94.48 97.42

Table 8: EMPIRICAL POWER OF THE WALD TEST FOR SHORT-RUN SYMMETRY. This table reports the
empirical rejection rates (in %) of the Wald test for the symmetry of the short-run parameters, where the
TFM estimator is used in the first step and OLS in the second step. The data is generated as follows:
∆yt = −ut−1 + ϕ∗∆yt−1 + π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where ut := yt − β+′

∗ x
+
t − β−′∗ x

−
t , ∆xt =

0.5∆xt−1 +
√

1− 0.52vt, and (et,v
′
t)
′ ∼ IIDN(03, I3). Ḧ(s)

0 : π+
0∗−π

−
0∗ = 0.3ι2 vs. Ḧ(s)

1 : π+
0∗−π

−
0∗ 6=

0.3ι2.
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Estimate S.E.
Intercept 7.453 0.381
β+
∗ 0.271 0.133
β−∗ -0.640 0.154

Table 9: THE LONG-RUN PARAMETER ESTIMATES. This table reports the long-run parameter estimates
obtained by our two-step estimation procedure applied to quarterly observations from 1960q1 to 2019q4,
where FM is used in the first step.

Estimate S.E.
γ∗ 0.015 0.005
ρ∗ -0.068 0.016
ϕ∗ 0.255 0.066
π+

0∗ -0.555 0.179
π+

1∗ -0.029 0.150
π−0∗ -0.359 0.344
π−1∗ 0.482 0.176
Adjusted R2 0.199
X 2

S.Corr. 0.385
X 2

Hetero. 0.035

Table 10: THE SHORT-RUN DYNAMIC PARAMETER ESTIMATES. This table reports parameter estimates
for the NARDL(2,2) ECM model obtained using the two-step procedure applied to quarterly observations
from 1960q1 to 2019q4, where FM is used in the first step and OLS in the second step. The lag order
is selected by AIC. The standard errors are evaluated using HAC covariance matrix estimation. X 2

S.Corr.
and X 2

Hetero. denote the Breusch–Godfrey LM test for serial correlation (up to order four) and the Breusch–
Pagan–Godfrey LM test for residual heteroskedasticity, respectively. We report asymptotic p-values for
these two tests.
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Online Supplement for

“Two-Step Nonlinear ARDL Estimation: Theory and Application”

by Jin Seo Cho, Matthew Greenwood-Nimmo and Yongcheol Shin

This Online Supplement consists of six sections. In Sections A and B we provide the proofs of the main

claims of the manuscript. Section C explores further singularity issues associated with the one-step NARDL

estimator. Section D presents additional simulation and estimation results. In Section E we develop the

theory relating early-stage innovative and later-stage managerial R&D expenditures to physical investment

and conduct a comparative static analysis to confirm the theoretical predictions. Section F reports additional

estimation results.

A Preliminary Equations

We provide some equations for an efficient exposition of our proofs. As they are already explained, we

provide them without reiterating their motivation and derivations.

x+
t = µ+

∗ t+
t∑

j=1

s+
j and x−t = µ−∗ t+

t∑
j=1

s−j ; (A.1)

yt = δ∗t+

t∑
j=1

dj ; (A.2)

∆yt = ρ∗yt−1 + (θ+
∗ − θ−∗ )x+

t−1 + θ−∗ xt−1

+ γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+
j∗∆x

+
t−j + π−j∗∆x

−
t−j

)
+ et; (A.3)

yt = α∗ + λ∗x
+
t + η∗xt + ut; (A.4)

ut−1 := yt−1 − β+
∗ x

+
t−1 − β

−
∗ x
−
t−1; (A.5)

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et; (A.6)

%̂T = %∗ +

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtut

)
; (A.7)
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ζ̂T :=

(
T∑
t=1

hth
′
t

)−1( T∑
t=1

ht∆yt

)
= ζ∗ +

(
T∑
t=1

hth
′
t

)−1( T∑
t=1

htet

)
. (A.8)

B Proofs

Proof of Lemma 1. (i) By (A.1) and (A.2), we obtain the following results:

• T−3
∑T

t=1 y
2
t−1 = 1

3δ
2
∗ + oP(1);

• T−3
∑T

t=1 yt−1x
+′
t = 1

3δ∗µ
+′
∗ + oP(1);

• T−3
∑T

t=1 yt−1x
−′
t = 1

3δ∗µ
−′
∗ + oP(1);

• T−3
∑T

t=1 x
+
t x

+′
t = 1

3µ
+
∗ µ

+′
∗ + oP(1);

• T−3
∑T

t=1 x
+
t x
−′
t = 1

3µ
+
∗ µ
−′
∗ + oP(1); and

• T−3
∑T

t=1 x
−
t x
−′
t = 1

3µ
−
∗ µ
−′
∗ + oP(1).

These limits imply that T−3
∑T

t=1 z1tz
′
1t = M11 + oP(1).

(ii) By (A.1) and (A.2), we note that:

• T−2
∑T

t=1 yt−1 = 1
2δ∗ + oP(1);

• T−2
∑T

t=1 yt−1w
′
1t = T−2

∑T
t=1[δ2

∗t, δ
2
∗t, . . . , δ

2
∗t] + oP(1) = 1

2δ
2
∗ι
′
p−1 + oP(1);

• T−2
∑T

t=1 yt−1w
′
2t = T−2

∑T
t=1[δ∗µ

+′
∗ t, δ∗µ

+′
∗ t, . . . , δ∗µ

+′
∗ t] + oP(1) = 1

2δ∗ι
′
q ⊗ µ+′

∗ + oP(1);

• T−2
∑T

t=1 yt−1w
′
3t = T−2

∑T
t=1[δ∗µ

−′
∗ t, δ∗µ

−′
∗ t, . . . , δ∗µ

−′
∗ t] + oP(1) = 1

2δ∗ι
′
q ⊗ µ−′∗ + oP(1);

• T−2
∑T

t=1 x
+
t−1 = 1

2µ
+
∗ + oP(1);

• T−2
∑T

t=1 x
+
t−1w

′
1t = T−2

∑T
t=1[δ∗µ

+
∗ t, δ∗µ

+
∗ t, . . . , δ∗µ

+
∗ t] + oP(1) = 1

2δ∗µ
+
∗ ι
′
p−1 + oP(1);

• T−2
∑T

t=1 x
+
t−1w

′
2t = T−2

∑T
t=1[µ+

∗ µ
+′
∗ t,µ

+
∗ µ

+′
∗ t, . . . ,µ

+
∗ µ

+′
∗ t] +oP(1) = 1

2ι
′
q⊗µ+

∗ µ
+′
∗ +oP(1);

• T−2
∑T

t=1 x
+
t−1w

′
3t = T−2

∑T
t=1[µ+

∗ µ
−′
∗ t,µ

+
∗ µ
−′
∗ t, . . . ,µ

+
∗ µ
−′
∗ t] +oP(1) = 1

2ι
′
q⊗µ+

∗ µ
−′
∗ +oP(1);

• T−2
∑T

t=1 x
−
t−1 = −1

2µ
+
∗ + oP(1);

• T−2
∑T

t=1 x
−
t−1w

′
1t = T−2

∑T
t=1[δ∗µ

−
∗ t, δ∗µ

−
∗ t, . . . , δ∗µ

−
∗ t] + oP(1) = 1

2δ∗µ
−
∗ ι
′
p−1 + oP(1);

• T−2
∑T

t=1 x
−
t−1w

′
2t = T−2

∑T
t=1[µ−∗ µ

+′
∗ t,µ

−
∗ µ

+′
∗ t, . . . ,µ

−
∗ µ

+′
∗ t] +oP(1) = 1

2ι
′
q⊗µ−∗ µ+′

∗ +oP(1);

• T−2
∑T

t=1 x
−
t−1w

′
3t = T−2

∑T
t=1[µ−∗ µ

−′
∗ t,µ

−
∗ µ
−′
∗ t, . . . ,µ

−
∗ µ
−′
∗ t] + oP(1) = 1

2ι
′
q⊗µ−∗ µ−′∗ + oP(1).

These limit results imply that T−1
∑T

t=1 z1tz
′
2t = M12 + oP(1).

(iii) We note that:

• T−1
∑T

t=1w
′
1t = E[∆yt−1]′ + oP(1) = δ∗ι

′
p−1 + oP;

• T−1
∑T

t=1w
′
2t = [E[∆x+′

t ],E[∆x+′
t−1], . . . ,E[∆x+′

t−q+1]] + oP(1) = [µ+′
∗ , . . . ,µ

+′
∗ ] + oP(1) = ι′q ⊗

µ+
∗ + oP(1);

• T−1
∑T

t=1w
′
3t = [E[∆x−′t ],E[∆x−′t−1], . . . ,E[∆x−′t−q+1]] + oP(1) = [µ−′∗ , . . . ,µ

−′
∗ ] + oP(1) = ι′q ⊗

µ−∗ + oP(1); and
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• T−1
∑T

t=1wtw
′
t = E[wtw

′
t] + oP(1).

