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1 Introduction

This note provides mathematical proofs of the results stated Baek, Cho, and Phillips (2014). We avoid

possible confusions by using an equation number system different from that in Baek, Cho, and Phillips

(2014) using square brackets.

1 Proofs

Proof of Theorem 1: It is elementary to show that plimn→∞σ̂
2
n,0 = σ2

∗. We therefore focus on the numerator

and denominator of (2) separately. The scaled numerator is n−1/2X(·)′MU and the uniform law of large

numbers (ULLN) can be applied to {n−1
∑n

t=1X
γ
t Zt}, so that for each j = 1, 2, . . . , 2 + k,

sup
γ∈Γ

∣∣∣∣∣n−1
n∑
t=1

Xγ
t Zt,j − E[Xγ

t Zt,j ]

∣∣∣∣∣ P→ 0, (A.1)

where Zt,j is the j-th row element of Zt. This result mainly follows from theorem 3(a) of Andrews (1992).

In particular, Assumption 1(ii) implies that Γ is totally bounded; for j = 1, 2, · · · , k + 2, E[|Xγ
t Zt,j |] ≤

E[M2
t ] < ∞ by Assumption 2, so that for each γ ∈ Γ, the ergodic theorem holds for n−1

∑n
t=1X

γ
t Zt,j ;

and finally X(·)
t Zt,j is Lipschitz continuous because for each j,

|Xγ
t Zt,j −X

γ′

t Zt,j | ≤ sup
γ∈Γ
|Xγ

t log(Xt)| · |Zt,j | · |γ − γ′| ≤M2
t |γ − γ′|, (A.2)

whereM2
t = Op(1). These three conditions are the assumptions required in theorem 3(a) of Andrews (1992)

to prove the ULLN. This also implies that E[X
(·)
t Zt] is continuous on Γ. Since n−1

∑n
t=1 ZtZ

′
t

P→ E[ZtZ
′
t]

by ergodicity we obtain supγ∈Γ
∣∣n−1/2X(γ)′MU− n−1/2{X(γ)′U− E[Xγ

t Z′t]E[ZtZ
′
t]
−1Z′U}

∣∣ = op(1).

Given this, it follows that n−1/2{X(·)′U − E[X
(·)
t Z′t]E[ZtZ

′
t]
−1Z′U} ⇒ G(·), where G(·) is a zero mean

Gaussian process with the covariance kernel κ(·, ·). For this, we apply the central limit theorem (CLT)

to n−1/2Z′U, so that n−1/2Z′U
A∼ N(0,E[U2

t ZtZ
′
t]). Next, X(·)

t Ut is Lipschitz continuous, so that

|Xγ
t Ut − X

γ′

t Ut| ≤ supγ∈Γ |X
γ
t log(Xt)| · |Ut| · |γ − γ′| ≤ M2

t |γ − γ′| by Assumption 2, implying that

E[sup|γ−γ′|≤η |X
γ
t Ut −X

γ′

t Ut|2r]
1
2r ≤ E[M4r

t ]
1
2r η. This implies that {n−1/2X(·)′U} is tight because Os-

siander’s L2r entropy is finite by theorem 1 of Doukhan, Massart, and Rio (1995). We further note that (A.2)

implies that for some c > 0, E[sup|γ−γ′|<η |E[(Xγ
t −X

γ′

t )Z′t]E[ZtZ
′
t]
−1ZtUt|2r]

1
2r ≤ cE[M4r

t ]
1
2rE[M2

t ]η,

so that {n−1/2E[X
(·)
t Z′t] E[ZtZ

′
t]
−1Z′U} is tight. Hence {n−1/2(X(·)′U− E[X

(·)
t Z′t] E[ZtZ

′
t]
−1Z′U)} is
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also tight. Furthermore, the finite-dimensional multivariate CLT holds by the martingale CLT. It follows that

n−1/2{X(·)′U− E[X
(·)
t Z′t]E[ZtZ

′
t]
−1Z′U} ⇒ G(·), implying that n−1/2X(·)′MU⇒ G(·).

Second, we apply the ULLN to n−1X(·)′MX(·). We separate our proof into two parts: we first show

that supγ∈Γ |n−1X(γ)′X(γ)−E[X2γ
t ]| = op(1) and next show that supγ∈Γ |n−1X(γ)′Z(Z′Z)−1Z′X(γ)−

E[Xγ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ
t ]| = op(1). It then follows that supγ∈Γ |n−1X(γ)′MX(γ)− E[X2γ

t ] + (E[Xγ
t

Z′t]E[ZtZ
′
t]
−1E[ZtX

γ
t ])| = op(1). For this goal, we first note that X2(·)

t is Lipschitz continuous, so that

|X2γ
t − X

2γ′

t | ≤ 2 supγ∈Γ |X
2γ
t log(Xt)| · |γ − γ′| ≤ 2 supγ∈Γ |X

γ
t log(Xt)| · supγ∈Γ |X

γ
t | · |γ − γ′| ≤

2M2
t |γ − γ′|, and 2M2

t = Op(1) by Assumption 2. Theorem 3 of Andrews (1992) now shows that the

ULLN holds for {n−1
∑n

t=1X
2(·)
t − E[X

2(·)
t ]}. We next note that

sup
γ∈Γ

∣∣n−1X(γ)′Z(Z′Z)−1Z′X(γ)− E[Xγ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ
t ]
∣∣

≤ sup
γ∈Γ

∣∣(n−1X(γ)′Z− E[Xγ
t Z′t])(n

−1Z′Z)−1n−1Z′X(γ)
∣∣

+ sup
γ∈Γ

∣∣E[Xγ
t Z′t]((n

−1Z′Z)−1 − E[ZtZ
′
t]
−1)n−1Z′X(γ)

∣∣
+ sup
γ∈Γ

∣∣E[Xγ
t Z′t]E[ZtZ

′
t]
−1(n−1Z′X(γ)− E[ZtX

γ
t ])
∣∣ .

Hence, supγ∈Γ |(n−1X(γ)′Z) − E[Xγ
t Z′t]| = op(1) by (A.1), and (n−1Z′Z)−1 − E[ZtZ

′
t]
−1 = op(1)

by Assumption 2 and ergodicity. Furthermore, supγ∈Γ
∣∣n−1X(γ)′Z

∣∣ = Op(1) by Assumption 2, so that

supγ∈Γ |E[Xγ
t Zt]| = O(1). Therefore, supγ∈Γ |(n−1X(γ)′Z − E[Xγ

t Z′t])(n
−1Z′Z)−1n−1Z′X(γ)| ≤

supγ∈Γ
∣∣(n−1X(γ)′Z− E[Xγ

t Z′t])
∣∣ · ∣∣(n−1Z′Z)−1

∣∣ · supγ∈Γ
∣∣n−1Z′X(γ)

∣∣ = op(1), where for an arbi-

trary function f(x) := [fi,j(x)], we let supx |f(x)| := [supx |fi,j(x)|]. In a similar manner, it also follows

that supγ∈Γ |E[Xγ
t Z′t]((n

−1Z′Z)−1 − E[ZtZ
′
t]
−1)n−1Z′X(γ)| ≤ supγ∈Γ |E[Xγ

t Z′t]| · |((n−1Z′Z)−1 −

E[ZtZ
′
t ]−1)|·supγ∈Γ |n−1Z′X(γ)| = op(1) and supγ∈Γ

∣∣E[Xγ
t Z′t]E[ZtZ

′
t]
−1(n−1Z′X(γ)− E[ZtX

γ
t ])
∣∣ ≤

supγ∈Γ |E[Xγ
t Z′t]| ·

∣∣E[ZtZ
′
t]
−1
∣∣ supγ∈Γ

∣∣(n−1Z′X(γ)− E[ZtX
γ
t ])
∣∣ = op(1). These two facts imply

that supγ∈Γ
∣∣n−1X(γ)′Z(Z′Z)−1Z′X(γ)− E[Xγ

t Z′t]E[ZtZ
′
t]
−1E[ZtX

γ
t ]
∣∣ = op(1). Use of the continuous

mapping theorem completes the proof. �

Before proving Theorem 2, we provide supplementary lemmas to assist in proving the main claim more

efficiently.

Lemma A1. Given Assumptions 1 and 3,

(i) L′1U = Op(
√
n), Z′U = Op(

√
n), K′1U = Op(

√
n), where for j = 1, 2, . . ., Kj := [Lj

... 0n×k];
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(ii) L′1Z = Op(n), Z′Z = Op(n), K′1Z = Op(n);

(iii) L′1L1 = Op(n), L′1K1 = Op(n), L′2U = Op(n), L′2Z = Op(n), K′1Z = Op(n), K′1K1 = Op(n),

K′2U = Op(n), and K′2Z = Op(n); and

(iv) L′2U = op(n) and K′2U = op(n). �

Lemma A2. Given Assumptions 1, 3, andH′′0 ,

(i) L(1)
n (0;α) = 2(α∗−α)L′1MU + 2U′K1(Z′Z)−1Z′U−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U,

where for j = 1, 2, . . ., L(j)
n (0;α) := (∂j/∂γj)Ln(γ;α)|γ=0;

(ii) L(1)
n (0;α) = 2(α∗ − α)L′1MU + op(

√
n); and

(iii) L(2)
n (0;α) = −2(α∗ − α)2L′1ML1 + op(n). �

Lemma A3. Given Assumptions 1, 3, andH′′0 ,

(i) QLR(γ=0;β)
n = {L′1MU}2/{σ̂2

n,0(L′1ML1)}+ op(1); and

(ii) QLR(γ=0;β)
n = Op(1). �

Lemma A4. Given Assumptions 1, 3, andH′′0 ,

(i) QLR(γ=0;α)
n = {L′1MU}2/{σ̂2

n,0(L′1ML1)}+ op(1); and

(ii) QLR(γ=0;α)
n = Op(1). �

Proof of Lemma A1: (i) By the definition of K1, we note that if L′1U = Op(
√
n), K′1U = Op(

√
n). We,

therefore, focus on proving that L′1U = Op(
√
n) and Z′U = Op(

√
n). We also note that the structures of

L′1U and Z′U are identical. Accordingly, we let R be generic notation for L1 and Z and prove the given

claims using R′U.

If we let R = [Rtj ], R′U =
∑
RtjUt, which obeys the CLT if E[R2

tjU
2
t ] < ∞. We note that

E[R2
tjU

2
t ] ≤ E[R4

tj ]
1/2E[U4

t ]1/2 by Cauchy-Schwarz, so the desired result follows since E[Z4
tj ] < ∞,

E[log4(Xt)] <∞, and E[U4
t ] <∞ by Assumption 3.

