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1 Introduction

Identifying the distributional shape characteristics of economic variables is an important aspect

of statistical description and the search for stylized facts about economic data. Knowledge of the

appropriate distributional class including tail shape and peakedness can be particularly important

in designing suitable methods of inference, in forecasting, in risk analysis, and in decision making

on financial investments. Early studies in empirical finance, such as the classic papers of Man-

delbrot (1963) and Fama (1965), recognized these advantages and accordingly sought to identify

some stylized distributional features of asset returns (such as heavy-tailedness) to assist in laying

a statistical foundation for methods of empirical finance. More recently, the importance of distri-

butional shape, density estimation and forecasting has been acknowledged in the management of

financial risk, the measurement of value at risk, and in financial market volatility (e.g., Gabaix et

al., 2003; Ibragimov, 2007; Ibragimov and Walden, 2007).

In much statistical work, it is conventional to suppose that the variables of interest have finite

density over their entire support. It is also convenient to rely on normal density functions or mod-

ified versions based on mixtures of normals in fitting economic data and in diagnostic statistical

analysis. However, the condition of a finite density may be restrictive in some situations, par-

ticularly for asset return data which is generally acknowledged to be highly peaked at the median

return. Moreover, imposing the condition of a finite density when it is false will have consequences

for inference. For example, applying goodness-of-fit tests, such as the Kolmogorov-Smirnov test,

can easily lead to inappropriate conclusions when the relevant density functions are not finite over

their domains.

Heavy tailedness in returns is often accompanied by heavy concentrations of observations

around the median return, which is commonly zero. This peakedness or leptokurtosis in the distri-

bution is a stylized fact for most financial asset return data. Sometimes the concentration around

the median return may be so great as to produce an asymptote in the density at the median. This

‘asymptotic leptokurtosis’ is one focus of interest in the present paper.
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Existence of an infinite pole in the density combined with possible heavy tails is also impor-

tant when evaluating various estimation techniques. In particular, the quality of least squares can

be severely compromised if the error distribution has heavy tails, in which case least absolute

deviation (LAD) estimation is an attractive alternative. As Knight (1998) points out, the finite

sample and asymptotic properties of the LAD estimator are determined by how the density be-

haves around the median. When the density is infinite, then the LAD estimator is super consistent

and it is therefore possible to construct sharper confidence intervals than the usual intervals that are

based on least squares estimation. However, assumptions relating to the existence of the density at

the median have been regarded as difficult to verify (see Knight, 1998, p. 756) and no procedures

for doing so have yet been suggested. The methodology proposed in present paper provides one

solution to this issue.

Possible non-existence of the probability density has recently been considered by Zinde-Walsh

(2008) from a different perspective. By means of generalized functions and generalized random

processes, Zinde-Walsh examines the asymptotic features of the kernel estimator for the condi-

tional mean under general conditions. The present paper differs in that we consider the median

rather than the mean and in that we directly propose a method to test the existence of the density

at the median.

Accordingly, the main theoretical goal of the paper is to provide a statistical test of infinite

density at the median. Our approach is to exploit the asymptotic theory of Knight (1998) and, in

particular, the mild regularity conditions under which the sample median is asymptotically normal

when the density is finite and nonzero at the median. When the density has an infinite discontinuity

at the median, the sample median converges to the population median at a faster rate than the usual
√
n rate, where n is sample size. This simple differential provides a device for constructing test

statistics for asymptotic leptokurtosis that can be applied in general linear econometric models

where there are other nuisance parameters to estimate. The approach combines a nonparametric

kernel density estimate at the median with the sample median to deliver a simple nonparametrically
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studentized test statistic.

The empirical goal of the paper is to evaluate the leptokurtosis of certain financial asset return

data and assess the evidence in support of an infinite density at the median return. Much empirical

literature already documents the nonnormality of asset return distributions and the leptokurtosis

of these distributions (Mandelbrot, 1963; Fama 1965). The present paper takes the further step

of testing for infinite density in stock returns. More specifically, we apply our tests to the return

residuals from a simple autoregression. The empirical findings indicate that a significant number

of leading companies in U.S. industries have asset returns with infinite density at the median.

Accordingly, there appears to be evidence supporting infinite leptokurtosis as a new empirical

evidence for some stock return distributions in the U.S.

The plan of the paper is as follows. Section 2 develops the test statistic along with Monte

Carlo experiments. Section 3 reports the empirical application, and concluding remarks are given

in Section 4. Proofs and data information are given in the Appendix.

2 Median Infinite Density Tests

We consider the linear regression model Y = Xβ + ε, where Y and X are n × 1 and n × p

matrices with of Yt and X ′
t respectively and ε = (ε1, . . . , εn)′. Our aim is in testing whether or

not the density of εt is finite. For this purpose, we first motivate the hypotheses and the test in

the case of independently and identically distributed (iid) disturbances and exogenous regressors.

Then, the work is extended to the time series case allowing the regression errors to be conditionally

heteroskedastic and the regressors to be predetermined (i.e., weakly exogenous). These extensions

are important for our empirical application to financial data.
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2.1 Motivational Remarks

We motivate our tests in a heuristic way by letting (X ′
t, εt) be iid, where Xt and εt are mutually

independent. Let F (·) and f(·) be the cumulative distribution function (cdf) and the probability

density function (pdf) of εt respectively. It is well known that the LAD estimator, say β̂n, is
√
n consistent, and its asymptotic distribution is

√
n(β̂n − β0) ⇒ (2f0)

−1N(0,C−1), whenever

f0 := f(0) is positive and finite under suitable regularity conditions, where C := plimn−1X′X,

and β0 is a p-vector of parameters defined as β0 := argminβ E|Yt −X ′
tβ|.

The meaning of the parameter β0 is given in the literature in numerous ways. In regression

contexts, β0 is identified by the zero conditional median assumption: median(εt|xt) = 0. If

Xt = 1, then β0 is itself the median of Yt, corresponding to the 0.5’th regression quantile of Bas-

sett and Koenker (1978). Bloomfield and Steiger (1983), Pollard (1991) and Phillips (1991) also

focus on quantile and/or LAD estimation and confirm the result in various environments. Phillips

(1991) works under dynamic misspecification, Koenker and Zhao (1996) work with the quantile

regression model using time series data and conditionally heteroskedastic disturbances, and Kim

and White (2003) study a misspecified quantile regression model with conditional heteroskedastic

disturbances using iid data.

The situation is very different if f(x) asymptotes to infinity as x tends to zero. In that event, the

convergence rate of the LAD estimator is determined by the divergence speed of f(x) as x→ 0 and

the shape of F (·) near zero. In such conditions, Knight (1998) develops LAD asymptotic theory

for iid data using epi-convergence methods under the condition that the sequence of functions

ψn(s) :=
√
n[F (a−1

n s) − F (0)] converges to a nondegenerate limit function. In this setting the

scale component an in ψn(s) is the convergence rate of the LAD estimator. For example, if f(x) '

λα|x|α−1 near x = 0 for some α ≤ 1 and λ ∈ (0,∞), then we have F (x)− F (0) ' λ sgn(x)|x|α

near zero, so that ψn(s) → λ sgn(s)|s|α with an = n1/2α, as demonstrated by Knight (1998).