These limits imply that T−1
∑T

t=1 z2tz
′
2t = M22 + oP(1), as desired. �

Proof of Lemma 2. (i) We note that:

• T−2
∑T

t=1 x
+
t = T−1

∑T
t=1 µ

+
∗ (t/T ) + oP(1)

P→ 1
2µ

+
∗ ;

• T−3/2
∑T

t=1 xt = T−1
∑T

t=1(T−1/2
∑t

i=1 ∆xi)⇒
∫
Bx using that T−1/2

∑[T (·)]
i=1 ∆xi⇒

∫ (·)
0 dBx;

• T−3
∑T

t=1 x
+
t x

+
t = T−1

∑T
t=1 µ

+
∗ µ

+
∗ (t/T )2 + oP(1)

P→ 1
3µ

+
∗ µ

+
∗ ;

• T−5/2
∑T

t=1 x
+
t xt = T−1

∑T
t=1 µ

+
∗ (t/T )(T−1/2

∑t
i=1 ∆xt) + oP(1)⇒ µ+

∗
∫
rBx; and

• T−2
∑T

t=1 xtxt = T−1
∑T

t=1(T−1/2
∑t

i=1 ∆xt)(T
−1/2

∑t
i=1 ∆xt)⇒

∫
B2
x.

Thus, Q̂T ⇒Q, as desired.

(ii) We note that:

• T−1/2
∑T

t=1 ut ⇒
∫
dBu using that T−1/2

∑[T (·)]
t=1 ut ⇒

∫ (·)
0 dBu;

• T−3/2
∑T

t=1 x
+
t ut = T−1/2

∑T
t=1 µ

+
∗ (t/T )ut + oP(1)⇒ µ+

∗
∫
rdBu; and

• T−1
∑T

t=1 xtut = T−1/2
∑T

t=1(T−1/2
∑t

i=1 ∆xi)ut ⇒
∫
BxdBu + υ∗ using the fact that υ∗ :=

limT→∞ T−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite.

Therefore, ÛT ⇒ U . �

Proof of Corollary 1. Given (A.7), the desired result follows from Lemma 4. �

Proof of Theorem 1. Using the definition of λ̂T , we have: T{(β̂+
T − β̂

−
T ) − (β+

∗ − β−∗ )} = OP(T−1/2),

implying that the weak limit of T (β̂+
T −β+

∗ ) is equivalent to that of T (β̂−T −β−∗ ). Furthermore, by Corollary

1, we obtain the desired result, T (β̂−T − β−∗ )⇒ SQ−1U . �

Proof of Lemma 3. Under Assumption 2, we have: υ̃T
P→ υ∗ and (σ̃

(1,1)
T )−1σ̃

(1,2)
T

P→ ν∗ := (σ
(1,1)
∗ )−1σ

(1,2)
∗ .

Next, let u̇t := ut−∆xtν∗, ŨT = D̃−1
T

∑T
t=1 {qtu̇t − S′υ∗}+oP(1), then ŨT ⇒ [

∫
dBu̇, µ+

∗
∫
rdBu̇,

∫
Bx

dBu̇]′, where Bu̇(·) := τ∗Wu(·). Therefore, ŨT ⇒ Ũ . �

Proof of Corollary 2. Given that D̃T (%̃T −%∗) = [D̃−1
T (
∑T

t=1 qtq
′
t)D̃

−1
T ]−1ŨT , the desired result follows

from Lemmas 2(i) and 3. �

Proof of Theorem 2. Given that (β̃+
T − β+

∗ ) − (β̃−T − β−∗ ) = λ̃T − λ∗ = OP(T−3/2) and (β̃−T − β−∗ ) =

OP(T−1), it follows that (β̃+
T −β+

∗ ) = OP(T−1), implying that the weak limit of T (β̃+
T −β+

∗ ) is equivalent

to that of T (β̃−T −β−∗ ). By Corollary 1, we obtain the desired result, T (η̃−T −η−∗ ) = T (β̃−T −β−∗ )⇒ SQ−1Ũ .

�
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Proof of Lemma 4. The result is established by the ergodic theorem and the multivariate central limit

theorem. �

Proof of Theorem 3. (i) Given (A.8), we can combine Lemmas 4 (i and ii) and obtain the desired result.

(ii) Further, if it holds that E[e2
t |ht] = σ2

∗ , then we have: Ω∗ = σ2
∗Γ∗ by Lemma 4(iii). Thus, Theorem

3(i) implies that
√
T (ζ̂T − ζ∗)

A∼ N(0, σ2
∗Γ
−1
∗ ). �

Proof of Lemma 5. (i) We note that:

• T−2
∑T

t=1 t = 1
2 + o(1);

• T−3/2
∑T

t=1 m̂t = T−3/2
∑T

t=1mt−(T−2
∑T

t=1 t)(T
−3
∑T

t=1 t
2)−1T−5/2

∑T
t=1 tmt = T−1

∑T
t=1

T−1/2(
∑t

i=1 ∆mi)− (T−2
∑T

t=1 t)(T
−3
∑T

t=1 t
2)−1(T−1

∑T
t=1(t/T )T−1/2

∑t
i=1 ∆mi)⇒

∫
Bm

−3
2

∫
rBm using the fact that T−1/2

∑[T (·)]
i=1 ∆mi ⇒

∫ (·)
0 dBm;

• T−3/2
∑T

t=1 xt = T−1
∑T

t=1(T−1/2
∑t

i=1 ∆xi) ⇒
∫
Bx using the fact that T−1/2

∑[T (·)]
i=1 ∆xi ⇒∫ (·)

0 dBx;

• T−3
∑T

t=1 t
2 = 1

3 + o(1);

• T−5/2
∑T

t=1 tm̂t = T−5/2
∑T

t=1 tmt − T−5/2(
∑T

t=1 t
2)(
∑T

t=1 t
2)−1(

∑T
t=1 tmt) = 0;

• T−5/2
∑T

t=1 txt = T−1
∑T

t=1(t/T )(T−1/2
∑t

i=1 ∆xi)⇒
∫
rBx;

• T−2
∑T

t=1 m̂tm̂
′
t = T−2

∑T
t=1mtm

′
t −T−2

∑T
t=1 tmt (

∑T
t=1 t

2)−1
∑T

t=1 tm
′
t = T−1

∑T
t=1

(T−1/2
∑t

i=1 ∆mi)(T
−1/2

∑t
i=1 ∆mi)

′ − T−1
∑T

t=1 ((t/T )T−1/2
∑t

i=1 ∆mi)(T
−3
∑T

t=1 t
2)−1

T−1
∑T

t=1((t/T )T−1/2
∑t

i=1 ∆mi)
′ ⇒

∫
BmB′m − 3

∫
rBm

∫
rB′m;

• T−2
∑T

t=1 xtm̂
′
t = T−2

∑T
t=1 xtm

′
t − T−2

∑t
i=1 txt(

∑t
i=1 t

2)−1
∑T

t=1 tm
′
t = T−1

∑T
t=1(T−1/2∑t

i=1 ∆xi)(T
−1/2

∑t
i=1 ∆mi)−T−1

∑T
t=1((t/T )T−1/2

∑t
i=1 ∆xi)(T

−3
∑T

t=1 t
2)−1((t/T )T−1/2∑t

i=1 ∆m′i)⇒
∫
BxB′m − 3

∫
rBx

∫
rB′m;

• T−2
∑T

t=1 xtx
′
t = T−1

∑T
t=1(T−1/2

∑t
i=1 ∆xt)(T

−1/2
∑t

i=1 ∆xt)⇒
∫
BxB′x.

Therefore, R̈T ⇒R, as desired.

(ii) We note that:

• T−1/2
∑T

t=1 ut ⇒
∫
dBu using the fact that T−1/2

∑[T (·)]
t=1 ut ⇒

∫ (·)
0 dBu;

• T−3/2
∑T

t=1 tut = T−1/2
∑T

t=1(t/T )ut + oP(1)⇒
∫
rdBu;

• T−1
∑T

t=1 m̂tut = T−1
∑T

t=1 ut(mt−t(
∑T

t=1 t
2)−1

∑T
t=1 tmt) = T−1

∑T
t=1 utmt−T−3/2

∑T
t=1

utt(T
−3
∑T

t=1 t
2)−1T−5/2

∑T
t=1 tmt ⇒

∫
BmdBu + υm∗ − 3

∫
rdBu

∫
rBm using the fact that

υm∗ := limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆miut] is finite.

