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1. Introduction

Davies (1977, 1987) first addressed the subject of testing procedures involving parame-

ters not identified under the null. These are now commonly encountered in the modern

econometrics literature. For example, Engle and Watson (1987) pointed out that Rosen-

berg’s (1973) conditional heteroskedasticity test involves parameters not identified under

the null of conditional homoskedasticity. The generalized autoregressive conditional het-

eroskedasticity (GARCH) model of Bollerslev (1986) has this feature as well, as specif-

ically examined by Andrews (2001). More recently, Cho and White (2007, 2010) have

provided likelihood-ratio (LR) methods for testing for regime switching and unobserved

heterogeneity using models with parameters not identified under the null.

The finite sample properties of these tests, and, in particular, the LR test are crucially

dependent upon the application of appropriate critical values. In practice, there may

be a variety of ways to obtain these, and the various approaches can yield different

results. Specifically, in some applications, asymptotic critical values are known and

perform quite adequately. In other cases, asymptotic critical values may be unknown,

or they may perform poorly. Nevertheless, some form of bootstrap procedure can often

give useful critical values in these cases. An especially convenient method applicable

to procedures involving nuisance parameters not identified under the null is Hansen’s

(1996) weighted bootstrap.

Here, our goal is to examine the performance of the LR test for a specific model with

nuisance parameters not identified under the null, comparing the use of asymptotic crit-

ical values to those obtained using Hansen’s (1996) weighted bootstrap. In particular,

we undertake extensive, large-scale simulations to investigate the performance of a test

for unobserved heterogeneity in duration models proposed by Cho and White (2010).

Asymptotic critical values are typically not easy to obtain for such tests, but Cho and

White (2010) derive readily computed asymptotic critical values. This creates an un-
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usual opportunity to compare their performance to those obtained from the weighted

bootstrap. Our results strongly support the preferred use of the weighted bootstrap in

this case. Although there can be no guarantee that these results necessarily general-

ize to other cases, the strength of the results here and the relative ease of computing

the weighted bootstrap support a recommendation to use Hansen’s (1996) weighted

bootstrap as a default procedure for inference in models with nuisance parameters not

identified under the null.

We investigate precisely the same data generating processes (DGPs) and models

for the uncensored duration models examined by Cho and White (2010), who test for

unobserved heterogeneity using a LR statistic designed to detect discrete mixtures of

exponential or Weibull distributions. In Section 2, we briefly discuss the model and

the two different methods for constructing critical values. We report the results of

Monte Carlo experiments in Section 3, comparing the performances of the asymptotic

and weighted bootstrap critical values. Section 4 contains a summary and concluding

remarks.

2. Testing for Unobserved Heterogeneity

A conditional Weibull probability model for duration data (Yt ∈ R+) given explanatory

variables (Xt ∈ Rk) has typical model element

f(y | Xt; δ, β, γ) ≡ δγg(Xt; β)yγ−1 exp(−δg(Xt; β)yγ), (1)

for (δ, β′, γ) ∈ D × B × Γ ⊂ R+ × Rd × R+, where g(Xt; · ) is four times continuously

differentiable, and δ is identified separately from g(Xt; ·). For example, if g(Xt; β) =

exp(X′tβ) as in Cox (1972), then δ is separately identified. This Weibull model nests the

exponential as a special case when γ = 1.
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Cho and White (2010) specify a DGP with possible unobserved heterogeneity having

a discrete mixture structure:

fa(y | Xt; π
∗, δ∗1, δ

∗
2, β

∗, γ∗) ≡ π∗f(y | Xt; δ
∗
1, β

∗, γ∗) + (1− π∗)f(y | Xt; δ
∗
2, β

∗, γ∗), (2)

for some unknown (π∗, δ∗1, δ
∗
2, β

∗′, γ∗) ∈ [0, 1]×D×D×B×Γ ⊂ [0, 1]×R+×R+×Rd×R+.

Heterogeneity is absent if for some δ∗ ∈ D, π∗ = 1 and δ∗1 = δ∗; π∗ = 0 and δ∗2 =

δ∗; or δ∗1 = δ∗2 = δ∗. That is, only δ can be heterogeneous. Cho and White (2010)

reparameterize δ∗1 and δ∗2 as α∗1δ
∗ and α∗2δ

∗ respectively, where α∗1, α
∗
2 ∈ A ≡ {α : αδ∗ ∈

D}. The null of no heterogeneity and the heterogeneous alternative are then

Ho : π∗ = 1 and α∗1 = 1;α∗1 = α∗2 = 1; or π∗ = 0 and α∗2 = 1; versus

Ha : π∗ ∈ (0, 1) and α∗1 6= α∗2.

Note that any of the conditions in Ho yields

fa(y | Xt; π
∗, δ∗1, δ

∗
2, β

∗, γ∗) = f(y | Xt; δ
∗, β∗, γ∗),

implying that heterogeneity is absent, and that the null hypothesis arises in three differ-

ent ways.

The LR statistic for testing unobserved heterogeneity is therefore constructed as

LRn ≡ 2

{
n∑
t=1

ln[fa(Yt | Xt; π̂n, α̂1n, α̂2n, β̂an, γ̂an)]−
n∑
t=1

ln[f(Yt | Xt; δ̂n, β̂n, γ̂n)]

}
,

where n is the sample size, and (δ̂n, β̂n, γ̂n) and (π̂n, α̂1n, α̂2n, β̂an, γ̂an) are the maximum-

likelihood estimators (MLEs) under the null and alternative, respectively. That is, the
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MLEs (δ̂n, β̂n, γ̂n) and (π̂n, δ̂1n, δ̂2n, β̂an, γ̂an) solve

max
(δ,β,γ)∈D×B×Γ

n∑
t=1

ln[f(Yt | Xt; δ, β, γ)], and

max
(π,δ1,δ2,β,γ)∈[0,1]×D×D×B×Γ

n∑
t=1

ln[fa(Yt | Xt; π, δ1/δ̂n, δ2/δ̂n, β, γ)],

respectively, with α̂1n ≡ δ̂1n/δ̂n, α̂2n ≡ δ̂2n/δ̂n.

The asymptotic distribution of the LR statistic is non-standard, as there is an uniden-

tified parameter under the null, as well as a boundary parameter. That is, if π∗ = 1 and

α∗1 = 1 then α∗2 is not identified; if α∗1 = α∗2 = 1 then π∗ is not identified; and if π∗ = 0

and α∗2 = 1 then α∗1 is not identified. As Cho and White (2010) show, LRn converges in

distribution to a function of a Gaussian process under the null. Specifically,

LRn ⇒ LR ≡ sup
α∈A

(max[0,G(α)])2 , (3)

where G is a standard Gaussian process with mean zero and variance one for every α and

a covariance structure that differs from case to case. Here, α denotes a representative

element of A, and the RHS of (3) is the asymptotic null distribution of the LR test under

π∗ = 1 or π∗ = 0, in which α2 or α1 is not identified, respectively. By the symmetry

of mixture models, the LR test obtained under π∗ = 1 is numerically identical to that

obtained under π∗ = 0. We thus avoid any confusion by representing the asymptotic

null distribution of the LR test by the generic element α of A.

Cho and White’s (2010) theorem 1 derives various covariance structures under ex-

ponential and Weibull distribution assumptions, and their theorem 2 shows that these

asymptotic null distributions can be obtained by simulating specific Gaussian processes.

As is apparent from (3), the asymptotic null distribution of the LR test statistic also

depends on A, so we denote the LR test as LRn(A) to stress the influence of A on the
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associated inferences. Note that the Gaussian process G is a function only of α and not

δ; this explains why reparameterizing δ∗1 and δ∗2 to α∗1δ
∗ and α∗2δ

∗, respectively, is useful.

