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1 Introduction

Linear models are a natural starting point in empirical work. They also relate in a fundamental way to

underlying Gaussian assumptions and the use of wide sense conditional expectations. Testing linearity is

therefore a familiar practice in applications whenever there is concern over specification and Gaussianity.

Such tests fall within the framework of general model specification tests.

Power transformations are especially popular as alternatives to linearity. Tukey (1957, 1977) provides

several rationales for the use of power transformations, and Box and Cox (1964) further developed their use

in nonlinear modeling. The Box-Cox transformation, in particular, successfully implements the so-called

Tukey ‘ladder of power’ option. In time series applications, some studies (notably, Wu (1981) and Phillips

(2007)) considered power transforms of a time trend, providing limit theories that are useful in estimation

and inference concerning the relevant parameters.

Power transformations can be used to form tests that deliver consistent power against arbitrary alter-

natives to linearity. As Stinchcombe and White (1998) showed, any non-polynomial analytic function can

be used to construct generically comprehensively revealing (GCR) tests, in the sense that linear projection

errors are not necessarily orthogonal to any power transform when the linear model is misspecified. This

property motivates use of power transforms for constructing tests with omnibus power. In spite of this ap-

parently useful property, testing linearity using power transforms is largely undeveloped in the literature,

mainly because of the identification problem that arises under the null of linearity. As detailed below, the

linear model hypothesis can be deduced from a power transformation in three different ways, each of which

involves its own identification problem, a feature that we call the trifold identification problem. To our

knowledge, this problem has never before been addressed in the literature.

Our primary goal in the present paper is to resolve this complex trifold problem. Our focus is prag-

matic and involves constructing mechanisms needed in using power transformations. We focus on models

involving power transforms of a strictly stationary (SS) variable or a time trend. While this excludes some

possibilities, such as nonlinear transforms of nonstationary variates (e.g. Park and Phillips, 1999, and Shi

and Phillips, 2012), the range of potential applications is large and includes both microeconometric and time

series data.

This paper restricts attention to a particular statistic, the quasi-likelihood ratio (QLR) statistic. As we

demonstrate, the QLR statistic may produce a composite form that embodies the linear model hypothesis.

An additional benefit from focusing on the QLR test is its relationship to the Box-Cox transformation. The

score of the test turns out to be related to an augmented form of Box-Cox transform. Our approach to

developing a null approximation of the QLR test extends the methodology of Cho and Ishida (2012), who
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studied how to test the effects of omitted power transformations. We advance that work and compare our

null approximation with the QLR tests that are popular in the artificial neural network (ANN) literature

where there is at most a twofold identification problem. Our approach also exploits the properties of time-

trend power transforms and regressions studied recently in Phillips (2007). Time trend regressors and their

power transforms have very different properties from those of stationary regressors in view of the asymptotic

degeneracy of the signal matrix.

The paper is organized as follows. Section 2 examines power transformations of a stationary process

and tests linearity. The null approximation and the power properties of the QLR test are developed. Section

3 extends the discussion and asymptotic results to power transforms of a time-trend regressor. Simulations

and empirical applications are contained in Sections 4 and 5, respectively. Concluding remarks are given in

Section 6. All proofs are collected in an Appendix to the paper which is available as an online supplement

(Baek, Cho and Phillips, 2014).

2 Testing for Neglected Power Transforms of a Stationary Regressor

We seek to model the conditional mean E[Yt|Wt] of a dependent variable Yt given a collection of explana-

tory variables Wt. We define the class of (parameter dependent) conditional mean functions as mt(ω) :=

α+W′
tδ+βXγ

t = E[Yt|Wt],where the parameter vectorω := (α, δ′, β, γ)′ ∈ Ω ⊂ Rk+4,with δ ∈ Rk+1

for some k ∈ N. In this specification, the variables (Yt,Wt) comprise a strictly stationary and absolutely

regular mixing process, the variable Xt is positively valued, and Ω is the parameter space of ω. In addition

to appearing nonlinearly as Xγ
t , the variable Xt also enters linearly in mt(ω) so that Xt is the first element

of Wt. Then Wt = (Xt,D
′
t)
′ for some Dt ∈ Rk. Similarly, we partition the parameter vector δ := (ξ, η′)′,

so that Wtδ = ξXt + D′tη. In Section 3, Xt is a linear time trend and so the conditional mean function

includes both a linear and nonlinear (power function) trend.

Our interest is primarily in testing the effective form of Xt in the conditional mean E[Yt|Wt]. We

consider the following explicit hypotheses. Given that E[Yt|Wt] is linear with respect to the components

(1,Wt), we focus on the null hypothesisH0 : ∃(α∗, δ∗),E[Yt|Wt] = α∗+W′
tδ∗ w.p. 1 and the alternative

hypothesis H1 : ∀(α, δ), E[Yt|Wt] = α + W′
tδ w.p. <1, which implies that nonlinear elements of

Xt appear in the conditional mean that cannot be embodied in H0. The affix ‘∗’ is used to parameterize

E[Yt|Wt], so that for some αo and βo, (α∗, β∗, γ∗) ∈ {(α,β, γ) : α + βXγ
t = αo or α + βXγ

t = βoXt}

underH0.

Testing the linear model hypothesis using a maintained model with a nonlinear component is common

practice in the literature. Such tests may be regarded as a variant of the Bierens (1990) test. Similarly,
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Stinchcombe and White’s (1998) GCR tests are constructed to test for a nonlinear component. A power

transform representation is particularly popular for the nonlinear component. For example, Tukey (1957,

1977) introduced power transform flexible nonlinear models, and Box and Cox (1964) found that their

transformation accords with Tukey’s (1957) ‘ladder of power’ and it has been widely applied in empirical

work (e.g. Sakia, 1992). The GCR property is delivered by non-polynomial analytic functions that can

approximate arbitrary functions by Taylor expansion, so that for some γ∗, E[VtX
γ∗
t ] 6= 0 in a misspecified

linear model, where Vt denotes the linear projection error. This property motivates the construction of power

transforms to test linearity. The literature already has related variations of power transforms such as those

used in Ramsey’s (1969) test which have prefixed power exponents. The general power transforms used

here do not fix power exponents, and this flexibility is used to gain powers in testing, as detailed below.

Notwithstanding considerable interest in power transforms, H0 has not been formally examined in the

literature mainly because testing H0 cannot be conducted in a standard way. There are three different

identification problems that arise under H0. If β∗ = 0, γ∗ is not identified and Davies’ (1977, 1987)

identification problem arises. On the other hand, if γ∗ = 0, α∗ + β∗ is identified, but neither α∗ nor β∗

is separately identified. Furthermore, if γ∗ = 1 and δ∗ is conformably partitioned as (ξ∗, η∗)
′, ξ∗ + β∗

is identified although neither ξ∗ nor β∗ is identified. Thus, three different identification problems arise

under the linear model hypothesis. We denote these three hypotheses as H′0 : β∗ = 0; H′′0 : γ∗ = 0; and

H′′′0 : γ∗ = 1 and call this construct the trifold identification problem.