(ii) As in (i), if L′1Z = Op(n), K′1Z = Op(n) by the definition of K1. As before, we let R be generic

notation for L1 and Z and prove the given claims using R′Z. As R′Z = [
∑
RtjZti], the result follows by

ergodicity if E[|RtjZti|] <∞,which holds by virtue of Cauchy-Schwarz and the fact that E[log2(Xt)] <∞

and E[Z2
ti] <∞ by Assumption 3.

(iii) By the definitions of K1 and K2, if L′1L1 = Op(n), L′2U = Op(n), L′2Z = Op(n), and L′1Z =

Op(n) then L′1K1 = Op(n), K′1Z = Op(n), K′2U = Op(n), K′1K1 = Op(n), and K′2Z = Op(n). We

have already shown that L′1Z = Op(n) in (ii). We, therefore, focus on proving L′1L1 = Op(n), L′2U =
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Op(n), and L′2Z = Op(n). Let R and F be generic notations for L1 or L2; and L1, U, or Z, respectively.

For brevity, only R′F = Op(n) is proved and this follows in the same way by ergodicity, Cauchy-Schwarz

and the moment conditions in Assumption 3 which ensure that E[log2(Xt)] < ∞, E[log4(Xt)] < ∞,

E[U2
t ] <∞, and E[Z2

ti] <∞.

(iv) From (iii), we note that the ergodic theorem applies to n−1L′2U and n−1K′2U and E[log2(Xt)Ut]

= 0, so that n−1L′2U = op(1) and n−1K′2U = op(1), completing the proof. �

Proof of Lemma A2: (i) We can obtain the first-order derivative with respect to γ as follows:

L(1)
n (0;α) = 2P(α)′Q(0)[Q(0)′Q(0)]−1K1P(α) + P(α)′Q(0)(d/dγ)[Q(0)′Q(0)]−1Q(0)′P(α).

We also note that

(d/dγ)[Q(0)′Q(0)]−1 = −(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1, (A.3)

and that P(α) = Y−αι = Z[α∗−α, ξ∗]′+ U = Zκ(α) + U by letting that κ(α) := [α∗−α, ξ∗]′. Going

forward we suppress α of κ(α) for notational simplicity. It follows that

L(1)
n (0;α) = 2(Zκ + U)′Z(Z′Z)−1K′1(Zκ + U)︸ ︷︷ ︸

(∗)

−(Zκ + U)′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′(Zκ + U)︸ ︷︷ ︸
(∗∗)

.

We now examine each component on the right side. The first component (*) can be expressed as a sum of

four other components: (a) 2κ′Z′Z(Z′Z)−1K′1Zκ = 2κ′K
′
1Zκ; (b) 2κ′K′1U; (c) 2U′Z(Z′Z)−1K′1Zκ =

2κ′Z′K1(Z′Z)−1Z′U; and (d) 2U′Z(Z′Z)−1K′1U. Next, the second component (**) can also be expressed

as a sum of four components: (a) −κ′Z′K1κ − κ′K′1Zκ = −2κ′K′1Zκ; (b) −U′Z(Z′ Z)−1Z′K1κ −

κ′K′1Z(Z′Z)−1Z′U = −2κ′K′1Z(Z′Z)−1Z′U; (c) −U′Z(Z′Z)−1K′1Zκ − κ′Z′K1(Z′Z)−1Z′U = −2

κ′Z′K1(Z′Z)−1Z′U; and (d) −U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′ Z)−1Z′U. Adding and organizing all of

these according to their orders of convergence yields the following

• (a) 2κ′K′1Zκ− 2κ′K′1Zκ = 0;

• (b, c) 2κ′{K′1 + Z′K1(Z′Z)−1Z′ −K′1Z(Z′Z)−1Z′ − Z′K1(Z′Z)−1Z′}U = 2(α∗ − α)L′1MU;

• (d) 2U′Z(Z′Z)−1K′1U−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U,
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so that the first-order derivative is now obtained as

L(1)
n (0;α) = 2(α∗ − α)L′1MU + 2U′K1(Z′Z)−1Z′U−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U.

(ii) Given the result in (i), we note that L′1MU = L′1U − L′1Z(Z′Z)−1Z′U, and Lemma A1(i and

ii) implies that L′1MU = Op(
√
n). We also note that K′1U = [L′1U

... 0] = Op(
√
n), so that Lemma

A1(i and ii) implies that U′K1(Z′Z)−1Z′U = Op(1). Furthermore, Lemma A1(i and ii) implies that

U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U = Op(1). Therefore,

L(1)
n (0;α) = 2(α∗ − α) L′1MU︸ ︷︷ ︸

Op(
√
n)

+2 U′K1(Z′Z)−1Z′U︸ ︷︷ ︸
Op(1)

−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U︸ ︷︷ ︸
Op(1)

= 2(α∗ − α)L′1MU + op(
√
n).

(iii) The second-order derivative is

L(2)
n (0;α) = 2P(α)′K1[Q(0)′Q(0)]−1K′1P(α) + 4P(α)′Q(0)(d/dγ)[Q(0)′Q(0)]−1K′1P(α)

+ 2P(α)′Q(0)[Q(0)′Q(0)]−1K′2P(α) + P(α)′Q(0)(d2/dγ2)[Q(0)′Q(0)]−1Q(0)′P(α),

where

(d2/dγ2)[Q(0)′Q(0)]−1 =2Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′

− (Z′Z)−1(2K′1K1 + Z′K2 + K′2Z)(Z′Z)−1, (A.4)

and (A.3) already provides the specific form of (d/dγ)[Q(0)′Q(0)]−1. Using these results and arranging

them, we obtain the following second-order derivative:

L(2)
n (0;α) = 2(Zκ + U)′{K1(Z′Z)−1K′1 + Z(Z′Z)−1K′2}(Zκ + U)

− 4(Zκ + U)′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1K′1(Zκ + U)

+ 2(Zκ + U)′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′(Zκ + U)

− (Zκ + U)′Z(Z′Z)−1(2K′1K1 + Z′K2 + K′2Z)(Z′Z)−1Z′(Zκ + U). (A.5)

We again organize this expression into three terms according to their orders:
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• 2κ′{Z′K′1(Z′Z)−1K′1+K′2}Zκ−4κ′(Z′K1+K′1Z)(Z′Z)−1K′1Zκ+2κ′(Z′K1+K′1Z)(Z′Z)−1(Z′

K1 +K′1Z)κ−κ′(2K′1K1 +Z′K2 +K′2Z)κ = 2κ′K′1Z(Z′Z)−1Z′K1κ−2κ′K′1K1κ = −2(α∗−

α)2L′1ML1;

• 4κ′Z′K1(Z′Z)−1K′1U−4κ′(Z′K1+K′1Z)(Z′Z)−1K′1U−4κ′Z′K1(Z′Z)−1(Z′K1+K′1Z)(Z′Z)−1

Z′U + 2κ′K′2U + 2κ′Z′K2(Z′Z)−1Z′U + 4κ′(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U

−2κ′(2K′1K1 + Z′K2 + K′2Z)(Z′Z)−1Z′U = 2(α∗ − α)[L′2MU − 2L′1MK1(Z′Z)−1Z′U −

2L′1Z(Z′Z )−1K′1MU]; and

• 2[U′K1(Z′Z)−1K′1U+U′K2(Z′Z)−1Z′U−2U′K1(Z′Z)−1(Z′K1 +K′1Z)(Z′Z)−1Z′U]+2U′Z

(Z′Z)−1[(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)−K′1K1 − Z′K2](Z′Z)−1Z′U.

Next apply Lemma A1 to each term. First, the proof of Lemma A3 has already shown that L′1ML1 =

Op(n) and L′2MU = op(n). Second, L′1MK1 = L′1K1 − L′1Z(Z′Z)−1Z′K1. Assumption 3 and

Lemma A1(ii, iii, and iv) now imply that L′1MK1(Z′Z)−1Z′U = op(n). Third, K′1MU = K′1U −

K′1Z(Z′Z)−1Z′U = op(n) by Lemma A1(i and iv), so that L′1Z(Z′Z)−1K′1MU = op(n) by Lemma

A1(ii and iii). Therefore, L′2MU − 2L′1MK1(Z′Z)−1Z′U − 2L′1Z(Z′Z)−1K′1MU = op(n). Finally,

we combine all components in Lemma A1 and obtain that U′K1(Z′Z)−1K′1U + U′K2(Z′Z)−1Z′U −

2U′K1(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U + U′Z (Z′Z)−1[(Z′K1 + K′1Z)(Z′Z)−1 (Z′K1 + K′1Z) −

K′1K1 − Z′K2](Z′Z)−1Z′U = op(n). Thus, the first, third, and final facts now imply that L(2)
n (0;α) =

−2(α∗ − α)2L′1ML1 + op(n). This completes the proof. �

Proof of Lemma A3: (i) Applying a second-order Taylor expansion to Ln(γ;β) and optimizing with respect

to γ, we have

sup
γ
{Ln(γ;β)− Ln(0;β)} = −{L

(1)
n (0;β)}2

2L
(2)
n (0;β)

+ op(1) =
{βL′1MU}2

β2L
′
1ML1 − βL′2MU

+ op(1),

where L(1)
n (0;β) := (d/dγ)L(1)

n (0;β) = 2βL′1MU and L(2)
n (0;β) := (d2/dγ2)L(1)

n (0;β) = 2βL′2MU−

2β2L′1ML1. In (ii), we show that L′2MU = op(n), so that the desired result follows.

(ii) We partition the proof into three components. First, from the fact that L′1MU = L′1U−L′1Z(Z′Z)−1

Z′U, Lemma A1(i and ii) and Assumption 3 imply that L′1MU = Op(
√
n). Second, we note that

L′1ML1 = L′1L1−L′1Z(Z′Z)−1Z′L1, so that Lemma A1(ii and iii) and Assumption 3 imply that L′1ML1 =

Op(n). Third, L′2MU = L′2U − L′2Z(Z′Z)−1Z′U. Lemma A1(ii and iii) and Assumption 3 imply that
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L′2MU = Op(n). Further, L′2MU = L′2U−L′2Z(Z′Z)−1Z′U. Thus, L′2MU = op(n) by Lemma A1(iv).

Given these results, it now follows that the right side of (3) is Op(1) as desired. �

Proof of Lemma A4: (i) Applying a second-order Taylor expansion to Ln(γ;α) and optimizing with respect

to γ, we have

sup
γ
{Ln(γ;α)− Ln(0;α)} = −{L

(1)
n (0;α)}2

2L
(2)
n (0;α)

+ op(1) =
{2(α∗ − α)n−1/2L

′
1MU}2

4(α∗ − α)2n−1L
′
1ML1

+ op(1)

using Lemma A2(ii and iii), so that the desired result follows.

(ii) This is obvious from Lemmas A3 and A4(i). �

Proof of Theorem 2: The desired results immediately follow from Lemmas A3 and A4. In particular, we

applied the MDS (martingale difference sequence) CLT and the continuous mapping theorem to derive the

asymptotic null distribution of Z0. �

Before proving Theorem 3, we provide supplementary lemmas to assist in an efficient proof.