An alternative to using the asymptotic critical values is to apply Hansen’s (1996)

weighted bootstrap. For this, we specify a grid Am ⊂ A, and for each α in the grid we

first compute Ŝnt(α) := {D̂n(α)}− 1
2 Ŵnt(α), where

D̂n(α) ≡ 1

n

n∑
t=1

[1−R̂nt(α)]2− 1

n

n∑
t=1

[1−R̂nt(α)]Û ′nt

[
1

n

n∑
t=1

ÛntÛ
′
nt

]−1
1

n

n∑
t=1

Ûnt[1−R̂nt(α)],

Ŵnt(α) ≡ [1− R̂nt(α)]− Û ′nt

[
n−1

n∑
t=1

ÛntÛ
′
nt

]−1 [
n−1

n∑
t=1

Ûnt[1− R̂nt(α)]

]
,

R̂nt(α) ≡ f(Yt|Xt;αδ̂n, β̂n, γ̂n)/f(Yt|Xt; δ̂n, β̂n, γ̂n), and

Ûnt ≡ ∇(δ,β,γ) ln[f(Yt|Xt; δ̂n, β̂n, γ̂n)].

Observe that Ŝnt(α) := {D̂n(α)}− 1
2 Ŵnt(α) is exactly the score function used in the

Lagrange multiplier (LM) statistic testing π∗ = 1. That is, Ŵn(α) is the projection

error of ∇π ln[fa(Yt | Xt; π, α1, α2, β, γ)] against Ûnt, evaluated at the null parameter

estimator. Here, α1 canceles out, but α2 survives. We replace this with α to avoid

confusion, as we explained above. The only difference from the standard score function

is that this is now indexed by α to accommodate the fact that α is not identified under

the hypothesis π∗ = 1. We can also have exactly the same representation for π∗ = 0 by

the symmetry of the mixture, although this is not necessary for obtaining the asymptotic

null distribution. D̂n(α) is a consistent estimator for the asymptotic variance of Ŵn(α).

Second, we generate Zjt ∼ IID N(0, 1) (t = 1, 2, . . . , n and j = 1, 2, . . . , J) to simulate

the distribution of the LR statistic as the empirical distribution of

LRjn(A) ≡ sup
α∈Am

(
max

[
0,

1√
n

n∑
t=1

Ŝnt(α)Zjt

])2

.
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Third, we compare LRn to this empirical distribution by computing the proportion

of simulated outcomes exceeding LRn. That is, we compute the empirical level p̂n ≡

J−1
∑J

j=1 I[LRn(A) < LRjn(A)], where I[ · ] is the indicator function.

This procedure is essentially the same as that used by Cho and White (2010) to test

for unobserved heterogeneity with censored duration data, where asymptotic critical

values are not readily available. Cho and White (2010) did not apply the weighted

bootstrap for the uncensored duration case, as asymptotic critical values are available

there.

The Monte Carlo experiments replicate the above procedure N times, generating

p̂
(i)
n , i = 1, ..., N ; and we compute the proportion of outcomes whose p̂

(i)
n is less than the

specified level (e.g., α = 5%). That is, we compute N−1
∑N

i=1 I[p̂
(i)
n < α]. Under the

null, this converges to the significance level corresponding to the specified nominal level

α, whereas this should converge to unity under the alternative.

The intuition for the success of the weighted bootstrap is straightforward. Note

that Ŝnt(·)Zjt has a zero population mean function on A due to the fact that Ŝnt(·)

is independent of Zjt and that Zjt is a zero-mean Gaussian random variable. This is

true under both Ho and Ha. Also, LRn(A) is not bounded in probability under the

alternative, so that the chance for LRjn(A) to be greater than LRn(A) grows smaller

as n increases; this chance is estimated by p̂n. We thus reject the null hypothesis if the

empirical level p̂n is smaller than the specified level of significance α. On the other hand,

the asymptotic covariance structure of Ŝnt(·)Zjt is identical to that of G(·) under the null,

because Ŝnt(·) with the same covariance structure as G(·) is multiplied by an independent

normal variable Zjt having variance equal to one. Thus, if we draw LRjn(A) many times

by following the steps given above, its distribution asymptotically converges to that of

LRn(A) under the null. That is, p̂n can estimate the level of significance consistently.

For additional discussions, see Cho and White (2010, pp. 473-474) and Hansen (1996).
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3. Monte Carlo Experiments

For uncensored duration data, we consider the same DGPs as in Cho and White (2010).

For level comparisons, these are:

• Yt ∼ IID Exp(1);

• Yt ∼ IID Weibull(1, 1);

• Yt | Xt ∼ IID Exp(exp(Xt));

• Yt | Xt ∼ IID Weibull(exp(Xt), 1),

where Exp( · ) and Weibull( ·, · ) denote the exponential and Weibull distributions respec-

tively. For the third and fourth DGPs, we let Xt ∼ IID N(0, 1).

These DGPs are estimated using the following parametric models:

• Yt ∼ IID Exp(δ);

• Yt ∼ IID Weibull(δ, γ);

• Yt | Xt ∼ IID Exp(δ exp(Xtβ));

• Yt | Xt ∼ IID Weibull(δ exp(Xtβ), γ).

We consider nine choices for the domain of α, A := {α : αδ∗ ∈ D}: A = [7/9, 2.0],

[7/9, 3.0], [7/9, 4.0], [2/3, 2.0], [2/3, 3.0], [2/3, 4.0], [5/9, 2.0], [5/9, 3.0], and [5/9, 4.0].

As mentioned above, the asymptotic distribution of the LR test depends on the properties

of A. Our experiments let us examine the impact of the different parameter spaces on

the performance of the LR test. Note that the lower bounds of A are now greater than

1/2. Cho and White (2010, p. 461) show that if α ≤ 1/2, the associated Gaussian

process is not defined. This requires defining the lower bound of A be greater than 1/2.

Also, we select three upper bounds for A: 2, 3, and 4. These are selected to see how the

empirical nominal levels behave as the parameter space A gets larger. These parameter

spaces also are the same as in Cho and White (2010).
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For power comparisons, we consider the following DGPs:

• Yt | (δt,Xt) ∼ IID Exp(δt exp(Xt));

• Yt | (δt,Xt) ∼ IID Weibull(δt exp(Xt), 1),

where Xt ∼ IID N(0, 1) as before, and δt is a random variable generated by the following

various distributions:

• Discrete mixture: δt ∼ IID DM(0.7370, 1.9296; 0.5);

• Gamma mixture: δt ∼ IID Gamma(5, 5);

• Log-normal mixture: δt ∼ IID Log-normal(− ln(1.2)/2, ln(1.2));

• Uniform mixture I: δt ∼ IID Uniform[0.30053, 2.3661];

• Uniform mixture II: δt ∼ IID Uniform[1, 5/3],

where DM(a, b; p) denotes a discrete mixture such that P [δt = a] = p and P [δt = b] =

1− p.

Theorem 2 in Cho and White (2010) justifies obtaining asymptotic critical values

by simulating Gaussian processes, and their Monte Carlo experiments show that the

asymptotic critical values give correct levels asymptotically and yield tests consistent

against the alternative DGPs considered. The empirical rejection rates for critical values

corresponding to several nominal levels are provided in Tables 1, 2, 3, and 4 under the

null and alternative hypotheses. The results for the 5% nominal level in Tables 1 and

2 are exactly the same as in Table 2 of Cho and White (2010); as our experiments are

identical to their experiments, we have not repeated those. Instead, we borrow their

results. Here, however, we extend the comparisons to other levels (1% and 10%) to

provide a more extensive investigation. For these additional levels, we also find that the

empirical rejection rates approach the nominal levels as the sample size n increases. The

critical values are conservative, as the approach is from below. We also see that, just
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as Cho and White (2010) find for the nominal 5% level, as inf A gets close to 1/2, the

level distortion increases. This is mainly because the desired Gaussian process G is not

defined if α ≤ 1/2, so that we cannot apply the functional central limit theorem for these

parameter values. This also implies that if the associated inf A is slightly greater than

1/2, a greater number of observations is required to obtain satisfactory results. This

explains the greater level distortions when inf A is close to 1/2.

