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1. Introduction

Davies (1977, 1987) first addressed the subject of testing procedures involving parame-
ters not identified under the null. These are now commonly encountered in the modern
econometrics literature. For example, Engle and Watson (1987) pointed out that Rosen-
berg’s (1973) conditional heteroskedasticity test involves parameters not identified under
the null of conditional homoskedasticity. The generalized autoregressive conditional het-
eroskedasticity (GARCH) model of Bollerslev (1986) has this feature as well, as specif-
ically examined by Andrews (2001). More recently, Cho and White (2007, 2010) have
provided likelihood-ratio (LR) methods for testing for regime switching and unobserved
heterogeneity using models with parameters not identified under the null.

The finite sample properties of these tests, and, in particular, the LR test are crucially
dependent upon the application of appropriate critical values. In practice, there may
be a variety of ways to obtain these, and the various approaches can yield different
results. Specifically, in some applications, asymptotic critical values are known and
perform quite adequately. In other cases, asymptotic critical values may be unknown,
or they may perform poorly. Nevertheless, some form of bootstrap procedure can often
give useful critical values in these cases. An especially convenient method applicable
to procedures involving nuisance parameters not identified under the null is Hansen’s
(1996) weighted bootstrap.

Here, our goal is to examine the performance of the LR test for a specific model with
nuisance parameters not identified under the null, comparing the use of asymptotic crit-
ical values to those obtained using Hansen’s (1996) weighted bootstrap. In particular,
we undertake extensive, large-scale simulations to investigate the performance of a test
for unobserved heterogeneity in duration models proposed by Cho and White (2010).
Asymptotic critical values are typically not easy to obtain for such tests, but Cho and

White (2010) derive readily computed asymptotic critical values. This creates an un-



usual opportunity to compare their performance to those obtained from the weighted
bootstrap. Our results strongly support the preferred use of the weighted bootstrap in
this case. Although there can be no guarantee that these results necessarily general-
ize to other cases, the strength of the results here and the relative ease of computing
the weighted bootstrap support a recommendation to use Hansen’s (1996) weighted
bootstrap as a default procedure for inference in models with nuisance parameters not
identified under the null.

We investigate precisely the same data generating processes (DGPs) and models
for the uncensored duration models examined by Cho and White (2010), who test for
unobserved heterogeneity using a LR statistic designed to detect discrete mixtures of
exponential or Weibull distributions. In Section 2, we briefly discuss the model and
the two different methods for constructing critical values. We report the results of
Monte Carlo experiments in Section 3, comparing the performances of the asymptotic
and weighted bootstrap critical values. Section 4 contains a summary and concluding

remarks.

2. Testing for Unobserved Heterogeneity

A conditional Weibull probability model for duration data (Y; € Rt) given explanatory

variables (X; € R¥) has typical model element

fly ] X6, 8,7) = 6v9(Xe; B)y" " exp(—dg(Xy; B)y"), (1)

for (6,8,7) € D x Bx T C R* x RY x R*, where g(Xy; -) is four times continuously
differentiable, and ¢ is identified separately from ¢(Xy; -). For example, if ¢(Xy; 5) =
exp(X}3) as in Cox (1972), then § is separately identified. This Weibull model nests the

exponential as a special case when v = 1.



Cho and White (2010) specify a DGP with possible unobserved heterogeneity having

a discrete mixture structure:

fa(y | Xt;ﬂ-*vérv(ssvﬂ*/)/ﬂ = W*f(y | Xt;5I>6*7'7*) + (1 - W*)f(y | Xt;(ssvﬂ*:’y*% (2)

for some unknown (7%, 8%, 85, 8%, 7*) € [0,1]x Dx D x BxI' C [0, 1] x Rt x Rt x R4 x R*.
Heterogeneity is absent if for some 6* € D, 7 = 1 and 67 = 6"; 7* = 0 and 05 =
0%; or 07 = 85 = 0*. That is, only § can be heterogeneous. Cho and White (2010)
reparameterize 0] and J5 as afd* and aj0* respectively, where of, af € A = {a: ad* €

D}. The null of no heterogeneity and the heterogeneous alternative are then
Ho: 7" =1land o] = 1;a] = a5 =1; or 7" = 0 and aj = 1; versus

H,: 7" € (0,1) and of # a3.

Note that any of the conditions in H, yields

fa(y | Xt;ﬂ—*aéfaégwg*a’y*) = f(y | Xt§5*aﬁ*77*)»

implying that heterogeneity is absent, and that the null hypothesis arises in three differ-
ent ways.

The LR statistic for testing unobserved heterogeneity is therefore constructed as

LRn =2 {Zln[fa(y;f ‘ Xt;ﬁna dlna dQna Bmw:yan)] - Zln[f(y;f ‘ Xt; Sna Bm:yn)]} ;

t=1 t=1

where n is the sample size, and (8, 5, ¥n) and (7, &1, Gon, Ban,s Yan) are the maximum-

likelihood estimators (MLEs) under the null and alternative, respectively. That is, the



MLES (35, Bn,4n) and (7, 01, 020, Bans Yan) sOlve

max Y In[f(Y; | X4;6,5,7)], and
t=1

(8,8,7)eDxBxI"

(m,61,02,8,7)€[0,1]x Dx DX BXT'

max Zln[fa(}/t | Xt;ﬂ-761/3n762/5n7677)]7
t=1

respectively, with &y, = Sin / 5n, oy, = Oop / o,

The asymptotic distribution of the LR statistic is non-standard, as there is an uniden-
tified parameter under the null, as well as a boundary parameter. That is, if 7" = 1 and
o =1 then aj is not identified; if af = a3 = 1 then 7* is not identified; and if 7* = 0
and o = 1 then «f is not identified. As Cho and White (2010) show, LR,, converges in

distribution to a function of a Gaussian process under the null. Specifically,

LR, = LR = sup (max[0, G(x)])?, (3)

acA

where G is a standard Gaussian process with mean zero and variance one for every o and
a covariance structure that differs from case to case. Here, o denotes a representative
element of A, and the RHS of (3) is the asymptotic null distribution of the LR test under
7™ = 1 or 7 = 0, in which oy or «; is not identified, respectively. By the symmetry
of mixture models, the LR test obtained under 7* = 1 is numerically identical to that
obtained under 7* = 0. We thus avoid any confusion by representing the asymptotic
null distribution of the LR test by the generic element « of A.

Cho and White’s (2010) theorem 1 derives various covariance structures under ex-
ponential and Weibull distribution assumptions, and their theorem 2 shows that these
asymptotic null distributions can be obtained by simulating specific Gaussian processes.
As is apparent from (3), the asymptotic null distribution of the LR test statistic also

depends on A, so we denote the LR test as LR,,(A) to stress the influence of A on the



associated inferences. Note that the Gaussian process G is a function only of o and not
0; this explains why reparameterizing ¢ and 05 to aj0* and a5d*, respectively, is useful.