Lemma A5. Given Assumptions 1 and 4,

(i) C′1U = Op(
√
n), Z′U = Op(

√
n), J′1U = Op(

√
n), where for j = 1, 2, . . ., Jj := [0n×1

... Cj
... 0n×k];

(ii) C′1Z = Op(n), Z′Z = Op(n), J′1Z = Op(n);

(iii) C′1C1 = Op(n), C′1J1 = Op(n), C′2U = Op(n), C′2Z = Op(n), J′1Z = Op(n), J′1J1 = Op(n),

J′2U = Op(n), and J′2Z = Op(n); and

(iv) C′2U = op(n) and J′2U = op(n). �

Lemma A6. Given Assumptions 1, 4, andH′′′0 ,

(i) L(1)
n (1; ξ) = 2(ξ∗ − ξ)C′1MU + 2U′J1(Z′Z)−1Z′U − U′Z(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1Z′U,

where for j = 1, 2, . . ., L(j)
n (1; ξ) := (∂j/∂γj)Ln(γ; ξ)|γ=1;

(ii) L(1)
n (1; ξ) = 2(ξ∗ − ξ)C′1MU + op(

√
n); and

(iii) L(2)
n (1; ξ) = −2(ξ∗ − ξ)2C′1MC1 + op(n). �

Lemma A7. Given Assumptions 1, 4, andH′′′0 ,

(i) QLR(γ=1;β)
n = {C′1MU}2/{σ̂2

n,0(C′1MC1)}+ op(1); and

(ii) QLR(γ=1;β)
n = Op(1). �

Lemma A8. Given Assumptions 1, 4, andH′′′0 ,
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(i) QLR(γ=1;ξ)
n = {C′1MU}2/{σ̂2

n,0(C′1MC1)}+ op(1); and

(ii) QLR(γ=1;ξ)
n = Op(1). �

Proof of Lemma A5: (i) The plan of this proof is similar to that of Lemma A1. By the definition of J1, we

note that if C′1U = Op(
√
n), J′1U = Op(

√
n). We also note that the moment condition in Assumption 4

is stronger than that of Assumption 3. This implies that Z′U = Op(
√
n) follows from Lemma A1(i). We

therefore focus on proving C′1U = Op(
√
n).

From the definition of C′1U, we note that n−1/2C′1U = n−1/2
∑n

t=1Xt log(Xt)Ut, and we can apply

the CLT if E[X2
t log2(Xt)U

2
t ] < ∞. Note that E[X2

t log2(Xt)U
2
t ] ≤ E[X4

t log4(Xt)]
1/2 E[U4

t ]1/2 ≤

E[X8
t ]1/4E[log8(Xt)]

1/4E[U4
t ]1/2 by applying Cauchy-Schwarz. Each element in the right side is finite by

Assumption 4(ii.a), so that E[X2
t log2(Xt)U

2
t ] < ∞. Alternatively, E[X2

t log2(Xt)U
2
t ] ≤ E[X4

t ]1/2E[log4

(Xt)U
4
t ]1/2 ≤ E[X4

t ]1/2E[log8(Xt)]
1/4E[U8

t ]1/4, and Assumption 4(ii.b) implies that the right side is finite.

Finally, we note that E[X2
t log2(Xt)U

2
t ] ≤ E[log4(Xt)]

1/2E[X4
t U

4
t ]1/2 ≤ E[log4(Xt)]

1/2 E[X8
t ]1/4E[U8

t

]1/4, and Assumption 4(ii.c) implies that the right side is finite. Thus, C′1U = Op(
√
n).

(ii) As in (i), if C′1Z = Op(n), J′1Z = Op(n) by the definition of J1. Furthermore, Lemma A1(ii)

already shows that Z′Z = Op(n), and the current moment condition is stronger than Assumption 3, so that

Z′Z = Op(n). We therefore focus on proving C′1Z = Op(n). By definition n−1C′1Z = [n−1
∑
Xt log(Xt)

Wt,j ], so that if E[|Xt log(Xt)Wt,j |] <∞, the egodict theorem holds, giving the desired result. We first con-

sider the case where Xt = Wt,j . If so, E[|Xt log(Xt)Wt,j |] = E[|X2
t log(Xt)|] ≤ E[X4

t ]1/2E[log2(Xt)]
1/2

< ∞ by Cauchy-Schwarz and Assumption 4. Next consider the case where Xt 6= Wt,j : (a) E[|Xt log

(Xt)Wt,j |] ≤ E[|Xt log(Xt)|2]1/2E[W 2
t,j ]

1/2 ≤ E[X4
t ]1/4E[| log4(Xt)]

1/4E[W 2
t,j ]

1/2; (b) E[|Xt log(Xt)

Wt,j |] ≤ E[|XtWt,j |2]1/2E[log2(Xt)]
1/2 ≤ E[X4

t ]1/4E[W 4
t,j ]

1/4E[log2(Xt)]
1/2; and finally (c) E[|Xt log

(Xt)Wt,j |] ≤ E[| log(Xt)Wt,j |2]1/2E[X2
t ]1/2 ≤ E[log4(Xt)]

1/4E[W 4
t,j ]

1/4E[X2
t ]1/2 by Cauchy-Schwarz.

Note that the elements on the right side of (a), (b), and (c) are finite by Assumption 4.

(iii) By the definition of J1 and J2, if C′1C1 = Op(n), C′2U = Op(n), C′2Z = Op(n), and C′1Z =

Op(n), then C′1J1 = Op(n), J′1Z = Op(n), J′2U = Op(n), J′1J1 = Op(n), and J′2Z = Op(n). We have

already shown that C′1Z = Op(n) in (ii). We therefore focus on proving C′1C1 = Op(n), C′2U = Op(n),

and C′2Z = Op(n).

We examine each case in turn. (a) Note that n−1C′1C1 = n−1
∑
X2
t log2(Xt), so that if E[X2

t log2(Xt)]

< ∞, the ergodic theorem holds. We also note that E[X2
t log2(Xt)] ≤ E[X4

t ]1/2E[log4(Xt)]
1/2, and

the right side is finite by Assumption 4. (b) Note that n−1C′2U = n−1
∑
Xt log2(Xt)Ut and the er-
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godic theorem holds if E[|Xt log2(Xt)Ut|] < ∞. Furthermore, we note that (b.i) E[|Xt log2(Xt)Ut|] ≤

E[|Xt log2(Xt)|2]1/2E[U2
t ]1/2 ≤ E[X4

t ]1/4E[log8(Xt)]
1/4E[U2

t ]1/2; (b.ii) E[|Xt log2(Xt)Ut|] ≤ E[|Ut log2

(Xt)|2]1/2E[X2
t ]1/2 ≤ E[U4

t ]1/4E[log8(Xt)]
1/4E[X2

t ]1/2; and finally (b.iii) E[|Xt log2(Xt)Ut|] ≤ E[|Ut

Xt|2]1/2E[log4(Xt)]
1/2 ≤ E[|Ut|4]1/4E[X4

t ]1/4E[log4(Xt)]
1/2. We further note that each element form-

ing the right sides of these upper bounds is finite by Assumption 4(ii.a), 4(ii.b), and 4(ii.c), respectively.

Thus, E[|Xt log2(Xt)Ut|] < ∞. (c) Finally, we note that n−1C′2Z = [n−1
∑
Xt log2 (Xt)Wt,j ], so that

if E[|Xt log2(Xt)Wt,j |] < ∞, the ergodic theorem applies. First, if Wt,j = Xt, the proof is the same as

that for E[X2
t log2(Xt)] < ∞, which we have just proved. Second, if Wt,j 6= Xt, by the same argument

as in (b), (c.i) E[|Xt log2(Xt)Wt,j |] ≤ E[X4
t ]1/4E[log8(Xt)]

1/4 E[W 2
t,j ]

1/2; (c.ii) E[|Xt log2(Xt)Wt,j |] ≤

E[W 4
t,j ]

1/4E[log8(Xt)]
1/4E[X2

t ]1/2; and (c.iii) E[|Xt log2(Xt)Wt,j |] ≤ E[W 4
t,j ]

1/4E[X4
t ]1/4E[log4(Xt) ]1/2.

Given these, the right sides in (c.i), (c.ii), and (c.iii) are finite if Assumption 4(ii.a), 4(ii.b) or 4(ii.c) holds.

Thus, E[|Xt log2(Xt)Wt,j |] <∞.

(iv) From the proof of (iii), the ergodic theorem applies to n−1C′2U and n−1J′2U. Furthermore,

E[Xt log2(Xt)Ut] = 0, so that n−1C′2U = op(1) and n−1J′2U = op(1). This completes the proof. �

Proof of Lemma A6: (i) The first-order derivative with respect to γ is

∂

∂γ
Ln(γ; ξ) = 2P̃(ξ)′Q̃(γ)[Q̃(γ)′Q̃(γ)]−1 ∂

∂γ
Q̃(γ)′P̃(ξ) + P̃(ξ)′Q̃(γ)

∂

∂γ
[Q̃(γ)′Q̃(γ)]−1Q̃(γ)′P̃(ξ).

When γ = 1, we can write the derivative as follows:

L(1)
n (1; ξ) = 2P̃(ξ)′Z(Z′Z)−1J′1P̃(ξ) + P̃(ξ)′Z(d/dγ)[Q̃(1)′Q̃(1)]−1Z′P̃(ξ).

We also note that

(d/dγ)[Q̃(1)′Q̃(1)]−1 = −(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1 (A.6)

and that P̃(ξ) = (Y − ξX) = Z[α∗, ξ∗ − ξ,η′∗]′ + ZU = Zζ(ξ) + U by letting ζ(ξ) := [α∗, ξ∗ − ξ,η′∗]′.

Going forward, we suppress ξ in ζ(ξ) for notational simplicity. Then, it follows that

L(1)
n (1; ξ) = 2(Zζ +U)′Z(Z′Z)−1J′1(Zζ +U)− (Zζ +U)′Z(Z′Z)−1(Z′J1 +J′1Z)(Z′Z)−1Z′(Zζ +U).

(ii) We note that the form of L(1)
n (1; ξ) is identical to the form of L(1)

n (0;α) in Lemma A2(i), provided

that (ξ∗ − ξ), C1, and J1 are replaced by (α∗ − α), L1, and K1, respectively. Furthermore, the contents of
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Lemma A5 are also identical to those of Lemma A1, provided that C1, C2, J1, and J2 are replaced by L1,

L2, K1, and K2, respectively. Thus, we can repeat the proof of Lemma A2(ii) for the proof here because

Lemma A2(ii) holds as a corollary of Lemma A1.