Thus, if α = 1 (so f0 < ∞),
√
n(β̂n − β0) has a nondegenerate limit, whereas

√
n/an → 0 and

√
n(β̂n − β0) = (

√
n/an)an(β̂n − β0) →p 0 if α < 1 (so f0 = ∞).
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The present paper exploits these differences in the limit behavior of n1/2(β̂n − β0) under the

different forms of f (x) in the vicinity of the origin to provide information about distributional

shape. A particular focus of attention relates to various leptokurtotic forms including extreme

forms in which the density asymptotes at the origin. The relevant hypotheses in this case can be

formulated specifically in null and alternative forms as follows:

H0 : f(0) ∈ (0,∞) versus H1 : f(0) = ∞. (1)

The main motivation for considering these particular hypotheses stems from empirical obser-

vations of financial data. As explained in the introduction, many financial asset returns exhibit

distributions that appear so heavily peaked at the median as to throw into doubt whether the den-

sity is finite at the origin. We seek to provide a mechanism for investigating this possibility in a

formal manner with a statistical test procedure that enables a formal test of (1).

If β0 were known, the goal of present paper could be relatively easily achieved by exploiting

B̂n := 4nf̂ 2
0 (β̂n − β0)

′C(β̂n − β0) (2)

as a suitable test statistic, where f̂0 is a density estimator for f0. This quantity converges to χ2
p

under H0, whereas under H1, we have
√
n/an → 0 and f̂0 →p ∞, so the limit behavior of

B̂n = 4 (
√
n/an)2︸ ︷︷ ︸
=o(1)

· f̂ 2
0︸︷︷︸

→p∞

· a2
n(β̂n − β0)

′C(β̂n − β0)︸ ︷︷ ︸
=Op(1)

depends on how fast
√
n/an converges to zero and how fast f̂0 diverges. In particular, if the diver-

gence speed of f̂0 is slower than the convergence rate of
√
n/an to zero, then (

√
n/an)f̂0 →p 0

and accordingly B̂n converges to zero in probability under H1. As we discuss later more specifi-

cally, the Nadaraya-Watson estimator based on the LAD residuals works well for this purpose as a

density estimator if the bandwidth parameter δn converges to zero while
√
nδn →∞, i.e.,

δn +
1√
nδn

→ 0, as n→∞. (3)
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The test statistic B̂n therefore enables a consistent test ofH0 againstH1 by exploiting the different

asymptotic behavior of the statistic under the null and alternative. Specifically, we reject the null

hypothesis at a given significance level if the test statistic is less than the corresponding left-tailed

critical value of the χ2
p distribution. (The convergence of B̂n to zero under the alternative happens

because the bandwidth is not too small. So one may suspect that a usual right-tailed test may be

available if the bandwidth were chosen to converge to zero faster. But this strategy is not promising

because then the accuracy of f̂0 is so poor that the test is considerably over-sized.)

In practice, β0 is usually unknown, in which case, we can proceed by splitting the sample into

two equal sized subsets. If n is even, equal sized subsets can be obtained by taking the first and

second half of the sample. If n is odd, we may simply discard the first, the last, or the middle

observation to obtain equal sized subsets. If unequal subsets have to be used, the procedures given

below may be modified by rewriting in an obvious way analogous to the weighting used in the

jackknife (Quenouille, 1959).

Let β̃1n and β̃2n be the LAD estimators from the first subset (i.e., for t = 1, . . . , n/2) and

the remainder of the sample (i.e., t = n/2 + 1, . . . , n), respectively. When X1 and X2 are the

equal-sized submatrices of X such that X = (X′
1

... X′
2)
′, if n−1X′X →p C, then both (2/n)X′

1X1

and (2/n)X′
2X2 also converge to the same limit C, implying that for j = 1, 2,

√
n/2(β̃jn −

β0) ⇒ (2f0)
−1C−1/2Zj under H0, where (Z1,Z2)

′ ∼ N(0, I). We may consider the differen-

tial
√

2nf0(β̃1n − β̃2n) as our test device, which weakly converges to C−1/2Z1 − C−1/2Z2 ∼

N(0, 2C−1) under H0. Thus, it follows that nf 2
0 (∆β̃n)′C(∆β̃n) ⇒ χ2

p under H0, where ∆β̃n :=

β̃1n − β̃2n. Now a useful test statistic can be constructed from this quantity by replacing C and f0

with n−1X′X and f̂0 respectively. Again, the null distribution is χ2
p, whereas the statistic converges

to zero in probability under H1.
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2.2 Extensions to Time-Series Contexts

The heuristic arguments for iid data can be extended to times series models with lagged dependent

variables as regressors on the right hand side and conditionally heteroskedastic errors. For this

purpose, let Ft be the sigma-field generated by (Xt, εt−1, Xt−1, εt−2, . . .) and let εt := σtet, where

σt is adapted to Ft and et is iid with pdf f e(·). Our interest focuses on testing

H′
0 : f e(0) ∈ (0,∞) versus H′

1 : f e(0) = ∞.

We also let Ft(s) and ft(s) denote the conditional cdf and pdf of εt, respectively, so that Ft(s) =

P (εt ≤ s|Ft) = P (et ≤ σ−1
t s|Ft) = F e(σ−1

t s), and ft(s) := F ′
t(s) = σ−1

t f e(σ−1
t s). Further, the

previous definition of the quantity ψn(s) is modified to ψnt(s) =
√
n[Ft(a

−1
n s)− Ft(0)], where an

is selected so that ψnt(s) has a nondegenerate (i.e., non-zero and finite) limit on an open set. If

ft(0) is finite, then an =
√
n, and if ft(0) = ∞, then

√
n/an → 0 by the same illustration of the

power density given above. Finally, we let Ψnt(s) :=
∫ s

0
ψnt(r)dr and also denote ft(0) as f0t for

notational simplicity.

We allow for (σt) to be a stochastic process adapted to Ft. Thus, the model can be interpreted

within the framework of (G)ARCH models (Bollerslev, Engle and Nelson, 1994). The motivation

for this set-up follows from the fact that much economic data, particularly in finance, exhibits het-

eroskedastic behavior that is well characterized and frequently modeled in practice by (G)ARCH

effect. It is useful to employ the heteroskedasticity process (σt) in analyzing heavy-tailed den-

sities although this formulation is not identical to conventional (G)ARCH model effects unless

conditional median and mean equations are the same.

We first establish LAD asymptotics by following Knight (1998, 1999). The argument is

sketched here to exposit the main ideas and a formal statement is given in Theorem 1 below,

which is proved in Cho, Han and Phillips (2009, hereafter CHP). The asymptotic behavior of the
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LAD estimator is obtained by analyzing the following rescaled and centered objective function:

Zn(u) :=
an√
n

n∑
t=1

(
|εt − a−1

n X ′
tu| − |εt|

)
= − 1√

n

n∑
t=1

Xt sgn(εt) +
2an√
n

n∑
t=1

∫ a−1
n X′

tu

0

[
I(εt ≤ s)− I(εt ≤ 0)

]
ds

= Z(1)
n (u) + Z(2)

n (u), say,

which is minimized by the centred and scaled estimator an(β̂n−β0). The second line above holds

by virtue of the fact that |x− y| − |x| = −y sgn(x) + 2
∫ y

0
[I(x ≤ s)− I(x ≤ 0)]ds for all x 6= 0.

Under quite mild regularity conditions permitting epiconvergence, an(β̂n−β0) weakly converges

to the asymptotic minimizer of Zn(·) by the convexity of Zn(·).

The limit of Zn(u) can be derived after obtaining the limits of Z(1)
n (u) and Z(2)

n (u) separately.

First, for the limit of Z(1)
n (u), we simply apply a central limit theorem (CLT) for a martingale

difference array (MDA) under usual regularity conditions, so that Z(1)
n (u) ⇒ −u′G, where G ∼

N(0,C) with C := plimn−1X′X as before. Second, for the limit of Z(2)
n (u), we map s to ans and

apply a change of variables to get

Z(2)
n (u) =

2

n

n∑
t=1

∫ X′
tu

0

√
n
[
I(εt ≤ a−1

n s)− I(εt ≤ 0)
]
ds =

2

n

n∑
t=1

z̃nt, say.