Tables 3 and 4 present empirical rejection rates for the LR test under the alternative

using the nominal 5% critical values. These rejection rates are not adjusted for level

distortion,1 so our Tables 3 and 4 differ from tables 3 and 4 of Cho and White (2010).

As the conservative nature of the tests should lead us to expect, we see that rejection

rates under the alternative are smaller than those for the level-adjusted experiments in

Cho and White (2010). As the other findings from these experiments are identical to

those in Cho and White (2010), we do not restate them here.

Next, we conduct Monte Carlo experiments using the weighted bootstrap. The simu-

lation results are presented in Tables 5, 6, 7, and 8. The experimental design parameters

are identical to those used to analyze censored data in Cho and White (2010). Specif-

ically, we let J = 500 and N = 5, 000 for Tables 5 and 6; and we take J = 500 and

N = 2, 000 for Tables 7 and 8.

Tables 5 and 6 correspond to Tables 1 and 2. For all nominal levels, the empirical

rejection rates imply conservative inference, as they approach the nominal levels from

below as n increases, similar to the previous case. Nevertheless, we see substantive

differences from Tables 1 and 2. First, the weighted bootstrap yields empirical rejection

rates much closer to the nominal levels than we obtain using the asymptotic critical

values. Second, we see much less level distortion as inf A approaches 1/2. Third, although

1The corresponding rejection rates in Cho and White (2010) are obtained by adjusting levels to
remove level distortions. The main focus in Cho and White (2010) is to compare the LR test to the
information matrix and Lagrange multiplier tests, which have significant level distortions for small
sample sizes. This requires use of level-adjusted critical values for informative comparisons.
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the weighted bootstrap works well for mixtures of Weibulls, it works even better for

mixtures of exponentials.

Tables 7 and 8 present power performances corresponding to Tables 3 and 4 respec-

tively, again testing at the nominal 5% level. As the sample size increases, the empirical

rejection rates approach 100% for every specification, just as in Tables 3 and 4. Never-

theless, we also see differences between the results of Tables 7 and 8 and those of Tables

3 and 4. First, for the mixtures of exponentials, the weighted bootstrap yields better

power than using the asymptotic critical values. For small samples (n = 50 and 100),

the weighted bootstrap always dominates use of the asymptotic critical values. Nev-

ertheless, results for the asymptotic critical values are roughly similar to those for the

weighted bootstrap for larger n. Second, for the mixtures of Weibull distributions, the

power using the weighted bootstrap is generally better than for the asymptotic criti-

cal values, although their behavior is critically dependent upon the parameter space A.

When A = [2/3, 3] or [2/3, 4], the asymptotic critical values outperform the weighted

bootstrap. On the other hand, when inf A is close to 0.5 (i.e., when larger A’s are

considered), the weighted bootstrap performs better. We thus conclude that using the

weighted bootstrap is preferable when a relatively larger parameter space A is used. This

has practical importance, because researchers are typically unsure about the alternative

and thus may tend to choose a larger parameter space to provide greater scope for the

alternative.

Finally, Table 9 reports the additional CPU time required to compute weighted boot-

strap p-values. These are average CPU times to compute one p-value, obtained by re-

peating the experiments 10 times. The environments for computing these are identical

to the null DGPs reported in Tables 5 and 6. They are computed using GAUSS installed

on a 2.39 GHz personal computer. As these are computed using only 10 replications,

the results may differ from other simulations conducted in different environments. In
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particular, when A is large and the sample size is large, we observe large variations

in the CPU times. Nevertheless, Table 9 provides enough information to draw some

plausible general conclusions. First, the CPU time for the weighted bootstrap increases

substantially as the sample size and/or A get larger. Also, increasing the number of ex-

planatory variables Xt increases the CPU time. Second, Weibull models take more CPU

time than exponential models. This is because the Weibull model has more parameters

and thus requires more time to compute the associated scores. Third, and significantly,

the weighted bootstrap does not demand a substantial amount of CPU time. Given

the generally superior performance of the weighted bootstrap as to level, and the re-

sulting improved power, this supports a recommendation that Hansen’s (1996) weighted

bootstrap be used as a default procedure for testing procedures of the sort considered

here.

This conclusion is promising and also suggests a further research topic. Given that

the weighted bootstrap can be understood as a generalization of Efron’s (1982) bootstrap

and that this bootstrap outperforms the asymptotic normal approximation as shown by

Bickel and Freedman (1980) and Singh (1981), the simulation results seen here sug-

gest that it may be possible to give conditions under which a similar result holds when

bootstrapping random functions instead of random variables. This may require general-

izing the regularity conditions of Mason and Newton (1992) who analyze the weighted

bootstrap when applied to random numbers. We leave this as a topic for future research.

4. Concluding Remarks

Our goal here is to examine the performance of the LR test for a specific model with

nuisance parameters not identified under the null, comparing the use of asymptotic

critical values to those obtained using Hansen’s (1996) weighted bootstrap. Specifically,
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we undertake extensive, large-scale simulations to investigate the performance of a test

for unobserved heterogeneity in duration models proposed by Cho and White (2010).

The availability of Cho and White’s (2010) asymptotic critical values for this test makes

it possible to compare their performance to critical values obtained from the weighted

bootstrap. Our results strongly support the preferred use of the weighted bootstrap

in this case. As we noted at the outset, this provides no guarantee that these results

necessarily generalize to other cases. Nevertheless, the strength of the results here and

the relative ease of computing the weighted bootstrap support a recommendation to

use Hansen’s (1996) weighted bootstrap as a default procedure for inference in models

with nuisance parameters not identified under the null. Our results also motivate future

research to examine whether this specific performance holds more generally.
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Table 1. Levels of the LR Test using Asymptotic Critical Values (in Percent)
Number of Repetitions: 10,000

DGP: Yt ∼ IID Exp(1)
Model: Yt ∼ πExp(δ1) + (1− π)Exp(δ2)

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.06 0.10 0.36 0.69 0.72 0.67

LRn([7/9, 2]) 5% 1.07 1.74 3.35 3.55 4.00 3.88
10% 3.33 4.86 6.94 7.53 8.61 8.23
1% 0.19 0.29 0.55 0.76 0.57 0.79

LRn([7/9, 3]) 5% 1.79 2.59 3.46 3.92 3.76 4.11
10% 3.96 5.81 7.30 8.31 7.65 8.42
1% 0.21 0.43 0.54 0.65 0.86 0.82

LRn([7/9, 4]) 5% 1.77 2.32 3.43 3.62 3.78 4.17
10% 4.25 5.73 7.39 8.02 8.33 8.52

1% 0.14 0.25 0.65 0.42 0.72 0.76
LRn([2/3, 2]) 5% 1.45 2.17 3.28 3.58 3.73 3.75

10% 3.62 5.06 6.67 7.73 7.74 7.81
1% 0.31 0.34 0.56 0.60 0.71 0.73

LRn([2/3, 3]) 5% 1.97 2.26 3.46 3.73 4.11 4.00
10% 4.72 5.43 7.16 7.26 8.22 8.35
1% 0.34 0.36 0.69 0.65 0.81 0.80

LRn([2/3, 4]) 5% 2.14 2.63 3.44 3.48 3.84 4.25
10% 4.85 6.09 7.25 7.59 8.29 8.71

1% 0.21 0.25 0.49 0.49 0.78 0.67
LRn([5/9, 2]) 5% 1.30 1.89 2.79 2.74 3.48 3.73

10% 3.17 4.29 5.94 6.17 7.27 7.19
1% 0.24 0.32 0.60 0.50 0.69 0.56

LRn([5/9, 3]) 5% 1.97 2.38 2.97 2.92 2.98 3.28
10% 4.11 4.71 6.03 6.44 6.75 6.75
1% 0.42 0.49 0.55 0.53 0.65 0.66

LRn([5/9, 4]) 5% 2.12 2.21 2.80 2.98 3.58 3.36
10% 4.47 5.25 6.19 6.12 6.91 6.87

Continued on next page.
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Continued from previous page.