(iii) We now examine the second-order derivative. We obtain

L(2)
n (1; ξ) =2P̃(ξ)′J1(Z′Z)−1J′1P̃(ξ) + 4P̃(ξ)′Z(d/dγ)[Q̃(1)′Q̃(1)]−1J′1P̃(ξ)

+ 2P̃(ξ)′Z(d/dγ)[Q̃(1)′Q̃(1)]−1J′1P̃(ξ) + P̃(ξ)′Z(d2/dγ2)[Q̃(1)′Q̃(1)]−1Z′P̃(ξ),

where (d2/dγ2)[Q̃(1)′Q̃(1)]−1 = 2(Z′Z)−1(Z′J1+J′1Z)(Z′Z)−1(Z′J1+J′1Z)(Z′Z)−1−(Z′Z)−1(2J′1J1

+Z′J2 + J′2Z)(Z′Z)−1, and (A.6) already provides the form of (d/dγ)[Q̃(1)′Q̃(1)]−1. Using these expres-

sions and rearranging, we obtain the following second-order derivative:

L(2)
n (1; ξ) = 2(Zζ + U)′{J1(Z′Z)−1J′1 + Z(Z′Z)−1J′2}(Zζ + U)

− 4(Zζ + U)′Z(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1J′1(Zζ + U)

+ 2(Zζ + U)′Z(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1Z′(Zζ + U)

− (Zζ + U)′Z(Z′Z)−1(2J′1J1 + Z′J2 + J′2Z)(Z′Z)−1Z′(Zζ + U).

We again note that the form of L(2)
n (1; ξ) is identical to that of L(2)

n (0;α) in (A.5), provided that J1, J2, and

ζ are replaced by K1, K2, and κ, respectively. Given Lemma A5, we may again repeat the proof of Lemma

A2(iii) for the proof here as in the proof of (ii). �

Proof of Lemma A7: (i) Applying a second-order Taylor expansion to Ln(γ;β) and optimizing with respect

to γ, we have

sup
γ
{Ln(γ;β)− Ln(1;β)} = −{L

(1)
n (1;β)}2

2L
(2)
n (1;β)

+ op(1) =
{βC′1MU}2

β2C
′
1MC1 − βC′2MU

+ op(1),

In (ii), we show that C′2MU = op(n), so that the desired result follows.

(ii) We partition the proof into three components. First, from the fact that C′1MU = C′1U−C′1Z(Z′Z)−1

Z′U, Lemma A5(i and ii) and Assumption 4 imply that C′1MU = Op(
√
n). Second, we note that

C′1MC1 = C′1C1 − C′1Z(Z′Z)−1Z′C1, so that Lemma A5(ii and iii) and Assumption 4 imply that

C′1MC1 = Op(n). Third, C′2MU = C′2U − C′2Z(Z′Z)−1Z′U. Lemma A5(ii and iii) and Assump-

tion 4 imply that C′2MU = Op(n). Further, C′2MU = C′2U−C′2Z(Z′Z)−1Z′U. Thus, C′2MU = op(n)
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by Lemma A5(iv). Given these findings, the desired result now follows. �

Proof of Lemma A8: (i) Applying a second-order Taylor expansion to Ln(γ; ξ) and optimizing with respect

to γ, we have

sup
γ
{Ln(γ; ξ)− Ln(1; ξ)} = −{L

(1)
n (1; ξ)}2

2L
(2)
n (1; ξ)

+ op(1) =
{2(ξ∗ − ξ)n−1/2C

′
1MU}2

4(ξ∗ − ξ)2n−1C
′
1MC1

+ op(1)

using Lemma A6(ii and iii), so that the desired result follows.

(ii) This is obvious from Lemmas A7 and A8(i). �

Proof of Theorem 3: The desired results immediately follow from Lemmas A7 and A8. In particular, we

applied the MDS CLT and the continuous mapping theorem to derive the asymptotic null distribution of Z1.

�

Proof of Lemma 1: (i) We examine the second-order derivative of Nn(γ) and Dn(γ) and let γ converge to

zero. That is,

plim
γ→0

N (2)
n (γ) = plim

γ→0
2
{

(d/dγ)X(γ)′MU
}2

+ 2{X(γ)′MU}
{

(d2/dγ2)X(γ)′MU
}

= 2{L1MU}2

because plimγ→0(d/dγ)X(γ) = L1 and plimγ→0 X(γ)′MU = ι′MU = 0. We further note that

plim
γ→0

(d2/dγ2)Dn(γ) = plim
γ→0

2
{

(d2/dγ2)X(γ)′MX(γ) + (d/dγ)X(γ)′M(d/dγ)X(γ)
}

= 2L1ML1

because plimγ→0(d2/dγ2)X(γ)′MX(γ) = L′2Mι = 0 and plimγ→0(d/dγ)X(γ) = L1.

(ii) We now examine the second-order derivative of Nn(γ) and Dn(γ) and let γ converge to one. That

is,

plim
γ→1

N (2)
n (γ) = plim

γ→1
2
{

(d/dγ)X(γ)′MU
}2

+ 2{X(γ)′MU}
{

(d2/dγ2)X(γ)′MU
}

= 2{C1MU}2

because plimγ→1(d/dγ)X(γ) = C1 and plimγ→1 X(γ)′MU = X′MU = 0. We also note that

plim
γ→1

D(2)
n (γ) = plim

γ→1
2
{

(d2/dγ2)X(γ)′MX(γ) + (d/dγ)X(γ)′M(d/dγ)X(γ)
}

= 2C1MC1,

from the fact that plimγ→1(d2/dγ2)X(γ)′MX(γ) = C′2MX = 0 and plimγ→1(d/dγ)X(γ) = C1. �
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Proof of Theorem 4: The results in Lemma 1 imply that

sup
γ∈Γ

{X(γ)′MU}2

σ̂2
n,0X(γ)′MX(γ)

≥ max

[
{L1MU}2

σ̂2
n,0L1ML1

,
{C1MU}2

σ̂2
n,0C1MC1

]
.

Therefore, the desired results hold as corollaries of Theorems 1, 2, and 3. �

Proof of Theorem 5: We first note that P(E[Vt|Wt, Xt] = 0) < 1 under the given condition, implying that

P(E[Vt|Wt, log(Xt)] = 0) < 1 because log(·) is a one-to-one mapping. Thus, theorem 2 of Bierens (1982)

implies that for some j∗ ∈ N,

E[Vt logj∗(Xt)] 6= 0. (A.7)

We next consider minδ,β E[(Yt−Z′tδ−βX
γ
t )2]. Note that E[(Yt−Z′tδ−βX

γ
t )2] = E[(Ut+E[Yt|Wt]−

Z′tδ − βX
γ
t )2] = E[U2

t ] + E[(E[Yt|Wt] − Z′tδ − βX
γ
t )2], so that it follows that minδ,β E[(Yt − Z′tδ −

βXγ
t )2] = E[U2

t ] +E[(Z′t(δ∗− δ̃) + (m(Xt)− β̃Xγ
t ))2] by noting that E[Yt|Wt] = Z′tδ∗+m(Xt), where

 δ̃

β̃

 :=

 E[ZtZ
′
t] E[ZtX

γ
t ]

E[Z′tX
γ
t ] E[X2γ

t ]

−1  E[Zt(Z
′
tδ∗ +m(Xt))]

E[Xγ
t (Z′tδ∗ +m(Xt))]

 .
From this, it now follows that minδ,β E[(Yt − Z′tδ − βX

γ
t )2] = h(γ), where

h(γ) := E[U2
t ] + var[Qt](1− cov[Qt, Ut(γ)]2/{var[Ut(γ)]var[Qt]}),

Qt := m(Xt)− Z′tE[ZtZ
′
t]
−1E[Ztm(Xt)].

Note that we can apply the ULLN, so that QLRn/n = supγ∈Γ(1− h(γ)/h0) + op(1). Here,

1− h(γ)

h0
=

(
var[Qt]

var[Ut] + var[Qt]

)
corr2[Ut(γ), Qt]

because h0 = var[Ut] + var[Qt]. Note that var[Qt]/(var[Ut] + var[Qt]) ∈ (0, 1) and corr2[Ut(·), Qt] ∈

[0, 1) if there is no (β∗, γ∗) such that m(Xt) = β∗X
γ∗
t w.p. 1: there is no c such that for each γ, Ut(γ) =

c ·Qt. If there is such a (β∗, γ∗), corr2[Ut(γ∗), Qt] = 1, so thatQLRn/n = var[Qt]/(var[Ut] + var[Qt])+

op(1), and the proof is trivially completed.

We therefore from now suppose that there is no (β∗, γ∗) such that m(Xt) = β∗X
γ∗
t w.p. 1. The desired

proof is completed by showing that there is at least a single γ ∈ Γ such that corr2[Ut(γ), Qt] > 0. In other

words, if we show that g(·) := corr[Ut(·), Qt] is not a zero-function, the proof is completed. To show this
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by contradiction, we suppose that g(·) is constant on Γ, so that for each γ ∈ Γ,

g′(γ) =
1

var3/2[Ut(γ)]var[Qt]
(cov[Wt(γ), Qt]var[Ut(γ)]− cov[Ut(γ), Qt]cov[Wt(γ), Ut(γ)]) = 0,

where Wt(γ) := Xγ
t log(Xt)− Z′tE[ZtZ

′
t]
−1E[ZtX

γ
t log(Xt)], and this implies that

corr[Wt(γ), Qt] = corr[Ut(γ), Qt]corr[Wt(γ), Ut(γ)], (A.8)

so that

corr2[Wt(γ), Qt] = corr2[Ut(γ), Qt]corr2[Wt(γ), Ut(γ)]. (A.9)

Note that for each γ,

corr2[Wt(γ), Ut(γ)] < 1 (A.10)

by Cauchy-Schwarz’s inequality: for any c, Wt(γ) 6= c · Ut(γ) with probability 1. Next, we suppose

that γ, γ′ ∈ Γ and γ′ < γ. If γ′ is close to γ0, we can approximate Ut(γ′) using Taylor’s expansion:

Ut(γ
′) = Ut(γ) + (γ′ − γ)Wt(γ) + op(|γ′ − γ|). This implies that

g(γ′) =
cov[Ut(γ), Qt] + (γ′ − γ)cov[Wt(γ), Qt]

{var[Ut(γ)] + 2(γ′ − γ)cov[Ut(γ),Wt(γ)] + (γ′ − γ)2var[Wt(γ)]}1/2var[Qt]1/2
+ o(|γ′ − γ|)

=
cov[Ut(γ), Qt]

var[Ut(γ)]1/2var[Qt]1/2
= g(γ).

This equality can also be equivalently stated as

2

{
corr[Wt(γ), Qt]− corr[Ut(γ), Qt]corr[Wt(γ), Ut(γ)]

corr[Ut(γ), Qt]

}
= (γ′ − γ)

var[Wt(γ)]1/2

var[Ut(γ)]1/2

(
1− corr2[Wt(γ), Qt]

corr2[Ut(γ), Qt]

)
+ o(|γ′ − γ|).