Given this expression, we may decompose Z(2)
n (u) into two sums by introducting the quantity

ξnt := z̃nt−E[z̃nt|Ft], which is a martingale difference. Because E[z̃nt|Ft] = Ψnt(X
′
tu), we have

z̃nt = ξnt + Ψnt(X
′
tu), and

Z(2)
n (u) =

2

n

n∑
t=1

ξnt +
2

n

n∑
t=1

Ψnt(X
′
tu).

The first term on the right hand side is an average of an MDA, so that it should be negligible in

probability, whereas the second term should follow a law of large numbers (LLN) under suitable

regularity conditions. In particular, under H′
0 we have an =

√
n and

2

n

n∑
t=1

Ψnt(X
′
tu) = u′

(
1

n

n∑
t=1

f0tXtX
′
t

)
u + op(1) →p u′Au, say,
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by the ergodic theorem because

Ψnt(X
′
tu) = E[z̃nt|Ft−1] =

∫ X′
tu

0

√
n[Ft(a

−1
n s)− Ft(0)]ds =

∫ X′
tu

0

f0tsds+ op(1)

= 1
2
f0tu

′XtX
′
tu
′ + op(1)

as detailed below. Therefore, under H′
0, we find that Z(2)

n (u) →p u′Au. Combining the limit

behavior of Z(1)
n (u) and Z(2)

n (u) now yields Zn(u) ⇒ −u′G + u′Au, which is minimized when

u = 1
2
A−1G, and this quantity is distributed as N(0, 1

4
A−1CA−1) under H′

0. This distribution is

the limit distribution of an(β̂n − β0). Theorem 1 details this argument more rigorously below.

We again construct a more realistic test statistic for the unknown parameter β0 by splitting

the sample into two subsets. Let β̃1n and β̃2n denote the two LAD estimates from the first and

second halves of the sample as before. Because
√
n/2(β̃jn − β0) ⇒ 1

2
A−1Gj , where G1 and

G2 are independent and distributed as N(0,C), we have
√
n/2(β̃1n − β̃2n) ⇒ 1

2
A−1(G1 −G2),

which is also normally distributed, i.e., N(0, 1
2
A−1CA−1). It follows immediately that n(β̃1n −

β̃2n)′AC−1A(β̃1n − β̃2n) ⇒ χ2
p under H′

0. Finally, the unknown elements C and A can be

replaced by consistent estimators. As C is the limit variance of n−1/2
∑n

t=1Xt sgn(εt), it can be

estimated consistently by Ĉn := n−1X′X.A can be consistently estimated by

Ân :=
1

n

n∑
t=1

f̂0tXtX
′
t, where f̂0t = δ−1

n K(δ−1
n ε̂t) (4)

for some kernel K(·) and bandwidth δn, and ε̂t = yt − X ′
tβ̂n. The kernel function K(·) and the

bandwidth δn are required to satisfy some regularity conditions, which are provided in Assumption

B and in Theorem 2 below. The feasible test statistic therefore has the following form

Bn := (β̃1n − β̃2n)′P̂n(X′X)−1P̂n(β̃1n − β̃2n), where P̂n :=
n∑

t=1

f̂0tXtX
′
t, (5)

and as before the null hypothesis is rejected at a given significance level if Bn is smaller than the

corresponding left-tailed critical value of the χ2
p distribution (e.g., 0.00393214 if p = 1).

We now examine the large sample behavior of Bn. We first provide assumptions necessary

for deriving the asymptotics of the LAD estimator. Given that εt = σtet, it is convenient and
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common practice, though not strictly necessary here, to assume that et is iid. Further, the local

behavior of the density around zero is important for the asymptotics of the LAD estimator. Thus,

we may assume that P (et ≤ s|Ft) = F e(s) for all s in a neighborhood of zero, which we call local

homogeneity. Given this, if we let ψe
n(s) :=

√
n[F e(a−1

n s) − F e(0)] and Ψe
n(x) :=

∫ x

0
ψe

n(s)ds,

then it trivially follows that ψnt(s) = ψe
n(σ−1

t s) and Ψnt(x) = σtΨ
e
n(σ−1

t x).

The following assumptions are employed to establish the LAD asymptotics.

Assumption A The following conditions hold:

(i) (X ′
t, σt) is stationary and ergodic with σ2

t ≥ σ2
∗ > 0, such that n−1

∑n
t=1 σ

2
t = Op(1) and

E‖Xt‖4 <∞;

(ii) (et) is iid over t; et is independent of (X ′
t, σt) for each t; and for a function h(·), |F e(x) −

F e(0)| ≤ h(x) for all x in an open interval V containing zero such that h(x) increases with

respect to |x|, and for some finite C0 and n0, n1/2h(a−1
n x) ≤ C0(1 + |x|) for all x ∈ R

provided that n > n0;

(iii) For some ψe(·), there is a symmetric and nonnegative δ∗n(·) such that δ∗n(s) is increasing as

|s| increases; |ψe
n(·)− ψe(·)| ≤ δ∗n(·), lim supn→∞E

[
‖xt‖δ∗n(‖xt‖)

]
< ∞, δ∗n(·) converges

uniformly to zero on every compact neighborhood of zero;

(iv) E[sgn(et)|Ft] = 0 and n−1/2 max1≤t≤n ‖Xt‖ →p 0.

Assumption A is almost identical to the conditions used in CHP to establish LAD asymptotics

in an time series environment that allows for conditional heterogeneity and weak exogeneity. Some

remarks on the conditions in Assumption A are in order. First, Assumption A(i) allows for the

squared terms of Xt and εt to be correlated, so that C may not be proportional to A, unlike Knight

(1998). Second, the assumption that σ2
t ≥ σ2

∗ > 0 implies that any heavy mass at zero is attributed

to the density of et, not to the volatility process σ2
t . Thus a median infinite density of εt is sourced

in and equivalent to that of et. Third, Condition A(ii) is satisfied by many densities. For example,
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it is satisfied if f e(0) is finite or if f e(x) = λα|x|α−1 (i.e., the power density) for α < 1 in a

neighborhood of zero, so that f(x) asymptotes to infinity as x tends to zero. Fourth, condition

A(iii) is provided to establish a limit property of ψe
n(·) in a way that its limit is a convex function.

Finally, Condition A(iv) is useful for establishing a CLT for n−1
∑n

t=1 xt sgn(εt). More detailed

explanations on these conditions can be found in CHP.

The following theorem presents the desired LAD asymptotics under these conditions.

Theorem 1 (Cho, Han, and Phillips, 2009) Given Assumption A,

an(β̂n − β0) ⇒ argmin
u∈Rp

−u′G + τ(u), (6)

where τ(u) := 2 plimn−1
∑n

t=1 Ψt(X
′
tu), G ∼ N(0,C) with C := plimn−1X′X.

This result from CHP develops the arguments of Knight (1998, 1999) into a time series frame-

work that suits the need of the current paper. One difference between Theorem 1 and the CHP

result is that the CLT is directly assumed in CHP as a high level condition, whereas here it is

derived by exploiting Assumption A(iii). Theorem 1 differs from Knight (1998, 1999) mainly

because of the presence of conditional heteroskedasticity. In our time series context, σt is not

necessarily constant, so that it leads to an information matrix inequality if f e(0) is finite.