DGP: Yt ∼ IID Weibull(1, 1)
Model: Yt ∼ πWeibull(δ1, γ) + (1− π)Weibull(δ2, γ)

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.00 0.00 0.09 0.18 0.45 0.79

LRn([7/9, 2]) 5% 0.00 0.13 1.43 2.48 3.54 4.21
10% 0.25 0.76 4.91 6.55 7.56 8.64
1% 0.00 0.00 0.04 0.26 0.67 0.82

LRn([7/9, 3]) 5% 0.01 0.17 1.35 2.91 4.02 4.41
10% 0.30 0.73 5.03 7.07 8.26 9.01
1% 0.00 0.01 0.03 0.39 0.73 0.71

LRn([7/9, 4]) 5% 0.10 0.17 1.57 3.39 3.96 4.02
10% 0.45 1.02 5.39 7.62 8.25 8.46

1% 0.00 0.10 0.31 0.57 0.72 0.85
LRn([2/3, 2]) 5% 0.13 0.29 2.92 3.46 3.74 4.54

10% 0.90 2.14 6.48 7.10 8.20 8.51
1% 0.01 0.02 0.49 0.78 0.80 0.82

LRn([2/3, 3]) 5% 0.26 0.53 3.52 3.92 3.91 4.10
10% 1.23 2.91 7.77 8.17 7.87 8.54
1% 0.00 0.01 0.62 0.70 0.79 0.86

LRn([2/3, 4]) 5% 0.29 0.70 3.43 3.85 4.15 4.13
10% 1.31 2.79 7.54 7.92 8.12 8.13

1% 0.01 0.01 0.51 0.57 0.52 0.67
LRn([5/9, 2]) 5% 0.43 1.17 2.91 3.26 3.18 3.31

10% 2.24 3.47 6.38 6.62 6.83 7.22
1% 0.00 0.05 0.73 0.67 0.65 0.63

LRn([5/9, 3]) 5% 0.50 1.36 3.44 3.41 3.89 3.82
10% 2.05 4.34 6.56 7.03 7.50 7.54
1% 0.05 0.08 0.50 0.47 0.85 0.90

LRn([5/9, 4]) 5% 0.84 1.72 3.48 2.96 4.12 4.04
10% 2.81 4.91 7.14 6.72 7.70 8.21

Notes: The entries are the empirical rejection rates for the LR statistics under
the null hypothesis. For the LR statistics, nine parameter spaces are examined
for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces, and the
entries corresponding to 5% are identical to those in Cho and White (2010).
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Table 2. Levels of the Test using Asymptotic Critical Values (in Percent)
Number of Repetitions: 10,000

DGP: Yt | Xt ∼ IID Exp(exp(Xt))
Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ))

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.02 0.15 0.43 0.45 0.69 0.64

LRn([7/9, 2]) 5% 0.68 1.62 2.93 3.32 3.83 4.35
10% 2.44 4.15 6.61 7.08 8.09 8.73
1% 0.12 0.21 0.43 0.63 0.66 0.70

LRn([7/9, 3]) 5% 1.27 2.15 3.10 3.61 3.85 4.17
10% 3.24 4.70 6.83 7.33 7.93 9.01
1% 0.16 0.25 0.50 0.65 0.83 0.90

LRn([7/9, 4]) 5% 1.35 1.71 2.97 3.44 3.89 4.55
10% 3.55 4.42 7.06 7.71 7.82 8.72

1% 0.06 0.24 0.43 0.58 0.77 0.75
LRn([2/3, 2]) 5% 1.14 1.84 2.83 3.24 3.69 3.93

10% 2.86 4.47 6.16 6.43 7.57 8.03
1% 0.20 0.41 0.65 0.78 0.71 0.73

LRn([2/3, 3]) 5% 1.53 2.33 3.33 3.53 3.64 3.74
10% 3.59 5.17 6.67 7.51 7.50 7.96
1% 0.24 0.37 0.53 0.75 0.73 0.69

LRn([2/3, 4]) 5% 1.62 2.26 3.35 3.41 3.71 3.89
10% 3.81 4.92 6.93 7.45 7.35 8.04

1% 0.14 0.23 0.47 0.45 0.56 0.59
LRn([5/9, 2]) 5% 1.13 1.66 2.65 2.89 3.19 3.53

10% 2.82 3.73 5.58 5.89 6.66 7.38
1% 0.18 0.36 0.41 0.57 0.63 0.74

LRn([5/9, 3]) 5% 1.45 1.92 2.31 3.02 3.31 3.32
10% 3.33 4.22 5.33 6.25 6.62 6.85
1% 0.17 0.37 0.43 0.45 0.58 0.59

LRn([5/9, 4]) 5% 1.44 1.99 2.31 3.20 3.31 3.48
10% 3.36 4.39 5.50 6.66 6.72 7.19

Continued on next page.
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DGP: Yt | Xt ∼ IID Weibull(exp(Xt), 1)
Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)
Statistics Level \n 50 100 500 1,000 2,000 5,000

1% 0.00 0.00 0.05 0.17 0.54 0.74
LRn([7/9, 2]) 5% 0.04 0.03 1.25 2.60 3.79 3.80

10% 0.27 0.64 4.62 6.63 8.21 8.64
1% 0.00 0.00 0.05 0.17 0.54 0.74

LRn([7/9, 3]) 5% 0.03 0.12 1.21 3.03 3.74 4.41
10% 0.32 0.97 4.65 7.34 8.24 8.93
1% 0.00 0.02 0.03 0.32 0.69 0.92

LRn([7/9, 4]) 5% 0.07 0.17 1.68 2.96 4.06 4.34
10% 0.47 0.83 5.18 7.15 8.21 8.64

1% 0.00 0.00 0.26 0.54 0.83 0.69
LRn([2/3, 2]) 5% 0.15 0.22 2.72 3.22 4.13 4.05

10% 0.84 2.16 6.33 7.16 8.13 8.14
1% 0.00 0.00 0.48 0.69 0.96 0.87

LRn([2/3, 3]) 5% 0.23 0.46 2.86 3.88 4.20 4.29
10% 1.29 2.41 6.79 7.76 8.35 8.39
1% 0.00 0.03 0.36 0.67 0.89 0.68

LRn([2/3, 4]) 5% 0.33 0.76 3.25 3.70 4.18 4.25
10% 1.47 3.31 7.31 7.84 7.71 8.44

1% 0.01 0.05 0.51 0.56 0.57 0.68
LRn([5/9, 2]) 5% 0.36 1.10 2.76 3.21 3.53 3.39

10% 1.75 3.94 6.42 6.16 7.20 7.28
1% 0.03 0.08 0.56 0.64 0.65 0.69

LRn([5/9, 3]) 5% 0.56 1.51 3.11 3.55 3.38 3.82
10% 2.58 4.61 6.97 7.29 7.60 7.69
1% 0.03 0.11 0.60 0.64 0.86 0.67