Note that the left side of this equality is zero by (A.8), implying that corr2[Wt(γ), Qt] = corr2[Ut(γ), Qt]

because γ′ < γ. This fact, (A.9), and (A.10) imply that cov[Wt(·), Qt] = cov[Ut(·), Qt] = 0. Therefore,

for each γ ∈ Γ,

dj

dγj
cov[Ut(γ), Qt] = E[Xγ

t logj(Xt)Qt]− E[QtZt]
′E[ZtZ

′
t]
−1E[ZtX

γ
t logj(Xt)] = 0.
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This implies that for any j ≤ j∗,

lim
γ→0

dj

dγj
cov[Ut(γ), Qt] = E[logj(Xt)Qt]− E[QtZt]

′E[ZtZ
′
t]
−1E[Zt logj(Xt)] = 0. (A.11)

We here note that E[logj∗(Xt)Qt]− E[QtZt]
′E[ZtZ

′
t]
−1E[Zt logj∗(Xt)] = E[Vt logj∗(Xt)], so that (A.11)

implies that E[Vt logj∗(Xt)] = 0. This is a contradiction to (A.7). Therefore, g(·) must not be a constant

function, and this completes the proof.

(iii) By the definition of the QLR test,

QLRn =
n(σ̂2

n,0 − σ̂2
n,A)

σ̂2
n,0

= sup
γ∈Γ

{(n−1/2U + n−1N)′MX(γ)}2

σ̂2
n,0(X(γ)′MX(γ))

,

where N := [m(X1), . . . ,m(Xt), . . . ,m(Xn)]′. We examine the σ̂2
n,0 and n−1N′MX(·) as the asymptotic

behaviors of the other terms are already shown when deriving the asymptotic null distribution of the QLR

test.

We first examine the asymptotic behavior of σ̂2
n,0. Note that

σ̂2
n,0 = n−1(U + n−1/2N)′M(U + n−1/2N) = n−1U′MU + 2n−3/2N′MU + n−2N′MN.

Here, n−1U′U = σ2
∗ + op(1), N′MU = Op(n

−1), and N′MN = Op(n
−1) by the ergodic theorem under

the maintained assumptions. Therefore, σ̂2
n,0 = σ2

∗ + op(1).

Next, we examine the asymptotic behavior of n−1N′MX(·). Note that

1

n
N′MX(·) =

1

n
N′X(·)− 1

n
N′Z

(
1

n
Z′Z

)−1 1

n
Z′X(·).

In the proof of Theorem 1, we already showed that n−1Z′X(·) uniformly converges to E[ZtX
(·)
t ], and

n−1Z′Z
P→ E[ZtZ

′
t]. We also note that n−1N′Z = E[m(Xt)Zt] + op(1) and n−1N′X(·). Given the

moment condition, ULLN can be applied to {n−1
∑n

t=1X
(·)
t m(Xt)}. The ergodic theorem holds for

n−1
∑n

t=1X
γ
t m(Xt), and X(·)

t m(Xt) is Lipschitz continuous because

|Xγ
t m(Xt)−Xγ′

t m(Xt)| ≤ sup
γ∈Γ
|Xγ

t log(Xt)| · |m(Xt)| · |γ − γ′| ≤M2
t |γ − γ′|,

and M2
t = Op(1). These three conditions are the assumptions required in theorem 3(a) of Andrews (1992)

to prove the ULLN. Thus, supγ∈Γ |n−1N′MX(γ)− µ(γ)| = op(1).
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From these facts, it follows that QLRn ⇒ supγ∈Γ {G(γ) + µ(γ)}2/σ2(γ). We also note that Z(·) :=

G(·)/σ(·). Therefore, QLRn ⇒ supγ∈Γ{Z(γ) + µ(γ)/σ(γ)}2. This completes the proof. �

Remarks 1. We also note that

1

n
N′ML1 =

1

n
N′L1 −

1

n
N′Z

(
1

n
Z′Z

)−1 1

n
Z′L1

P→ µ0,

where µ0 := E[m(Xt) log(Xt)]− E[m(Xt)Z
′
t]E[ZtZ

′
t]
−1E[Zt log(Xt)], and

1

n
N′MC1 =

1

n
N′C1 −

1

n
N′Z

(
1

n
Z′Z

)−1 1

n
Z′C1

P→ µ1

where µ1 := E[m(Xt)Xt log(Xt)] − E[m(Xt)Z
′
t]E[ZtZ

′
t]
−1E[ZtXt log(Xt)]. Therefore, QLR(γ=0)

n
A∼

(Z0 + µ0/σ0)2 and QLR(γ=1)
n

A∼ (Z1 + µ1/σ1)2 under the same condition as in Theorem 5(ii). �

Before proving the main claims in Section 3, we provide the following supplementary lemmas to assist

in delivering an efficient proof.

Lemma A9. (i) (n log(n))−1
∑n

t=1 log(t)→ 1;

(ii) (n log2(n))−1
∑n

t=1 log2(t)→ 1;

(iii) for each γ ∈ (−1/2,∞), (n1+2γ log(n))−1
∑n

t=1 t
2γ log(t)→ 1/(2γ + 1); and

(iv) for each γ ∈ (−1/2,∞), (n1+2γ log2(n))−1
∑n

t=1 t
2γ log2(t)→ 1/(2γ + 1). �

Proof of Lemma A9: (i and ii) This immediately follows from equation (26) of Phillips (2007) by letting his

L(·) be log(·).

(iii and iv) This also immediately follows from equation (55) of Phillips (2007). �

Lemma A10. Given the definition of sn,t := (t/n),

(i) for each γ > −1, 1
n

∑
sγn,t →

∫ 1
0 s

γds = 1
1+γ ;

(ii) for each γ > −1, 1
n

∑
sγn,t log(sn,t)→

∫ 1
0 s

γ log(s)ds = − 1
(1+γ)2

;

(iii) for each γ > −1, 1
n

∑
sγn,t log2(sn,t)→

∫ 1
0 s

γ log2(s)ds = − 2
(1+γ)3

; and

(iv) {n−1
∑
s

(·)
n,t : Γ 7→ R} is equicontinuous, where Γ is a convex and compact set in R. �

Proof of Lemma A10: (i, ii, and iii) These results are elementary.
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(iv) We note that for some γ̄ between γ and γ′,

∣∣∣∣ 1n∑ sγn,t −
1

n

∑
sγ
′

n,t

∣∣∣∣ ≤ 1

n

∑
|sγ̄n,t| · | log(sn,t)| · |γ − γ′| ≤

1

n

∑
|sn,t|γo · | log(sn,t)| · |γ − γ′|,

where γo := inf Γ. Also, 1
n

∑
|sn,t|γo · | log(sn,t)| → 1

γo+2 . Therefore, for any ε > 0, if we let δ be

ε(γo + 2) and |γ − γ′| < δ, lim supn→∞ |n−1
∑
sγn,t − n−1

∑
sγ
′

n,t| ≤ ε. This completes the proof. �

Lemma A11. For a strictly stationary (SS) process {Zt} and a deterministic sequence {ξn,t}, if we suppose

that E[|Zt|] <∞ and limn→∞
∑n

t=1 ξn,t = ξo ∈ (−∞,∞),
∑n

t=1Xn,t
a.s.→ ξoE[Zt], where Xn,t := ξn,tZt.

�

Proof of Lemma A11: We can apply the corollary in Billingsley (1995, p. 211). �

Lemma A12. We suppose that {(Ut,D′t)′} is an SS process. If for each j = 1, 2, . . . , k, E[D4
t,j ] < ∞ and

E[U4
t ] <∞, then for each γ ∈ Γ with inf Γ > −1/2,

(i) n−1
∑

Gn,t(γ)Gn,t(γ)′
a.s.→ Ã(γ); and

(ii) n−1
∑
U2
t Gn,t(γ)Gn,t(γ)′

a.s.→ B̃(γ). �

Proof of Lemma A12: (i and ii) We let ξn,t of Lemma A11 be s2γ
n,t/n, sγ+1

n,t log(sn,t)/n, sγn,t log(sn,t)/n,

sγn,t/n, sγ+1
n,t /n, s2

n,t log2(sn,t)/n, sn,t log2(sn,t)/n, sn,t log(sn,t)/n, s2
n,t log(sn,t)/n, log2(sn,t)/n, log

(sn,t)/n, sn,t log(sn,t)/n, sn,t/n, or s2
n,t/n. Then, Lemma A10 implies that

∑
ξn,t converges to 1/(2γ + 1),

−1/(γ +2)2, −1/(γ + 1)2, 1/(γ + 1), 1/(γ + 2), 2/27, 1/4, −1/4, −1/9, 2, −1, −1/4, 1/2, or 1/3, re-

spectively. We let these limits be denoted by ξo. Lemma A11 implies that
∑
ξn,tDt,

∑
ξn,tU

2
t , and∑

ξn,tU
2
t Dt almost surely converge to ξoE[Dt], ξoE[U2

t ] and ξoE[U2
t Dt], respectively. Finally, we note

that n−1
∑

DtD
′
t

a.s.→ E[DtD
′
t] and n−1

∑
U2
t DtD

′
t

a.s.→ E[U2
t DtD

′
t] by the ergodic theorem and that

E[D4
t,j ] <∞ and E[U4

t ] <∞. These limit results are sufficient for the desired results. �

Lemma A13. Given the definition of sn,t := (t/n), if for each j = 1, 2, . . . , k, E[|Dt,j |] < ∞ and Γ is a

compact and convex subset in R such that inf Γ > −1,

(i) supγ∈Γ |n−1
∑
sγn,t − 1

γ+1 | → 0; and

(ii) supγ∈Γ |n−1
∑
sγn,tDt,j − 1

γ+1E[Dt,j ]|
a.s.→ 0. �

Proof of Lemma A13: (i) Lemma A10(i and iv) implies the desired result.

(ii) For each γ, Lemma A12(i) implies that n−1
∑
sγn,tDt,j

a.s.→ 1
γ+1E[Dt,j ]. To show the desired result,
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we show the stochastic equicontinuity of {n−1
∑
s

(·)
n,tDt,j : Γ 7→ R}. We note that

∣∣∣∣ 1n∑ sγn,tDt,j −
1

n

∑
sγ
′

n,tDt,j

∣∣∣∣ ≤ 1

n

∑
|sn,t|γo · | log(sn,t)| · |Dt,j | · |γ − γ′|,

where γo := inf Γ. This implies that for any ε > 0,

lim sup
n→∞

P

(
sup

|γ−γ′|<δ

∣∣∣∣ 1n∑ sγn,tDt,j −
1

n

∑
sγ
′

n,tDt,j

∣∣∣∣ > ε

)

≤ lim sup
n→∞

P

(
1

n

∑
|sn,t|γo · | log(sn,t)| · |Dt,j | · δ > ε

)
.