Assumption A holds for many data sets and the power density illustrated above is only one of

many examples covered by Theorem 1. As in the iid data case, (6) also implies that if f e(0) <∞,

then an =
√
n and τ(u) = u′Au, where A was defined while obtaining the probability limit of

Z
(2)
n (u), thus yielding the conventional result that

√
n(β̂n − β0) ⇒ 1

2
A−1G, whereas if f e(0) =

∞, then
√
n(β̂n − β̂0) = Op(a

−1
n

√
n) = op(1) as an is proportional to nγ with γ > 1/2.

Next, we provide regularity conditions under which the test statistic Bn defined above has the

desired asymptotic behavior under the null and alternative hypothesis on the error density. The

conditions required mainly relate to the asymptotic behavior of Ân defined in (4).

Assumption B The following conditions hold:
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(i) On a neighborhood of zero, f e(·) > 0 and f̄ e(y)/f̄ e(x) ≤ M̃ for some finite M̃ for all x

and y in the same neighborhood such that |x| ≤ |y|, where f̄ e(x) = [F e(x)− F e(0)]/x for

x 6= 0.

(ii) The kernel function K(·) satisfies:

(a) K(·) is a uniformly bounded non-negative function which is symmetric around zero and

non-increasing on the positive domain;

(b)
∫
K(x)dx = 1,

∫
K(x)2dx <∞;

(c) for each y in a neighborhood of zero and for each x, |K(x + y) −K(x)| ≤ K̇(x)|y|,

where K̇( · ) is uniformly bounded and
∫

[sup|y|≥|x| K̇(y)]2dx <∞.

(iii) The bandwidth sequence δn satisfies δn → 0 and n1/2δn →∞.

The Lipschitz condition in Assumption B(ii.c) is satisfied by many popular kernel functions.

For example, if K(x) = max(1− |x|, 0), then the condition holds by letting K̇(x) = I(−2 ≤ x ≤

2) for |y| ≤ 1, where I(·) is the indicator function. As another example, if K( · ) = φ( · ) is the

standard normal kernel, then for |y| ≤ 1, we can let K̇(x) = sup|z|≤1{(x + z)φ(x + z)} because

K̇(x) ≤ φ(0)(|x|+ 1)I(|x| ≤ 1) + (|x|+ 1)φ(|x| − 1)I(|x| > 1), where the last bound is clearly

square integrable. For the popular Epanechinikov kernelK(x) = {3/(4
√

5)}(1−0.2x2)I(x2 ≤ 5),

we can let K̇(x) = 0.3I(|x| ≤ 3). In general, if K( · ) is differentiable, then Assumption B(ii.c)

holds when |K ′( · )| is uniformly bounded by a symmetric and square-integrable function which is

non-increasing on the positive domain.

The limit behavior of the test statistic Bn is given as follows:.

Theorem 2 Under Assumptions A and B, the following results hold:

(i) If f e(0) ∈ (0,∞) and f e(s) is continuous in a neighborhood of zero, then Bn ⇒ χ2
p;
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(ii) If f̄ e(s) = [F e(s)− F e(0)]/s and

f̄ e(x)/f̄ e(y) →∞ as x, y → 0 and x/y → 0, (7)

then Bn →p 0.

Theorems 2(i) and (ii) give the limit behavior of Bn under the null and alternative hypotheses.

Condition (7) is stronger than simply assuming that f e(0) = ∞ and characterizes local behavior of

f e at the origin. This condition enables the test to discriminate null pdfs from alternatives. More

specifically, this condition controls the divergence speed of f e(x) as x tends to zero. Even under

the alternative of an infinite density, if the divergence speed is too slow then the discriminating

information in finite samples of data may be too weak to identify the alternative. So, condition

(7) serves as a restriction in the class of alternative distributions that ensures test power against

these alternatives. Many relevant density functions satisfy condition (7) in spite of this restriction.

As an example, for some c > 0 and α < 1 if F e(x) ∝ 1/2 + c sgn(x)|x|α around zero, then

f̄ e(x) ∝ |x|α−1 and therefore f̄ e(x)/f̄ e(y) ∝ |x/y|α−1, which diverges as x/y → 0, so that (7)

follows. A symmetrized gamma distribution with a shape parameter smaller than 1 also satisfies

(7). In general, the ratio [F e(x)−F e(0)]/[F e(y)−F e(0)] → 0 under the alternative if x approaches

zero faster than y. What Condition (7) further requires is that [F e(x)−F e(0)]/[F e(y)−F e(0)] → 0

more slowly than x/y → 0, so that the ratio f̄ e(x)/f̄ e(y) diverges. An obvious counter-example to

(7) is a density with a logarithmic or other slowly varying discontinuities at the origin. For example,

if f̄ e(x) ∼ log(1/|x|) and y = x1−η for some η ∈ (0, 1) as x → 0+, we have f̄ e(x)/f̄ e(y) →

(1 − η)−1 as x → 0+, thereby violating (7). These density functions may not be discriminated

from null densities by our test. So the test will not in general be powerful against densities with

logarithmic type discontinuities at the median.

In simpler cases where εt is independent of Xt, the test Bn can be further simplified. In such

cases, we may use the statistic B̃n := λ̃2
n(β̃1n−β̃2n)′(X′X)(β̃1n−β̃2n) to test the same hypothesis,

13



where λ̃n is defined by

λ̃n :=
1

n

n∑
t=1

1

δn
K

(
Yt −X ′

tβ̂n

δn

)
.

As before, B̃n weakly converges to χ2
p under H′

0 but converges to zero under H′
1. The intuition

behind this test is identical to that underlying the generic test (2).

Before conducting Monte Carlo experiments for these tests, we remark that the limit distribu-

tion of the sample median depends on the local behavior of the probability density in the vicinity

of the median and does not depend upon its behavior elsewhere, as shown by Knight (1998) and

Rogers (2001). This property ensures that the limit distribution of statistic B̂n also depends only

on the shape characteristics of the probability density near the median. Thus, asymmetry of the

density and possible discontinuities at points other than the median (e.g., at the mean if the mean

and the median are different) do not affect the validity of the test.

2.3 Monte Carlo Experiments

We conduct a brief Monte Carlo experiment to examine the finite sample performance of the test.

We use two data generating processes (DGPs) with autoregressive conditional heteroskedasticity.

Specifically, we suppose that Yt = 0.4Yt−1 + εt, εt = σtet, and σ2
t := 1 + 0.3ε2

t−1, where et is iid,

and its density function is (i) a two-sided gamma (double gamma) distribution whose functional

form is f e(x) = 1
2
Γ(α)−1|x|α−1 exp (−|x|), and (ii) the mixture αN(0, 1)+(1−α)0. Accordingly,

{εt,Ft} is an MDA, and the conditional median equation is identical to the conditional mean

equation, mainly due to the symmetry of the distribution of et. Further, f e(0) is finite when α = 1

and infinite when α < 1 for both DGPs. Note that this DGP differs substantially from the usual

case considered in the literature where et is assumed to follow a standard normal distribution. In

practice, we generate et by letting et = sgn(zt)vt for DGP (i) and et = zt{ut ≥ α} for DGP

(ii), where zt ∼ N(0, 1), vt is independently drawn from a gamma distribution with the ‘shape’

parameters α, and ut ∼ U(0, 1). In our simulations, the associated random variables are generated

by the rnorm, rgamma and runif functions in R (R Development Core Team, 2008), and the LAD
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estimators are obtained by the quantreg package in R (Koenker, 2008). The standard normal

kernel is chosen for K(·), and the bandwidth parameter δn is set by the ‘rule of thumb’ parameter

suggested by Scott (1992) as a variation of Silverman’s (1986) parameter, i.e., 1.06 times the

minimum of the standard deviation and the interquartile range divided by 1.34 times n−1/5. This

bandwidth is popularly selected for empirical data analysis in the literature and is easy to compute.