An alternative to using the asymptotic critical values is to apply Hansen’s (1996)
weighted bootstrap. For this, we specify a grid A,, C A, and for each « in the grid we

first compute Sy (a) := {D, ()} "2 Wy (av), where

ént<g) = f(th‘Xt; Oégna Bm ﬁ/n)/f(}/;f’Xta 5717 Bm :yn)a and
Unt = v(d,ﬁn/) ln[f(Y;f’Xta 57” Bna fAVn)]

Observe that Sp(e) = {Dn()} 2 W,u(a) is exactly the score function used in the
Lagrange multiplier (LM) statistic testing 7* = 1. That is, W,(a) is the projection
error of V,In[f,(Y; | Xy; 7, a1, as, 8,7)] against Ui, evaluated at the null parameter
estimator. Here, oy canceles out, but as survives. We replace this with « to avoid
confusion, as we explained above. The only difference from the standard score function
is that this is now indexed by a to accommodate the fact that « is not identified under
the hypothesis 7* = 1. We can also have exactly the same representation for 7* = 0 by
the symmetry of the mixture, although this is not necessary for obtaining the asymptotic
null distribution. D, (a) is a consistent estimator for the asymptotic variance of W, ().

Second, we generate Zj;, ~IID N(0,1) (t =1,2,...,nand j =1,2,...,J) to simulate
the distribution of the LR statistic as the empirical distribution of

)2.

aCAm,

1 &g
ERJTL(A) = Sup <maX [O, % ; Snt<a)zjt



Third, we compare LR, to this empirical distribution by computing the proportion
of simulated outcomes exceeding LR,. That is, we compute the empirical level p, =
J1 Z}]:1 IILR,(A) < LR;,(A)], where I[-] is the indicator function.

This procedure is essentially the same as that used by Cho and White (2010) to test
for unobserved heterogeneity with censored duration data, where asymptotic critical
values are not readily available. Cho and White (2010) did not apply the weighted
bootstrap for the uncensored duration case, as asymptotic critical values are available
there.

The Monte Carlo experiments replicate the above procedure N times, generating
ﬁg),i =1,..., N; and we compute the proportion of outcomes whose ]5%) is less than the
specified level (e.g., a = 5%). That is, we compute N=' 32 I[ﬁg) < a|. Under the
null, this converges to the significance level corresponding to the specified nominal level
o, whereas this should converge to unity under the alternative.

The intuition for the success of the weighted bootstrap is straightforward. Note
that Snt(-)th has a zero population mean function on A due to the fact that gnt(-)
is independent of Zj; and that Zj; is a zero-mean Gaussian random variable. This is
true under both H, and H,. Also, LR,(A) is not bounded in probability under the
alternative, so that the chance for LR;,(A) to be greater than LR,(A) grows smaller
as n increases; this chance is estimated by p,. We thus reject the null hypothesis if the
empirical level p,, is smaller than the specified level of significance at. On the other hand,
the asymptotic covariance structure of S’nt(-)th is identical to that of G(-) under the null,
because Sy (-) with the same covariance structure as G(-) is multiplied by an independent
normal variable Zj; having variance equal to one. Thus, if we draw LR, (A) many times
by following the steps given above, its distribution asymptotically converges to that of
LR,(A) under the null. That is, p, can estimate the level of significance consistently.

For additional discussions, see Cho and White (2010, pp. 473-474) and Hansen (1996).



3. Monte Carlo Experiments

For uncensored duration data, we consider the same DGPs as in Cho and White (2010).

For level comparisons, these are:

o Y; ~ IID Exp(1);

o Y, ~ IID Weibull(1, 1);

o Y, | X; ~ IID Exp(exp(Xy));

e Y, | X; ~ IID Weibull(exp(X), 1),

where Exp( - ) and Weibull( -, - ) denote the exponential and Weibull distributions respec-
tively. For the third and fourth DGPs, we let X; ~ IID N(0, 1).

These DGPs are estimated using the following parametric models:

o Y, ~ IID Exp(d);

o Y, ~ IID Weibull(d, 7);

o Y, | X; ~ IID Exp(d exp(X;5));

o Y, | X; ~ IID Weibull(d exp(X:f3), 7).

We consider nine choices for the domain of o, A := {a : ad* € D}: A = [7/9, 2.0],
[7/9, 3.0], [7/9, 4.0], [2/3, 2.0], [2/3, 3.0], [2/3, 4.0], [5/9, 2.0], [5/9, 3.0], and [5/9, 4.0].
As mentioned above, the asymptotic distribution of the LR test depends on the properties
of A. Our experiments let us examine the impact of the different parameter spaces on
the performance of the LR test. Note that the lower bounds of A are now greater than
1/2. Cho and White (2010, p. 461) show that if a < 1/2, the associated Gaussian
process is not defined. This requires defining the lower bound of A be greater than 1/2.
Also, we select three upper bounds for A: 2, 3, and 4. These are selected to see how the
empirical nominal levels behave as the parameter space A gets larger. These parameter

spaces also are the same as in Cho and White (2010).
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For power comparisons, we consider the following DGPs:

o Vi | (6, Xy) ~ 1ID Exp(d; exp(Xy));
o Y, | (6, X;) ~ IID Weibull(d; exp(Xy), 1),

where X; ~ IID N (0, 1) as before, and 4, is a random variable generated by the following

various distributions:

e Discrete mixture: ¢, ~ IID DM(0.7370, 1.9296; 0.5);

e Gamma mixture: &; ~ IID Gamma(5,5);

e Log-normal mixture: J; ~ IID Log-normal(—In(1.2)/2,1n(1.2));
e Uniform mixture I: §; ~ IID Uniform[0.30053, 2.3661];

e Uniform mixture II: §; ~ IID Uniform[1,5/3],

where DM(a, b; p) denotes a discrete mixture such that P[§; = a] = p and P[6; = b] =
1—np.

Theorem 2 in Cho and White (2010) justifies obtaining asymptotic critical values
by simulating Gaussian processes, and their Monte Carlo experiments show that the
asymptotic critical values give correct levels asymptotically and yield tests consistent
against the alternative DGPs considered. The empirical rejection rates for critical values
corresponding to several nominal levels are provided in Tables 1, 2, 3, and 4 under the
null and alternative hypotheses. The results for the 5% nominal level in Tables 1 and
2 are exactly the same as in Table 2 of Cho and White (2010); as our experiments are
identical to their experiments, we have not repeated those. Instead, we borrow their
results. Here, however, we extend the comparisons to other levels (1% and 10%) to
provide a more extensive investigation. For these additional levels, we also find that the
empirical rejection rates approach the nominal levels as the sample size n increases. The

critical values are conservative, as the approach is from below. We also see that, just



as Cho and White (2010) find for the nominal 5% level, as inf A gets close to 1/2; the
level distortion increases. This is mainly because the desired Gaussian process G is not
defined if @ < 1/2, so that we cannot apply the functional central limit theorem for these
parameter values. This also implies that if the associated inf A is slightly greater than
1/2, a greater number of observations is required to obtain satisfactory results. This
explains the greater level distortions when inf A is close to 1/2.