LRn([5/9, 4]) 5% 0.86 1.57 3.44 3.50 3.78 3.68
10% 3.03 4.88 7.31 7.20 7.91 7.61

Notes: The entries are the empirical rejection rates for the LR statistics under
the null hypothesis. For the LR statistics, nine parameter spaces are examined
for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces, and the
entries corresponding to 5% are identical to those in Cho and White (2010).
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Table 3. Power of the LR Test using Asymptotic Critical Values (Nominal Level: 5%)
Number of Repetitions: 2,000

Model: Yt | Xt ∼ Exp(δ exp(Xtβ))

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 10.95 32.85 96.20 100.0 100.0 100.0
Gamma Mixture 4.20 14.05 81.80 98.30 100.0 100.0

LRn([7/9, 2]) Log-normal Mixture 3.05 10.10 76.60 97.95 100.0 100.0
Uniform Mixture I 21.15 57.25 99.95 100.0 100.0 100.0
Uniform Mixture II 1.55 2.50 8.95 12.60 19.20 39.50

Discrete Mixture 15.40 34.95 96.05 100.0 100.0 100.0
Gamma Mixture 6.90 15.90 83.55 98.55 100.0 100.0

LRn([7/9, 3]) Log-normal Mixture 4.30 12.95 76.65 98.00 100.0 100.0
Uniform Mixture I 25.35 58.30 99.95 100.0 100.0 100.0
Uniform Mixture II 2.25 3.40 9.35 12.40 19.25 38.30

Discrete Mixture 15.80 34.80 95.95 100.0 100.0 100.0
Gamma Mixture 7.30 16.50 83.10 98.45 100.0 100.0

LRn([7/9, 4]) Log-normal Mixture 4.75 13.20 75.45 97.85 100.0 100.0
Uniform Mixture I 25.50 58.00 99.90 100.0 100.0 100.0
Uniform Mixture II 2.45 3.50 8.95 12.00 18.55 36.65

Discrete Mixture 14.25 34.50 96.40 100.0 100.0 100.0
Gamma Mixture 11.75 31.30 97.50 100.0 100.0 100.0

LRn([2/3, 2]) Log-normal Mixture 7.40 22.20 89.65 100.0 100.0 100.0
Uniform Mixture I 27.30 63.50 99.95 99.50 100.0 100.0
Uniform Mixture II 1.70 2.35 7.75 11.90 20.95 38.00

Discrete Mixture 16.60 36.40 96.65 100.0 100.0 100.0
Gamma Mixture 12.65 31.90 97.40 100.0 100.0 100.0

LRn([2/3, 3]) Log-normal Mixture 9.20 22.15 88.85 100.0 100.0 100.0
Uniform Mixture I 29.40 63.90 99.95 99.45 100.0 100.0
Uniform Mixture II 2.30 2.27 8.20 12.45 21.00 38.50

Discrete Mixture 17.00 36.40 96.50 100.0 100.0 100.0
Gamma Mixture 12.95 31.35 97.40 100.0 100.0 100.0

LRn([2/3, 4]) Log-normal Mixture 9.35 21.75 88.65 100.0 100.0 100.0
Uniform Mixture I 28.90 63.65 99.95 99.45 100.0 100.0
Uniform Mixture II 2.45 2.80 7.90 12.35 20.85 38.15

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 14.75 32.95 95.70 99.95 100.0 100.0
Gamma Mixture 15.75 39.55 97.65 99.95 100.0 100.0

LRn([5/9, 2]) Log-normal Mixture 10.95 24.75 90.10 99.15 100.0 100.0
Uniform Mixture I 30.05 61.85 99.65 100.0 100.0 100.0
Uniform Mixture II 2.10 2.05 6.55 10.25 16.25 36.55

Discrete Mixture 16.10 34.80 95.75 99.95 100.0 100.0
Gamma Mixture 16.30 38.35 97.15 99.95 100.0 100.0

LRn([5/9, 3]) Log-normal Mixture 11.40 24.55 89.30 99.05 100.0 100.0
Uniform Mixture I 31.00 61.80 99.75 100.0 100.0 100.0
Uniform Mixture II 2.60 2.25 6.50 10.50 16.15 36.60

Discrete Mixture 16.45 34.60 95.70 99.95 100.0 100.0
Gamma Mixture 16.55 38.05 96.90 99.90 100.0 100.0

LRn([5/9, 4]) Log-normal Mixture 11.70 24.65 88.35 98.95 100.0 100.0
Uniform Mixture I 31.70 61.20 99.70 100.0 100.0 100.0
Uniform Mixture II 2.60 2.55 6.50 10.05 16.10 34.50

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces. These entries do not adjust for level distortions, unlike Table
3 of Cho and White (2010).
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Table 4. Power of the LR Test using Asymptotic Critical Values (Nominal Level: 5%)
Number of Repetitions: 2,000

Model: Yt | Xt ∼Weibull(δ exp(Xtβ), γ)

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 0.20 1.70 45.35 77.95 97.20 100.0
Gamma Mixture 0.00 0.05 6.85 42.45 94.85 100.0

LRn([7/9, 2]) Log-normal Mixture 0.05 0.05 3.30 23.20 78.85 99.95
Uniform Mixture I 0.50 5.25 85.50 99.50 100.0 100.0
Uniform Mixture II 0.30 0.65 2.05 1.80 3.10 6.55

Discrete Mixture 0.40 2.10 44.05 76.20 96.60 100.0
Gamma Mixture 0.00 0.00 3.20 31.10 91.70 99.90

LRn([7/9, 3]) Log-normal Mixture 0.05 0.00 1.60 15.60 71.05 99.95
Uniform Mixture I 0.95 4.20 81.30 99.35 100.0 100.0
Uniform Mixture II 0.20 0.45 1.40 2.10 2.70 5.35

Discrete Mixture 0.55 2.35 40.90 73.70 96.15 100.0
Gamma Mixture 0.00 0.00 2.25 24.85 88.95 99.90

LRn([7/9, 4]) Log-normal Mixture 0.10 0.00 1.05 11.65 65.55 99.90
Uniform Mixture I 0.70 3.65 78.15 99.10 100.0 100.0
Uniform Mixture II 0.10 0.15 1.30 1.90 2.55 5.45

Discrete Mixture 0.80 4.80 46.10 77.65 96.95 100.0
Gamma Mixture 0.10 1.10 46.05 89.90 99.70 100.0

LRn([2/3, 2]) Log-normal Mixture 0.05 0.75 27.65 66.80 94.00 100.0
Uniform Mixture I 2.45 13.10 90.75 99.50 100.0 100.0
Uniform Mixture II 0.40 1.65 5.05 6.70 10.55 18.10

Discrete Mixture 1.60 5.60 47.05 77.00 96.45 100.0
Gamma Mixture 0.05 1.05 38.80 87.10 99.60 100.0

LRn([2/3, 3]) Log-normal Mixture 0.25 0.55 22.35 62.05 93.05 100.0
Uniform Mixture I 2.75 12.40 88.25 99.35 100.0 100.0
Uniform Mixture II 1.05 2.90 5.65 6.95 9.70 17.70

Discrete Mixture 2.00 5.55 44.20 75.10 95.95 100.0
Gamma Mixture 0.10 0.70 35.00 85.00 99.55 100.0

LRn([2/3, 4]) Log-normal Mixture 0.30 0.65 19.45 57.80 92.15 100.0
Uniform Mixture I 3.00 10.75 86.85 99.05 100.0 100.0
Uniform Mixture II 1.20 3.25 5.70 7.40 8.90 16.35

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 1.55 8.40 43.35 74.90 95.85 100.0
Gamma Mixture 0.75 5.00 64.45 91.90 99.50 99.95