The current literature approaches the trifold identification problem only in a limited way. Hansen (1996),

for instance, provided a testing methodology that employs the weighted bootstrap to treatH′0. Alternatively,

the power coefficient might be fixed as in Ramsey (1969), so that the identification problems under H′′0 and

H′′′0 are avoided. Accordingly, the main goal of the current study is to provide a tractable test that is able to

handle the trifold identification problem within a unified framework without losing power.

Some related identification problems have appeared in the literature. Cho, Ishida, and White (2011,

2014) test for neglected nonlinearity using ANN models and find that two different identification problems

arise under the null of linearity. They show how this twofold identification problem may be addressed

using the QLR test. Cho and Ishida (2012) similarly test for effects of power transforms using the same

QLR statistic but their focus of interest differs from ours and their model has only a twofold identification

problem. None of this work considers nonlinear trend effects.

The approach taken in the current work is to extend the analysis of Cho, Ishida, and White (2011, 2014)

and Cho and Ishida (2012). The maximum order involved in the null approximation used in Cho, Ishida, and

White (2011) is the fourth order, whereas that used in Cho, Ishida, and White (2014) is the sixth order. They
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observe that the maximum order depends on the activation function used in constructing the test. On the

other hand, Cho and Ishida (2012) use a second-order approximation, as is common in econometric practice.

The present paper examines how these approximations are modified by the trifold identification problem.

We follow ongoing practice and examine the QLR test defined as QLRn := n(1 − σ̂2n,A/σ̂2n,0), where

σ̂2n,A := infα,β,γ,δ
1
n

∑n
t=1(Yt − α −W′

tδ − βX
γ
t )2 and σ̂2n,0 := infα,δ

1
n

∑n
t=1(Yt − α −W′

tδ)2. The

following subsections separately examine the asymptotic approximations of the QLR statistic that apply

underH′0,H′′0 , andH′′′0 .

Before proceeding it is convenient to define the model and assumptions.

Assumption 1. (i) (Yt,W
′
t)
′ ∈ R2+k is an SS and absolutely regular process with mixing coefficients β`

such that for some r > 1,
∑∞

`=1 `
1/(r−1)β` < ∞; E[|Yt|] < ∞; Xt is positively valued w.p. 1; and

Z′Z =
∑n

t=1 ZtZ
′
t is nonsingular w.p. 1, where Zt := (1,W′

t)
′, and n is the sample size; (ii) E[Yt|Wt]

is specified as M, where Ω := A ×∆ × B × Γ is the parameter space of ω such that A, ∆, B, and

Γ := [γ, γ̄] are convex and compact in R, Rk+1, R, and R, respectively; and 0 and 1 are interior elements

of Γ; (iii) {Ut,Ft} is a martingale difference sequence (MDS), where Ut := Yt − E[Yt|Wt], and Ft is the

adapted smallest σ-field generated by {Zt+1, Ut,Zt, Ut−1, · · · }. �

2.1 The QLR Statistic underH′0 : β∗ = 0

We examine the asymptotic null approximation of the QLR test under H′0. As γ∗ is not identified under

H′0, we approximate the model with respect to the other parameters and treat γ as an unidentified nui-

sance parameter as in Davies (1977, 1987). For notational simplicity, let the quasi-likelihood (QL) and

concentrated QL (CQL) be denoted as Ln(α, β, γ, δ) := −
∑n

t=1(Yt−α−βX
γ
t −W′

tδ)2 and Ln(β; γ) :=

Ln(α̂n(β; γ), β, γ, δ̂n(β; γ)), respectively, where (α̂n(β; γ), δ̂n(β; γ)′)′ := arg maxα,δ Ln(α, β, γ, δ). The

resulting CQL has the form Ln(β; γ) = −{Y − βX(γ)}′M{Y − βX(γ)}, where Y := (Y1, . . . , Yn)′,

M := In − Z(Z′Z)−1Z′, X(γ) := (Xγ
1 . . . X

γ
n)′, Z := [Z′1, . . . ,Z

′
n]′ with Zt := [1,W′

t]
′. Under H0,

MY = MU and U := (U1, . . . , Un)′. We can sequentially maximize the CQL with respect to β and γ:

QLR(β=0)
n := sup

γ
sup
β
n

{
1− Ln(β; γ)

Ln(0; γ)

}
= sup

γ

{X(γ)′MU}2

σ̂2n,0X(γ)′MX(γ)
. (1)

Recall that σ̂2n,0 := infα,δ
1
n

∑n
t=1(Yt − α−W′

tδ)2. This statistic is asymptotically bounded in probability

under mild conditions.

Assumption 2. (i) For each ε > 0, A(β=0)(γ) and B(β=0)(γ) are positive definite (PD) uniformly on

Γ(ε) := Γ\ ((−ε, ε)∪ (1−ε, 1+ε)), where A(β=0)(γ) := E[R̄t(γ)R̄t(γ)′], and B(β=0)(γ) := E[U2
t R̄t(γ)
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R̄t(γ)′] with R̄t(γ) := [Xγ
t ,Z

′
t]
′; (ii) there is a strictly stationary and ergodic (SSE) sequence {Mt} such

that E[M4ρ
t ] < ∞; (iii) supγ∈Γ |X

γ
t | ≤ Mt, supγ∈Γ |X

γ
t log(Xt)| ≤ Mt; (iv) for each j, |Dt,j | ≤ Mt,

|Ut| ≤Mt; (v) ρ = r. �

We can apply the functional central limit theorem (FCLT) and uniform law of large numbers (ULLN) to

(1) using Assumptions 1 and 2. Nonetheless, if γ = 0 or 1, X(γ)′MU ≡ 0 and X(γ)′MX(γ) ≡ 0 by

definition of M, the idempotent projector constructed from [1, Xt,D
′
t]
′. So QLR(β=0)

n may not be well

defined underH′0. For the moment, therefore, we redefine the QLR test as

QLR(β=0)
n (ε) := sup

γ∈Γ(ε)
sup
β
n

{
1− Ln(γ;β)

Ln(0;β)

}
= sup

γ∈Γ(ε)

{X(γ)′MU}2

σ̂2n,0X(γ)′MX(γ)
, (2)

which explains the necessity of Γ(ε) in Assumption 2(i). From the definition of QLR(β=0)
n (·), it is mono-

tonically decreasing, so the test may be more powerful under H1 as ε → 0. Later in this Section, we

consider behavior at the limits of the domain of definition as ε → 0 and show that QLR(β=0)
n can still be

asymptotically bounded in probability under the null.

The main result of this subsection now follows.