Tables 3 and 4 present empirical rejection rates for the LR test under the alternative
using the nominal 5% critical values. These rejection rates are not adjusted for level
distortion,! so our Tables 3 and 4 differ from tables 3 and 4 of Cho and White (2010).
As the conservative nature of the tests should lead us to expect, we see that rejection
rates under the alternative are smaller than those for the level-adjusted experiments in
Cho and White (2010). As the other findings from these experiments are identical to
those in Cho and White (2010), we do not restate them here.

Next, we conduct Monte Carlo experiments using the weighted bootstrap. The simu-
lation results are presented in Tables 5, 6, 7, and 8. The experimental design parameters
are identical to those used to analyze censored data in Cho and White (2010). Specif-
ically, we let J = 500 and N = 5,000 for Tables 5 and 6; and we take J = 500 and
N = 2,000 for Tables 7 and 8.

Tables 5 and 6 correspond to Tables 1 and 2. For all nominal levels, the empirical
rejection rates imply conservative inference, as they approach the nominal levels from
below as n increases, similar to the previous case. Nevertheless, we see substantive
differences from Tables 1 and 2. First, the weighted bootstrap yields empirical rejection
rates much closer to the nominal levels than we obtain using the asymptotic critical

values. Second, we see much less level distortion as inf A approaches 1/2. Third, although

!The corresponding rejection rates in Cho and White (2010) are obtained by adjusting levels to
remove level distortions. The main focus in Cho and White (2010) is to compare the LR test to the
information matrix and Lagrange multiplier tests, which have significant level distortions for small
sample sizes. This requires use of level-adjusted critical values for informative comparisons.
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the weighted bootstrap works well for mixtures of Weibulls, it works even better for
mixtures of exponentials.

Tables 7 and 8 present power performances corresponding to Tables 3 and 4 respec-
tively, again testing at the nominal 5% level. As the sample size increases, the empirical
rejection rates approach 100% for every specification, just as in Tables 3 and 4. Never-
theless, we also see differences between the results of Tables 7 and 8 and those of Tables
3 and 4. First, for the mixtures of exponentials, the weighted bootstrap yields better
power than using the asymptotic critical values. For small samples (n = 50 and 100),
the weighted bootstrap always dominates use of the asymptotic critical values. Nev-
ertheless, results for the asymptotic critical values are roughly similar to those for the
weighted bootstrap for larger n. Second, for the mixtures of Weibull distributions, the
power using the weighted bootstrap is generally better than for the asymptotic criti-
cal values, although their behavior is critically dependent upon the parameter space A.
When A = [2/3,3] or [2/3,4], the asymptotic critical values outperform the weighted
bootstrap. On the other hand, when inf A is close to 0.5 (i.e., when larger A’s are
considered), the weighted bootstrap performs better. We thus conclude that using the
weighted bootstrap is preferable when a relatively larger parameter space A is used. This
has practical importance, because researchers are typically unsure about the alternative
and thus may tend to choose a larger parameter space to provide greater scope for the
alternative.

Finally, Table 9 reports the additional CPU time required to compute weighted boot-
strap p-values. These are average CPU times to compute one p-value, obtained by re-
peating the experiments 10 times. The environments for computing these are identical
to the null DGPs reported in Tables 5 and 6. They are computed using GAUSS installed
on a 2.39 GHz personal computer. As these are computed using only 10 replications,

the results may differ from other simulations conducted in different environments. In
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particular, when A is large and the sample size is large, we observe large variations
in the CPU times. Nevertheless, Table 9 provides enough information to draw some
plausible general conclusions. First, the CPU time for the weighted bootstrap increases
substantially as the sample size and/or A get larger. Also, increasing the number of ex-
planatory variables X; increases the CPU time. Second, Weibull models take more CPU
time than exponential models. This is because the Weibull model has more parameters
and thus requires more time to compute the associated scores. Third, and significantly,
the weighted bootstrap does not demand a substantial amount of CPU time. Given
the generally superior performance of the weighted bootstrap as to level, and the re-
sulting improved power, this supports a recommendation that Hansen’s (1996) weighted
bootstrap be used as a default procedure for testing procedures of the sort considered
here.

This conclusion is promising and also suggests a further research topic. Given that
the weighted bootstrap can be understood as a generalization of Efron’s (1982) bootstrap
and that this bootstrap outperforms the asymptotic normal approximation as shown by
Bickel and Freedman (1980) and Singh (1981), the simulation results seen here sug-
gest that it may be possible to give conditions under which a similar result holds when
bootstrapping random functions instead of random variables. This may require general-
izing the regularity conditions of Mason and Newton (1992) who analyze the weighted

bootstrap when applied to random numbers. We leave this as a topic for future research.

4. Concluding Remarks

Our goal here is to examine the performance of the LR test for a specific model with
nuisance parameters not identified under the null, comparing the use of asymptotic

critical values to those obtained using Hansen’s (1996) weighted bootstrap. Specifically,
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we undertake extensive, large-scale simulations to investigate the performance of a test
for unobserved heterogeneity in duration models proposed by Cho and White (2010).
The availability of Cho and White’s (2010) asymptotic critical values for this test makes
it possible to compare their performance to critical values obtained from the weighted
bootstrap. Our results strongly support the preferred use of the weighted bootstrap
in this case. As we noted at the outset, this provides no guarantee that these results
necessarily generalize to other cases. Nevertheless, the strength of the results here and
the relative ease of computing the weighted bootstrap support a recommendation to
use Hansen’s (1996) weighted bootstrap as a default procedure for inference in models
with nuisance parameters not identified under the null. Our results also motivate future

research to examine whether this specific performance holds more generally.
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Table 1. Levels of the LR Test using Asymptotic Critical Values (in Percent)

Number of Repetitions: 10,000

DGP: Y, ~ 11D Exp(1)

Model: Y; ~ mExp(d1) + (1 — m)Exp(ds)

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 006 010 036 069 072 067

LR.([7/9, 2]) 5% 1.07 174 335 355 400  3.88
10% 333 4.8 694 753 861  8.23

1% 019 029 055 076 057  0.79

LR,([7/9, 3]) 5% 1.79 259 346 392 376 411
10% 396 581 730 831 765 842

1% 021 043 054 065 086  0.82

LR,([7/9, 4]) 5% 1.77 232 343 362 378 417
10% 425 573 739 802 833 852

1% 014 025 065 042 072 076

LR.([2/3, 2]) 5% 145 217 328 358 373 375
10% 362 506 667 773 774 781

1% 031 034 056 060 071 073

LR,([2/3, 3]) 5% 1.97 226 346 373 411  4.00
10% 472 543 716 726 822 835

1% 034 036 069 065 081  0.80

LR,([2/3, 4]) 5% 214 263 344 348 384 425
10% 485  6.09 725 759 829 871

1% 021 025 049 049 078 067

LR.([5/9, 2]) 5% 130  1.89 279 274 348  3.73
10% 317 429 594 617 727 719

1% 024 032 060 050 069 056

LR,([5/9, 3]) 5% 1.97 238 297 292 298  3.28
10% 411 471 603 644 675 6.7

1% 042 049 055 053 065  0.66

LR,([5/9, 4]) 5% 212 221 280 298 358  3.36
10% 447 525 619 612 691 687

15
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Continued from previous page.