LRn([5/9, 2]) Log-normal Mixture 0.40 2.70 40.75 69.85 93.95 100.0
Uniform Mixture I 4.30 22.60 90.20 99.25 100.0 100.0
Uniform Mixture II 0.70 2.40 4.35 6.40 9.05 15.10

Discrete Mixture 3.10 10.10 43.65 74.70 94.95 100.0
Gamma Mixture 0.65 3.60 56.50 82.75 94.00 98.15

LRn([5/9, 3]) Log-normal Mixture 0.45 2.60 35.50 61.40 88.45 99.30
Uniform Mixture I 2.85 14.40 88.70 99.15 100.0 100.0
Uniform Mixture II 1.15 2.85 4.60 5.65 7.80 13.40

Discrete Mixture 3.35 10.30 41.75 73.50 94.60 100.0
Gamma Mixture 0.75 3.30 55.00 82.10 93.95 98.15

LRn([5/9, 4]) Log-normal Mixture 0.55 2.85 34.00 60.15 87.80 99.30
Uniform Mixture I 4.25 14.65 87.90 98.80 100.0 100.0
Uniform Mixture II 1.30 2.95 3.85 4.95 7.65 12.05

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces. These entries do not adjust for level distortions, unlike Table
4 of Cho and White (2010).
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Table 5. Bootstrapped Levels of the LR Test (in Percent)
Number of Repetitions: 5,000

DGP: Yt ∼ IID Exp(1)
Model: Yt ∼ πExp(δ1) + (1− π)Exp(δ2)

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.10 0.16 0.48 0.60 0.74 1.24

LRn([7/9, 2]) 5% 1.52 2.10 3.52 3.48 4.26 4.84
10% 4.22 5.86 7.86 8.16 8.40 9.28
1% 0.26 0.32 0.60 0.70 0.96 0.68

LRn([7/9, 3]) 5% 2.14 2.60 3.58 3.96 4.58 4.42
10% 5.24 6.28 7.82 8.34 8.76 9.10
1% 0.36 0.52 0.90 0.72 0.76 0.80

LRn([7/9, 4]) 5% 2.88 3.08 4.24 3.96 3.90 4.46
10% 5.66 6.52 9.00 8.14 8.72 8.50

1% 0.24 0.28 0.62 0.74 0.64 1.04
LRn([2/3, 2]) 5% 1.90 2.76 3.68 4.00 3.76 4.30

10% 5.24 6.14 7.60 8.02 8.12 9.02
1% 0.34 0.42 0.44 0.76 0.76 0.88

LRn([2/3, 3]) 5% 2.70 2.88 3.70 3.98 4.48 4.00
10% 6.44 6.52 8.34 7.90 8.32 8.42
1% 0.20 0.66 0.56 0.94 1.06 0.84

LRn([2/3, 4]) 5% 2.50 3.64 3.62 5.10 4.86 3.74
10% 5.90 7.76 7.92 9.30 9.38 8.38

1% 0.54 0.44 0.72 0.78 1.00 0.86
LRn([5/9, 2]) 5% 2.76 2.88 3.38 3.76 4.42 4.52

10% 5.82 7.02 7.62 8.46 9.02 9.12
1% 0.46 0.56 0.80 0.66 0.88 0.88

LRn([5/9, 3]) 5% 2.78 2.98 4.06 4.34 4.18 3.98
10% 6.58 6.70 8.00 8.90 8.48 8.24
1% 0.38 0.66 0.90 0.62 0.78 1.02

LRn([5/9, 4]) 5% 2.78 3.42 4.44 3.50 4.14 4.62
10% 6.26 7.26 8.60 7.56 8.78 8.94

Continued on next page.
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DGP: Yt ∼ IID Weibull(1, 1)
Model: Yt ∼ πWeibull(δ1, γ) + (1− π)Weibull(δ2, γ)

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.00 0.00 0.04 0.24 0.38 0.86

LRn([7/9, 2]) 5% 0.00 0.10 1.50 2.70 3.54 4.04
10% 0.48 0.76 5.06 6.98 8.00 8.96
1% 0.00 0.00 0.02 0.28 0.62 0.76

LRn([7/9, 3]) 5% 0.02 0.22 1.66 2.72 3.86 3.94
10% 0.38 1.02 4.98 7.34 7.82 8.64
1% 0.00 0.00 0.06 0.30 0.60 0.82

LRn([7/9, 4]) 5% 0.08 0.22 1.54 3.26 4.10 4.16
10% 0.56 1.04 5.66 7.32 8.94 8.30

1% 0.00 0.02 0.36 0.52 0.84 1.02
LRn([2/3, 2]) 5% 0.22 0.88 3.40 3.46 4.16 4.34

10% 1.74 3.82 8.30 8.32 8.42 8.44
1% 0.00 0.04 0.40 0.88 0.76 1.02

LRn([2/3, 3]) 5% 0.26 0.86 3.62 4.16 4.56 4.44
10% 1.26 3.80 8.12 8.60 8.74 8.98
1% 0.00 0.06 0.72 0.88 0.86 0.94

LRn([2/3, 4]) 5% 0.26 0.70 4.12 4.08 3.92 4.44
10% 1.42 3.40 8.32 8.16 8.20 9.12

1% 0.04 0.18 0.50 0.88 0.76 0.88
LRn([5/9, 2]) 5% 1.00 2.22 3.82 4.48 4.50 4.26

10% 3.98 6.06 8.46 9.12 8.64 8.46
1% 0.04 0.12 0.84 0.76 0.68 0.86

LRn([5/9, 3]) 5% 0.88 2.46 4.42 4.58 4.30 4.42
10% 3.56 6.30 8.26 8.94 8.98 8.52
1% 0.02 0.14 0.70 0.82 1.04 1.06

LRn([5/9, 4]) 5% 1.00 2.52 4.16 4.46 4.70 4.56
10% 3.16 6.36 8.44 9.06 9.16 9.60

Notes: The entries are the empirical rejection rates for the LR statistics under
the null hypothesis. For the LR statistics, nine parameter spaces are examined
for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces.
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Table 6. Bootstrapped Levels of the Test (in Percent)
Number of Repetitions: 5,000

DGP: Yt | Xt ∼ IID Exp(exp(Xt))
Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ))

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.12 0.26 0.62 0.52 0.78 0.88

LRn([7/9, 2]) 5% 0.72 1.88 3.10 2.94 4.12 4.58
10% 2.62 4.84 6.94 7.12 8.40 8.74
1% 0.12 0.36 0.66 0.74 0.68 0.92

LRn([7/9, 3]) 5% 1.64 2.10 3.94 4.00 4.20 4.62
10% 4.00 4.66 7.46 8.40 8.88 8.28
1% 0.32 0.36 0.92 0.66 0.72 0.70

LRn([7/9, 4]) 5% 1.96 2.14 3.92 3.74 3.64 3.72
10% 4.76 5.28 7.90 8.16 7.84 7.80

1% 0.18 0.40 0.52 0.72 0.42 0.64
LRn([2/3, 2]) 5% 1.72 2.80 3.32 3.88 4.08 3.70

10% 4.00 5.66 7.58 7.74 8.54 8.58
1% 0.32 0.38 0.56 0.76 0.70 0.86

LRn([2/3, 3]) 5% 1.86 2.66 4.08 4.14 3.76 4.84
10% 4.26 6.30 8.14 8.40 7.52 8.82
1% 0.22 0.28 0.62 0.60 0.88 1.02