Theorem 1. Given Assumptions 1, 2, andH′0, for each ε > 0, QLR(β=0)
n (ε)⇒ supγ∈Γ(ε)Z(γ)2, where for

each γ ∈ Γ(ε), Z(γ) ∼ N(0, ρ(γ, γ)), and for each pair (γ, γ′), E[Z(γ)Z(γ′)] = ρ(γ, γ′) := κ(γ, γ′)/

{σ2(γ)σ2(γ′)}1/2; κ (γ, γ′) := E[U2
t X

γ+γ′

t ]− E[U2
t X

γ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ′

t ]− E[U2
t X

γ′

t Z′t]E[ZtZ
′
t]
−1

E[ZtX
γ
t ]+E[Xγ

t Z′t] E[ZtZ
′
t]
−1E[U2

t ZtZ
′
t]E[ZtZ

′
t]
−1E[ZtX

γ′

t ]; and σ2(γ) := σ2∗(E[X2γ
t ]−E[Xγ

t Z′t]E[Zt

Z′t]
−1E[ZtX

γ
t ]). �

The kernel κ (·, ·) is composed of analytic functions that satisfy dominated convergence and assure smooth

second-order differentiability. This feature is important when obtaining the asymptotic null distribution.

The absolutely regular mixing condition is used to demonstrate tightness of {X(·)′MU}. The relatively

simple covariance kernel is obtained because Ut is an MDS. If Ut exhibits conditional homoskedasticity,

κ(γ, γ′) further simplifies to σ2∗{E[Xγ+γ′

t ]− E[Xγ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ′

t ]}.

2.2 The QLR Statistic underH′′0 : γ∗ = 0

We next develop the asymptotic null approximation under H′′0 . As mentioned earlier, if γ∗ = 0, α∗ and β∗

are not separately identified. To resolve this difficulty, our discussion proceeds in two ways. First, we may

fix β, identify α∗, and obtain the asymptotic null approximation. Alternatively, we may fix α and identify

β∗. We examine each case separately in what follows.
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First fix β, approximate the CQL with respect to (α, δ) as before, and then optimize the CQL with re-

spect to β in the final step. For this purpose, define the CQL as Ln(γ;β) := Ln(α̂n(γ;β), β, γ, δ̂n(γ;β)) =

−{Y − βX(γ)}′M{Y − βX(γ)}, where (α̂n(γ;β), δ̂n(γ;β)′)′ := arg maxα,δ Ln(α, β, γ, δ). Here, the

nuisance parameter is β, while the nuisance parameter of Ln(β; γ) is γ. Applying a second-order Taylor

expansion to this function and optimizing with respect to γ, to approximate the QLR test, we have

QLR(γ=0;β)
n := sup

β
sup
γ
n

{
1− Ln(γ;β)

Ln(0;β)

}
= sup

β

{n−1/2L′1MU}2

σ̂2n,0{n−1L′1ML1}
+ op(1), (3)

where for each j = 1, 2, . . ., Lj := [logj(X1), . . . , logj(Xn)]′. Here, we also used the fact that Ln(0;β) =

−nσ̂2n,0. In particular, the right side of (3) is free of β, which holds when L′2MU = op(n). This readily

holds under mild regularity conditions by virtue of the MDS property of {Ut,Ft}. Therefore, the maximiza-

tion process with respect to β is innocuous.

Although the approximation (3) is a consequence of a conventional second-order approximation, it dif-

fers from those in the ANN literature. Importantly, (∂/∂γ)Ln(0;β) is not necessarily equal to zero. In the

ANN literature, it is common to have zero first-order derivatives, so that higher-order approximations are

needed (e.g., Cho, Ishida, and White, 2011, 2014; and White and Cho, 2012). This difference mainly arises

because the nonlinear functions in the ANN literature have nuisance parameters that are multiplicative to

Xt, whereas here the parameter γ enters nonlinearly through the power coefficient. From this feature of the

specification, we expect local power properties to be different from those in the ANN literature.

We next identify the model in another way when γ∗ = 0. That is, we can fix α. For this purpose, let

(β̂n(γ;α), δ̂n(γ;α)′)′ := arg maxβ,δ Ln(α, β, γ, δ) and obtain the CQL asLn(γ;α) := Ln(α, β̂n(γ;α), γ,

δ̂n(γ;α)) = −P(α)′[I−Q(γ)[Q(γ)′Q(γ)]−1Q(γ)′]P(α), where P(α) := Y−αι, Q(γ) := [X(γ)
... W],

and ι is the n×1 vector of ones. We approximate this CQL function and obtain the following approximation.

QLR(γ=0;α)
n := sup

α
sup
γ
n

{
1− Ln(γ;α)

Ln(0;α)

}
= sup

α

{
n−1/2L′1MU

}2
σ̂2n,0{n−1L′1ML1}

+ op(1). (4)

Note that this is the same final approximation as obtained on the right side of (3), although different approx-

imations were applied. The unidentified parameter α cancels and optimizing with respect to α is inconse-

quential.

Applying a central limit theorem (CLT) and the ergodic theorem to (3) or (4), we find thatQLR(γ=0)
n :=

supα,γ n {1− Ln(γ;α)/Ln(0;α)} weakly converges to a scaled chi-squared variate. For this purpose, we

impose the following conditions.

Assumption 3. (i) A(γ=0) and B(γ=0) are PD, where A(γ=0) := E[ṘtṘ
′
t], B(γ=0) := E[U2

t ṘtṘ
′
t], and
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Ṙt := [log(Xt),Z
′
t]
′; (ii) for an SSE sequence {Mt} and each j, |Wt,j | ≤Mt, |Ut| ≤Mt, | log(Xt)| ≤Mt,

and E[M4
t ] <∞. �

The following theorem formalizes the result.

Theorem 2. Given Assumptions 1, 3, and H′′0 , QLR(γ=0)
n = {L′1MU}2/{σ̂2n,0(L′1ML1)} + op(1) under

H′′0 : γ∗ = 0, and QLR(γ=0)
n

A∼ Z2
0 , where Z0 ∼ N(0, κ20/σ

2
0); κ20 := E[U2

t log2(Xt)]− 2E[U2
t log(Xt)Z

′
t]

E[ZtZ
′
t]
−1E[Zt log(Xt)] + E[log(Xt)Z

′
t]E[ZtZ

′
t]
−1 E[U2

t ZtZ
′
t]E[ZtZ

′
t]
−1E[Zt log(Xt)]; and σ20 := σ2∗(E

[log2(Xt)]− E[log(Xt)Z
′
t]E[ZtZ

′
t]
−1E[Zt log(Xt)]). �

The asymptotic null approximation of the QLR test is driven by L1, a feature that, intuitively, is asso-

ciated with the Box-Cox transformation. Passing the parameter of the Box-Cox transform to zero gives

(d/dγ)Xγ
t |γ=0 = limγ→0 (Xγ

t − 1)/γ = logXt. Thus, the Box-Cox transform with γ = 0 is as-

sociated with the first-order derivative which forms the primary component constituting the score of the

QLR test. Additionally, the Box-Cox transform approximates E[Yt|Wt] = (α∗ + β∗) + ξ∗Xt + D′tη∗ +

β∗γ∗(X
γ∗
t − 1)/γ∗ by α∗+ ξ∗Xt + D′tη∗+ β∗γ∗ log(Xt) when γ∗ is sufficiently close to zero. For such a

case, L′1MU is the primary score of standard statistics obtained under the null that β∗γ∗ = 0. This implies

that the Box-Cox transform can be understood as an alternative to the constant function hypothesis.