It is therefore of interest to see how this bandwidth performs in our experiments.

The simulation results are reported in Table 1. The findings indicate that size (α = 1) is

approximately accurate, and power (α < 1) approaches one as the sample size increases or the α

parameter gets smaller, which corresponds to sharper asymptotes in the density. (For both DGPs

the test seems slightly oversized, but this disappears as the sample size further increases.) For the

first DGP, power increases rather slowly when α is close to unity as the sample size increases.

This behavior is indicative of the inconsistency in the test that arises when condition (7) fails. The

second DGP is not regular if α > 0, because then the disturbance term has a discontinuous CDF at

zero. Power behaves normally in this case.

Additional experiments were conducted using bandwidths selected by cross validation, but

the finite sample performance of the test in this case was found to be inferior to that of the test

based on Scott’s rule of thumb. Issues of kernel and bandwidth choice obviously deserve further

investigation in the present context. Based on the limit theory and the reported simulations, we

used the Gaussian kernel and Scott rule of thumb methods in our empirical applications.

3 Empirical Applications

Asset return distributions are well known to exhibit non-normality. As overviewed in Bollerslev,

Engle, and Nelson (1994), the early papers of Mandelbrot (1963) and Fama (1965) pointed out the

leptokurtic feature of many asset return distributions. Other stylized facts concerning asset returns

are the typical heavy tails of their distributions and the volatility clustering manifested in squared
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returns, various realized volatility measures, and fitted (G)ARCH models.

The focus of the present study is to examine the leptokurtosis of asset return distributions

more carefully and test whether there is empirical support for ‘infinite leptokurtosis’ arising from

infinite density at the median. This section reports the results of applying our tests to stock returns

of leading companies in U.S. industries. More precisely, we apply our test (5) to the autoregression

ri,t = αi,0 + βi,0ri,t−1 + εi,t, (8)

where ri,t is the excess return of the i-th company stock in period t, and where the risk-free asset is

represented by U.S. Treasury ten-year government bonds. The companies used for our empirical

applications are the so-called America top 400 large companies as announced by Forbes.com on

December 22, 2005. These companies are selected according to the Forbes.com criteria of helping

investors to identify potential star stocks across 26 industries. In collecting this stock price data for

the last 15 years (from 24 May 1991 to 23 May 1996) using Datastream Advance 3.5, 243 compa-

nies are found to provide a full dataset with no missing observations. The companies are listed in

Appendix B, and the total number of observations is 3,799 after eliminating holiday observations.

Time series features of daily returns are analyzed via (8), which attempts to capture any poten-

tial serial dependence in daily returns that may be induced from a variety of sources, including mi-

crostructure effects. Indeed, model (8) is often motivated as a reduced form equation in the finance

literature. For example, Lo and MacKinlay (1988, 1990), Scholes and Willams (1977), Dimson

(1979), and Cohen, Hawawini, Schwartz, and Whitcomb (1983a, b) recognize that the betas in the

standard capital asset pricing model (CAPM) cannot be consistently estimated by ordinary least

squares (OLS) regression because of serially correlated residuals induced by nonsynchronous trad-

ing. Also, from a time series perspective, Nelson (1991) suggested that an autoregression be used

to eliminate serial correlation. Accordingly, we specify (8) as a suitable reduced form time series

model for returns, without being specific about the underlying source of the weak dependence.

The disturbance term εi,t in (8) is expected to possess time varying volatility features and to

satisfy the MDA condition. Note that the leptokurtosis feature of daily stock returns cannot be
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separated from the time varying volatility effects, as pointed out by Bollerslev, Engle, and Nelson

(1994). We explicitly allow for the presence of time varying volatility in writing εi,t = σi,tei,t,

where ei,t is iid, and σi,t is adapted to Fi,t, which we define as the smallest σ-field generated by

(ri,t−1, ri,t−2, . . .) for each i = 1, 2, . . . , 243. Based on this modeling framework, we test whether

or not the density of εi,t is finite at zero. As detailed above, Bn is consistent even when time

varying volatility is part of the DGP, thereby enabling us to examine the leptokurtosis of financial

asset returns in a context that accommodates this volatility.

The test is implemented using the following procedure. First, (8) is estimated by both LAD

and OLS regression methods, and we compare the prediction errors obtained from these. Note that

OLS provides consistent estimates of the equation (8) when {εi,t,Fi,t} is an MDA having finite

variance. However, as remarked earlier, the limit of the LAD estimator may be different from OLS

when the conditional mean and median equations are different. Hence, we first check whether

OLS estimation yields symmetric prediction error distributions. For this, we apply the runs test

developed by McWilliams (1990) to our OLS residuals and test the following hypotheses:

H′′
0 : f v

i (·) is symmetric versus H′′
1 : f v

i (·) is asymmetric,

where f v
i (·) is the pdf of vi,t, which is the OLS residual obtained by estimating AR(1) model for

each i. According to McWilliams (1990), the runs test is more powerful against a certain family

of alternatives than other tests such as the Cramér-von Mises test constructed from the empirical

distribution. Also, the runs test does not assume a continuous distribution for vi,t, which is violated

under the infinite density hypothesis, so that symmetry of the pdf may not be properly tested by

tests that rely on the empirical distribution. These properties give the runs test some potential

advantages in the present context.

Next we apply the test (5) to the prediction errors obtained by LAD estimation of all companies

and the companies with symmetric densities according to the runs test. In particular, we examine

how the test statistics behave over subsamples with different sample sizes. Specifically, we start the

data analysis by testing the hypotheses using the data set with 1,850 observations (February 2nd,
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1999 to May 23rd, 2006) and computing p-values. Then we perform the same testing procedure

using enlarged data sets with 2,050 observations (April 17th, 1998 to May 23rd, 2006). In this

way we continue to increase the sample size and apply the test to multiple data sets growing

in size by 200 observations each time until the sample size reaches 3,799 (May 24th, 1991 to

May 23rd, 2006). The information from this sequence of tests is collected for each company,

the number of companies rejecting the null is counted, and some collective conclusions are then

deduced concerning the evidence in support of infinite density.

The stated procedure is partly motivated by the fact that we reject the finite density hypothesis

for Bn close to zero. Even under the finite density hypothesis, Bn will still realize some values

close to zero with low probability. The above sequential testing procedure serves to raise the

rejection probability and increase test power for those companies that do exhibit infinite density at

the median.

Due to space constraints, we do not attempt to report the analysis in full for all the companies

considered in the study. Instead, we mainly focus on a specific industry — Health Care Equipment

& Services (HCES) — for the presentation of detailed findings, as the results for this industry are

fairly typical. Later in the discussion we provide some key summary results for all 243 companies

and for those companies with symmetric densities according to the runs test.

Table 2 compares the parameter estimates obtained by OLS and LAD estimation methods.

For the nine companies in the HCES industry there are close similarities and some differences in

the parameter estimates. The estimated intercepts are all very close to zero for both estimation

methods. The fitted AR coefficients are also small and the two estimates have the same signs in

each case but there are some small systematic differences, most notably that the LAD estimates are

all closer to zero than the corresponding OLS estimates. Nevertheless, we cannot at the moment

test whether or not the estimated LAD parameters converge to zero, as the asymptotic distribution

of the t-statistic for the LAD estimator critically depends on the assumption of finite density, which

we want to test in the present paper.
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Table 2 also reports test statistic values and associated p-values (left-tailed) for the infinite

density test. The outcomes differ according to the significance level. At the 5% level, for example,

two companies (Universal Health, Omnicare) have infinite density at the median, and at the 1%

level one company (Omnicare) has infinite density. This aspect is further accompanied by the runs

test. At the 5% level, three companies (Becton Dickinson, Varian Medical System, and Coventry

Health Care) have asymmetric densities, so that every company with infinite densities according

to the statistic Bn turn out to have symmetric error densities. Overall, a significant number of

companies seem to display strong empirical evidence in support of infinite density at the median

in the HCES industry.