DGP: Y, ~ 1ID Weibull(1, 1)

Model: Y; ~ m#Weibull(dy,7) + (1 — 7)Weibull(ds, )

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.00 000 009 018 045  0.79

LR,([7/9, 2)) 5% 0.00 0.13 143 248 354 421
10% 025 076 491 655  7.56  8.64

1% 0.00 000 004 026 067  0.82

LR,([7/9, 3)) 5% 0.0l 017 135 291 402 441
10% 030 073 503 707 826 9.0l

1% 000 001l 003 039 073 071

LR,([7/9, 4]) 5% 010  0.17 157 339 396  4.02
10% 045 1.02 539 762 825 846

1% 000 0.10 031 057 072  0.85

LR,(]2/3, 2)) 5% 0.13 029 292 346 374  4.54
10% 090 214 648 710 820 851

1% 001 002 049 078 080  0.82

LR,([2/3, 3]) 5% 026 053 352 392 391 410
10% 123 291 777 817 787 854

1% 000 001 062 070 079 086

LR,(]2/3, 4)) 5% 029 070 343 385 415  4.13
10% 131 279 754 792 812  8.13

1% 001 001 051 057 052 067

LR,(]5/9, 2)) 5% 043 117 291 326 318 3.3l
10% 224 347 638 662 683  7.22

1% 0.00 005 073 067 065 063

LR,(]5/9, 3)) 5% 0.50 1.36 344 341 389  3.82
10% 205 434 656 703 750 754

1% 005 008 050 047 085  0.90

LR,([5/9, 4]) 5% 084 1.72 348 296 412  4.04
10% 281 491 714 672 770 821

Notes: The entries are the empirical rejection rates for the LR statistics under

the null hypothesis. For the LR statistics, nine parameter spaces are examined
for oz [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces, and the

entries corresponding to 5% are identical to those in Cho and White (2010).
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Table 2. Levels of the Test using Asymptotic Critical Values (in Percent)

Number of Repetitions: 10,000

DGP: Y; | X; ~ IID Exp(exp(X;))

Model: Y; | X; ~ mExp(d; exp(X;3)) + (1 — m)Exp(dz exp(X¢3))

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 002 015 043 045 069  0.64

LR,([7/9, 2)) 5% 068 1.62 293 332 383 435
10% 244 415 661 708 809 873

1% 012 021 043 063 066  0.70

LR,([7/9, 3]) 5% 127 215 310 361 385 417
10% 324 470 683  7.33 793 9.0l

1% 016 025 050 065 083  0.90

LR,([7/9, 4]) 5% 135 171 297 344 389 455
10% 355 442 7.06 @ 7.71 782 872

1% 006 024 043 058 077  0.75

LR.([2/3, 2]) 5% 114  1.84 283 324 369  3.93
10% 286 447 616 643 757  8.03

1% 020 041 065 078 071 0.73

LR.([2/3, 3]) 5% 153 233 333 353 364 374
10% 359 517 667  7.51 750 7.96

1% 024 037 053 075 073  0.69

LR,.([2/3, 4]) 5% 162 226 335 341 371 389
10% 381 492 693 745 735  8.04

1% 014 023 047 045 056  0.59

LR,([5/9, 2)) 5% 113 166 265 289 319 353
10% 282 373 558 5890 666  7.38

1% 018 036 041 057 063  0.74

LR.([5/9, 3]) 5% 145 192 231 302 331  3.32
10% 333 422 533 6256 662  6.85

1% 017 037 043 045 058  0.59

LR, ([5/9, 4]) 5% 144 199 231 320 331 348
10% 336 439 550 666 672  7.19
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DGP: Y; | X; ~ IID Weibull(exp(X;), 1)

Model: Y; | X; ~ mWeibull(é; exp(X;5), ) + (1 — m)Weibull(d3 exp(X;3), )

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 000 0.00 005 017 054  0.74

LR.([7/9, 2]) 5% 004 003 125 260 379  3.80
10% 027 064 462 663 821 864

1% 000 000 005 017 054  0.74

LR, ([7/9, 3]) 5% 003 012 121  3.03 374 441
10% 032 097 465 734 824 893

1% 000 002 003 032 069 092

LR, ([7/9, 4]) 5% 007 017 168 296 406  4.34
10% 047 083 518 715 821 864

1% 000 0.00 026 054 083  0.69

LR.([2/3, 2]) 5% 015 022 272 322 413  4.05
10% 084 216 633 716 813 814

1% 000 0.00 048 069 096 087

LR.([2/3, 3]) 5% 023 046 286  3.88 420  4.29
10% 129 241 679 776 835 839

1% 000 003 036 067 089  0.68

LR.([2/3, 4]) 5% 033 076 325 370 418 425
10% 147 331 731 784 771 844

1% 001 005 051 056 057  0.68

LR.([5/9, 2]) 5% 036 110 276 321 353  3.39
10% 1.75 394 642 616 720  7.28

1% 003 008 056 064 065  0.69

LR,([5/9, 3]) 5% 056 151 311 355 338  3.82
10% 258 461 697 729 760  7.69

1% 003 011 060 064 086  0.67

LR,.([5/9, 4]) 5% 086 157 344 350 378  3.68
10% 303 488 731 720 791 761

Notes: The entries are the empirical rejection rates for the LR statistics under

the null hypothesis. For the LR statistics, nine parameter spaces are examined
for a2 [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces, and the

entries corresponding to 5% are identical to those in Cho and White (2010).
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Table 3. Power of the LR Test using Asymptotic Critical Values (Nominal Level: 5%)
Number of Repetitions: 2,000
Model: Y; | X; ~ Exp(d exp(X;3))

Statistics DGP \n 20 100 500 1,000 2,000 5,000

Discrete Mixture 10.95 32.85 96.20 100.0 100.0 100.0

Gamma Mixture 4.20 14.05 81.80 98.30 100.0 100.0

LR,([7/9, 2]) Log-normal Mixture 3.05 10.10 76.60 97.95 100.0 100.0
Uniform Mixture I ~ 21.15 57.25 99.95 100.0 100.0 100.0

Uniform Mixture II  1.55 2.50 8.95 12.60 19.20 39.50

Discrete Mixture 15.40 34.95 96.05 100.0 100.0 100.0

Gamma Mixture 6.90 15.90 &83.55 98.55 100.0 100.0

LR,([7/9, 3]) Log-normal Mixture 4.30 12.95 76.65 98.00 100.0 100.0
Uniform Mixture I ~ 25.35 58.30 99.95 100.0 100.0 100.0