2.3 The QLR Statistic underH′′′0 : γ∗ = 1

We repeat the procedure to obtain the asymptotic null approximation underH′′′0 . If γ∗ = 1, β∗ and ξ∗ are not

separately identified as mentioned earlier. The procedure to obtain the asymptotic approximation is similar

to that of Section 2.2. As β∗ and ξ∗ are not separately identified, we first fix β at some particular value and

concentrate the QL with respect to (α, δ′)′. The CQL obtained in this way is expanded with respect to γ

around γ∗ = 1 by a second-order approximation, leading to

QLR(γ=1;β)
n := sup

β
sup
γ

sup
α,δ

n

{
1− Ln(α, β, γ, δ)

Ln(1;β)

}
= sup

β

{
n−1/2C′1MU

}2
σ̂2n,0{n−1C′1MC1}

+ op(1), (5)

provided that C′2MU = op(n), where for each j = 1, 2, . . ., Cj := [X1 logj(X1), . . . , Xn logj(Xn)]′.

We now reverse the plan of identification. We first fix ξ and identify the other parameters (α∗, β∗,η
′
∗)
′.

For notational simplicity, let θ := (β,η′)′ and St(γ) := (Xγ
t ,D

′
t)
′, so that θ∗ := (β∗,η

′
∗)
′. We obtain

Ln(γ; ξ) := Ln(α̂n(γ; ξ), θ̂n(γ; ξ), γ, ξ) = −P̃(ξ)′[I − Q̃(γ)[Q̃(γ)′Q̃(γ)]−1Q̃(γ)′]P̃(ξ), where P̃(ξ) :=

Y−ξX, Q̃(γ) := [ι
... S(γ)], X := (X1, . . . , Xn)′, and S(γ) := [S1(γ), . . . ,Sn(γ)]′. We again approximate
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the CQL, and the asymptotic approximation of the QLR test is simply

QLR(γ=1,ξ)
n := sup

ξ
sup
γ
n

{
1− Ln(γ; ξ)

Ln(1; ξ)

}
= sup

ξ

{
n−1/2C′1MU

}2
σ̂2n,0{n−1C′1MC1}

+ op(1). (6)

This expression has the same approximate form as that on the right side of (5). Our next assumption provides

regularity assumptions for this result to hold.

Assumption 4. (i) A(γ=1) and B(γ=1) are PD, where A(γ=1) := E[R̈tR̈
′
t] and B(γ=1) := E[U2

t R̈tR̈
′
t]

with R̈t := [Xt log(Xt),Z
′
t]
′; (ii) for an SSE sequence {Mt, St} and each j, |Dt,j | ≤ Mt, E[M4ρ

t ] < ∞,

E[S8
t ] < ∞, and (ii.a) |Ut| ≤ Mt, |Xt| ≤ St, and | log[Xt]| ≤ St; (ii.b) |Xt| ≤ Mt, |Ut| ≤ St, and

| log[Xt]| ≤ St; or (ii.c) | log[Xt]| ≤Mt, |Xt| ≤ St, and |Ut| ≤ St; (iii) ρ = 1. �

Note that the moment condition in Assumption 4(ii.a) does not imply Assumption 4(ii.b or ii.c) or vice

versa. If at least one of these separate conditions holds, however, the desired results follow as given below.

Theorem 3. Given Assumptions 1, 4, andH′′′0 , QLR(γ=1)
n = {C′1MU}2/{σ̂2n,0(C′1MC1)}+op(1), where

QLR
(γ=1)
n denotes the QLR statistic testing H′′′0 , and QLR

(γ=1)
n

A∼ Z2
1 ; Z1 ∼ N(0, κ21/σ

2
1); κ21 :=

E[U2
t X

2
t log2(Xt)]− 2E[U2

t Xt log(Xt)Z
′
t]E[ZtZ

′
t]
−1E[ZtXt log(Xt)] + E[Xt log(Xt)Z

′
t]E[ZtZ

′
t]
−1E[U2

t

ZtZ
′
t]E[ZtZ

′
t]
−1E[ZtXt log(Xt)]; and σ20 := σ2∗(E[X2

t log2(Xt)] − E[Xt log(Xt)Z
′
t] E[ZtZ

′
t]
−1E[ZtXt

log(Xt)]). �

The asymptotic null distribution is driven by C1 and, as before, this link can be associated with the

Box-Cox transformation. In particular (d/dγ)Xγ
t |γ=1 = limγ→1 (Xγ

t −Xt)/(γ − 1). So modifying the

Box-Cox transform as

ABCt(γ) :=

 (Xγ
t −Xt)/(γ − 1), if γ 6= 1;

Xt log[Xt], if γ = 1,

we see that Xt log(Xt) is the typical element of C1, implying an interpretation of the test in terms of

the Box-Cox transformation. That is, when γ∗ is believed to be sufficiently close to one in E[Yt|Wt] =

α∗ + (ξ∗ + β∗)Xt + D′tη∗ + β∗(γ∗ − 1){(Xγ∗
t −Xt)/(γ∗ − 1)}, the augmented Box-Cox transformation

approximates the mean function by α∗+(ξ∗+β∗)Xt+D′tη∗+β∗(γ∗−1)Xt log(Xt). For such a case, the

primary score of standard statistics is constructed using C′1MU under the null that β∗(γ∗ − 1) = 0. This

implies that the given transformation can be understood as an alternative to the linearity hypothesis.

2.4 Interrelationships of the QLR Statistics underH0

The separate weak limits obtained in the previous subsections are not independent. The stochastic rela-

tionships can be studied by letting γ converge to zero and unity in the test studied in subsection 2.1. To
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wit, define Nn(γ) and Dn(γ) as Nn(γ) := {X(γ)′MU}2 and Dn(γ) := σ̂2n,0X(γ)′MX(γ), representing

the numerator and denominator of (1), respectively. First, consider the case where γ → 0, which shows

that plimγ→0Nn(γ) = 0 and plimγ→0Dn(γ) = 0 because plimγ→0X(γ) = ι and M is the idempotent

projector constructed from [1, Xt,D
′
t]
′. First order use of L’Hôpital’s rule also fails due to the further de-

generacy: plimγ→0(d/dγ)Nn(γ) = 0, plimγ→0(d/dγ)Dn(γ) = 0 by the same reasoning. It also follows

that plimγ→1Nn(γ) = plimγ→1(d/dγ)Nn(γ) = 0 and plimγ→1Dn(γ) = plimγ→1(d/dγ)Dn(γ) = 0.