Extending this analysis to other industries, we collect the results together in Tables 3 and 4.

First, we report the proportion of rejections of the null hypotheses of finite and symmetric densities

in Table 3. The columns of Table 3 contain the results of testing symmetry using the runs test based

upon OLS residuals, and the rows indicate the results of testing finite density using Bn when the

level of the test is 5%. Thus, 41 companies turn out to have infinite and symmetric densities, and

this approximately amounts to 21.5% of the companies with symmetric densities (16.87% of all

companies). Next, we examine these findings in relation to the overall tendency to reject the null

of finite density. Table 4 summarizes results for the full set of 243 companies (denoted by “All”)

and its subset of 191 companies with symmetric error densities according to Table 3 (denoted by

“Sym.”). The table provides the number of companies rejecting the null over different subsamples

at various significance levels (1% to 11%). For example, if the level of the test is 5%, then 6.17%

(resp. 6.28%) out of the 243 (resp. 191) companies reject the null when the sample period is

April 17, 1998 to May 23, 2006. What we observe from Table 4 is that the rejection rate for the

finite density hypothesis gets larger as the number of observations gets bigger. This is observed

not only for the 5% level of significance but also for the other levels. This aspect is affirmed

in Figure 1, which shows the histograms of p-values obtained for some of the sample periods in

Table 4. Evidently, more p-values cluster around zero as sample period gets larger for both groups
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of the companies.

In addition to this analysis reported here, we also estimated another model based explicitly

upon CAPM theory and obtained qualitatively similar results, confirming the present findings. The

results are omitted for the sake of brevity.

This evidence taken together amounts to strong support of infinite density at the median as a

remarkable new stylized distributional feature for U.S. industry stock returns.

4 Concluding Remarks

This paper develops and applies a new testing procedure to evaluate kurtosis and explicity test

whether a probability density has an asymptote or infinite discontinuity at the median. The ap-

proach makes use of the limit theory for L1 estimation pioneered by Knight (1998) and extended

in recent work by the authors (CHP, 2009), which allows for such discontinuities in the density in

time series settings that include conditional heterogeneity and serial dependence. The power of the

test stems simply from the fact that the sample median converges to the true median at a rate faster

than
√
n rate when the density is infinite at the median.

The test has some useful features for empirical applications. In particular, it is free from other

nuisance parameters, does not rely on particular technical conditions such as differentiability or

continuity of the underlying density function, is applicable to a wide class of densities, and can be

used in a time series regression context.

Empirical application of the test to stock returns of leading companies across U.S. industry is

conclusive and provides strong evidence in support of infinite density at the median as a new signif-

icant empirical characteristic for stock return distributions. A significant number of the companies

considered in the empirical analysis conducted her reject the null hypothesis of a finite density

in favor of infinite density at the median. One implication of this finding is that data analysis in

financial econometrics that relies on distributions with finite density at the median, such as t dis-
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tributions and mixtures of normals, will inevitably involve some distributional misspecification in

the presence of infinite density.

A Proofs

Lemma 3 Let Ãn = n−1
∑n

t=1 δ
−1
n K(δ−1

n εt)XtX
′
t. If n−1

∑n
t=1E‖Xt‖3 is uniformly bounded

and
√
nδn →∞, then under the conditions for Theorem 1, we have Ân − Ãn →p 0.

Proof. The proof is straightforward because

‖Ân − Ãn‖ ≤
1

n

n∑
t=1

1

δn

∣∣∣∣K ( ε̂t

δn

)
−K

(
εt

δn

)∣∣∣∣ ‖Xt‖2 ≤ 1

n

n∑
t=1

δ−1
n K̇(δ−1

n εt)‖Xt‖3 · ‖∆n‖,

where ∆n := δ−1
n (β̂n − β0). The right hand side is op(1) because the first term is Op(1), which

can be shown by taking expectation (first conditional on Ft for each t and then averaging uncon-

ditionally), and noting that ‖∆n‖ is op(1) because ∆n = (n1/2δn)−1
√
n(β̂n − β0).

Lemma 4 Suppose that the assumptions for Lemma 3 hold. Assume further that f e(0) < ∞,

f e(s) is continuous in a neighborhood of zero, and n−1
∑n

t=1E‖Xt‖4 is uniformly bounded. Let

Ã∗
n = n−1

∑n
t=1 ft(0)XtX

′
t. Then Ãn − Ã∗

n →p 0.

Proof. Note that Ãn − Ã∗
n = 1

n

∑n
t=1 [δ−1

n K(δ−1
n εt)− ft(0)]XtX

′
t = 1

n

∑n
t=1 Wnt. We have

1

n

n∑
t=1

[
Wnt − E(Wnt|Ft)

]
=

1

n

n∑
t=1

δ−1
n

[
K(δ−1

n εt)− E[K(δ−1
n εt)|Ft]

]
XtX

′
t,

which is the average of an MDA. Its variance is bounded by

1

n2

n∑
t=1

δ−2
n EK(δ−1

n εt)
2‖Xt‖4 ≤ 1

nδ2
n

(maxK2)
1

n

n∑
t=1

E‖Xt‖4 → 0,

if nδ2
n → 0. So far we have shown that n−1

∑n
t=1 Wnt = n−1

∑n
t=1E(Wnt|Ft) + op(1). Next,

when ft(0) is finite,

E(Wnt|Ft) =

∫ [
δ−1
n K(δ−1

n s)ft(s)− ft(0)
]
dsXtX

′
t =

∫ [
ft(s)− ft(0)

]
δ−1
n K(δ−1

n s)dsXtX
′
t

=

∫ [
ft(δns)− ft(0)

]
K(s)dsXtX

′
t,
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so n−1
∑n

t=1E(Wnt|Ft) is integrable, and it converges to zero because

E

∥∥∥∥∥ 1

n

n∑
t=1

E(Wnt|Ft)

∥∥∥∥∥ ≤ 1

n

n∑
t=1

E
∥∥∥E(Wnt|Ft)

∥∥∥
≤ 1

n

n∑
t=1

E

∫
|ft(δns)− ft(0)|K(s)ds‖Xt‖2 → 0.

The result follows immediately.

Proof of Theorem 2(i). Under the null, Lemmas 3 and 4 imply that Ân − Ã∗
n →p 0. The result

follows from Theorem 1 because Ã∗
n →p A.

To handle the case under the alternative hypothesis, we need some technical lemmas. We start

with the following.

Lemma 5 Under Assumptions B(i) and B(ii), if L( · ) is continuous, nonnegative and integrates to

a strictly positive number over (−∞,∞), then for n sufficiently large, 0 < M0 ≤
√

n
an

∫∞
−∞ L(x)

f e(x/an)dx ≤M1 <∞.

Note that the bounds M0 and M1 depend on L(·).