Uniform Mixture II ~ 2.25 340 9.35 1240 19.25 38.30

Discrete Mixture 1580 34.80 95.95 100.0 100.0 100.0

Gamma Mixture 7.30 16.50 8&83.10 98.45 100.0 100.0

LR,([7/9, 4]) Log-normal Mixture 4.75 13.20 7545 97.85 100.0 100.0
Uniform Mixture I  25.50 58.00 99.90 100.0 100.0 100.0

Uniform Mixture II  2.45 3.50 8.95 12.00 18.55 36.65

Discrete Mixture 14.25 34.50 96.40 100.0 100.0 100.0

Gamma Mixture 11.75 31.30 97.50 100.0 100.0 100.0

LR,([2/3, 2]) Log-normal Mixture 7.40 2220 89.65 100.0 100.0 100.0
Uniform Mixture I  27.30 63.50 99.95 99.50 100.0 100.0

Uniform Mixture II  1.70 2.35 7.75 11.90 20.95 38.00

Discrete Mixture 16.60 36.40 96.65 100.0 100.0 100.0

Gamma Mixture 12.65 31.90 97.40 100.0 100.0 100.0

LR,([2/3, 3]) Log-normal Mixture 9.20 22.15 88.85 100.0 100.0 100.0
Uniform Mixture I ~ 29.40 63.90 99.95 99.45 100.0 100.0

Uniform Mixture II ~ 2.30 2.27 820 1245 21.00 38.50

Discrete Mixture 17.00 36.40 96.50 100.0 100.0 100.0

Gamma Mixture 1295 31.35 97.40 100.0 100.0 100.0

LR,([2/3, 4]) Log-normal Mixture 9.35 21.75 88.65 100.0 100.0 100.0
Uniform Mixture I 2890 63.65 99.95 99.45 100.0 100.0

Uniform Mixture II. 245 280 7.90 1235 20.85 38.15

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 14.75 32.95 95.70 99.95 100.0 100.0

Gamma Mixture 15.75 39.55 97.65 99.95 100.0 100.0

LR,([5/9, 2]) Log-normal Mixture 10.95 24.75 90.10 99.15 100.0 100.0
Uniform Mixture I ~ 30.05 61.85 99.65 100.0 100.0 100.0

Uniform Mixture II. 2.10 2.05 6.55 10.25 16.25 36.55

Discrete Mixture 16.10 34.80 95.75 99.95 100.0 100.0

Gamma Mixture 16.30 38.35 97.15 99.95 100.0 100.0

LR,([5/9, 3]) Log-normal Mixture 11.40 24.55 89.30 99.05 100.0 100.0
Uniform Mixture I ~ 31.00 61.80 99.75 100.0 100.0 100.0

Uniform Mixture II ~ 2.60 2.25  6.50 10.50 16.15 36.60

Discrete Mixture 16.45 34.60 95.70 99.95 100.0 100.0

Gamma Mixture 16.55 38.05 96.90 99.90 100.0 100.0

LR,([5/9, 4]) Log-normal Mixture 11.70 24.65 88.35 98.95 100.0 100.0
Uniform Mixture I ~ 31.70 61.20 99.70 100.0 100.0 100.0

Uniform Mixture II ~ 2.60 2.55  6.50 10.05 16.10 34.50

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for o [7/9, 2|, [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces. These entries do not adjust for level distortions, unlike Table

3 of Cho and White (2010).
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Table 4. Power of the LR Test using Asymptotic Critical Values (Nominal Level: 5%)
Number of Repetitions: 2,000
Model: Y; | X; ~ Weibull(d exp(X;/), )

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 0.20 1.70 4535 7795 97.20 100.0

Gamma Mixture 0.00 0.05 6.85 4245 94.85 100.0

LR,([7/9, 2]) Log-normal Mixture 0.05 0.05 3.30 23.20 78.85 99.95
Uniform Mixture I ~ 0.50 5.25 85.50 99.50 100.0 100.0

Uniform Mixture II 0.30 0.65 2.05 1.80 3.10 6.99

Discrete Mixture 0.40 2.10 44.05 76.20 96.60 100.0

Gamma Mixture 0.00 0.00 3.20 31.10 91.70 99.90

LR,([7/9, 3]) Log-normal Mixture 0.05 0.00 1.60 15.60 71.05 99.95
Uniform Mixture I ~ 0.95 4.20 81.30 99.35 100.0 100.0

Uniform Mixture II  0.20 0.45 1.40 2.10 2.70 5.35

Discrete Mixture 0.55 235 40.90 73.70 96.15 100.0

Gamma Mixture 0.00 0.00 2.25 24.85 88.95 99.90

LR,([7/9, 4]) Log-normal Mixture 0.10 0.00 1.05 11.65 65.55 99.90
Uniform Mixture I 0.70 3.65 78.15 99.10 100.0 100.0

Uniform Mixture II  0.10 0.15 1.30 1.90 2.55 5.45

Discrete Mixture 0.80 4.80 46.10 77.65 96.95 100.0

Gamma Mixture 0.10 1.10 46.05 89.90 99.70 100.0

LR,([2/3, 2]) Log-normal Mixture 0.05 0.75 27.65 66.80 94.00 100.0
Uniform Mixture I 2.45 13.10 90.75 99.50 100.0 100.0

Uniform Mixture II 040 1.65 5.05 6.70 10.55 18.10

Discrete Mixture 1.60 5.60 47.05 77.00 96.45 100.0

Gamma Mixture 0.05 1.05 38.80 &7.10 99.60 100.0

LR,([2/3, 3]) Log-normal Mixture 0.25 0.55 22.35 62.05 93.05 100.0
Uniform Mixture I 2.75 1240 8R8.25 99.35 100.0 100.0

Uniform Mixture I 1.05 290 5.65 6.95 9.70 17.70

Discrete Mixture 2.00 5.55 44.20 75.10 95.95 100.0

Gamma Mixture 0.10 0.70 35.00 8&85.00 99.55 100.0

LR,([2/3, 4]) Log-normal Mixture 0.30 0.65 19.45 57.80 92.15 100.0
Uniform Mixture I  3.00 10.75 86.85 99.05 100.0 100.0

Uniform Mixture II. 1.20 3.25 570 740 890 16.35

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 1.55 840 43.35 74.90 95.85 100.0

Gamma Mixture 0.75 5.00 64.45 91.90 99.50 99.95

LR,([5/9, 2]) Log-normal Mixture 0.40 2.70 40.75 69.85 93.95 100.0
Uniform Mixture I 4.30 22.60 90.20 99.25 100.0 100.0

Uniform Mixture I  0.70 240 4.35 6.40 9.05 15.10

Discrete Mixture 3.10 10.10 43.65 74.70 94.95 100.0

Gamma Mixture 0.65 3.60 56.50 82.75 94.00 98.15

LR,([5/9, 3]) Log-normal Mixture 0.45 2.60 35.50 61.40 88.45 99.30
Uniform Mixture I  2.85 14.40 88.70 99.15 100.0 100.0