Hence, it is necessary to apply L’Hôpital’s rule a further time to remove the degeneracy.

The required further derivatives are provided in the following lemma.

Lemma 1. Given Assumption 1, (i) plimγ→0N
(2)
n (γ) = 2{L1MU}2 and plimγ→0D

(2)
n (γ) = 2σ̂2n,0L1ML1;

and (ii) plimγ→1N
(2)
n (γ) = 2{C1MU}2 and plimγ→1D

(2)
n (γ) = 2σ̂2n,0C1MC1, where for j = 1, 2, . . . ,

N
(j)
n (γ) := (∂j/∂γj)Nn(γ) and D(j)

n (γ) := (∂j/∂γj)Dn(γ). �

Lemma 1 implies that plimγ→0Nn(γ)/Dn(γ) = {L1MU}2/σ̂2n,0L1ML1 and plimγ→1Nn(γ)/Dn(γ)

= {C1MU}2/σ̂2n,0C1MC1. That is, the asymptotic null approximations provided in Theorems 2 and 3

can be combined with the null approximation in Theorem 1. For this purpose, we combine the regularity

conditions of Theorems 2 and 3 as in the following assumption.

Assumption 5. For each ε > 0, A(γ) and B(γ) are PD uniformly on Γ(ε), where A(γ) := E[Rt(γ)

Rt(γ)′], B(γ) := E[U2
t Rt(γ)Rt(γ)′], and Rt(γ) := [Xγ

t , Xt log(Xt), log(Xt),Z
′
t]
′. �

Assumption 5 is stronger than Assumptions 2, 3, and 4, each of which separately holds under Assumption

5. Using these conditions we have the following result.

Theorem 4. Given Assumptions 1, 2(iii, v), 4(ii), 5, andH0, QLRn = supγ∈Γ {X(γ)′MU}2 /{σ̂2n,0X(γ)′

MX(γ)}, and QLRn ⇒ supγ∈ΓZ(γ)2. �

This result gives the asymptotic approximation of the QLR test under H0 and its limiting form as a

functional of a Gaussian process Z(·). Importantly, Z(·) is discontinuous at γ = 0 and 1 w.p. 1. Defining

Zn(γ) := X(γ)′MU/{σ̂2n,0X(γ)′MX(γ)}1/2, we can regard Z(·) as the weak limit of Zn(·). Observe

that limγ↓0 Zn(γ) = − limγ↑0 Zn(γ) and limγ↓1 Zn(γ) = − limγ↑1 Zn(γ) w.p. 1, so that limγ↓0Z(γ) =

− limγ↑0Z(γ) and limγ↓1Z(γ) = − limγ↑1Z(γ) w.p. 1. In view of these limits, the squared process

Z(γ)2 has equal left-hand and right-hand side limits as γ tends to 0 and 1. If Z(0)2 and Z(1)2 are defined

by these limits, it follows that Z(·)2 is continuous on Γ w.p. 1.

Theorem 4 has the following main implications. First, the asymptotic null approximation addresses the

trifold identification problem and, under the regularity conditions for each case, ensures that the limiting null
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distribution exists for each form of the null hypothesis. Second, the QLR test simultaneously satisfies these

separate conditions, thereby accommodating the trifold identification issues. With this property, the QLR

test has the capacity to test linearity within a unified framework. Finally, the null approximation is obtained

by using only second-order approximations, thereby ensuring that the QLR test has a
√
n convergence rate

under H ′′0 and H ′′′0 . This property differs from the ANN literature and leads the QLR test to have nontrivial

power against an n−1/2-local alternative, as verified in the next subsection.

To be more specific on the implications, we contrast the result in Theorem 4 with the tests in the prior

literature. By following Stinchcombe and White’s (1998) theorem 2.3, we define Bierens (1990) conditional

moment (CM) test as CMn := supγ∈Γ{Ŵn(γ)/σ̃n(γ)}2, where for each γ,

Ŵn(γ) := n−1/2
n∑
t=1

(Yt − α̃n −W′
tδ̃n) exp(γXt)

under the linear model context, and where σ̃n(γ)2 := n−1σ̂2n,oE(γ)′ME(γ) with E(γ) := [..., exp(γXt), ...]
′.

Here, (α̃n, δ̃
′
n) is obtained by regressing Yt on (1,W′

t). Therefore, Ŵn(0) ≡ 0 and Ŵn(γ)2 = n−1{U′ME(γ)}2

under the null, so that

CMn = sup
γ∈Γ

(U′ME(γ))2

σ̂2n,oE(γ)′ME(γ)
.

Note that the only difference between the QLRn and CMn statistics is that X(γ) in QLRn replaces E(γ),

where the parameter γ of X(γ) exists as an integral parametric part of model, whereas γ of E(γ) is an

auxiliary parameter that is introduced specifically for defining the CM test. Although Bierens (1990) does

not explain how the CM test is defined when γ = 0 (note that (Ŵn(0)/σ̃(0))2 = (0/0)2), the current paper

shows that the QLR test has the capability of jointly testing β∗ = 0, γ∗ = 0, and/or γ∗ = 1 using a second-

order Taylor expansion that differs from the expansion orders in Cho, Ishida, and White (2011, 2014). As

another conditional moment test, Bierens and Ploberger (1997) define the integrated conditional moment

(ICM) test as

ICMn :=

∫
γ∈Γ

Ŵ 2
n(γ)dµ(γ),

where µ(·) is a probability measure on Γ. Instead of the uniform norm, the L2-norm is used to construct this

test, and Ŵn(γ) is no longer standardized as for the CM test. Due to this fact, limγ→0 Ŵ
2
n(γ) = 0, which is

now different from the CM test. So, we can no longer link the ICM test to the score that tests γ∗ = 0. By

virtue of this fact, the ICM test can be said to test only β∗ = 0, and the second-order Taylor expansion is

enough for testing β∗ = 0.
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2.5 Power Examination of the QLR Test

The omnibus power of the QLR test derives from the GCR property. Under H1, for any non-polynomial

analytic function, ψ(·) say, E[Vtψ(Xt)] 6= 0 when Vt is the linear projection error. This also implies that

for some non-negative integer j∗, E[Vt logj∗(Xt)] 6= 0 by Bierens’s (1982) theorem 2, given that log(·) is a

one-to-one mapping. The omnibus power of the QLR test is associated with this property.