• T−1
∑T

t=1 xtut = T−1/2
∑T

t=1(T−1/2
∑t

i=1 ∆xi)ut ⇒
∫
BxdBu + υx∗ using the fact that υx∗ :=

limT→∞ T−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite.
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Therefore, ÜT ⇒ Ü . �

Proof of Corollary 3. As it is straightforward to show that the first claim follows from Lemma 5, we focus

on the second claim. As T 3/2(ξ̂T − ξ∗T ) = OP(1) and ξ∗T = λ′∗µ
+
∗ + λ′∗

∑
tmt(

∑
t2)−1, T 3/2(ξ̂T −

λ′∗µ
+
∗ − λ′∗

∑
tmt(

∑
t2)−1) = OP(1), where T 1/2

∑
tmt(

∑
t2)−1 ⇒ 1

3

∫
rBm. Thus, it follows that

T 1/2(ξ̂T − λ′∗µ+
∗ ) = T 1/2λ′∗

∑
tmt (

∑
t2)−1) +OP(T−1)⇒ 3λ′∗

∫
rBm. �

Proof of Theorem 4. This result is easily obtained from Corollary 3. �

Proof of Lemma 6. Under Assumption 3, notice that ῡT
P→ ϋ∗ := [υ′m∗,υ

′
x∗]
′ and (Σ̄

(1,1)
T )−1σ̄

(1,2)
T

P→

ν̈∗ := (Σ
(1,1)
∗ )−1σ

(1,2)
∗ . Let ◦ut := ut − `′tν̈∗, ŪT = D̈−1

T

∑T
t=1

{
rt
◦
ut − S̄′ϋ∗

}
+ oP(1), then ŪT ⇒

[
∫
dB◦u,

∫
rdB◦u,

∫
B′mdB◦u − 3

∫
rdB◦u

∫
rB′m,

∫
B′xdB◦u]′, where B◦u(·) := τ̈Wu(·). Therefore, ŪT ⇒ Ū .

�

Proof of Theorem 5. Given that D̈T ($̄T − $̄∗T ) = (D̈−1
T (
∑T

t=1 rtr
′
t)D̈

−1
T )−1ŪT , Lemma 6 establishes

the first claim. Second, T [(β̄+
T − β

+
∗ )′, (β̄−T − β

−
∗ )′]′ = S̈D̈T ($̄T − $̄∗T )⇒ S̈R−1Ū , as desired. �

Proof of Theorem 6. By Corollary 2 we have: T 3/2(λ̃T − r) ⇒ SQ−1Ũ under H ′′0 . By Lemma 2(i) we

have: Q̂T := D̃−1
T (
∑T

t=1 qt q
′
t)D̃

−1
T ⇒ Q. Further, under Assumption 2(i), we have: τ̃2

T = τ2
∗ + oP(1).

Given the mixed normal distribution of the FM estimator of the long-run parameter in Corollary 2, it follows

thatW(`)
T

A∼ X 2
1 underH′′0 .

Next, we note that W̃(`)
T = (R̃%̃T − r)′D̃T (τ̃2

T R̃Q̂−1
T R̃′)−1D̃T (R̃%̃T − r). By Theorem 2 we have:

D̃T (R̃%̃T −r)
A∼ N(0, τ2

∗ R̃Q−1R̃′) conditional on σ{Bx(r) : r ∈ (0, 1]} under H ′′′0 . Given that Q̂T ⇒Q

and τ̃2
T

P→ τ2
∗ , it follows that W̃(`)

T
A∼ X 2

2 under H ′′′0 .

Given that (λ̃T −λ∗) = OP(T−3/2), we have: W(`)
T = OP(T 3) under H ′′1 such that P(W(`)

T > cT )→ 1

for any cT = o(T 3). Further, (β̃T − β∗) = OP(T−1), implying that W̃(`)
T = OP(T 2) under H ′′′1 . Therefore,

P(W̃(`)
T > c̃T )→ 1 for any c̃T = o(T 2). This completes the proof. �

Proof of Theorem 7. Due to its similarity to the standard case, we omit the proof. �

Proof of Theorem 8. Due to its similarity to the standard case, we omit the proof. �
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C Further Singularity Issues Associated with Single-Step NARDL Estima-

tion

The re-parameterization of the long-run relationship to resolve the singularity issue under 2-step estimation

in (A.4) is insufficient to resolve the singularity issue involved in single-step NARDL estimation. In fact,

the estimation of the short-run and the long-run parameters in a single step by combining (A.5) with (A.6)

will encounter a further singularity problem. Using λ∗ := β+
∗ − β−∗ and η∗ := β−∗ , it follows that ut−1 =

yt−1 − λ∗x+
t−1 − β∗xt−1. Then,

∆yt = ρ∗yt−1 + (θ+
∗ − θ−∗ )x+

t−1 + θ−∗ xt−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+
j∗∆x

+
t−j + π−j∗∆x

−
t−j

)
+ et,

where β+
∗ := −θ+

∗ /ρ∗ and β−∗ := −θ−∗ /ρ∗. Let:

ξ∗ :=
[
ξ′1∗ ξ′2∗

]′
:=
[
ρ∗ θ∗ θ−∗ α′2∗

]′
, pt :=

[
p′1t p′2t

]′
:=
[
yt−1 x+

t−1 xt−1 z′2t

]′
.

Note that ξ2∗ and p2t are identical to α2∗ and z2t, respectively, where θ∗ := θ+
∗ − θ−∗ . If we attempt to

estimate ξ∗ in (A.3) by OLS, we obtain:

ξ̂T :=

(
T∑
t=1

ptp
′
t

)−1( T∑
t=1

pt∆yt

)
.

Lemma 1 shows that the inverse matrix in ξ̂T is asymptotically singular.

Lemma A.1. Under Assumption 1,

(i) D̈−1
1,T

(∑T
t=1 p1tp

′
1t

)
D̈−1

1,T ⇒ P11, where D̈1,T := diag[T 3/2I2, T ] and:

P11 :=


1
3δ

2
∗

1
3δ∗µ

+
∗ δ∗

∫
rBx

1
3δ∗µ

+
∗

1
3µ

+
∗ µ

+
∗ µ+

∗
∫
rBx

δ∗
∫
rBx

∫
rBxµ+

∗
∫
B2
x

 ;
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(ii) D̈−1
1,T

(∑T
t=1 p1tp

′
2t

)
D̈−1

2,T ⇒ P12, where D̈2,T := diag[T 1/2I1+p+2q] and:

P12 :=


1
2δ∗

1
2δ

2
∗ι
′
p−1

1
2δ∗ι

′
q ⊗ µ+

∗
1
2δ∗ι

′
q ⊗ µ−∗

1
2µ

+
∗

1
2δ∗µ

+
∗ ι
′
p−1

1
2ι
′
q ⊗ µ+

∗ µ
+
∗

1
2ι
′
q ⊗ µ+

∗ µ
−
∗∫

Bx δ∗
∫
Bxι′p−1 ι′q ⊗

∫
Bxµ+

∗ ι′q ⊗
∫
Bxµ−∗

 ; and

(iii) D̈−1
2,T

(∑T
t=1 p2tp

′
2t

)
D̈−1

2,T
P→ P22 := M22. �

The proof of Lemma A.1 is omitted as it is easily derived from the proof of Lemma 1.

Let D̈T := diag[T 3/2I2, T, T
1/2I1+p+2q], then,

D̈−1
T

(
T∑
t=1

ptp
′
t

)
D̈−1
T ⇒ P :=

 P11 P12

P21 P22

 ,
where P21 := P ′12. Since P is singular, it is difficult to obtain the limit distribution of ξ̂T even after

re-parameterizing the long-run level relationship in (A.4).

D Additional Monte Carlo Simulations

We investigate the finite sample bias and mean squared error (MSE) of the two-step estimators, where the

long-run parameters are estimated by OLS or FM for k = 1; or by TOLS or TFM for k = 2, while the

short-run parameters are estimated by OLS.

D.1 Simulation results for k = 1

We generate the same NARDL(1,0) DGP empoyed in Section 5.1:

∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+
∗ ∆x+

t + π−∗ ∆x−t + et,

where ut−1 := yt−1−α∗−β+
∗ x

+
t−1−β−∗ x

−
t−1, ∆xt := κ∗∆xt−1+

√
1− κ2

∗vt, and (et, vt)
′ ∼ IIDN(02, I2).

We set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2) and we allow the sample

size T and the parameter ϕ∗ to vary. Note that ∆xt is generated by an AR(1) process with normally dis-

tributed disturbances and that ut is both serially correlated and contemporaneously correlated with ∆xt.
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Next, we consider the following specifications for the long-run and short-run models:

yt = α+ λx+
t + ηxt + ut and ∆yt = γ + ρût−1 + ϕ1∆yt−1 + π+

0 ∆x+
t + π−0 ∆x−t + et,

where ût := yt − α̂T − λ̂Tx+
t − η̂Txt. In the first step, we estimate the parameters of the long-run relation-

ship using OLS or FM. In the second step, we estimate the short-run parameters by OLS. We evaluate the

performance of the estimators in terms of their finite sample bias and MSE. We evaluate the bias as

BiasT (β+
∗ ) := R−1

R∑
j=1

(β̂+
T,j − β

+
∗ ) and BiasT (ϕ∗) := R−1

R∑
j=1

(ϕ̂T,j − ϕ∗),

where R is the number of replications, β̂+
T is the first step OLS or FM estimator and ϕ̂T is the second-step

OLS estimator. Next, we calculate the finite sample MSE of β̂+
T and ϕ̂T as:

MSET (β+
∗ ) := R−1

R∑
j=1

(β̂+
T,j − β

+
∗ )2 and MSET (ϕ∗) := R−1

R∑
j=1

(ϕ̂T,j − ϕ∗)2.