Proof. We prove the result by considering integration over the positive domain only as the neg-

ative domain can be treated similarly. Define 0 = b0 ≤ b1 ≤ b2 ≤ · · · such that bk =

inf{x ≥ 0 : L(x) ≤ 2−k}. Then for x ∈ [bk, bk+1], L(x) ∈ [2−(k+1), 2−k], so that 1
2
A∗n ≤

√
n

an

∫∞
0
L(x)f e(x/an)dx ≤ A∗n, where A∗n =

√
n

an

∑∞
k=0

1
2k

∫ bk+1

bk
f e(x/an)dx, which is

A∗n =
√
n

∞∑
k=0

1

2k

[
F e(bk+1/an)− F e(bk/an)

]
=

∞∑
k=0

2−k[ψn(bk+1)− ψn(bk)] =
∞∑

k=1

ψn(bk)

2k
,

by change of variables. Here ψn(t) =
√
n[F e(t/an)−F e(0)] = (

√
n/an)f̄ e(t/an) t, and therefore

by Assumption B(i), eventually as n → ∞, ψn(t)/ψn(1) = f̄ e(t/an)t/f̄ e(1/an) ≤ M̃t, if t ≥ 1.

Thus, for n large enough,

∞∑
k=1

ψn(bk)

2k
=
∑

k:bk≤1

ψn(bk)

2k
+
∑

k:bk>1

ψn(bk)

2k
≤
∑

k:bk≤1

ψn(1)

2k
+ M̃ψn(1)

∞∑
k=1

bk
2k
,
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which is eventually (as n → ∞) bounded from above by M1 = ψ(1)(2 + M̃L∗) < ∞ because

ψn(1) → ψ(1) and
∑∞

k=1 bk/2
k ≤

∫∞
0
L(x)dx = L∗/2, where L∗ =

∫
L(x)dx. For the lower

bound, ψ(bk) is strictly positive for some finite k by Assumption B(ii), implying that 1
2
A∗n > 0 for

all n large enough.

Lemma 6 Given the assumptions for Theorems 1 and 2, if (7) holds in addition, then for any

uniformly bounded nonnegative function L(·) which is symmetric around zero and non-increasing

over the positive domain, we have
√

n
an

∫
L(x)f e(δnx)dx→ 0.

Proof. We show only that

A∗∗n =

√
n

an

∫ ∞

0

L(x)f e(δnx)dx = o(1), (9)

because the proof over (−∞, 0) follows in the same way by virtue of the symmetry of L( · ).

Without loss of generality, we let L(0) = 1 (otherwise, divide L(x) by L(0)). Let m satisfy

amδn = 1. (Again note that the domain of an is extended to R+ and thatm→∞ as n→∞.) Then

clearly
√

m
am

∫∞
0
L(x)f e(δnx)dx =

√
m

am

∫∞
0
L(x)f e(a−1

m x)dx = O(1) by Lemma 5, and therefore

A∗∗n =

[ √
n/an√
m/am

] √
m

am

∫ ∞

0

L(x)f e(a−1
m x)dx =

[ √
n/an√
m/am

]
O(1). (10)

Since both n and m tend to infinity, both ψn(1) and ψm(1) converge to ψ(1), we have

ψn(1)

ψm(1)
=

√
n/an√
m/am

· f̄
e(a−1

n )

f̄ e(a−1
m )

→ 1. (11)

But because amδn = 1 and anδn →∞, we have a−1
n /a−1

m = am/an → 0, and thus by (7) we have

f̄ e(a−1
n )/f̄ e(a−1

m ) → ∞, which, by (11), implies that (
√
n/an)/(

√
m/am) → 0. This last result

and (10) imply (9), and therby complete the proof.

Lemma 7 Under (7), (
√
n/an)Ân →p 0.
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Proof. Due to Lemma 3, it suffices to show that (
√
n/an)Ãn →p 0. (Note that

√
n/an = O(1).)

We shall show that (
√
n/an)E‖Ãn‖ → 0. We note that (

√
n/an)E‖Ãn‖ is bounded by

1

n

n∑
t=1

E

(√
n

an

)∫
K(s)ft(δns)ds‖Xt‖2 ≤

√
n

an

∫
K(s)f e(δns/σ∗)ds ·

1

n

n∑
t=1

Eσ−1
t ‖Xt‖2.

The second term is obviously Op(1), and the first term converges to zero by Lemma 6.

Proof of Theorem 2(ii). We have Bn = [an(β̃1n − β̃2n)]′[(
√
n/an)Ân]Ĉ−1[(

√
n/an)Ân] ·

[an(β̃1n − β̃2n)] ⇒ 0 by Theorem 1 and Lemma 7.

B List of Companies Included in the Empirical Application

The following lists the companies of each industry included for our empirical analysis. The number

of companies is provided in parentheses for each industry.

Aerospace & Defense (5): Goodrich, General Dynamics, Alliant Techsystems, Moog, DRS

Technologies.

Banking (13): Citigroup, Synovus Finl, Zions Bancorp., Wells Fargo, Popular, M&T Bank,

AmSouth Bancorp., Marshall & Ilsley, Golden West Finl., Wachovia, Commerce Bancorp., Bank

of America, Compass Bancshares.

Business Services & Supplies (9): Automatic Data, Paychex, Avery Dennison, Robert Half Intl,

Waste Management, ServiceMaster, Manpower, Equifax, World Fuel Services.

Capital Goods (12): Danaher, Valmont Inds., Ingersoll-Rand, Timken, Donaldson, Cummins,

JLG Indst., Caterpillar, Ametek, Rockwell Automation, Genlyte Group, Oshkosh Truck.

Chemicals (10): Ecolab, Engelhard, Rohm and Haas, Dow Chemical, Airgas, Sigma-Aldrich,

Air Prods & Chems, Valspar, Lubrizol, Georgia Gulf.

Conglomerates (6): General Electric, Dover, Emerson Electric, Fortune Brands, United Tech-

nologies, ITT Inds.

24



Construction (9): Jacobs Engineering, Standard Pacific, Toll Brothers, Lennar, Pulte Homes,

MDC Holdings, KB Home, Ryland Group, Meritage Homes.

Consumer Durables (13): Harley-Davidson, Toyota Motor, Honda Motor, Nissan Motor, Volvo,

Brunswick, Johnson Controls, Black & Decker, Genuine Parts, Applied Inds., Paccar, Toro, Thor

Inds.

Diversified Financials (4): Charles Schwab, Berkshire Hathaway, Franklin Resources, Legg

Mason.

Drugs & Biotech (5): Abbott Laboratories, Allergan, Amgen, Johnson& Johnson, Barr Phar-

maceuticals.

Food Drink & Tobacco (13): Coca-Cola, General Mills, PepsiCo, Wm Wrigley Jr., Seaboard,

PepsiAmericas, McCormick & Co, Hormel Foods, Kellogg, Archer Daniels, Dean Foods, Constel-

lation Brands, Pilgrim’s Pride.

Food Markets (4): Sysco, Weis Markets, Ruddick, Casey’s General Store.

Health Care Equip- ment & Services (9): Universal Health, Biomet, Stryker, Coventry Health

Care, Becton Dickinson, Omnicare, Varian Medical Systems, Humana, UnitedHealth Group.

Hotels, Restaurants & Leisure (5): Brinker Intl., Hilton Hotels, Applebee’s Intl., MGM Mirage,

Carnival Corp.

Household & Personal Products (8): Timberland, Procter & Gamble, Liz Claiborne, Oxford

Indst., Alberto-Culver, NIKE, Church & Dwight, Phillips-Van Heusen.

Insurance (10): Chubb, Aflac, Cincinnati Finl., Old Republic Intl., Mercury General, White

Mountains Ins., First American, Commerce Group Inc., Selective Ins., Zenith National Ins.