For a specific examination of the power of the QLR test, we suppose that E[Yt|Wt] = α∗ + W′
tδ∗ +

m(Xt) and that there is possibly no parameter vector (β∗, γ∗) such that m(Xt) = β∗X
γ∗
t w.p. 1., so that

the classM may not be able to deliver a consistent estimate of E[Yt|Wt]. By usual least squares projection

algebra we find that

min
α,δ,β

E[(Yt − α−W′
tδ − βX

γ
t )2] = h(γ) := E[U2

t ] + var[Qt]− cov[Ut(γ), Qt]
2/var[Qt],

where Ut(γ) := Xγ
t − Z′tE[ZtZ

′
t]
−1E[ZtX

γ
t ] and Qt := m(Xt) − Z′tE[ZtZ

′
t]
−1E[Ztm(Xt)]. Thus, if it

happens that for some (β∗, γ∗), m(Xt) = β∗X
γ∗
t w.p. 1 and γ∗ ∈ Γ, then h(·) is minimized as E[U2

t ] by

letting γ = γ∗. Note that if h0 := minα,δ E[(Yt − α −W′
tδ)2] = E[U2

t ] + var[Qt], we have QLRn/n =

(1 − h(γ∗)/h0) + op(1), and h(γ∗)/h0 < 1. Therefore, the QLR test has consistent power. This property

remains true even if there is no such (β∗, γ∗).

Theorem 5. Given Assumptions 1, 2(iii, v) 4(ii), and 5, (i) if E[Yt|Wt] = α∗ + W′
tδ∗ + m(Xt) with

E[m(Xt)
2] <∞ and E[log4j∗(Xt)] <∞, for some γ̃ ∈ Γ, h(γ̃) ∈ (0, h0) andQLRn/n = (1−h(γ̃)/h0)+

op(1); (ii) if E[Yt|Wt] = α∗ + W′
tδ∗ + m(Xt)/

√
n with |m(Xt)| ≤ Mt, QLRn ⇒ supγ∈Γ{Z(γ) +

µ(γ)/σ(γ)}2, where µ(γ) := E[m(Xt)X
γ
t ]− E[m(Xt)Z

′
t]E[ZtZ

′
t]
−1E[ZtX

γ
t ]. �

Theorem 5(i) follows by showing that h(·) is not a constant function on Γ if E[Vt logj∗(Xt)] 6= 0, and

Theorem 5(ii) derives the local power of the test.

3 Testing for Power Transforms of a Trend Regressor

We now extend the discussion to the case where Yt is a trend stationary process with a deterministic time

trend. This type of model is particularly important in analyzing nonstationary time series and in trend re-

moval procedures. We suppose that E[Yt|Dt] is a function of both t and Dt,where {Dt} is, as before, strictly

stationary. Primary attention now focuses on testing whether E[Yt|Dt] is a linear function of (1,D′t, t)
′. For

such a test, we consider M′ := {mt(·) : Ω 7→ R : mt(α, δ, β, γ) := α + D′tη + ξt + βtγ}. The only
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difference betweenM andM′ arises from the replacement of Xt with t. The regressor Dt may be used to

capture temporal dependence in the data that is not embodied in tγ .

In spite of this correspondence with the earlier model, the QLR test cannot be straightforwardly analyzed

because Assumption 5 no longer holds. The PD matrix condition in Assumptions 5(i) fails and the (implied)

regressors are asymptotically collinear. The following lemma states this property in a precise way.

Lemma 2. If {Dt} is SSE such that for each j, E[D2
t,j ] < ∞, then for each γ ∈ Γ(ε), F−1n

∑n
t=1 Ht(γ)

Ht(γ)′F−1n almost surely converges to a singular matrix, where Ht(γ) := [tγ , t log(t), log(t), 1, t,D′t]
′,

Fn := diag[n
1
2
+γ , n

3
2 log(n), n

1
2 log(n), n

1
2 , n

3
2 , n

1
2 ιk], and ιk is a k × 1 vector of ones. �

Note that F−1n
∑n

t=1 Ht(γ)Ht(γ)′F−1n is a (matrix normalized) sample analog of A(γ) in Assumption 5(i).

Since time trends are involved, the scaling rates of the components are different from the standard stationary

variable case and are parameter dependent on γ. As the limit of the square signal matrix in Lemma 2 is

a singular matrix, the QLR test cannot be analyzed as in Section 2. Importantly, this singularity does not

imply that the asymptotic null distribution of the QLR test does not necessarily exist and that rotating the

regressor space is required for testing the null hypothesis (e.g. Park and Phillips (1988) and Phillips (1989)).

It is convenient to use the approach based on smoothly slowly varying (SSV) functions in Phillips (2007).

The asymptotic null distribution of the QLR test can most conveniently be found by reformulation.

Instead ofM′, we use the following ‘weak trend’ specification involving the trend fraction sn,t := t
n and

power functions of sn,t: M′′ :=
{
mt(·) : Ω 7→ R : mt(α, δ, β, γ) := α+ D′tη + ξnsn,t + λn(β, γ)sγn,t

}
,

where ξn := ξn and λn(β, γ) := βnγ . This weak trend has asymptotics closely related to those of a

stationary regressor. Linearity is obtained from M′′ by setting λn(·) = 0 for any n, γ = 0, or γ = 1.

Furthermore, β = 0 if and only if λn(·) = 0. Thus, when the null is given as H̃0 : ∃(α∗,η∗, ξ∗),E[Yt|Dt] =

α∗ + D′tη∗ + ξ∗t w.p. 1, it can be formulated in terms of H̃′0 : λn(β∗, γ∗) = 0; H̃′′0 : γ∗ = 0; and

H̃′′′0 : γ∗ = 1.

Using this modification of the model, the asymptotic null behavior of the QLR test can be obtained

under appropriate conditions. We start with the following assumptions:

Assumption 6. (i) (Yt,D
′
t)
′ ∈ R1+k (k ∈ N) is given, and {Dt} is a φ-mixing process with mixing decay

rate −m/2(m− 1) with m ≥ 2 or an α-mixing process with mixing decay rate −m/(m− 2) with m > 2,

and Yt is a time-trend stationary process; Z′Z =
∑n

t=1 Zn,tZ
′
n,t is nonsingular w.p. 1, where Zn,t :=

(1, sn,t,D
′
t)
′, and n is the sample size; (ii) E[Yt|Dt] is specified asM′′, where Ωn := A×H×Ξn×Λn×Γ

is the parameter space of ωn := (α,η′, ξn, λn, γ)′ such that A, ∆, and Γ are convex and compact in R,

Rk, and R, respectively, such that 0 and 1 are interior elements of Γ := [γ, γ̄] with γo := inf Γ > −1/2,

and for each n, Ξn and Λn are convex and compact in R. �
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Assumption 7. (i) For each ε > 0, Ã(γ) and B̃(γ) are PD uniformly on Γ(ε), where Ã(γ) := E[H̃t(γ)],