LRn([2/3, 4]) 5% 2.06 2.56 3.64 3.86 3.84 4.56
10% 4.52 5.74 7.58 8.54 8.12 8.62

1% 0.14 0.40 0.62 0.52 0.86 1.14
LRn([5/9, 2]) 5% 1.90 2.52 4.06 3.60 4.18 4.60

10% 4.74 5.52 7.92 7.88 8.86 9.02
1% 0.38 0.32 0.78 0.82 1.04 0.82

LRn([5/9, 3]) 5% 2.04 2.66 3.78 3.80 4.34 4.08
10% 5.12 5.52 7.74 8.32 8.64 8.22
1% 0.34 0.52 0.74 0.72 0.98 0.96

LRn([5/9, 4]) 5% 2.42 3.12 3.96 3.42 4.70 4.12
10% 5.28 6.42 8.02 7.18 8.74 8.02
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DGP: Yt | Xt ∼ IID Weibull(exp(Xt), 1)
Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)
Statistics Level \n 50 100 500 1,000 2,000 5,000

1% 0.00 0.02 0.06 0.12 0.56 0.82
LRn([7/9, 2]) 5% 0.04 0.06 1.72 2.66 3.46 4.12

10% 0.48 0.86 5.62 7.12 7.58 8.70
1% 0.00 0.00 0.04 0.26 0.56 0.76

LRn([7/9, 3]) 5% 0.00 0.10 1.40 2.96 3.56 4.42
10% 0.52 0.82 5.56 7.66 7.88 8.70
1% 0.00 0.00 0.12 0.48 0.78 0.86

LRn([7/9, 4]) 5% 0.06 0.16 1.74 3.82 4.38 4.22
10% 0.44 0.94 4.96 7.58 8.64 8.68

1% 0.00 0.00 0.36 0.46 0.68 0.64
LRn([2/3, 2]) 5% 0.26 0.70 2.80 3.48 3.94 4.64

10% 1.62 3.42 7.12 7.52 8.20 8.76
1% 0.02 0.00 0.44 0.84 1.00 0.98

LRn([2/3, 3]) 5% 0.22 0.90 3.60 4.12 4.58 4.08
10% 1.60 3.26 8.46 8.54 9.14 8.56
1% 0.00 0.00 0.66 0.76 0.92 0.82

LRn([2/3, 4]) 5% 0.32 1.06 4.14 4.36 4.46 4.16
10% 1.64 3.48 8.62 8.56 9.40 8.62

1% 0.00 0.06 0.64 0.64 0.78 0.78
LRn([5/9, 2]) 5% 0.64 2.12 3.54 4.22 3.84 4.10

10% 3.66 6.38 8.24 9.26 8.28 8.46
1% 0.02 0.08 0.78 0.66 0.90 0.78

LRn([5/9, 3]) 5% 1.10 2.22 4.22 4.48 4.78 4.46
10% 3.80 7.14 8.70 8.84 9.10 9.04
1% 0.10 0.18 0.64 0.96 0.94 0.88

LRn([5/9, 4]) 5% 0.86 2.50 3.90 4.72 4.22 4.34
10% 3.32 6.42 8.36 8.90 8.88 9.16

Notes: The entries are the empirical rejection rates for the LR statistics under
the null hypothesis. For the LR statistics, nine parameter spaces are examined
for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces.
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Table 7. Bootstrapped Power of the LR Test (Nominal Level: 5%)
Number of Repetitions: 2,000

Model: Yt | Xt ∼ Exp(δ exp(Xtβ))

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 14.90 36.50 97.55 99.95 100.0 100.0
Gamma Mixture 5.10 15.65 81.20 98.60 100.0 100.0

LRn([7/9, 2]) Log-normal Mixture 4.20 10.70 76.20 97.75 100.0 100.0
Uniform Mixture I 24.25 60.20 99.90 100.0 100.0 100.0
Uniform Mixture II 2.05 3.65 9.35 13.75 21.60 39.50

Discrete Mixture 16.60 38.90 96.45 99.85 100.0 100.0
Gamma Mixture 8.50 18.35 82.45 98.65 100.0 100.0

LRn([7/9, 3]) Log-normal Mixture 5.95 14.20 76.60 98.10 100.0 100.0
Uniform Mixture I 28.00 60.65 99.90 100.0 100.0 100.0
Uniform Mixture II 2.40 4.25 9.30 13.25 20.20 38.50

Discrete Mixture 18.95 38.00 96.85 99.90 100.0 100.0
Gamma Mixture 7.40 17.70 84.15 98.90 100.0 100.0

LRn([7/9, 4]) Log-normal Mixture 7.70 13.50 76.90 98.30 100.0 100.0
Uniform Mixture I 29.55 61.15 99.90 100.0 100.0 100.0
Uniform Mixture II 2.60 3.75 9.10 14.05 20.75 36.65

Discrete Mixture 18.80 38.65 96.50 99.85 100.0 100.0
Gamma Mixture 15.00 35.80 98.20 100.0 100.0 100.0

LRn([2/3, 2]) Log-normal Mixture 9.60 25.15 90.35 99.65 100.0 100.0
Uniform Mixture I 34.35 64.00 99.95 100.0 100.0 100.0
Uniform Mixture II 2.85 3.60 8.30 13.25 19.75 39.70

Discrete Mixture 20.55 40.85 97.30 99.95 100.0 100.0
Gamma Mixture 15.35 33.70 97.80 100.0 100.0 100.0

LRn([2/3, 3]) Log-normal Mixture 11.25 26.25 89.00 99.25 100.0 100.0
Uniform Mixture I 34.15 65.75 99.95 100.0 100.0 100.0
Uniform Mixture II 3.20 3.90 8.40 13.10 20.70 38.95

Discrete Mixture 20.65 41.40 97.00 100.0 100.0 100.0
Gamma Mixture 15.05 34.05 97.70 100.0 100.0 100.0

LRn([2/3, 4]) Log-normal Mixture 12.15 22.95 88.55 99.40 100.0 100.0
Uniform Mixture I 34.10 66.15 99.90 100.0 100.0 100.0
Uniform Mixture II 3.10 4.40 9.35 14.25 19.85 39.30

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 20.30 38.60 97.30 99.95 100.0 100.0
Gamma Mixture 22.05 45.20 98.15 100.0 100.0 100.0

LRn([5/9, 2]) Log-normal Mixture 15.00 31.50 89.70 99.60 100.0 100.0
Uniform Mixture I 35.30 66.65 99.95 100.0 100.0 100.0
Uniform Mixture II 2.65 3.85 10.00 14.65 20.55 37.95

Discrete Mixture 21.55 42.20 96.60 99.90 100.0 100.0
Gamma Mixture 19.45 43.60 98.30 100.0 100.0 100.0

LRn([5/9, 3]) Log-normal Mixture 15.60 31.20 90.00 99.35 100.0 100.0
Uniform Mixture I 37.35 67.95 100.0 100.0 100.0 100.0
Uniform Mixture II 3.80 3.75 9.30 13.10 19.90 38.15

Discrete Mixture 20.20 40.75 96.75 99.90 100.0 100.0
Gamma Mixture 21.35 43.30 97.95 100.0 100.0 100.0

LRn([5/9, 4]) Log-normal Mixture 14.95 30.65 89.55 99.55 100.0 100.0
Uniform Mixture I 37.30 64.55 99.90 100.0 100.0 100.0
Uniform Mixture II 3.40 4.85 9.80 12.95 21.15 36.25

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces.
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Table 8. Bootstrapped Power of the LR Tests (Nominal Level: 5%)
Number of Repetitions: 2,000

Model: Yt | Xt ∼Weibull(δ exp(Xtβ), γ)

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 0.65 2.30 46.25 78.95 97.10 100.0
Gamma Mixture 0.05 0.20 5.10 38.80 93.70 100.0

LRn([7/9, 2]) Log-normal Mixture 0.00 0.10 3.85 25.60 78.15 99.95
Uniform Mixture I 0.75 4.95 86.65 99.70 100.0 100.0
Uniform Mixture II 0.20 1.05 4.90 6.85 9.80 16.75