The finite sample bias and MSE of the estimated parameters with R = 5, 000 replications are reported

in Tables A.1 and A.2, respectively.1

— Insert Tables A.1 and A.2 Here —

First, consider the long-run parameter estimators obtained in the first step. The finite sample bias of the

FM estimator is substantially smaller than that of the OLS estimator. We find that the finite sample bias

of the FM estimator is mostly close to zero, because T (β̃+
T − β+

∗ ) and T (β̃−T − β−∗ ) are asymptotically

mixed-normally distributed around zero. By contrast, as the OLS estimator is not asymptotically distributed

around zero, it exhibits non-negligible bias. We also find that the FM estimator tends to be more efficient

than OLS, thus producing a smaller MSE with the sample size. The efficiency gain is more apparent for

small and/or negative values of ϕ∗. Overall, these results strongly advocate the use of FM in the first step.

Next, consider the short-run parameter estimators obtained by OLS in the second step. The finite sam-

ple biases of the second step OLS estimators of the dynamic parameters become mostly negligible (even in

T = 50), irrespective of whether we use OLS or FM in the first step, though the smallest biases are mostly

obtained when we emply the FM estimator. The MSEs of the second step OLS estimators are similar,

1To conserve space, we do not report the finite sample bias or MSE for the intercepts, α and γ, but these results are available
upon request.
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irrespective of whether we use OLS or FM in the first step. This evidence is encouraging since many appli-

cations of the NARDL model rely upon the use of small samples, mainly due the low sampling frequency

and limited history of macroeconomic database.

D.2 Simulation results for k = 2

We considewr the same NARDL(1,0) DGP employed in Section 5.2:

∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+′
0∗∆x

+
t + π−′0∗∆x

−
t + et,

where ut−1 := yt−1 − α∗ − β+′
∗ x

+
t−1 − β

−′
∗ x
−
t−1, ∆xt := κ∗∆xt−1 +

√
1− κ2

∗vt, and (et,vt)
′ ∼

IIDN(03, I3). We set (α∗, γ∗, ρ∗, ϕ∗, κ∗) = (0, 0,−1, ϕ∗, 0.5), (β+′
∗ ,β

−′
∗ )′ = (−1, 0.5, 0.75,−1.5)′, and

(π+′
0∗ ,π

−′
0∗)
′ = (0.5,−0.5,−1, 1)′. As before, we allow ϕ∗ to vary and examine the effects of serial correla-

tions.

The long-run and short-run models are specified as: yt = α + λ′x+
t + ηxt + ut and ∆yt = γ +

ρût−1 +ϕ1∆yt−1 +π+
0 ∆x+

t +π−0 ∆x−t +et, where ût is the regression residual obtained from the first step

estimation. In the first step, we estimate the long-run parameters by TOLS or TFM, and then estimate the

short-run parameters by OLS. We evaluate the finite-sample performance of the estimators in terms of bias

and MSE, which are obtained using R = 5, 000 replications. The simulation results are reported in Tables

A.3 and A.4.

— Insert Tables A.3 and A.4 Here —

As T increases, the finite sample bias of the TFM estimator of the long-run parameters, β+
∗ and β−∗ ,

becomes smaller than that of TOLS. As the FM-OLS yields normally distributed estimators for the long-

run parameters, the finite sample bias of TFM approaches zero much faster than TOLS. Further, the TFM

estimator becomes more efficient than the TOLS estimator, with a smaller MSE in almost all sample sizes.

Based on these results we advocate the use of the TFM estimator in the first step.

Next, we find that the finite sample biases of the OLS estimator of the short-run dynamic parameters

become negligible as the sample size rises, irrespective of whether we use either TOLS or TFM. Again, the

MSEs of the OLS estimator are more or less similar, irrespective of whether we use TOLS or TFM in the

first step, especially for the large samples.
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E The Asymmetric Relationship between R&D Intensity and Investment

We review the literature on the link between R&D expenditure and investment, and develop a theory that

predicts an asymmetric relationship between R&D intensity and investment.

E.1 Literature Review

Following Schumpeter’s seminal 1942 work on creative destruction, a large literature has emerged on R&D

activities. Important contributions include Utterback and Abernathy (1975), who find that R&D activity is

conducted differently across the different stages of product life, the product life-cycle theory developed by

Gort and Wall (1986) and Audretsch (1987), and the game-theoretic approach to R&D activity associated

with Kamien and Schwartz (1972), Reinganum (1982), Fudenberg et al. (1983), Grossman and Shapiro

(1987) and Harris and Vickers (1987).

It is common to distinguish between two different stages of R&D activity. Early-stage (innovative)

R&D expenditure focuses on the development of a new product or technology, leading to a subsequent

large-scale investment. By contrast, later-stage (managerial) R&D expenditure focuses on improvements to

production efficiency. Consequently, managerial R&D expenditure should not exceed the expected increase

in output, which results in a smaller-scale investment than innovative R&D. Overall, R&D expenditure tends

to increase sharply in the early stage before leveling off or decreasing at the later stage.

A number of theoretical studies distinguish between innovative and managerial R&D activities and their

effects on other economic variables, including Klepper (1996, 1997) and Agarwal and Audretsch (2001).

Comin and Philippon (2005) and Aghion et al. (2009) empirically examine the relationship between the

entry and/or exit rate of firms and innovative R&D expenditure. Similar theories have been developed in

other fields including engineering and management—for example, Zif and McCarthy (1997), who classify

R&D activity into multiple stages following the product life-cycle theory (see also Chung and Shin, 2020).

However, one area in which the distinction between innovative and managerial R&D activity is yet

to be fully investigated is the relationship between R&D expenditure and investment. Early studies (e.g.

Schmookler, 1966) focus on the causal relationship between R&D expenditure and investment. Applying

vector autoregressions (VARs) to firm- and industry-level data, Lach and Schankerman (1989) and Lach and

Rob (1996) find that R&D expenditure Granger causes investment but not vice versa. However, using longer

time series, Chiao (2001) documents a two-way causal relationship between the growth rates of the R&D

expenditure and investment. Employing a vector error-correction (VEC) model, Baussola (2000) documents

evidence in favor of unidirectional Granger causality from R&D expenditure to investment. These results
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should be treated with care because the failure to distinguish between innovative and managerial R&D

activity undermines efforts to accurately capture the potentially asymmetric relationship between R&D ex-

penditure and investment.

E.2 Theoretical Predictions

We propose a theoretical model relating innovative and managerial R&D expenditures to investment. Inno-

vative R&D determines the scope of production, as it describes a research activity that creates a new product

or technology through the discovery of a novel production function. The more innovative R&D activity, the

larger the scale of production, suggesting that the limit of production activity is determined by the amount of

innovative R&D activity. By contrast, managerial R&D does not create a new product, but instead produces

an existing product more efficiently, implying that less physical capital is required per unit of output.

Let k and y be the levels of physical capital and output, while we let c and s be the capital levels converted

from innovative and managerial R&D expenditures, respectively. We assume that c is complementary to

production activity conducted using physical capital while s is a substitute. Consider a production function

embodying this mechanism as:

y = min[c, k + s]. (A.9)

The complementary relationship with c limits production activity, as output cannot be produced in excess

of the level of innovative R&D activity. On the other hand, managerial R&D activity can produce capital s

that substitutes for k.

We use a dynamic optimization approach and apply the q-theory of investment to examine how phys-

ical investment responds to external shocks to R&D expenditure. First, physical capital kt is formed by

accumulating physical investment it through k̇t = it − δkt, where δ is the depreciation rate of the physical

capital. Similarly, ct and st are accumulated through ċt = rt− τct and ṡt = dt− γst, where τ and γ denote

depreciation rates of ct and st, respectively. Next, consider the cost functions associated with converting

R&D expenditures and physical investment into capital. Let κ(rt), ξ(dt) and φ(it) be the cost levels from

innovative and managerial R&D expenditure and physical investment, respectively. We assume that the

cost functions are convex with respect to R&D expenditures and physical investment, such that κ′(·) > 0,

ξ′(·) > 0, φ′(·) > 0, κ′′(·) > 0, ξ′′(·) > 0, and φ′′(·) > 0.2

To generalize the production function (A.9) into a differentiable function, we assume that output is