B̃(γ) := E[U2
t H̃t(γ)], Ut := Yt − E[Yt|Dt], and

H̃t(γ) :=



1
2γ+1 − 1

(γ+2)2
− 1

(γ+1)2
1

γ+1
1

γ+2
1

1+γD′t

− 1
(γ+2)2

2
27

1
4 −1

4 −1
9 −1

4D′t

− 1
(γ+1)2

1
4 2 −1 −1

4 −D′t
1

γ+1 −1
4 −1 1 1

2 D′t
1

γ+2 −1
9 −1

4
1
2

1
3

1
2D′t

1
γ+1Dt −1

4Dt −Dt Dt
1
2Dt DtD

′
t


;

(ii) {Ut,Ft} is an MDS; and there is an SSE sequence {Mt} such that for each j, |Dt,j | ≤Mt, |Ut| ≤Mt,

and for some r > 1, E[M4r
t ] <∞. �

Some discussion of Assumptions 6 and 7 is warranted. First, the mixing condition in Assumption

1 is relaxed in Assumption 6. Since the time trend is nonstochastic, tightness of the statistic trivially

holds even under the current mixing condition. Second, Ã(γ) and B̃(γ) are the probability limits of

n−1
∑

Gn,t(γ)Gn,t(γ)′ and n−1
∑
U2
t Gn,t(γ)Gn,t (γ)′, where Gn,t(γ) := [sγn,t, sn,t log(sn,t), log(sn,t),

1, sn,t,D
′
t]
′. Third, the nonsingularity of Ã(γ) is identical to the condition that Dt has a nonsingular co-

variance matrix. The first five principal minors of Ã(γ) have strictly positive determinants. Thus, Ã(γ) is

PD if and only if E[DtD
′
t]− Ã(2,1)(γ){Ã(1,1)(γ)}−1Ã(1,2)(γ) is PD, where we partition Ã(γ) as

Ã(γ) ≡

 Ã(1,1)(γ) Ã(1,2)(γ)

Ã(2,1)(γ) E[DtD
′
t]

 .
The final entry is the covariance matrix of Dt by the definition of Ã(γ). Finally, the QLR tests obtained

by usingM′ andM′′ are identical by the invariance principle of maximum likelihood: reparameterization

does not modify the level of the maximized quasi-likelihood.

Our main result now follows.

Theorem 6. Given Assumptions 6 and 7, (i) QLRn ⇒ supγ∈Γ Z̃(γ)2 under H̃0, where Z̃(·) is a Gaussian

process with zero mean and covariance kernel κ̃ (γ, γ′) such that for each γ, γ′ ∈ Γ \ {0, 1}, κ̃ (γ, γ′) :=

c(γ, γ′)(1 + 2γ)1/2(1 + 2γ′)1/2/(1 + γ + γ′), where for each γ, γ′ ∈ Γ, c(γ, γ′) := γγ′(γ − 1)(γ′ − 1)/

|γγ′(γ − 1)(γ′ − 1)|; (ii) when E[Yt|Dt] = α∗ + D′tη∗ + ξ∗t + β∗t
γ∗ with γ̄ < γ∗, and (ii.a) if 0 < γ∗,

QLRn/n = g2(γ∗, γ̄)/{g(γ̄, γ̄)g(γ∗, γ∗)} + op(1), where g(γ∗, γ) := 1/(γ + γ∗ + 1) + K/{4(γ∗ +

1)(γ + 1)} with K := E[D̃t]
′Q̃−1E[D̃t], D̃t := [1,D′t]

′, and Q̃ := E[D̃tD̃
′
t] − 3

4E[D̃t]E[D̃′t]; (ii.b) if
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−1
2 < γ∗ < 0, QLRn/n1+2γ∗ = β2∗g

2(γ∗, γ̄)/{σ2∗g(γ̄, γ̄)} + op(1); (iii) when E[Yt|Dt] = α∗ + D′tη∗ +

ξ∗t+m(t) withm(·) being SSV, and (iii.a) if nm′(n)→ c (6= 0),QLRn/n = supγ∈Γ{cp(γ)}2/{g(γ, γ)(σ2∗

+c2q)}+ op(1), where p(γ) := (γ− 1){(3γ+ 5)/(γ+ 1)− 5
4K}/{4(γ+ 1)(γ+ 1)} and q := 29

16 −
25
64K;

(iii.b) if nm′(n) → ∞, QLRn/n = supγ∈Γ p(γ)2/{qg(γ, γ)}; (iv) if E[Yt|Dt] = α∗ + D′tη∗ + ξ∗t +

(β∗/n
γ∗+1/2)tγ∗ , QLRn ⇒ supγ∈Γ(Z̃(γ) + β∗g(γ∗, γ)/{σ(γ)})2; (v) if E[Yt|Dt] = α∗ + D′tη∗ + ξ∗t+

m(t)/{n3/2m′(n)}, QLRn ⇒ supγ∈Γ(Z̃(γ) + p(γ)/{σ(γ)})2. �

The proof of Theorem 6(i) is similar to those of Theorems 4 and 5. Note that {sn,t} is a sequence of non-

random positive numbers uniformly bounded by unity and the MDS Ut satisfies the mixing condition of

Assumption 6. From this, {n−1/2
∑
s
(·)
n,tUt} is tight.

We focus here on two alternative nonstationary time trends – power functions and SSV trends. Theorems

6(ii to v) show that the QLR test has consistent global and local powers under the maintained assumptions.

For example, if nm′(n)→ 0 then the QLR test is not consistent under the assumptions of Theorem 4(iii).

The covariance structure of the associated Gaussian process is independent of the joint distribution

of (Ut,D
′
t). Further, the same covariance structure applies irrespective of whether there is conditional

heteroskedasticity in the residuals. We call the Gaussian process Z̃(·) with covariance kernel κ̃(·, ·) the

power Gaussian process, noting that Z̃(·) is obtained using the power transform of a trend. We note further

that Z̃(·) is not continuous at γ = 0 and 1 as is evident from the functional form of c(·, ·).

The null distribution of the QLR test can be represented in terms of another Gaussian process. For

this purpose, let Z̄(γ) :=
∑∞

j=2

[
γ4/{(γ + 1)2(2γ + 1)}

]−1/2 {γ/(γ + 1)}jGj , where Gj ∼ IID N(0, 1).

When γ > −0.5, [γ/(1 + γ)]j → 0 geometrically as j → ∞, so that the covariance structure of this

Gaussian process is well defined. This process coincides with the Gaussian process that appeared in Cho

and White (2010) and Cho, Cheong, and White (2011) for testing unobserved heterogeneity in duration data.

Notice that E[Z̄(γ)Z̄(γ′)] = (1 + 2γ)1/2(1 + 2γ′)1/2/(1 + γ + γ′). We call the Gaussian process with this

covariance kernel the exponential Gaussian process. Although the power Gaussian process is different from

the exponential Gaussian process, Z̄(·)2 is distributionally equivalent to Z̃(·)2. The next result immediately

follows.