Therefore, if δ is sufficiently small, the right side can be made smaller than ε by using Fatou’s lemma

since n−1
∑
|sn,t|γo · | log(sn,t)| → 1/(γo + 2), implying that n−1

∑
|sn,t|γo · | log(sn,t)| · |Dt,j |

a.s.→

[|Dt,j |]1/(γo + 2) by Lemma A11. The desired result follows. �

Proof of Lemma 3: We first note that Lemmas A9 and A10 show that (n1+2γ)−1
∑
t2γ = n−1

∑
s2γ
n,t →

1
2γ+1 , (n2+γ log(n))−1

∑
t1+γ log(t) → 1

γ+2 , (n1+γ log(n))−1
∑
tγ log(t) → 1

γ+1 , (n1+γ)−1
∑
tγ →

1
γ+1 , (n2+γ)−1

∑
tγ+1 → 1

γ+2 , (n3 log2(n))−1
∑
t2 log2(t) → 1

3 , (n2 log2(n))−1
∑
t log2(t) → 1

2 ,

(n2 log(n))−1
∑
t log(t) → 1

2 , (n3 log(n))−1
∑
t2 log(t) → 1

3 , (n log2(n))−1
∑

log2(t) → 1, (n log(n)

)−1
∑

log(t)→ 1, n−2
∑
t→ 1

2 , and n−3
∑
t2 → 1

3 .

We also note that n−1
∑

DtD
′
t

a.s.→ E[DtD
′
t] by ergodicity and E[D2

t,j ] < ∞. If we further let ξn,t

of Lemma A11 be tγ/n1+γ , t log(t)/(n2 log(n)), log(t)/(n log(n)), 1/n, or t/n2, then
∑
ξn,t converges

to 1/(γ + 1), 1
2 , 1, 1, or, 1

2 , respectively. These facts and Lemma A11 imply that
∑
ξn,tDt almost surely

converges to 1
γ+1E[Dt], 1

2E[Dt], E[Dt], E[Dt], or 1
2E[Dt], respectively.

Therefore, F−1
n

∑n
t=1 Ht(γ)Ht(γ)′F−1

n
a.s.→ Ξ(γ), where

Ξ(γ) :=



1
2γ+1

1
γ+2

1
γ+1

1
γ+1

1
γ+2

1
γ+1E[D′t]

1
γ+2

1
3

1
2

1
2

1
3

1
2E[D′t]

1
γ+1

1
2 1 1 1

2 E[D′t]

1
γ+1

1
2 1 1 1

2 E[D′t]

1
γ+2

1
3

1
2

1
2

1
3

1
2E[D′t]

1
γ+1E[Dt]

1
2E[Dt] E[Dt] E[Dt]

1
2E[Dt] E[DtD

′
t]


.

The limit Ξ(γ) is a singular matrix because the second column of the limit matrix is identical to the fifth

column, and its third column is identical to the fourth column. This completes the proof. �
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We define the matrices relevant to Theorem 5 in the same way as in Section 2. That is, for each γ ∈ Γ,

T(γ) := [sγn,1, . . . , s
γ
n,n]′ and M := I− Z(Z′Z)−1Z′ with Z′n,t as the t-th row vector of Z.

Proof of Theorem 6: (i) We note that the QLR test statistic under H̃0 is equal to

sup
γ∈Γ

{T(γ)′MU}2

{σ̂2
n,0T(γ)′MT(γ)}

(A.12)

by applying Theorem 4. This result follows simply by replacing X(γ) of Theorem 4 with T(γ). In particu-

lar, if we let L̃1 := [log(sn,1), . . . , log(sn,1)]′ and C̃1 := [sn,1 log(sn,1), . . . , sn,n log(sn,n)]′, the QLR test

is equal to
{L̃′1MU}2

σ̂2
n,0{L̃′1ML̃1}

and
{C̃′1MU}2

σ̂2
n,0{C̃′1MC̃1}

(A.13)

under H̃′′0 and H̃′′′0 , respectively. We separate the proof into three parts: (a), (b), and (c). In (a) and (b) we

examine the denominators and the numerators of the statistics in (A.12) and (A.13), respectively, so that

the asymptotic null behavior of the QLR test can be revealed by joint convergence. In (c) we derive the

covariance structure given in the theorem.

(a) We examine the denominators of the statistics in (A.12) and (A.13). It is elementary to show that

σ̂2
n,0

a.s.→ σ2
∗ under H̃0. Next note that Lemma A12(i) implies that n−1L̃′ML̃

a.s.→ 2 − Ã′2,1Ã
−1
1,1Ã2,1 and

n−1C̃′MC̃
a.s.→ 2/27− Ã′3,1Ã

−1
1,1Ã3,1, where

Ã2,1 :=


−1

−1
4

−E[Dt]

 , Ã3,1 :=


−1

4

−1
9

−1
4E[Dt]

 , and Ã1,1 :=


1 1

2 E[D′t]

1
2

1
3

1
2E[D′t]

E[Dt]
1
2E[Dt] E[DtD

′
t]

 .

We finally examine the denominator of
{
n−1/2T(·)′MU

}
/{σ̂2

n,0n
−1T(·)′MT(·)}1/2. Observer that n−1

T(γ)′MT(γ) = n−1T(γ)′T(γ) − n−1T(γ)′Z(n−1Z′Z)−1n−1Z′T(γ), and Lemma A12(i) implies that

n−1T(γ)′T(γ), n−1Z′T(γ), and n−1Z′Z almost surely converges to Ã4,4(γ) := 1
2γ+1 , Ã4,1(γ), and Ã1,1,

respectively, where Ã4,1(γ) := [ 1
γ+1 ,

1
γ+2 ,

1
γ+1E[D′t]]

′. Furthermore, Lemma A12(i and ii) implies that

supγ∈Γ |n−1T(γ)′T(γ) − 1/(2γ + 1)| a.s.→ 0 and supγ∈Γ ‖n−1Z′T(γ) − Ã4,1(γ)‖∞
a.s.→ 0. Therefore,
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supγ∈Γ |n−1T(γ)′MT(γ)− {1/(2γ + 1)− Ã4,1(γ)′Ã−1
1,1Ã4,1(γ)}| a.s.→ 0, since

sup
γ∈Γ

∣∣∣n−1T(γ)′MT(γ)− {1/(2γ + 1)− Ã4,1(γ)′Ã−1
1,1Ã4,1(γ)}

∣∣∣
≤ sup

γ∈Γ
|n−1T(γ)′T(γ)− 1/(2γ + 1)|+ sup

γ∈Γ

∣∣∣{n−1T(γ)′Z− Ã4,1(γ)}′(Z′Z)−1Z′T(γ)
∣∣∣

+ sup
γ∈Γ

∣∣∣{Ã4,1(γ)′−1Z′Z)−1 − Ã−1
1,1}{n

−1Z′T(γ)}
∣∣∣

+ sup
γ∈Γ

∣∣∣{Ã4,1(γ)′{Ã−1
1,1}{n

−1T(γ)′Z− Ã4,1(γ)}
∣∣∣ ,

and each element on the right side almost surely converges to zero. This shows that n−1T(·)′MT(·) obeys

the ULLN. We further note that Ã4,4(γ)−Ã4,1(γ)′Ã−1
1,1Ã4,1(γ) = σ2

∗γ
2(γ − 1)2/{(γ+1)2(γ+2)2(2γ+1)}

by using the definition of Ã4,4(γ), Ã4,1(γ), and Ã1,1. For notational simplicity, let the right side be σ2(γ).

If we combine all these limit results, it follows that{
sup
γ∈Γ
|n−1σ̂2

n,0T(γ)′MT(γ)− σ2(γ)|, n−1σ̂2
n,0L̃

′ML̃, n−1σ̂2
n,0C̃

′MC̃,

}
a.s.→
{

0, σ2
∗(2− Ã′2,1Ã

−1
1,1Ã2,1), σ2

∗(2/27− Ã′3,1Ã
−1
1,1Ã3,1)

}
. (A.14)

(b) We next examine the numerators of the statistics in (A.12) and (A.13). We first show that for each

γ, {n−1/2T(γ)′MU, n−1/2L̃′1MU, n−1/2C̃′1MU} weakly converges to a multivariate normal variate. We

note that n−1/2T(γ)′MU = n−1/2T(γ)′U − (n−1T(γ)′Z)(n−1Z′Z)−1(n−1/2Z′U), n−1/2C̃′1MU =

n−1/2C̃′1U−(n−1C̃′1Z)(n−1Z′Z)−1(n−1/2Z′U), and n−1/2L̃′1MU = n−1/2L̃′1U−(n−1L̃′1Z)(n−1Z′Z)−1

(n−1/2Z′U), and (A.14) implies that for each γ, {n−1T(γ)′Z, n−1L̃′1Z, n
−1C̃′1Z, n

−1Z′Z} has its own

almost sure limit. Furthermore, for each γ ∈ Γ \ {0, 1}, {UtGn,t(γ),Ft} is an MDS and we can apply

McLeish’s (1974) CLT. Assumption 7 implies that n−1
∑

E[U2
t Gt(γ) Gt(γ)′] is uniformly positive definite

with respect to n. Thus, for each γ, n−1/2
∑
UtGt(γ)

A∼ N(0, B̃(γ)). We also note that for each γ ∈ Γ,∑
UtGt(γ) = [T(γ)′U, C̃′1U, L̃

′
1U, (Z

′U)′]′, so that {n−1/2T(γ)′MU, n−1/2L̃′1MU, n−1/2C̃′1MU}

weakly converges to a multivariate normal vector by joint convergence. We denote this weak limit by

{G̃(γ), G̃0, G̃1}.

Similarly, we have finite dimensional convergence of the vectors {n−1/2T(·)′MU}. So we concentrate

on showing that {n−1/2T(·)′MU} is tight. As we have already shown in (a) that supγ∈Γ |n−1Z′T(γ) −

Ã4,1(γ)| a.s.→ 0 and n−1Z′Z
a.s.→ Ã1,1, if {n−1/2T(·)′U} is tight, then {n−1/2T(·)′MU} weakly converges

to a Gaussian process. Without loss of generality, we let γ′ > γ. Then, for some γ̄ between γ and γ′,
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sγn,t − s
γ′

n,t = sγ̄n,t log(sn,t) · (γ − γ′) ≤ sγon,t| log(sn,t)| · |γ − γ′|, where γo := infγ Γ, so that for any ε > 0,

lim sup
n→∞

P

(
sup

|γ−γ′|<δ

∣∣∣∣ 1√
n

∑
sγn,tUt −

1√
n

∑
sγ
′

n,tUt

∣∣∣∣ > ε

)

≤ lim sup
n→∞

P

(∣∣∣∣ 1√
n

∑
|sn,t|γo · | log(sn,t)| · Ut

∣∣∣∣ · δ > ε

)
.