2For example, incidental and/or additional costs may be incurred to convert R&D expenditures into capital for production. These
include patent fees, monetary or non-monetary incentives for researchers, safety management fees, training costs, and so on. These
costs and fees are assumed to form the convex functions.
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given by yt = f(ct, kt + st), where f(·, ·) is a differentiable function with fc(c, a) > 0, fa(c, a) > 0,

fcc(c, a) < 0, faa(c, a) < 0, and fca(c, a) > 0 uniformly on the space of (c, a). Notice that kt and st are

strictly substitutes, while ct and at := kt + st are weakly complements.3

The representative firm determines the optimal path of capital, investment, and R&D expenditures by

maximizing discounted aggregate profit:

max
{ct,kt,st,rt,it,dt}

∫ ∞
0
{f(ct, kt + st)− κ(rt)− φ(it)− ξ(dt)}e−ρtdt

subject to ċt = rt − τct, k̇t = it − δkt and ṡt = dt − γst,

where ρ is the discount rate. This extends the standard q-theory of investment by considering the role of

capital converted from R&D expenditures as well as physical capital, with the three different accumulation

rules as constraints.4

To analyze the long-run relationship between physical investment and R&D expenditures, we set up

the dynamic optimization problem. Let (c∗, k∗, s∗, r∗, i∗, d∗) be the steady-state equilibrium, which must

satisfy the steady-state conditions given by fa(c∗, k∗+s∗) = (δ+ρ)φ′(i∗), fa(c∗, k∗+s∗) = (γ+ρ)ξ′(d∗),

fc(c∗, k∗+s∗) = (τ +ρ)κ′(r∗), i∗ = δk∗, d∗ = γs∗, and r∗ = τc∗. To display the steady-state equilibrium,

we plot a set of phase diagrams and marginal cost functions in Figure A.1. The panels on the left show the

phase diagrams of (rt, ct), (it, kt), and (dt, st), while those on the right display the marginal cost functions

of innovative R&D expenditure, physical investment, and managerial R&D expenditure, respectively. The

phase diagrams also indicate the steady-state equilibrium levels of the variables along with the stable arms

denoted by the dotted lines, such that the steady-state equilibrium can be reached by moving toward the

equilibrium following the arms. The equilibrium cannot be reached unless the initial levels of (r0, c0),

(i0, k0), and (d0, s0) are on the stable arms, simultaneously, as it would violate the transversality conditions.

— Insert Figure A.1 Here —

To examine how the steady-state equilibrium responds to external shocks, we conduct two experiments

by changing the marginal cost functions of each type of R&D expenditure. In the first experiment, we let

3It is possible to define alternative production functions that exhibit a weakly substitutionary relationship between st and
kt. Suppose that the production function (A.9) can be generalized by the constant elasticity of substitution (CES) function,

`(x, y;β) := (x
β−1
β + y

β−1
β )

β
β−1 . Then, we can derive the generalized twofold CES production function: f(ct, kt, st;β, σ) :=

`(ct, `(kt, st;σ);β), from which it follows that limσ→∞ limβ→0 f(ct, kt, st;β, σ) = min[ct, kt + st]. Provided that σ, β > 0,
we can apply optimization theory as the production function is differentiable.

4The representative firm is assumed to choose the optimal time paths of rt and dt simultaneously, ignoring the fact that innova-
tive R&D activity is conducted earlier than managerial R&D activity. This is not restrictive, as the firm represents a multitude of
firms in the economy, where innovative and managerial R&D activities are conducted simultaneously.
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the marginal cost function of innovative R&D expenditure decrease from κ′0(·) to κ′1(·). Denote (c∗, k∗, s∗,

r∗, i∗, d∗) and (c∗∗, k∗∗, s∗∗, r∗∗, i∗∗, d∗∗) as the initial and new steady-state equilibria. The adjustment

processes are displayed in the left panel of Figure A.2. This decline in the marginal cost function shifts the

locus of ċt = 0 to the locus of ċ′t = 0, denoted by the dashed line in the first phase diagram. The steady-state

equilibrium (r∗∗, c∗∗) is reached at a level greater than (r∗, c∗). To attain the new steady-state equilibrium,

r∗ jumps to the new stable arm, denoted by the dotted line. By contrast, ct is a stock, so it cannot jump to

the new stable arm. Thus, (rt, ct) gradually tends to (r∗∗, c∗∗). Then, the loci of i̇t = 0 and ḋt = 0 move to

i̇′t = 0 and ḋ′t = 0, which are denoted by the dashed lines in the second and third diagrams. The steady-state

equilibrium is determined at (i∗∗, k∗∗) and (d∗∗, s∗∗), which are greater than (i∗, k∗) and (d∗, s∗). Both it

and dt jump to the new stable arms denoted by the dotted lines, and (it, kt) and (dt, st) tend to the new

steady-state equilibrium. This reveals that physical investment and innovative R&D expenditure move in

the same direction following the change in the cost function of innovative R&D expenditure, implying that

they are complements. The economic intuition is straightforward—as innovative R&D activities become

relatively cheaper, the firm tends to accumulate more capital from innovative R&D activities, enhancing

productivity. This allows the firm to invest more, thereby accumulating more physical capital.

— Insert Figure A.2 Here —

In the second experiment, the marginal cost function of managerial R&D expenditure decreases from

ξ′0(·) to ξ′1(·). The right panel in Figure A.2 displays the adjustment process to the new equilibrium. The

decrease in the marginal cost function shifts the locus of ḋt = 0 to the locus of ḋ′t = 0, denoted by the

dashed line in the third phase diagram. The new steady-state equilibrium (d∗∗, s∗∗) is reached at a level

greater than (d∗, s∗). To attain the new steady-state equilibrium, d∗ jumps to the new stable arm, denoted by

the dotted line. However, st, as a stock, cannot jump to the new stable arm. Consequently, (dt, st) tends to

(d∗∗, s∗∗) gradually and the locus of i̇t = 0 shifts to the locus of i̇′t = 0. The steady-state equilibrium level

is determined at (i∗∗, k∗∗), where kt, as a stock, cannot jump to a new level while it jumps to the stable arm

denoted as the dotted line in the second phase diagram. Overall, following the decrease in the marginal cost

of managerial R&D expenditure, d∗ rises to d∗∗ but i∗ falls to i∗∗, revealing a substitutionary relationship

between it and dt. This implies that physical capital decreases from k∗ to k∗∗, while s increases to s∗ from

s∗∗.

As st and kt move in opposite directions, a∗∗ := k∗∗ + s∗∗ can be greater or less than a∗ := k∗ + s∗.

The sign of the change depends upon the functional shapes of fa(·, ·), ξ′(·), φ′(·), and the depreciation rates

δ and γ. In Figure A.2 under the assumption that a∗∗ > a∗, the locus of ċt = 0 is shifted to ċ′t = 0, and a
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new equilibrium is achieved at (r∗∗, c∗∗), as indicated in the first phase diagram. Then, rt jumps to the new

stable arm denoted as the dotted line, and (rt, ct) approaches (r∗∗, c∗∗) gradually. In this case, r∗∗ > r∗ and

c∗∗ > c∗, which is achieved mainly by virtue of the complementary relationship between ct and at. On the

other hand, consider the case with a∗∗ less than a∗ in which case the locus of ċ′t = 0 is shifted to the left of

ċt = 0. Then, we obtain r∗∗ < r∗ and c∗∗ < c∗. The economic intuition of the substitutionary relationship

between it and dt is also straightforward. As managerial R&D activity becomes relatively cheaper, the

firm tends to accumulate capital by converting managerial R&D expenditures, thereby substituting physical

investment, implying that both physical investment and capital will decrease.

These experiments yield important testable implications—the relationship between physical investment

and innovative R&D expenditure is expected to be positive by virtue of their complementarity, while the

relationship between managerial R&D expenditure and investment is more likely to be negative due to their

nature as substitutes.

E.3 The NARDL Specification

Our empirical specification is grounded in two stylized features of R&D expenditure highlighted in Section

E.1 and the theory developed in Section E.2. First, as innovative R&D expenditures tend to focus on product

innovation, their scale is often large relative to output. This suggests that R&D expenditure is expected to

grow faster than output in the early stage, where start-up costs are large and the scale of production typically

small. Second, as managerial R&D expenditures focus on enhancing production efficiency, their scale is

typically smaller than output.

Let rt denote aggregate R&D intensity in the t-th period, defined as a ratio of aggregate R&D expendi-

ture to GDP. Noting that aggregate R&D expenditure incorporates the spectrum of R&D activities conducted

throughout the economy, the sign of ∆rt determines the relative prevalence of innovative and managerial

R&D activities. If ∆rt ≥ 0, then R&D expenditure grows as fast as output, indicating a prevalence of in-

novative R&D activity. By contrast, if ∆rt < 0, then output grows faster than R&D expenditure, indicating

a prevalence of managerial R&D activity. Given the different characteristics of innovative and managerial

R&D, it is reasonable to expect that the relationship between R&D intensity and physical investment may

be asymmetric.

To analyze the potential asymmetric impacts of rt on the log of investment (it) in the short-run and the
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long-run, we consider the following asymmetric error-correction model:

∆it = γ∗ + ρ∗ut−1 +

p−1∑
j=1

ϕj∗∆it−j +

q−1∑
j=0

π+
j∗∆r

+
t−j +

q−1∑
j=0

π−j∗∆r
−
t−j + et, (A.10)

where ut−1 = it−1 − β+
∗ r

+
t−1 − β−∗ r

−
t−1 is the asymmetric error correction term and et is a serially

uncorrelated error term, given sufficiently large lag orders, p and q. Here, ∆r+
t := ∆rt1{∆rt≥0} and

∆r−t := ∆rt1{∆rt<0}, where 1{·} is an indicator function taking unity if the condition in brace is satisfied,

and zero otherwise.