Uniform Mixture II  1.15 2.85 4.60 565 7.80 13.40

Discrete Mixture 3.35 10.30 41.75 73.50 94.60 100.0

Gamma Mixture 0.75 3.30 55.00 82.10 93.95 98.15

LR,([5/9, 4]) Log-normal Mixture 0.55 2.85 34.00 60.15 87.80 99.30
Uniform Mixture I  4.25 14.65 87.90 98.80 100.0 100.0

Uniform Mixture II  1.30 2.95 3.85 4.95 7.65 12.05

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for o [7/9, 2|, [7/9, 3|, [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces. These entries do not adjust for level distortions, unlike Table

4 of Cho and White (2010).
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Table 5. Bootstrapped Levels of the LR Test (in Percent)

Number of Repetitions: 5,000

DGP: Y, ~ 11D Exp(1)

Model: Y; ~ mExp(d1) + (1 — m)Exp(ds)

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 010 0.6 048 060 074 124

LR,([7/9, 2]) 5% 152 210 352 348 426  4.84
10% 422 58 786 816 840  9.28

1% 026 032 060 070 096  0.68

LR,([7/9, 3]) 5% 214 260 358  3.96 = 458  4.42
10% 524 628 782 834 876  9.10

1% 036 052 090 072 076  0.80

LR,([7/9, 4]) 5% 288  3.08 424 396 390  4.46
10% 566 652  9.00 814 872 850

1% 024 028 062 074 064  1.04

LR.([2/3, 2]) 5% 1.90 276  3.68 400  3.76  4.30
10% 524 614 760 802 812  9.02

1% 034 042 044 076 076 088

LR,([2/3, 3]) 5% 270 2.8 370 398 448  4.00
10% 644 652 834  7.90 832 842

1% 020 066 056 094 106  0.84

LR,([2/3, 4]) 5% 250 3.64 362 510 486  3.74
10% 590 776 792 930 938 838

1% 054 044 072 078 100  0.86

LR,([5/9, 2]) 5% 276 288 338 376 442 452
10% 582  7.02 762 846  9.02  9.12

1% 046 056 080 066 088  0.88

LR,([5/9, 3]) 5% 278 298 406 434 418  3.98
10% 658 670 800 890 848 824

1% 038 066 090 062 078  1.02

LR, ([5/9, 4]) 5% 278 342 444 350 414 462
10% 626 726 860 756 878  8.94
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DGP: Y, ~ 1ID Weibull(1, 1)

Model: Y; ~ m#Weibull(dy,7) + (1 — 7)Weibull(ds, )

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 0.00 0.00 004 024 038 086

LR,([7/9, 2]) 5% 000 010 150 270 354 404
10% 048 076 506  6.98 800  8.96

1% 000 000 002 028 062 076

LR,([7/9, 3]) 5% 002 022 166 272 386  3.94
10% 038 1.02 498 734 782 864

1% 0.00 000 006 030 060 082

LR,([7/9, 4]) 5% 008 022 154 326 410  4.16
10% 056 1.04 566  7.32 894 830

1% 000 002 036 052 084  1.02

LR,(]2/3, 2)) 5% 022 088 340 346 416  4.34
10% 1.74 382 830 832 842 844

1% 000 004 040 08 076  1.02

LR,([2/3, 3]) 5% 026 086 362 416 456 444
10% 126 380 812 860 874 898

1% 0.00 006 072 08 086 094

LR,(]2/3, 4)) 5% 026 070 412 408 392 444
10% 142 340 832 816 820  9.12

1% 004 018 050 08 076  0.88

LR,([5/9, 2)) 5% 1.00 222 3.82 448 450  4.26
10% 398  6.06 846 912 864 846

1% 004 012 084 076 068 086

LR,([5/9, 3]) 5% 088 246 442 458 430  4.42
10% 356 630 826 894 898 852

1% 002 014 070 082 1.04 106

LR,([5/9, 4]) 5% 1.00 252 416 446 470 456
10% 316 636 844 906 916  9.60

Notes: The entries are the empirical rejection rates for the LR statistics under

the null hypothesis. For the LR statistics, nine parameter spaces are examined
for oz [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces.
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Table 6. Bootstrapped Levels of the Test (in Percent)

Number of Repetitions: 5,000

DGP: Y; | X; ~ IID Exp(exp(X;))

Model: Y; | X; ~ mExp(d; exp(X;3)) + (1 — m)Exp(dz exp(X¢3))

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 012 026 062 052 078  0.88

LR,([7/9, 2)) 5% 072 1.88 310 294 412 458
10% 262 48 694 712 840 874

1% 012 036 066 074 068  0.92

LR,([7/9, 3]) 5% 1.64 210  3.94 400 420  4.62
10% 400 466 746 840 888  8.28

1% 032 036 092 066 072  0.70

LR,([7/9, 4]) 5% 1.96 214 392 374 364 372
10% 476 528 790 816 784  7.80

1% 018 040 052 072 042  0.64

LR,([2/3, 2)) 5% 1.72 280 332 388 408 370
10% 400 566 758 774 854 858

1% 032 038 056 076 070  0.86

LR.([2/3, 3]) 5% 1.86 266 4.08 414 376 484
10% 426 630 814 840 752 882

1% 022 028 062 060 088  1.02

LR,([2/3, 4]) 5% 206 256 364  3.86 384 456
10% 452 574 758 854 812  8.62

1% 014 040 062 052 086  1.14

LR,([5/9, 2)) 5% 1.90 252 406 360 418 460
10% 474 552 792 7.8 886  9.02

1% 038 032 078 082 104 082

LR.([5/9, 3]) 5% 204 266 378 380 434 408
10% 512 552 774 832 864 822

1% 034 052 074 072 098 096

LR, ([5/9, 4]) 5% 242 312 396 342 470 412
10% 528 642 802 7.8 874  8.02
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DGP: Y, | X; ~ 1ID Weibull(exp(X,), 1)

Model: Y; | X; ~ mWeibull(é; exp(X;5), ) + (1 — m)Weibull(d3 exp(X:3), )