We further note that n−1/2
∑
|sn,t|γo | log(sn,t)|Ut

A∼ N(0, 2σ2
∗/(1+2γo)

3). Thus, if δ is sufficiently small,

the right side can be made as small as desired. Hence, the random process sequence {n−1/2T(·)′U} is tight,

so that

{n−1/2T(·)′MU, n−1/2L̃′MU, n−1/2C̃′MU} ⇒ {G̃(·), G̃0, G̃1}. (A.15)

(c) Finally, we derive the covariance structure of the power Gaussian process. We first examine the

limit covariance structure of the numerator in {T(·)′MU} /{σ̂2
n,0T(·)′MT(·)}1/2. Note that T(γ)′MU =

T(γ)′U− (T(γ)′Z)(Z′Z)−1(Z′U), so that

T(γ)′MUU′MT(γ′) =(T(γ)′U)(U′T(γ′))− (T(γ)′Z)(Z′Z)−1{(Z′U)(U′T(γ′)}

−
{

(T(γ)′U)
(
U′Z

)}
(Z′Z)−1(Z′T(γ′)

+ (T(γ)′Z)(Z′Z)−1{(Z′U)(U′Z)}(Z′Z)−1(Z′T(γ′)).

Lemma A12 shows that n−1T(γ)′Z
a.s.→ Ã4,1(γ)′ and n−1Z′Z

a.s.→ Ã1,1, respectively. This implies that

n−1T(γ)′MUU′MT(γ′) =n−1(T(γ)′U)(U′T(γ′))− n−1Ã4,1(γ)′Ã−1
1,1{(Z

′U)(U′T(γ′)}

− n−1
{

(T(γ)′U)
(
U′Z

)}
Ã−1

1,1Ã4,1(γ′)

+ n−1Ã4,1(γ)′Ã−1
1,1{(Z

′U)(U′Z)}Ã−1
1,1Ã4,1(γ′) + op(1). (A.16)

To find the covariance structure of the limit process of n−1/2T(·)′MU, we consider the limit expectations

of the terms on the right side of (A.16). First,

n−1E
[
T(γ)′UU′T(γ′)

]
= n−1

∑
sγ+γ′

n,t E[U2
t ]→ σ2

∗
γ + γ′ + 1

, (A.17)

using Lemma A10(i) and the fact that {Ut,Ft} is an MDS. Second,

n−1E
[
(Z′U)(U′T(γ′))

]
= n−1

∑
sγ
′

n,tE[U2
t Zn,t]→ B̃4,1(γ′) :=

[
σ2
∗

γ′ + 1
,

σ2
∗

γ′ + 2
,

1

γ′ + 1
E[U2

t D′t]

]′
,
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and so

Ã4,1(γ)′Ã−1
1,1B̃4,1(γ′) =

σ2
∗(4γγ

′ + 2γ + 2γ′ + 4)

(γ + 1)(γ + 2)(γ′ + 1)(γ′ + 2)
, (A.18)

which is symmetric between γ and γ′, thereby giving the limit of the expectation of the second and third

terms of (A.16). Next observe that

n−1E[(Z′U)(U′Z)] = n−1
∑

E[U2
t Zn,tZ

′
n,t]→ B̃1,1 :=


σ2
∗

1
2σ

2
∗ E[U2

t D′t]

1
2σ

2
∗

1
3σ

2
∗

1
2E[U2

t D′t]

E[U2
t Dt]

1
2E[U2

t Dt] E[U2
t DtD

′
t]


using Lemma A10(ii) and the fact that {Ut,Ft} is an MDS. Then,

n−1Ã4,1(γ)′Ã−1
1,1E{(Z

′U)(U′Z)}Ã−1
1,1Ã4,1(γ′)

= Ã4,1(γ)′Ã−1
1,1

{
E[n−1

∑
U2
t Zn,tZ

′
n,t]
}

Ã−1
1,1Ã4,1(γ′)

→ Ã4,1(γ)′Ã−1
1,1B̃1,1Ã

−1
1,1Ã4,1(γ′) =

σ2
∗(4γγ

′ + 2γ + 2γ′ + 4)

(γ + 1)(γ + 2)(γ′ + 1)(γ′ + 2)
. (A.19)

We combine all the limit results in (A.17), (A.18), and (A.19) to obtain the following limiting covariance

kernel of the process n−1/2T(·)′MU

σ(γ, γ′) :=
σ2
∗γγ

′(γ − 1)(γ′ − 1)

(γ + 1)(γ + 2)(γ′ + 1)(γ′ + 2)(γ + γ′ + 1)
.

The limit behavior of the denominator of {T(·)′MU} /{σ̂2
n,0T(·)′MT(·)}1/2 is already given in (a).

That is, σ̂2
n,0n

−1T(·)′MT(·) almost surely converges to σ2(·) uniformly on Γ. Therefore, using the defini-

tion c(γ, γ′), the covariance kernel of the limit Z̃(γ) of the process {T(·)′MU} /{σ̂2
n,0T(·)′MT(·)}1/2 is

given by

κ̃
(
γ, γ′

)
= E[Z̃(γ)Z̃(γ′)] =

σ(γ, γ′)√
σ2(γ)

√
σ2(γ′)

= c(γ, γ′)
(2γ + 1)1/2(2γ′ + 1)1/2

(γ + γ′ + 1)
,

as stated.

(ii) We note that

σ̂2
n,0 − σ̂2

n,A = sup
γ∈Γ

{n−1(U + G(γ∗))
′MT(γ)}2

(n−1T(γ)′MT(γ))

where G(γ∗) := β∗[1, 2
γ∗ , . . . , tγ∗ , . . . , (n − 1)γ∗ , nγ∗ ]′. By (A.15), supγ∈Γ |n−1U′MT(γ)| = op(1),

and (A.14) implies that supγ∈Γ |n−1T(γ)′MT(γ) − σ2(γ)/σ2
∗| = op(1). We also note that for each γ,
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σ2(γ)/σ2
∗ = g(γ, γ). Thus, supγ∈Γ |n−1T(γ)′MT(γ)−g(γ, γ)| = op(1). Furthermore, n−1G(γ∗)

′MT(γ)

= β∗n
γ∗n−1T(γ∗)MT(γ), so that it now follows that supγ∈Γ |n−1−γ∗G(γ∗)

′MT(γ) − β∗g(γ∗, γ)| =

op(1). Therefore,

σ̂2
n,o − σ̂2

n,A = sup
γ∈Γ

β2
∗n

2γ∗
g2(γ∗, γ)

g(γ, γ)
[1 + op(1)]. (A.20)

Next, we note that σ̂2
n,0 = n−1(U + G(γ∗))

′M(U + G(γ∗)), so that it now follows that

σ̂2
n,0 = σ2

∗ + β2
∗n

2γ∗g(γ∗, γ∗)[1 + op(1)], (A.21)

from the fact that n−1U′MU = σ2
∗ + op(1), n−1G(γ∗)

′MU = β∗n
γ∗n−1T(γ∗)MU = Op(n

γ∗−1/2),

and n−1G(γ∗)
′M G(γ∗) = β2

∗n
2γ∗n−1T(γ∗)MT(γ∗) = β2

∗n
2γ∗ [g(γ∗, γ∗) + op(1)].

(ii.a) We now combine (A.20) and (A.21) and obtain that

QLRn
n

=
σ̂2
n,0 − σ̂2

n,A

σ̂2
n,0

= sup
γ∈Γ

 β2
∗n

2γ∗ g
2(γ∗,γ)
g(γ,γ) [1 + op(1)]

σ2
∗ + β2

∗n
2γ∗g(γ∗, γ∗)[1 + op(1)]

 = sup
γ∈Γ

g2(γ∗, γ)

g(γ, γ)g(γ∗, γ∗)
[1 + op(1)]

from the fact that γ∗ > 0. Finally, the given functional form of g(γ∗, γ) yields that

sup
γ∈Γ

g2(γ∗, γ)

g(γ, γ)g(γ∗, γ∗)
[1 + op(1)] =

g2(γ∗, γ̄)

g(γ̄, γ̄)g(γ∗, γ∗)
[1 + op(1)],

as desired.

(ii.b) We now combine (A.20) and (A.21) and obtain that

QLRn
n1+2γ∗

=
σ̂2
n,0 − σ̂2

n,A

n2γ∗ σ̂2
n,0

= sup
γ∈Γ

 β2
∗
g2(γ∗,γ)
g(γ,γ) [1 + op(1)]

σ2
∗ + β2

∗n
2γ∗g(γ∗, γ∗)[1 + op(1)]

 = sup
γ∈Γ

β2
∗g

2(γ∗, γ)

σ2
∗g(γ, γ)

[1 + op(1)]

from the fact that γ∗ ∈ (−1
2 , 0). Finally, the given functional form of g(γ∗, γ) yields that

sup
γ∈Γ

β2
∗g

2(γ∗, γ)

σ2
∗g(γ, γ)

[1 + op(1)] =
β2
∗g

2(γ∗, γ̄)

σ2
∗g(γ̄, γ̄)

[1 + op(1)],

as desired.

(iii) From the definition of the QLR test, if we let Q := [m(1),m(2), . . . ,m(n− 1),m(n)]′,

QLRn
n

=
σ̂2
n,0 − σ̂2

n,A

σ̂2
n,0

= sup
γ∈Γ

{n−1(U + Q)′MT(γ)}{n−1T(γ)′MT(γ)}−1{n−1T(γ)′M(U + Q)}
n−1(U + Q)′M(U + Q)

.
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In the proof of (ii), we already saw that n−1U′MU = σ2
∗+ op(1), supγ∈Γ |n−1T(γ)′MT(γ)− g(γ, γ)| =

op(1), and supγ∈Γ |n−1U′MT(γ)| = op(1). We, therefore, examine the asymptotic behaviors of the other

terms that constitute the QLR test.

First, we examine the asymptotic behavior of Q′MT(·). Note that

Q′MT(γ)

nm(n)ε(n)
=

1

nε(n)
L′T(γ)− 1

nε(n)
L′Z(n−1ZZ′)−1n−1Z′T(γ),

where ε(x) := x ·m′(x)/m(x), L := [`n(1)− 1, . . . , `n(t)− 1, . . . , `n(n)− 1]′, and `n(t) := m(t)/m(n).

In the proof of (i), we already showed that supγ∈Γ |n−1Z′T(γ)− Ã4,1(γ)| a.s.→ 0 and n−1Z′Z
a.s.→ Ã1,1. For

the other terms, we apply lemma 4.1 of Phillips (2007) and obtain that

sup
γ∈Γ

∣∣∣∣ 1

nε(n)

∑
sγn,t(`n(t)− 1)− 1

n

∑
sγn,t log(sn,t)

∣∣∣∣ = o(1),

and that

sup
γ∈Γ

∣∣∣∣ 1

nε(n)

∑
sγn,t log(sn,t) +

1

(γ + 1)2

∣∣∣∣ = o(1).