The process in (A.10) is equivalent to the NARDL(p, q) process advanced by SYG,

it = γ∗ +

p∑
j=1

φj∗it−j +

q∑
j=0

(θ+′
j∗ r

+
t−j + θ−′j∗ r

−
t−j) + et.

The NARDL process allows for both the long-run parameters, β+
∗ and β−∗ , and the short-run parameters, π+

j∗

and π−j∗, to differ, enabling us to jointly analyze long- and short-run asymmetric relationships between R&D

intensity and investment. Furthermore, it is important to notice that the NARDL process can accommodate

a cointegrating relationship between integrated time series with mismatched time drifts. As ∆r+
t ≥ 0 and

∆r−t ≤ 0 with probability one even if E(∆rt) = 0, the partial sum processes, r+
t and r−t , will be integrated

series with positive and negative time drifts, respectively. Thus, if there exists an asymmetric cointegrating

relationship between it and rt, then the dependent variable, it should be an integrated series with a drift. This

has the important implication that the NARDL model can analyze an asymmetric cointegrating relationship

between two integrated variables with different drifts without the need to include a deterministic time trend

in the model. In Section F, we find that rt is a unit-root process without a drift while it is a unit-root process

with a drift, and establish that there exists a cointegrating relationship between them without including a

deterministic time trend.

F Additional Empirical Results

Table A.5 reports the descriptive statistics of both the R&D ratio to GDP and the log of GPDI, revealing

that the R&D intensity growth looks more standard than the GPDI growth in the sense that the first has the

characteristics of a normal distribution centered at zero, whereas the latter is centered at a non-zero value

and more widely distributed with a negative skew and excess kurtosis. These different characteristics may

imply that their interrelationship cannot be explained by a simple linear model.
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— Insert Table A.5 Here —

We apply Phillips and Perron (1988) unit root test to both series. We test the unit root hypothesis both

including and excluding the time trend. The results reported in Table A.6 show that the unit-root hypothesis

cannot be rejected irrespective of the presence of the time trend, implying that both series are unit-root

nonstationary. Furthermore, the time trend coefficient in the univarite regression is statistically significant

for the log of GPDI, but insignificant for the R&D intensity, implying that the log of GPDI is a unit root

process with a time drift, while the R&D ratio to GDP is a unit root process without a time drift, viz.,

E[∆rt] = 0 but E[∆it] > 0.

— Insert Table A.6 Here —

16



Sample Size 50 100 150 200 250
First Step OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.50 β+

∗ -0.263 -0.130 -0.140 -0.038 -0.095 -0.017 -0.072 -0.010 -0.058 -0.006
β−∗ -0.269 -0.038 -0.140 -0.009 -0.095 -0.004 -0.071 -0.002 -0.058 -0.001
ρ∗ -0.101 -0.083 -0.036 -0.029 -0.022 -0.017 -0.015 -0.012 -0.012 -0.009
ϕ∗ 0.112 0.074 0.055 0.028 0.036 0.016 0.028 0.012 0.023 0.009
π+
∗ -0.062 -0.022 -0.026 0.004 -0.018 0.007 -0.012 0.005 -0.010 0.006
π−∗ -0.107 -0.038 -0.044 -0.008 -0.032 -0.008 -0.024 -0.006 -0.020 -0.005

-0.25 β+
∗ -0.185 -0.073 -0.098 -0.020 -0.066 -0.007 -0.050 -0.002 -0.040 -0.001
β−∗ -0.192 0.004 -0.099 0.002 -0.066 0.003 -0.050 0.004 -0.041 0.003
ρ∗ -0.084 -0.070 -0.030 -0.026 -0.018 -0.017 -0.012 -0.012 -0.011 -0.010
ϕ∗ 0.088 0.044 0.048 0.016 0.033 0.008 0.025 0.006 0.020 0.004
π+
∗ -0.042 -0.002 -0.024 0.002 -0.017 0.003 -0.010 0.005 -0.009 0.005
π−∗ -0.069 -0.011 -0.032 -0.005 -0.026 -0.007 -0.019 -0.004 -0.015 -0.003

0.00 β+
∗ -0.112 -0.033 -0.057 -0.010 -0.037 -0.001 -0.027 0.000 -0.022 0.002
β−∗ -0.117 0.023 -0.057 0.004 -0.037 0.005 -0.027 0.005 -0.022 0.004
ρ∗ -0.081 -0.069 -0.035 -0.034 -0.024 -0.023 -0.017 -0.016 -0.013 -0.012
ϕ∗ 0.051 0.016 0.028 0.007 0.019 0.003 0.015 0.001 0.011 0.000
π+
∗ -0.035 -0.010 -0.018 -0.006 -0.009 0.001 -0.008 0.000 -0.006 0.002
π−∗ -0.047 -0.007 -0.026 -0.011 -0.017 -0.007 -0.015 -0.007 -0.009 -0.003

0.25 β+
∗ -0.024 0.000 -0.009 -0.006 -0.006 -0.003 -0.004 -0.001 -0.004 -0.001
β−∗ -0.027 0.024 -0.010 -0.003 -0.007 -0.001 -0.004 0.000 -0.004 -0.001
ρ∗ -0.072 -0.068 -0.035 -0.036 -0.022 -0.023 -0.017 -0.018 -0.014 -0.014
ϕ∗ 0.015 0.001 0.006 0.002 0.005 0.001 0.003 0.000 0.003 0.000
π+
∗ -0.001 -0.004 -0.004 -0.011 0.001 -0.004 -0.003 -0.007 -0.001 -0.005
π−∗ -0.024 -0.022 -0.007 -0.015 -0.007 -0.012 -0.004 -0.008 -0.005 -0.008

0.50 β+
∗ 0.065 0.015 0.034 -0.023 0.024 -0.016 0.018 -0.013 0.014 -0.011
β−∗ 0.062 -0.004 0.034 -0.035 0.024 -0.021 0.017 -0.016 0.014 -0.012
ρ∗ -0.046 -0.046 -0.022 -0.019 -0.015 -0.013 -0.011 -0.010 -0.008 -0.007
ϕ∗ -0.016 -0.008 -0.009 0.002 -0.005 0.003 -0.004 0.002 -0.003 0.002
π+
∗ 0.023 -0.017 0.011 -0.021 0.010 -0.012 0.006 -0.012 0.005 -0.009
π−∗ 0.026 -0.019 0.013 -0.021 0.007 -0.017 0.005 -0.012 0.004 -0.010

Table A.1: FINITE SAMPLE BIAS OF THE TWO-STEP ESTIMATORS FOR k = 1. This table reports the
finite sample biases when OLS/FM is used in the first step and OLS is used in the second step. The data
is generated as ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + ∆x+

t + (1/2)∆x−t + et, where ut := yt − 2x+
t − x

−
t ,

∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2).
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Sample Size 50 100 150 200 250
First Step OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.50 β+

∗ 0.104 0.057 0.029 0.009 0.013 0.003 0.007 0.001 0.005 0.001
β−∗ 0.120 0.129 0.029 0.010 0.014 0.003 0.007 0.001 0.005 0.001
ρ∗ 0.026 0.024 0.006 0.006 0.003 0.003 0.002 0.002 0.002 0.002
ϕ∗ 0.020 0.013 0.006 0.004 0.003 0.002 0.002 0.001 0.002 0.001
π+
∗ 0.153 0.134 0.062 0.053 0.037 0.032 0.025 0.022 0.019 0.017
π−∗ 0.180 0.152 0.062 0.053 0.038 0.032 0.026 0.022 0.020 0.017

-0.25 β+
∗ 0.060 0.034 0.016 0.006 0.007 0.002 0.004 0.001 0.003 0.001
β−∗ 0.068 0.096 0.016 0.007 0.007 0.002 0.004 0.001 0.003 0.001
ρ∗ 0.023 0.022 0.007 0.007 0.004 0.004 0.003 0.003 0.002 0.002
ϕ∗ 0.016 0.011 0.007 0.004 0.004 0.003 0.003 0.002 0.002 0.002
π+
∗ 0.136 0.125 0.055 0.051 0.034 0.031 0.023 0.021 0.018 0.017
π−∗ 0.140 0.130 0.056 0.050 0.033 0.030 0.023 0.021 0.018 0.017

0.00 β+
∗ 0.032 0.023 0.007 0.004 0.003 0.001 0.002 0.001 0.001 0.000
β−∗ 0.036 0.045 0.007 0.005 0.003 0.001 0.002 0.001 0.001 0.000
ρ∗ 0.022 0.021 0.008 0.008 0.005 0.005 0.003 0.003 0.003 0.003
ϕ∗ 0.011 0.010 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002
π+
∗ 0.126 0.121 0.050 0.048 0.031 0.030 0.022 0.022 0.018 0.017
π−∗ 0.128 0.126 0.050 0.048 0.030 0.029 0.023 0.022 0.018 0.017