Materials (12): Barrick Gold, Bemis, Worthington Inds., Phelps Dodge, Inco, Harsco, Massey

Energy, Nucor, Commercial Metals, Steel Technologies, Quanex, Cleveland-Cliffs.

Media (9): Comcast, Walt Disney, WPP Group, Omnicom Group, EW Scripps, Meredith, RR

Donnelley & Sons, McGraw-Hill Cos., Banta.

Oil & Gas Operations (16): Nabors Industries, Baker Hughes, Noble Corp., Marathon Oil,
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Smith International, Ashland, Apache, EOG Resources, Holly, BJ Services, Murphy Oil, Tesoro,

Valero Energy, Sunoco, Western Gas Resources, Occidental Petroleum.

Retailing (17): CVS, Walgreen, Home Depot, Tiffany & Co., Dollar General, Genesco, Sher-

win-Williams, Claire’s Stores, Lowe’s Cos., Fastenal, Staples, AutoNation, Best Buy, Williams-

Sonoma, Ross Stores, Nordstrom, Michaels Stores.

Semiconductors (7): Intel, Maxim Integrated Prods, Altera, Linear Technology, Texas Instru-

ments, KLA-Tencor, Lam Research.

Software & Services (6): Microsoft, Adobe Systems, Fiserv, Electronic Arts, CACI Interna-

tional, Autodesk.

Technology Hardware & Equipment (10): EMC, Cisco Systems, Dell, Motorola, Benchmark

Electronics, Canon, Harris, Western Digital, Harman Intl., Apple Computer.

Telecommunications Services (5): Verizon Commun., BellSouth, CenturyTel, Sprint Nextel,

Alltel.

Transportation (8): Southwest Airlines, SkyWest, FedEx, CSX, Werner Enterprises, Expedi-

tors Intl., Burlington Santa Fe, JB Hunt Transport.

Utilities (18): National Fuel Gas, Nicor, Constellation Energy, Laclede Group, OGE Energy,

Scana, MDU Resources, New Jersey Resources, Exelon, AGL Resources, FirstEnergy, Edison

Intl., Sempra Energy, Wisconsin Energy, WPS Resources, Questar, Equitable Resources, UGI.
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Table 1: Simulation results for an AR(1) and ARCH(1) model from 10,000 iterations (5% level)
DGP: yt = 0.0 + 0.4yt−1 + εt, εt = σtet, σ2

t = 1 + 0.3ε2
t−1

Bandwidth = 1.06 min{SD, (interquartile range)/1.34}n−1/5, K(·) = φ(·)

et ∼ ±Gamma(α)

α \ n 100 200 400 800
1.0 5.34 6.18 5.95 6.34
0.9 6.64 6.87 7.72 8.58
0.7 9.88 13.19 15.73 18.40
0.5 19.55 28.29 38.19 50.46
0.3 42.90 62.65 79.35 91.79
0.1 68.26 85.43 95.37 99.53

et ∼ αN(0, 1) + (1− α)0

α \ n 100 200 400 800
1.0 4.71 5.03 5.18 5.47
0.9 14.22 26.16 46.55 72.91
0.8 39.85 69.82 92.01 99.44
0.7 70.28 93.30 99.67 100.0
0.6 89.51 99.12 100.0 100.0

* α = 1.0: size, α < 1: power

Table 2: OLS and LAD estimators and test statistic values
Sample Period: May 24, 1991 to May 23, 2006

Companies α̂OLS
n β̂OLS

n α̂LAD
n β̂LAD

n Bn p-value∗ runs test p-value

Universal Health 6.87e-4 0.014 -2.57e-3 0.0010 0.036 0.018 0.632 0.426
Biomet 6.57e-4 -0.089 -2.89e-4 -0.0473 7.047 0.970 2.086 0.148
Stryker 7.57e-4 -0.005 -2.41e-4 -0.0008 0.547 0.239 0.221 0.637
Becton Dickinson 4.44e-4 -0.052 -2.31e-4 -0.0037 1.488 0.524 3.856 0.049
Omnicare 9.23e-4 0.031 -2.53e-4 0.0008 0.003 0.001 1.403 0.236
Varian Medical Sys. 7.67e-4 -0.031 -2.47e-4 -0.0012 0.267 0.125 6.828 0.008
Humana 5.79e-4 -0.030 -2.53e-4 -0.0011 3.356 0.813 0.095 0.757
UnitedHealth Group 9.28e-4 0.037 6.37e-4 0.0211 3.235 0.801 0.685 0.407
Coventry Health Care 1.12e-3 -0.012 -2.48e-4 -0.0007 3.979 0.863 5.386 0.020

Note *: Left-tailed p-values.
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Table 3: Testing finite and symmetric densities at 5% level
Sample Period: May 24, 1991 to May 23, 2006

Densities Symmetric Asymmetric Sum
Infinite 41 (21.47%) 12 (23.08%) 53 (21.81%)
Finite 150 (78.53%) 40 (76.92%) 190 (78.19%)
Sum 191 (100.0%) 52 (100.0%) 243 (100.0%)

Table 4: Proportion of rejected companies out of 243 companies at 5% level (in percent)
Model: ri,t = αi,0 + βi,0ri,t−1 + εi,t

Sample Period \ Level 1.00 3.00 5.00 7.00 9.00 11.0
02-02-99 ∼ 05-23-06 2.05 3.29 4.52 5.34 7.81 8.64
04-17-98 ∼ 05-23-06 2.05 4.93 6.17 6.99 7.40 9.46
07-01-97 ∼ 05-23-06 1.64 4.93 6.58 9.46 9.46 12.75
09-17-96 ∼ 05-23-06 4.11 5.76 8.23 10.69 12.34 14.40
12-04-95 ∼ 05-23-06 4.11 6.99 8.23 9.87 13.58 14.81

All 02-21-95 ∼ 05-23-06 4.11 6.99 9.87 10.28 11.93 14.40
05-06-94 ∼ 05-23-06 4.11 11.11 12.34 13.99 16.46 18.10
07-23-93 ∼ 05-23-06 8.23 12.75 15.63 18.10 20.57 23.04
10-08-92 ∼ 05-23-06 11.93 14.81 17.69 19.34 23.04 24.27
12-24-91 ∼ 05-23-06 12.75 18.51 20.98 22.22 24.27 26.33
05-24-91 ∼ 05-23-06 11.93 18.10 21.81 24.27 25.10 27.16
02-02-99 ∼ 05-23-06 1.04 2.61 4.18 5.23 8.37 9.42
04-17-98 ∼ 05-23-06 2.61 4.71 6.28 6.80 7.32 9.94
07-01-97 ∼ 05-23-06 1.57 4.18 6.28 8.90 8.90 12.04
09-17-96 ∼ 05-23-06 4.18 5.75 7.32 9.94 11.51 13.08
12-04-95 ∼ 05-23-06 3.66 6.28 7.85 9.42 13.08 14.13

Sym. 02-21-95 ∼ 05-23-06 3.66 6.80 9.94 10.47 12.56 14.65
05-06-94 ∼ 05-23-06 2.61 8.90 10.47 12.04 15.18 17.27
07-23-93 ∼ 05-23-06 7.32 10.47 13.08 16.23 18.32 20.94
10-08-92 ∼ 05-23-06 11.51 14.65 18.32 19.89 21.98 23.56
12-24-91 ∼ 05-23-06 12.04 18.32 19.89 21.46 23.03 25.65
05-24-91 ∼ 05-23-06 12.04 17.80 21.46 24.08 25.13 27.74
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Figure 1: Histograms of p-values (left-tailed)
Model: ri,t = αi,0 + βi,0ri,t−1 + εi,t

All companies Companies with symmetric density
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