Therefore, supγ∈Γ
∣∣(nε(n))−1L′T(γ) + 1/(γ + 1)2

∣∣ = op(1). We also note that lemma 4.1 of Phillips

(2007) implies that

1

nε(n)

∑
sn,t(`n(t)− 1) =

1

n

∑
sn,t log(sn,t) + op(1) = −1

4
+ o(1),

1

nε(n)

∑
D̃t(`n(t)− 1) =

1

n

∑
E[D̃t] log(sn,t) + op(1) = −E[D̃t] + op(1).

Therefore, (nε(n))−1L′Z + [1/4,E[D̃t]
′]′ = op(1), and it follows that

sup
γ∈Γ

∣∣∣∣ 1

nm(n)ε(n)
Q′MT(γ)− p(γ)

∣∣∣∣ = op(1) (A.22)

by noting that p(γ) := −(1+γ)−2 +Ã4,1(γ)′(Ã1,1)−1Ã5,1, where Ã5,1 := [1/4,E[D̃t]
′]′, and this implies

that

σ̂2
n,0 − σ̂2

n,A = sup
γ∈Γ

m2(n)ε2(n)p(γ)2

g(γ, γ)
[1 + op(1)]. (A.23)

Next, we examine the asymptotic behavior of Q′MQ. Note that

Q′MQ

nm2(n)ε2(n)
=

1

nε2(n)
L′L− 1

nε(n)
L′Z

(
1

n
ZZ′

)−1 1

nε(n)
Z′L,
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and we already showed that (nε(n))−1L′Z + Ã5,1 = op(1), 1
nZZ′

a.s.→ Ã1,1. Given this, lemma 7.1 of

Phillips (2007) implies that (nε2(n))−1L′L = (nε2(n))−1
∑n

t=1(`n(t)−1)2 +o(1) = 2+o(1). Therefore,

1

nm2(n)ε2(n)
Q′MQ = 2− Ã′5,1(Ã1,1)−1Ã5,1 + op(1) = q + op(1) (A.24)

by noting that q := 29/16− 25K/64.

Third, we examine the asymptotic behavior of Q′MU. Note that

Q′MU√
nm(n)ε(n)

=
1√
nε(n)

L′U− 1√
nε(n)

L′Z

(
1

n
ZZ′

)−1 1

n
Z′U.

Here, L′Z = Op(nε(n)), ZZ′ = Op(n), and Z′U = Op(
√
n). Furthermore, L′U = Op(

√
nε(n)) by

lemma 2.1 of Phillips (2007). Therefore,

Q′MU√
nm(n)ε(n)

= Op(1), (A.25)

and it follows from (A.24) and (A.25) that

σ̂2
n,0 = σ2

∗ +m2(n)ε2(n)(q + op(1)) + op(1). (A.26)

If we combine (A.23) and (A.26),

QLRn
n

=
σ̂2
n,0 − σ̂2

n,A

σ̂2
n,0

= sup
γ∈Γ

m2(n)ε2(n)p(γ)2[1 + op(1)]

g(γ, γ){σ2
∗ +m2(n)ε2(n)[q + op(1)]}

. (A.27)

(iii.a) We now suppose that n ·m′(n) = ε(n)m(n)→ c. Then, (A.27) implies that

QLRn
n

= sup
γ∈Γ

m2(n)ε2(n)p(γ)2[1 + op(1)]

g(γ, γ){σ2
∗ +m2(n)ε2(n)[q + op(1)]}

= sup
γ∈Γ

c2p(γ)2

g(γ, γ){σ2
∗ + c2q}

+ op(1),

as desired.

(iii.b) We now suppose that n ·m′(n) = ε(n)m(n)→∞. Then, (A.27) implies that

QLRn
n

= sup
γ∈Γ

m2(n)ε2(n)p(γ)2[1 + op(1)]

g(γ, γ){σ2
∗ +m2(n)ε2(n)[q + op(1)]}

= sup
γ∈Γ

p(γ)2

q · g(γ, γ)
+ op(1),

as desired.
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(iv) By the definition of the QLR test,

QLRn = sup
γ∈Γ

{(n−1/2U + n−γ∗−1G(γ∗))
′MT(γ)}2

σ̂2
n,0 (n−1T(γ)′MT(γ))

.

We already saw that supγ∈Γ |n−1T(γ)′MT(γ) − g(γ, γ)| = op(1), and (A.15) shows the weak limit of

n−1/2U′MT(·). We therefore here focus on the asymptotic behaviors of σ̂2
n,0 and n−γ∗−1G(γ∗)

′MT(·).

First, we examine the asymptotic behavior of σ̂2
n,0. Note that

σ̂2
n,0 = n−1(U + n−γ∗−1/2G(γ∗))

′M(U + n−γ∗−1/2G(γ∗))

= n−1U′MU + 2β∗n
−3/2T(γ∗)

′MU + β2
∗n
−2T(γ∗)

′MT(γ∗) = σ2
∗ + op(1).

Here, n−3/2T(γ∗)
′MU = Op(n

−1) and n−2T(γ∗)
′MT(γ∗) = Op(n

−1) from (A.15) and (A.14), respec-

tively.

Second, we examine n−γ∗−1G(γ∗)
′MT(·). Note that n−γ∗−1G(γ∗)

′MT(·) = β∗n
−1T(γ∗)

′MT(·),

so that (A.14) implies that supγ∈Γ |n−γ∗−1G(γ∗)
′MT(γ)− β∗g(γ∗, γ)| = op(1).

Therefore, using these two facts, it follows that

QLRn = sup
γ∈Γ

{(n−1/2U + n−γ∗−1G(γ∗))
′MT(γ)}2

σ̂2
n,0 (n−1T(γ)′MT(γ))

⇒ sup
γ∈Γ

{
G̃(γ) + β∗g(γ∗, γ)

σ∗g1/2(γ, γ)

}2

.

By the definitions of Z̃(·) and σ2(·), viz., Z̃(·) := G̃(·)/{σ(·)} and σ2(γ) := σ2
∗g(γ, γ), QLRn ⇒

supγ∈Γ(Z̃(γ) + β∗g(γ∗, γ)/{σ∗g1/2(γ, γ)})2, as desired.

(v) By the definitions of the QLR test and ε(n),

QLRn = sup
γ∈Γ

{(n−1/2U + (nε(n)m(n))−1Q)′MT(γ)}2

σ̂2
n,0 (n−1T(γ)′MT(γ))

.

As in the proof of (iv), we examine on the asymptotic behaviors of σ̂2
n,0 and (nε(n)m(n))−1Q)′MT(γ) as

the other terms are already examined.

First, we focus on the asymptotic behavior of σ̂2
n,0. Note that

σ̂2
n,0 = n−1(U + n−1/2(ε(n)m(n))−1Q)′M(U + n−1/2(ε(n)m(n))−1Q)

= n−1U′MU + 2n−3/2(ε(n)m(n))−1Q′MU + n−2(ε(n)m(n))−2Q′MQ = σ2
∗ + op(1)
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by (A.24) and (A.25).

Second, we examine (nε(n)m(n))−1Q)′MT(γ). Note that (nε(n)m(n))−1Q)′MT(·) uniformly con-

verges to p(·) by (A.22).

We combine all these asymptotic behaviors of the terms that constitute the QLR test and obtain that

QLRn = sup
γ∈Γ

{(n−1/2U + (nε(n)m(n))−1Q)′MT(γ)}2

σ̂2
n,0 (n−1T(γ)′MT(γ))

⇒ sup
γ∈Γ

{
Z̃(γ) +

p(γ)

σ∗g1/2(γ, γ)

}2

using the definition of Z̃(·). This completes the proof. �

Remarks 2. From the fact that n−γ∗−1G(γ∗)
′ML̃1 = β∗n

−1T(γ∗)
′ML̃1 and n−γ∗−1G(γ∗)

′MC̃1 =

β∗n
−1T(γ∗)

′MC̃1, we now obtain that

1

n
T(γ∗)

′ML̃1 = − 1

(γ∗ + 1)2
− Ã4,1(γ∗)

′(Ã1,1)−1Ã2,1 + op(1), and

1

n
T(γ∗)

′MC̃1 = − 1

(γ∗ + 2)2
− Ã4,1(γ∗)

′(Ã1,1)−1Ã3,1 + op(1)

using Lemma A12(i). Therefore,

1

nγ∗+1
G(γ∗)

′ML̃1
P→ µ̃0 := − β∗

(γ∗ + 1)2
− β∗Ã4,1(γ∗)

′(Ã1,1)−1Ã2,1, and

1

nγ∗+1
G(γ∗)

′MC̃1
P→ µ̃1 := − β∗

(γ∗ + 2)2
− β∗Ã4,1(γ∗)

′(Ã1,1)−1Ã3,1.

We also showed in the proof of Theorem 6(i) that n−1σ̂2
n,0L̃

′ML̃
a.s.→ σ̃2

0 := σ2
∗(2 − Ã′2,1Ã

−1
1,1Ã2,1) and

n−1σ̂2
n,0C̃

′MC̃
a.s.→ σ̃2

1 := σ2
∗(2/27 − Ã′3,1Ã

−1
1,1Ã3,1). Therefore, QLR(γ=0)

n
A∼ (Z̃0 + µ̃0/σ̃0)2 and

QLR
(γ=1)
n

A∼ (Z̃1 + µ̃1/σ̃1)2 under the same condition as in Theorem 6(iv), where Z̃0 := G̃0/σ̃0 and

Z̃1 := G̃1/σ̃1.

We also note that

1

nm(n)ε(n)
Q′ML̃1 =

1

nε(n)
L′L̃1 −

1

nε(n)
L′Z

(
1

n
ZZ′

)−1 1

n
Z′L̃1, and

1

nm(n)ε(n)
Q′MC̃1 =

1

nε(n)
L′C̃1 −

1

nε(n)
L′Z

(
1

n
ZZ′

)−1 1

n
Z′C̃1.
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Given these, we apply lemma 4.1 of Phillips (2007) and obtain that

1

nε(n)m(n)
Q′ML̃1 = µ̈0 := 2 + Ã′5,1(Ã1,1)−1Ã2,1, and

1

nε(n)m(n)
Q′MC̃1 = µ̈1 :=

1

4
+ Ã′5,1(Ã1,1)−1Ã3,1.

Therefore, QLR(γ=0)
n

A∼ (Z̃0 + µ̈0/σ̃0)2 and QLR(γ=1)
n

A∼ (Z̃1 + µ̈1/σ̃1)2 under the same condition as in

Theorem 6(v). �
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