0.25 β+
∗ 0.015 0.018 0.002 0.003 0.001 0.001 0.001 0.001 0.000 0.000
β−∗ 0.015 0.034 0.003 0.004 0.001 0.001 0.001 0.001 0.000 0.000
ρ∗ 0.019 0.019 0.007 0.007 0.004 0.004 0.003 0.003 0.002 0.002
ϕ∗ 0.007 0.009 0.004 0.004 0.002 0.002 0.002 0.002 0.001 0.001
π+
∗ 0.116 0.117 0.047 0.046 0.030 0.029 0.021 0.021 0.017 0.017
π−∗ 0.112 0.114 0.047 0.047 0.030 0.030 0.022 0.022 0.017 0.017

0.50 β+
∗ 0.022 0.020 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.001
β−∗ 0.022 0.033 0.004 0.007 0.002 0.002 0.001 0.001 0.001 0.001
ρ∗ 0.011 0.011 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002
ϕ∗ 0.007 0.007 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001
π+
∗ 0.116 0.115 0.045 0.046 0.030 0.030 0.021 0.021 0.017 0.017
π−∗ 0.113 0.111 0.046 0.047 0.029 0.029 0.021 0.021 0.017 0.017

Table A.2: FINITE SAMPLE MEAN SQUARED ERROR (MSE) OF THE TWO-STEP ESTIMATORS FOR k =
1. This table reports the finite sample MSEs when OLS/FM is used in the first step and OLS is used in the
second step. The data is generated as ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + ∆x+

t + (1/2)∆x−t + et, where
ut := yt − 2x+

t − x
−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2).
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Sample Size 50 100 200 300 400 500
First Step TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.30 β+

1∗ 0.416 0.723 0.208 0.246 0.102 0.061 0.067 0.035 0.051 0.019 0.040 0.011
β+
2∗ -0.334 -0.737 -0.168 -0.242 -0.082 -0.064 -0.057 -0.039 -0.039 -0.024 -0.033 -0.013
β−1∗ -0.431 -0.816 -0.212 -0.289 -0.107 -0.071 -0.069 -0.043 -0.053 -0.023 -0.042 -0.014
β−2∗ 0.568 1.065 0.289 0.365 0.144 0.095 0.097 0.057 0.071 0.032 0.057 0.018
ρ∗ -0.190 0.024 -0.076 -0.031 -0.032 -0.032 -0.021 -0.020 -0.015 -0.016 -0.011 -0.011
ϕ∗ 0.137 0.036 0.067 0.043 0.033 0.023 0.022 0.016 0.016 0.010 0.013 0.007
π+
1∗ 0.091 0.226 0.023 0.083 0.004 0.015 0.003 0.012 0.004 0.007 0.000 0.003
π+
2∗ -0.120 -0.312 -0.057 -0.099 -0.030 -0.024 -0.021 -0.013 -0.008 -0.008 -0.012 -0.004
π−1∗ -0.047 -0.222 0.002 -0.076 0.003 -0.014 0.008 -0.008 0.003 -0.002 0.005 -0.001
π−2∗ -0.011 0.219 -0.027 0.066 -0.022 0.017 -0.017 0.012 -0.017 0.006 -0.014 0.004

-0.10 β+
1∗ 0.390 0.694 0.190 0.259 0.090 0.075 0.059 0.040 0.044 0.021 0.034 0.015
β+
2∗ -0.318 -0.683 -0.153 -0.265 -0.074 -0.078 -0.048 -0.043 -0.037 -0.024 -0.029 -0.016
β−1∗ -0.414 -0.779 -0.198 -0.293 -0.098 -0.086 -0.062 -0.047 -0.047 -0.025 -0.037 -0.018
β−2∗ 0.522 0.999 0.252 0.384 0.121 0.111 0.080 0.062 0.059 0.034 0.047 0.022
ρ∗ -0.158 0.019 -0.063 -0.016 -0.026 -0.026 -0.016 -0.017 -0.012 -0.013 -0.009 -0.011
ϕ∗ 0.124 0.050 0.068 0.042 0.034 0.024 0.024 0.015 0.017 0.010 0.013 0.007
π+
1∗ 0.073 0.227 0.017 0.079 0.003 0.024 0.001 0.013 0.003 0.008 -0.001 0.006
π+
2∗ -0.109 -0.280 -0.048 -0.111 -0.021 -0.031 -0.010 -0.012 -0.010 -0.009 -0.008 -0.003
π−1∗ -0.030 -0.222 0.005 -0.071 0.004 -0.022 0.010 -0.009 0.004 -0.008 0.007 -0.005
π−2∗ -0.017 0.233 -0.036 0.088 -0.032 0.033 -0.026 0.016 -0.018 0.011 -0.015 0.008

0.00 β+
1∗ 0.379 0.698 0.173 0.264 0.083 0.078 0.053 0.042 0.040 0.026 0.031 0.016
β+
2∗ -0.317 -0.686 -0.146 -0.267 -0.071 -0.081 -0.047 -0.045 -0.034 -0.026 -0.028 -0.017
β−1∗ -0.409 -0.811 -0.186 -0.310 -0.092 -0.090 -0.058 -0.049 -0.044 -0.030 -0.034 -0.019
β−2∗ 0.501 1.014 0.232 0.391 0.111 0.116 0.075 0.065 0.055 0.038 0.044 0.025
ρ∗ -0.141 0.033 -0.057 -0.007 -0.025 -0.021 -0.014 -0.015 -0.011 -0.013 -0.008 -0.010
ϕ∗ 0.112 0.044 0.061 0.040 0.032 0.023 0.021 0.015 0.017 0.010 0.013 0.007
π+
1∗ 0.084 0.237 0.015 0.089 0.003 0.027 0.002 0.016 0.001 0.011 -0.002 0.006
π+
2∗ -0.106 -0.287 -0.043 -0.118 -0.023 -0.029 -0.014 -0.014 -0.009 -0.012 -0.007 -0.007
π−1∗ -0.041 -0.239 0.011 -0.086 0.008 -0.025 0.010 -0.013 0.007 -0.009 0.007 -0.008
π−2∗ -0.027 0.226 -0.045 0.094 -0.033 0.037 -0.023 0.019 -0.019 0.016 -0.015 0.009

0.10 β+
1∗ 0.345 0.729 0.169 0.272 0.077 0.083 0.049 0.048 0.036 0.030 0.029 0.019
β+
2∗ -0.306 -0.706 -0.148 -0.291 -0.067 -0.085 -0.042 -0.049 -0.032 -0.030 -0.026 -0.020
β−1∗ -0.389 -0.829 -0.182 -0.311 -0.086 -0.095 -0.053 -0.054 -0.040 -0.034 -0.033 -0.022
β−2∗ 0.476 1.059 0.223 0.411 0.101 0.122 0.066 0.071 0.049 0.043 0.039 0.029
ρ∗ -0.125 0.051 -0.050 0.005 -0.020 -0.018 -0.014 -0.012 -0.010 -0.011 -0.007 -0.009
ϕ∗ 0.101 0.035 0.055 0.038 0.029 0.022 0.021 0.013 0.015 0.010 0.012 0.007
π+
1∗ 0.056 0.258 0.018 0.092 0.004 0.036 0.001 0.019 -0.001 0.014 -0.001 0.008
π+
2∗ -0.105 -0.294 -0.042 -0.129 -0.019 -0.035 -0.008 -0.020 -0.009 -0.014 -0.007 -0.007
π−1∗ -0.022 -0.239 0.013 -0.081 0.010 -0.029 0.012 -0.014 0.009 -0.015 0.006 -0.008
π−2∗ -0.027 0.265 -0.041 0.100 -0.033 0.042 -0.022 0.026 -0.019 0.018 -0.014 0.011

0.30 β+
1∗ 0.306 0.774 0.140 0.303 0.063 0.103 0.040 0.054 0.029 0.034 0.023 0.025
β+
2∗ -0.308 -0.770 -0.128 -0.306 -0.062 -0.101 -0.040 -0.052 -0.028 -0.035 -0.023 -0.023
β−1∗ -0.369 -0.886 -0.160 -0.348 -0.071 -0.117 -0.047 -0.061 -0.034 -0.039 -0.027 -0.027
β−2∗ 0.438 1.137 0.181 0.437 0.082 0.148 0.052 0.077 0.038 0.052 0.030 0.036
ρ∗ -0.093 0.086 -0.039 0.022 -0.017 -0.007 -0.010 -0.009 -0.008 -0.008 -0.006 -0.006
ϕ∗ 0.069 0.012 0.041 0.028 0.022 0.019 0.015 0.012 0.011 0.008 0.009 0.006
π+
1∗ 0.044 0.269 0.013 0.114 0.001 0.046 -0.001 0.024 0.000 0.018 -0.002 0.012
π+
2∗ -0.105 -0.323 -0.039 -0.133 -0.019 -0.040 -0.011 -0.023 -0.006 -0.013 -0.006 -0.011
π−1∗ -0.013 -0.268 0.018 -0.104 0.016 -0.045 0.014 -0.023 0.010 -0.016 0.009 -0.013
π−2∗ -0.032 0.304 -0.042 0.122 -0.034 0.050 -0.022 0.027 -0.021 0.021 -0.016 0.019