Statistics Level \n 50 100 500 1,000 2,000 5,000
1% 000 002 006 012 056 0.2

LR.([7/9, 2]) 5% 004 006 172 266 346  4.12
10% 048 086 562 712 758 870

1% 0.00 000 004 026 056  0.76

LR,([7/9, 3]) 5% 000 010 140 296 356  4.42
10% 052 082 556  7.66 788 870

1% 000 000 012 048 078 086

LR,.([7/9, 4]) 5% 006 016 174  3.82 438  4.22
10% 044 094 496 758 864  8.68

1% 000 0.00 036 046 068  0.64

LR.([2/3, 2]) 5% 026 070 280 348 394  4.64
10% 162 342 712 752 820 876

1% 0.02 000 044 084  1.00 0098

LR,(12/3, 3)) 5% 022 090 360 412 458  4.08
10% 160 326 846 854 914 856

1% 000 0.00 066 076 092  0.82

LR.([2/3, 4]) 5% 032 1.06 414 436 446  4.16
10% 164 348 862 856 940  8.62

1% 000 006 064 064 078 078

LR.([5/9, 2]) 5% 064 212 354 422 384  4.10
10% 366 638 824 926 828  8.46

1% 002 008 078 066 090 078

LR,([5/9, 3]) 5% 110 222 422 448 478 446
10% 380 704 870 881 910  9.04

1% 010 018 064 096 094 088

LR..([5/9, 4]) 5% 086 250 390 472 422 434
10% 332 642 836 890 888  9.16

Notes: The entries are the empirical rejection rates for the LR statistics under

the null hypothesis. For the LR statistics, nine parameter spaces are examined
for a2 [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4], respectively. The LR statistics are indexed by these spaces.
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Table 7. Bootstrapped Power of the LR Test (Nominal Level: 5%)
Number of Repetitions: 2,000
Model: Y; | X; ~ Exp(d exp(X;3))

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 14.90 36.50 97.55 99.95 100.0 100.0

Gamma Mixture 5.10 15.65 &81.20 98.60 100.0 100.0

LR,([7/9, 2]) Log-normal Mixture 4.20 10.70 76.20 97.75 100.0 100.0
Uniform Mixture I ~ 24.25 60.20 99.90 100.0 100.0 100.0

Uniform Mixture II.  2.05 3.65 9.35 13.75 21.60 39.50

Discrete Mixture 16.60 38.90 96.45 99.85 100.0 100.0

Gamma Mixture 8.50 18.35 82.45 98.65 100.0 100.0

LR,([7/9, 3]) Log-normal Mixture 5.95 14.20 76.60 98.10 100.0 100.0
Uniform Mixture I ~ 28.00 60.65 99.90 100.0 100.0 100.0

Uniform Mixture II  2.40 4.25 9.30 13.25 20.20 38.50

Discrete Mixture 18.95 38.00 96.85 99.90 100.0 100.0

Gamma Mixture 740 17.70 84.15 98.90 100.0 100.0

LR,([7/9, 4]) Log-normal Mixture 7.70 13.50 76.90 98.30 100.0 100.0
Uniform Mixture I  29.55 61.15 99.90 100.0 100.0 100.0

Uniform Mixture II  2.60 3.75 9.10 14.05 20.75 36.65

Discrete Mixture 18.80 38.65 96.50 99.85 100.0 100.0

Gamma Mixture 15.00 35.80 98.20 100.0 100.0 100.0

LR,([2/3, 2]) Log-normal Mixture 9.60 25.15 90.35 99.65 100.0 100.0
Uniform Mixture I  34.35 64.00 99.95 100.0 100.0 100.0

Uniform Mixture I  2.85 3.60 830 13.25 19.75 39.70

Discrete Mixture 20.55 40.85 97.30 99.95 100.0 100.0

Gamma Mixture 15.35 33.70 97.80 100.0 100.0 100.0

LR,([2/3, 3]) Log-normal Mixture 11.25 26.25 89.00 99.25 100.0 100.0
Uniform Mixture I ~ 34.15 65.75 99.95 100.0 100.0 100.0

Uniform Mixture I  3.20 3.90 840 13.10 20.70 38.95

Discrete Mixture 20.65 41.40 97.00 100.0 100.0 100.0

Gamma Mixture 15.05 34.05 97.70 100.0 100.0 100.0

LR,([2/3, 4]) Log-normal Mixture 12.15 22.95 8855 99.40 100.0 100.0
Uniform Mixture I 34.10 66.15 99.90 100.0 100.0 100.0

Uniform Mixture II  3.10 440 9.35 14.25 19.85 39.30
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 20.30 38.60 97.30 99.95 100.0 100.0

Gamma Mixture 22.05 45.20 98.15 100.0 100.0 100.0

LR,([5/9, 2]) Log-normal Mixture 15.00 31.50 89.70 99.60 100.0 100.0
Uniform Mixture I ~ 35.30 66.65 99.95 100.0 100.0 100.0

Uniform Mixture II ~ 2.65 3.85 10.00 14.65 20.55 37.95

Discrete Mixture 21.55 4220 96.60 99.90 100.0 100.0

Gamma Mixture 19.45 43.60 98.30 100.0 100.0 100.0

LR,([5/9, 3]) Log-normal Mixture 15.60 31.20 90.00 99.35 100.0 100.0
Uniform Mixture I ~ 37.35 67.95 100.0 100.0 100.0 100.0

Uniform Mixture I  3.80 3.75 9.30 13.10 19.90 38.15

Discrete Mixture 20.20 40.75 96.75 99.90 100.0 100.0

Gamma Mixture 21.35 43.30 97.95 100.0 100.0 100.0

LR,([5/9, 4]) Log-normal Mixture 14.95 30.65 89.55 99.55 100.0 100.0
Uniform Mixture I ~ 37.30 64.55 99.90 100.0 100.0 100.0

Uniform Mixture II ~ 3.40 4.85 9.80 12.95 21.15 36.25

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for a: [7/9, 2], [7/9, 3|, [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces.
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Table 8. Bootstrapped Power of the LR Tests (Nominal Level: 5%)
Number of Repetitions: 2,000
Model: Y; | X; ~ Weibull(d exp(X;/), )

Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 0.65 230 46.25 7895 97.10 100.0

Gamma Mixture 0.05 0.20 5.10 38.80 93.70 100.0

LR,([7/9, 2]) Log-normal Mixture 0.00 0.10 3.85 25.60 78.15 99.95
Uniform Mixture I ~ 0.75 4.95 86.65 99.70 100.0 100.0

Uniform Mixture I 0.20 1.05 4.90 6.85 9.80 16.75

Discrete Mixture 0.65 250 4430 76.30 97.15 100.0

Gamma Mixture 0.00 0.00 275 27.65 8840 100.0

LR,([7/9, 3]) Log-normal Mixture 0.05 0.05 1.90 16.10 67.95 99.85
Uniform Mixture I ~ 0.30 4.45 80.85 98.95 100.0 100.0

Uniform Mixture II  0.50  1.65 5.30 7.55 9.85 15.75

Discrete Mixture 0.85 255 41.65 73.20 96.50 100.0

Gamma Mixture 0.05 0.20 2.30  19.05 82.80 99.45

LR,([7/9, 4]) Log-normal Mixture 0.05 0.05 1.95 10.15 61.80 99.65
Uniform Mixture I  0.50 3.35 77.75 99.10 100.0 100.0

Uniform Mixture I  0.55  1.60 4.70 7.10 9.15 16.20

Discrete Mixture 1.55 6.55 50.10 78.60 97.50 100.0

Gamma Mixture 0.30 1.55 48.55 90.45 99.65 100.0

LR,([2/3, 2]) Log-normal Mixture 0.45 0.90 29.90 68.70 94.85 99.95
Uniform Mixture I ~ 3.50 14.60 90.40 99.60 100.0 100.0