Discrete Mixture 0.65 2.50 44.30 76.30 97.15 100.0
Gamma Mixture 0.00 0.00 2.75 27.65 88.40 100.0

LRn([7/9, 3]) Log-normal Mixture 0.05 0.05 1.90 16.10 67.95 99.85
Uniform Mixture I 0.30 4.45 80.85 98.95 100.0 100.0
Uniform Mixture II 0.50 1.65 5.30 7.55 9.85 15.75

Discrete Mixture 0.85 2.55 41.65 73.20 96.50 100.0
Gamma Mixture 0.05 0.20 2.30 19.05 82.80 99.45

LRn([7/9, 4]) Log-normal Mixture 0.05 0.05 1.95 10.15 61.80 99.65
Uniform Mixture I 0.50 3.35 77.75 99.10 100.0 100.0
Uniform Mixture II 0.55 1.60 4.70 7.10 9.15 16.20

Discrete Mixture 1.55 6.55 50.10 78.60 97.50 100.0
Gamma Mixture 0.30 1.55 48.55 90.45 99.65 100.0

LRn([2/3, 2]) Log-normal Mixture 0.45 0.90 29.90 68.70 94.85 99.95
Uniform Mixture I 3.50 14.60 90.40 99.60 100.0 100.0
Uniform Mixture II 0.65 2.20 5.40 7.60 10.55 18.95

Discrete Mixture 1.65 6.85 50.85 77.75 95.75 100.0
Gamma Mixture 0.25 0.80 37.95 87.40 99.70 100.0

LRn([2/3, 3]) Log-normal Mixture 0.10 0.65 21.85 62.25 92.90 99.95
Uniform Mixture I 2.65 11.90 88.20 99.20 100.0 100.0
Uniform Mixture II 0.75 2.95 5.80 7.55 9.95 16.90

Discrete Mixture 1.50 7.10 47.65 74.00 95.00 100.0
Gamma Mixture 0.30 0.90 29.70 80.25 98.00 100.0

LRn([2/3, 4]) Log-normal Mixture 0.20 0.55 20.00 53.40 91.05 100.0
Uniform Mixture I 2.70 10.30 85.90 99.30 100.0 100.0
Uniform Mixture II 1.40 2.65 6.60 6.80 8.60 16.15

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 4.20 11.85 49.90 80.10 96.75 100.0
Gamma Mixture 1.90 7.55 72.20 94.00 99.85 100.0

LRn([5/9, 2]) Log-normal Mixture 2.30 6.20 45.20 74.40 95.40 99.90
Uniform Mixture I 8.95 25.60 89.90 99.30 100.0 100.0
Uniform Mixture II 1.65 2.75 5.10 8.30 10.60 18.90

Discrete Mixture 4.85 11.65 48.30 76.55 96.45 100.0
Gamma Mixture 1.30 4.75 65.05 92.05 99.85 100.0

LRn([5/9, 3]) Log-normal Mixture 0.85 3.75 39.80 70.45 94.40 100.0
Uniform Mixture I 5.95 22.05 87.65 99.30 100.0 100.0
Uniform Mixture II 1.50 3.70 6.45 7.55 10.90 17.45

Discrete Mixture 4.50 10.75 46.50 74.60 95.45 99.95
Gamma Mixture 1.55 3.70 59.10 88.90 98.90 100.0

LRn([5/9, 4]) Log-normal Mixture 1.15 2.25 34.95 67.70 92.05 99.95
Uniform Mixture I 5.45 17.45 86.50 99.25 100.0 100.0
Uniform Mixture II 2.40 4.00 6.20 6.50 11.15 15.30

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for α: [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces.
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Table 9. Additional CPU Times for Weighted Bootstrapping (in Seconds)

DGP: Yt ∼ IID Exp(1)
Model: Yt ∼ πExp(δ1) + (1− π)Exp(δ2)

Statistics \n 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 0.35 0.40 1.15 1.99 6.37 21.48
LRn([7/9, 3]) 0.64 0.75 2.08 3.38 7.22 36.35
LRn([7/9, 4]) 0.93 1.05 3.21 5.33 17.53 51.78
LRn([2/3, 2]) 0.39 0.44 1.21 2.20 6.48 22.97
LRn([2/3, 3]) 0.67 0.75 2.33 3.92 10.94 37.78
LRn([2/3, 4]) 0.96 1.09 3.60 6.32 19.22 58.19
LRn([5/9, 2]) 0.41 0.49 1.44 2.21 7.98 25.62
LRn([5/9, 3]) 0.70 0.79 2.43 6.13 11.25 39.09
LRn([5/9, 4]) 0.99 1.13 3.62 6.52 20.28 60.16

DGP: Yt ∼ IID Weibull(1, 1)
Model: Yt ∼ πWeibull(δ1, γ) + (1− π)Weibull(δ2, γ)

Statistics \n 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 0.50 0.64 1.82 4.31 8.26 25.51
LRn([7/9, 3]) 0.91 1.17 3.36 7.75 17.28 48.02
LRn([7/9, 4]) 1.29 1.64 5.16 12.01 22.97 71.97
LRn([2/3, 2]) 0.54 0.70 1.98 4.77 11.08 28.04
LRn([2/3, 3]) 0.93 1.22 3.68 8.67 17.97 55.37
LRn([2/3, 4]) 1.33 1.71 5.43 12.70 25.22 78.59
LRn([5/9, 2]) 0.54 0.75 2.08 5.29 10.51 28.80
LRn([5/9, 3]) 0.97 1.28 3.96 8.69 18.56 58.96
LRn([5/9, 4]) 1.40 1.81 5.70 12.70 28.99 79.51

Continued on next page.
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DGP: Yt | Xt ∼ IID Exp(exp(Xt))
Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ))

Statistics \n 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 0.47 0.61 1.83 3.88 8.99 23.21
LRn([7/9, 3]) 0.87 1.14 3.40 7.14 16.70 46.19
LRn([7/9, 4]) 1.24 1.60 5.10 9.98 23.42 66.50
LRn([2/3, 2]) 0.53 0.67 2.00 4.50 10.20 28.02
LRn([2/3, 3]) 0.90 1.14 3.81 7.24 18.69 50.29
LRn([2/3, 4]) 1.27 1.62 5.41 10.49 24.57 68.95
LRn([5/9, 2]) 0.56 0.73 2.05 4.94 11.05 30.48
LRn([5/9, 3]) 0.93 1.22 4.10 7.95 19.81 55.72
LRn([5/9, 4]) 1.29 1.66 5.48 11.28 26.98 79.41

DGP: Yt | Xt ∼ IID Weibull(exp(Xt), 1)
Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)

Statistics \n 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 0.52 0.68 2.33 6.00 12.10 22.72
LRn([7/9, 3]) 0.95 1.27 5.86 10.80 24.10 35.87
LRn([7/9, 4]) 1.36 1.83 6.59 14.85 33.44 57.61
LRn([2/3, 2]) 0.60 0.75 3.52 6.23 15.14 28.62
LRn([2/3, 3]) 1.02 1.28 6.00 10.72 25.30 42.92
LRn([2/3, 4]) 1.48 1.83 7.25 15.73 36.45 96.10
LRn([5/9, 2]) 0.67 0.82 3.82 6.88 15.41 31.13
LRn([5/9, 3]) 1.06 1.36 6.12 11.97 27.58 59.05
LRn([5/9, 4]) 1.49 1.86 8.72 14.12 36.58 102.5

Notes: The entries are the additional times for conducting the weighted
bootstrap for the LR statistics indexed by the nine parameter spaces for α,
[7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4].
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