Table A.3: FINITE SAMPLE BIAS OF THE TWO-STEP ESTIMATORS FOR k = 2. This table reports the
finite sample biases when OLS/FM is used in the first step and OLS is used in the second step. The data is
generated as ∆yt = −ut−1 + ϕ∗∆yt−1 + π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where ut := yt − β+′

∗ x
+
t − β−′∗ x

−
t ,

∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et,v
′
t)
′ ∼ IIDN(03, I3).
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Sample Size 50 100 200 300 400 500
First Step TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.30 β+

1∗ 0.461 1.373 0.113 0.183 0.027 0.017 0.012 0.007 0.007 0.002 0.004 0.001
β+
2∗ 0.406 1.443 0.096 0.188 0.024 0.019 0.011 0.007 0.006 0.003 0.004 0.001
β−1∗ 0.472 1.573 0.111 0.221 0.028 0.020 0.012 0.008 0.007 0.003 0.004 0.001
β−2∗ 0.543 2.052 0.139 0.279 0.035 0.025 0.016 0.009 0.008 0.003 0.006 0.001
ρ∗ 0.059 0.060 0.012 0.012 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001
ϕ∗ 0.027 0.020 0.007 0.006 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000
π+
1∗ 0.423 0.586 0.117 0.132 0.040 0.031 0.021 0.018 0.015 0.011 0.011 0.009
π+
2∗ 0.412 0.673 0.115 0.142 0.039 0.031 0.023 0.017 0.015 0.011 0.011 0.009
π−1∗ 0.408 0.595 0.117 0.132 0.039 0.032 0.022 0.018 0.015 0.012 0.011 0.008
π−2∗ 0.345 0.505 0.112 0.124 0.040 0.032 0.023 0.018 0.016 0.012 0.012 0.009

-0.10 β+
1∗ 0.445 1.257 0.098 0.192 0.023 0.019 0.010 0.006 0.005 0.002 0.003 0.001
β+
2∗ 0.378 1.234 0.087 0.192 0.020 0.019 0.008 0.007 0.005 0.002 0.003 0.001
β−1∗ 0.438 1.438 0.098 0.224 0.024 0.022 0.010 0.008 0.006 0.003 0.003 0.001
β−2∗ 0.509 1.812 0.114 0.289 0.027 0.028 0.011 0.010 0.006 0.003 0.004 0.002
ρ∗ 0.043 0.041 0.010 0.010 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001
ϕ∗ 0.024 0.018 0.008 0.006 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.382 0.549 0.102 0.130 0.036 0.031 0.020 0.017 0.014 0.011 0.010 0.009
π+
2∗ 0.378 0.569 0.111 0.133 0.035 0.032 0.020 0.017 0.014 0.011 0.010 0.009
π−1∗ 0.355 0.565 0.102 0.126 0.034 0.031 0.020 0.017 0.013 0.011 0.010 0.009
π−2∗ 0.341 0.507 0.105 0.126 0.037 0.032 0.021 0.018 0.014 0.012 0.011 0.009

0.00 β+
1∗ 0.429 1.254 0.088 0.190 0.020 0.020 0.008 0.006 0.005 0.003 0.003 0.001
β+
2∗ 0.371 1.350 0.077 0.196 0.019 0.020 0.008 0.007 0.004 0.003 0.003 0.001
β−1∗ 0.440 1.516 0.093 0.235 0.021 0.024 0.009 0.008 0.005 0.003 0.003 0.001
β−2∗ 0.476 1.933 0.099 0.305 0.023 0.030 0.010 0.010 0.006 0.004 0.004 0.002
ρ∗ 0.037 0.042 0.009 0.009 0.003 0.003 0.001 0.002 0.001 0.001 0.001 0.001
ϕ∗ 0.021 0.018 0.007 0.006 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.365 0.549 0.099 0.127 0.034 0.030 0.019 0.017 0.013 0.012 0.010 0.009
π+
2∗ 0.352 0.609 0.096 0.132 0.033 0.031 0.019 0.017 0.013 0.012 0.009 0.009
π−1∗ 0.343 0.559 0.102 0.124 0.033 0.030 0.020 0.017 0.013 0.012 0.010 0.009
π−2∗ 0.332 0.505 0.098 0.122 0.035 0.031 0.020 0.017 0.014 0.012 0.010 0.009

0.10 β+
1∗ 0.397 1.286 0.084 0.209 0.017 0.021 0.007 0.007 0.004 0.003 0.003 0.001
β+
2∗ 0.372 1.294 0.078 0.219 0.017 0.022 0.007 0.007 0.004 0.003 0.002 0.001
β−1∗ 0.416 1.551 0.087 0.238 0.019 0.026 0.008 0.008 0.004 0.003 0.003 0.002
β−2∗ 0.461 2.088 0.097 0.323 0.020 0.032 0.009 0.011 0.005 0.004 0.003 0.002
ρ∗ 0.030 0.041 0.007 0.009 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
ϕ∗ 0.018 0.016 0.006 0.006 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.340 0.539 0.095 0.131 0.032 0.031 0.018 0.017 0.013 0.012 0.010 0.009
π+
2∗ 0.336 0.567 0.091 0.143 0.032 0.031 0.018 0.017 0.013 0.012 0.010 0.009
π−1∗ 0.317 0.553 0.091 0.126 0.032 0.032 0.020 0.018 0.013 0.011 0.010 0.009
π−2∗ 0.318 0.532 0.095 0.126 0.032 0.032 0.020 0.018 0.014 0.012 0.011 0.009

0.30 β+
1∗ 0.360 1.553 0.071 0.225 0.014 0.027 0.006 0.008 0.003 0.003 0.002 0.002
β+
2∗ 0.391 1.511 0.066 0.232 0.014 0.026 0.006 0.008 0.003 0.003 0.002 0.002
β−1∗ 0.413 1.866 0.074 0.276 0.015 0.032 0.006 0.009 0.003 0.004 0.002 0.002
β−2∗ 0.436 2.386 0.076 0.357 0.016 0.043 0.006 0.012 0.003 0.005 0.002 0.002
ρ∗ 0.021 0.041 0.006 0.009 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
ϕ∗ 0.012 0.015 0.005 0.005 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.305 0.567 0.084 0.134 0.029 0.034 0.018 0.017 0.012 0.012 0.009 0.009
π+
2∗ 0.320 0.611 0.083 0.140 0.029 0.034 0.017 0.018 0.012 0.011 0.009 0.009
π−1∗ 0.313 0.603 0.081 0.131 0.029 0.034 0.017 0.017 0.012 0.012 0.009 0.009
π−2∗ 0.282 0.573 0.089 0.130 0.031 0.035 0.019 0.018 0.013 0.012 0.010 0.009

Table A.4: FINITE SAMPLE MEAN SQUARED ERROR (MSE) OF THE TWO-STEP ESTIMATORS FOR k = 2.
This table reports the finite sample MSEs when OLS/FM is used in the first step and OLS is used in the
second step. The data is generated as ∆yt = −ut−1 + ϕ∗∆yt−1 + π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where

ut := yt − β+′
∗ x

+
t − β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼ IIDN(03, I3).
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∆ log GPDI ∆(R&D/GDP)

Mean 0.009 0.004
Median 0.009 0.001
Maximum 0.110 0.082
Minimum -0.176 -0.082
Standard Deviation 0.039 0.028
Skewness -0.752 0.190
Excess Kurtosis 2.701 0.256
Sample Size 240 240

Table A.5: DESCRIPTIVE STATISTICS. Descriptive statistics are computed over 240 quarters from 1960q1
to 2019q4. GPDI is measured in US Dollars at 2012 prices and seasonally adjusted. R&D and GDP are
seasonally adjusted nominal values.

PP test log GPDI R&D/GDP
PP test w/o trend -1.138 -1.946
p-value 0.701 0.311
PP test w/ trend -3.198 -2.255
p-value 0.087 0.457

Table A.6: PHILLIPS AND PERRON’S (1988) UNIT-ROOT TEST STATISTICS. Two Phillips and Perron
tests are computed, one including and the other excluding a time trend. When the time trend is included,
it is statistically significant for the log of GPDI but not for R&D intensity. The lag lengths of the ADF
regressions are selected by the SIC.
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Figure A.1: PHASE DIAGRAMS AND STEADY STATE. This figure shows the phase diagrams of (rt, ct),
(it, kt), and (dt, kt) and their relationships with the marginal cost functions.
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Figure A.2: PHASE DIAGRAMS AND STEADY STATE. The left figure demonstrates how the steady-state
levels are adjusted as the marginal cost function κ′(·) of innovative R&D expenditure decreases from κ′0(·)
to κ′1(·). The right figure demonstrates how the steady-state levels are adjusted as the marginal cost function
of managerial R&D expenditure decreases from ξ′0(·) to ξ′1(·).
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