Uniform Mixture II  0.65  2.20 5.40 7.60 10.55 18.95

Discrete Mixture 1.65 6.85 50.85 77.75 95.75 100.0

Gamma Mixture 0.25 0.80 37.95 &87.40 99.70 100.0

LR,([2/3, 3]) Log-normal Mixture 0.10 0.65 21.85 62.25 92.90 99.95
Uniform Mixture I ~ 2.65 11.90 88.20 99.20 100.0 100.0

Uniform Mixture II ~ 0.75  2.95 5.80 7.55 9.95 16.90

Discrete Mixture 1.50 7.10 4765 74.00 95.00 100.0

Gamma Mixture 0.30 0.90 29.70 80.25 98.00 100.0

LR,(]2/3, 4]) Log-normal Mixture 0.20 0.55 20.00 53.40 91.05 100.0
Uniform Mixture I  2.70 10.30 85.90 99.30 100.0 100.0

Uniform Mixture II  1.40 2.65 6.60 6.80 8.60 16.15

Continued on next page.
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Statistics DGP \n 50 100 500 1,000 2,000 5,000
Discrete Mixture 420 11.85 4990 &80.10 96.75 100.0

Gamma Mixture 1.90 7.55 7220 94.00 99.85 100.0

LR,([5/9, 2]) Log-normal Mixture 2.30 6.20 45.20 74.40 95.40 99.90
Uniform Mixture I 895 25.60 89.90 99.30 100.0 100.0

Uniform Mixture II  1.65  2.75 5.10 830 10.60 18.90

Discrete Mixture 4.85 11.65 4830 76.55 96.45 100.0

Gamma Mixture 1.30  4.75 65.05 92.05 99.85 100.0

LR,([5/9, 3]) Log-normal Mixture 0.85 3.75 39.80 70.45 94.40 100.0
Uniform Mixture I ~ 5.95 22.05 87.65 99.30 100.0 100.0

Uniform Mixture I  1.50  3.70 6.45 7.55  10.90 17.45

Discrete Mixture 4.50 10.75 46.50 74.60 95.45 99.95

Gamma Mixture 1.55 3.70 59.10 88.90 98.90 100.0

LR,([5/9, 4]) Log-normal Mixture 1.15 225 34.95 67.70 92.05 99.95
Uniform Mixture I 545 17.45 86.50 99.25 100.0 100.0

Uniform Mixture I 2.40  4.00 6.20 6.50 11.15 15.30

Notes: The entries are the empirical rejection rates for the LR statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture,
uniform mixture I, and uniform mixture II. For the LR statistics, nine parameter
spaces are examined for o [7/9, 2|, [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4],
[5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed by these
parameter spaces.
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Table 9. Additional CPU Times for Weighted Bootstrapping (in Seconds)

DGP: Y, ~ 11D Exp(1)

Model: Y; ~ mExp(d1) + (1 — m)Exp(ds)

Statistics \n 50 100 500 1,000 2,000 5,000
LR.([7/9, 2)) 035 040 115 1.99 6.37 21.48
LR,([7/9,3) 064 075  2.08 3.38 7.22 36.35
LR,([7/9,4)) 093 105 321 5.33 1753 5178
LR.(2/3,2) 039 044 121 2.20 6.43 92.97
LR.(2/3,3) 067 075  2.33 3.92 1094 3778
LR, (]2/3, 4]) 0.96 1.09 3.60 6.32 19.22 58.19
LR.(5/9, 2) 041 049 1.4 2.1 7.08 25.62
LR,([5/9, 3]) 0.70 0.79 2.43 6.13 11.25 39.09
LR.(5/9, 4) 099 113  3.62 6.52 2028  60.16
DGP: Y; ~ IID Weibull(1,1)
Model: Y; ~ m#Weibull(dy,7) + (1 — 7)Weibull(dz, )
Statistics \n 50 100 500 1,000 2,000 5,000
LR.([7/9,2)) 050 064 182 431 8.26 2551
LR,([7/9, 3]) 0.91 1.17 3.36 7.75 17.28 48.02
LR, ([7/9. 4]) 129 164  5.16 12.01 2297 71.97
LR,.(2/3, 2)) 054 0.0 1.98 477 11.08 28.04
LR.(2/3,3) 093 122 368 8.67 1797 5537
LR,(12/3, 4)) 133 171 543 1270 2522 7859
LR.(5/9,2]) 054 075 2.8 5.29 1051 28.80
LR.(5/9, 3)) 097 128  3.96 8.69 1856 58.96
LR.([5/9, 4) 140 181 570 1270 2899  79.51

Continued on next page.
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DGP: Y, | X; ~ IID Exp(exp(X;))

Model: Y; | X; ~ mExp(d; exp(X;:f3)) + (1 — m)Exp(d2 exp(X:3))

Statistics \n 50 100 500 1,000 2,000 5,000
LR, ([7/9, 2]) 0.47 0.61 1.83 3.88 8.99 23.21
LR,([7/9, 3]) 0.87 1.14 3.40 7.14 16.70 46.19
LR.([7/9, 4]) 1.24 1.60 5.10 9.98 23.42 66.50
LR,(12/3, 2]) 0.53 0.67 2.00 450 10.20 28.02
LR,([2/3, 3]) 0.90 1.14 3.81 7.24 18.69 50.29
LR.([2/3, 4]) 1.27 1.62 5.41 10.49 24.57 68.95
LR,([5/9, 2]) 0.56 0.73 2.05 194 11.05 30.48
LR,([5/9, 3]) 0.93 1.22 410 7.95 19.81 55.72
LR,([5/9, 4]) 1.29 1.66 5.48 11.28 26.98 79.41

DGP: Y; | X; ~ IID Weibull(exp(X;), 1)

Model: Y; | X; ~ mWeibull(d; exp(X:f3),v) + (1 — m)Weibull(d; exp(X: ), )

Statistics \n 50 100 500 1,000 2,000 5,000
LR, ([7/9, 2]) 0.52 0.63 2.33 6.00 12.10 22.72
LR,([7/9, 3)) 0.95 1.27 5.86 10.80 24.10 35.87
LR,([7/9, 4)) 1.36 1.83 6.59 14.85 33.44 57.61
LR.([2/3, 2]) 0.60 0.75 3.52 6.23 15.14 28.62
LR,([2/3, 3)) 1.02 1.28 6.00 10.72 25.30 42.92
LR,([2/3, 4]) 1.48 1.83 7.25 15.73 36.45 96.10
LR,([5/9, 2)) 0.67 0.82 3.82 6.88 15.41 31.13
LR,([5/9, 3]) 1.06 1.36 6.12 11.97 27.58 59.05
LR,([5/9, 4]) 1.49 1.86 8.72 14.12 36.58 102.5

Notes: The entries are the additional times for conducting the weighted
bootstrap for the LR statistics indexed by the nine parameter spaces for «,
[7/9, 2], [7/9, 3, [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and
[5/9, 4].
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