Theorem 7. Given Assumptions 6, 7, and H̃0, QLRn ⇒ supγ∈Γ Z̄(γ)2.

The exponential Gaussian process Z̄(·) can be easily simulated using a sequence of IID standard normal

random variables {Gj} and truncating the summation as in Z̄q(γ) :=
∑q

j=2

[
γ4/{(γ + 1)2(2γ + 1)}

]−1/2
{γ/(γ + 1)}jGj for some large q. Table 1 reports the asymptotic critical values by implementing this simu-

lation for three levels of significance (1%, 5%, and 10%) and four different parameter spaces ([−0.20, 1.50],

[−0.10, 1.50], [0.00, 1.50], [0.10, 1.50]). Specifically, we let q be 500 and simulate supγ∈Γ Z̄q(γ)2 100,000
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Levels \ Γ [−0.20, 1.50] [−0.10, 1.50] [0.00, 1.50] [0.10, 1.50]
10% 3.7186 3.6326 3.4669 3.4098
5% 4.9641 4.9065 4.7112 4.6196
1% 7.9861 7.9549 7.7336 7.6404

Table 1: ASYMPTOTIC CRITICAL VALUES OF THE QLR TEST STATISTIC. This table contains the asymp-
totic critical values obtained by generating the exponential Gaussian process 100,000 times. A grid search
method is used to obtain the maximum of the squared process. The grid distance is 0.01, and q is 500.

times to obtain the critical values. Greater powers of the test can be attained when the test is formulated

using a space Γ that can better capture the alternative.

4 Simulations

We report simulation results to explore the finite sample properties of the QLR test usingM.

First, let the data (Yt, Xt) be generated by Yt = 1+Xt+Ut, whereXt := exp(−Ht), Ut ∼ IID N(0, 1),

and Ht = 0.5Ht−1 +Gt, Gt = 0 and Et w.p. 0.5 and 0.5, respectively; and Et ∼ IID Exp(1) such that Ut

is independent of Ht. Given this DGP, we specifyM = {mt(·) : mt(α, ξ, β, γ) = α+ ξXt+βXγ
t , γ ∈ Γ}

as the model for E[Yt|Xt]. We consider the same parameter spaces for Γ as used in Table 1. In particular, the

parameter space [0.10, 1.50] does not contain zero, reducing the scope of the trifold identification problem,

because the number of unidentified model cases is reduced. The associated Gaussian process with the

QLR test has the same covariance structure as that of the power Gaussian process mainly from that Ut is

IID with conditionally homoskedastic variance and Ht marginally follows an exponential distribution with

population mean unity. We also compare the QLR test with Bierens and Ploberger’s (1997) ICM test defined

as
∫
Γ Ẑn(γ)2dγ, where Ẑn(γ) := 1√

n

∑
Ût exp(γΦ(Xt)), Ût is the residual obtained under the linear model

assumption, and Φ(·) is the standard normal cdf.

Table 2 contains the empirical rejection rates of the null hypothesis in round parentheses obtained from

5,000 replications. The significance level is 5%, and the findings are as follows. First, for each parameter

constellation, the empirical rejection rates approach the nominal levels as n increases. Second, convergence

to the nominal levels tends to be slower when the lower bound of Γ is closer to −0.50 and the upper bound

is the same. Level distortion in the test can therefore be reduced by raising the lower bound of Γ from

the minimum. Third, convergence to the nominal level improves as the upper bound of Γ increases, with

the same lower bound. Thus level distortion may be attenuated by using a higher upper bound of Γ. The

Table also provides (in parentheses) the estimated p-values obtained by applying Hansen’s (1996) weighted

bootstrap and compares these with those of the ICM test. This procedure shows better performance than

the asymptotic critical values and strengthens implementation of the test. The overall level distortion of the
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Γ Tests \ n 50 100 200 300 400 500

[−0.20, 1.50]
QLR 4.90 (4.00) 4.96 (4.42) 4.44 (3.98) 4.84 (4.22) 4.34 (3.86) 4.88 (4.58)
ICM 6.54 5.84 5.22 5.26 5.42 5.08

[−0.10, 1.50]
QLR 4.52 (3.84) 5.06 (4.48) 4.66 (4.20) 4.78 (4.50) 4.54 (4.26 ) 4.48 (4.16)
ICM 6.78 4.96 5.80 5.24 5.30 4.80

[0.00, 1.50]
QLR 4.90 (4.20) 5.08 (4.94) 4.74 (4.82) 5.10 (5.12) 5.22 (5.10) 5.44 (5.44)
ICM 6.42 5.98 5.42 5.16 5.70 5.20

[0.10, 1.50]
QLR 5.36 (4.78) 5.42 (5.24) 5.24 (5.02) 4.98 (5.00) 4.82 (4.80) 5.60 (5.40)
ICM 6.44 5.94 4.56 5.54 5.42 4.98

Table 2: LEVELS OF THE QLR AND ICM TEST STATISTICS (SIGNIFICANCE LEVEL: 5%). Number of
Repetitions: 5,000. MODEL: Yt = α + ξXt + βXγ

t + Ut. DGP: Yt = 1 + Xt + Ut, Xt := exp(−Ht),
Ut ∼ IID N(0, 1),Ht = 0.5Ht−1+Gt,Gt = 0 w.p. 0.5;Gt = Et w.p. 0.5; andEt ∼ IID Exp(1) such that
Ut is independent of Gt. The figures are the empirical rejection rates obtained by the weighted bootstrap,
and the figures in round parentheses are the empirical rejection rates obtained by applying the critical values
in Table 1; the number of bootstrap iterations is 500; and the figures are measured in per cent.

Γ Tests \ n 50 (100) 100 (200) 150 (300) 200 (400) 250 (500)

[−0.20, 1.50]
QLR 71.85 (7.60) 94.15 (7.02) 98.60 (7.34) 99.90 (7.82) 99.95 (7.64)
ICM 41.75 (6.14) 67.25 (5.96) 84.65 (5.58) 93.55 (6.06) 97.35 (5.92)

[−0.10, 1.50]
QLR 71.85 (7.66) 94.40 (7.60) 99.40 (7.16) 99.70 (7.20) 99.95 (7.54)
ICM 41.65 (6.20) 66.80 (5.52) 85.65 (5.48) 93.75 (5.56) 97.60 (5.82)

[0.00, 1.50]
QLR 69.00 (7.22) 93.40 (7.22) 99.05 (8.38) 99.80 (7.30) 100.0 (6.80)
ICM 41.35 (6.26) 67.15 (6.26) 83.70 (6.12) 93.85 (5.88) 97.75 (5.78)

[0.10, 1.50]
QLR 72.15 (7.86) 94.55 (7.58) 98.75 (7.74) 99.95 (7.72) 99.95 (7.50)
ICM 42.25 (6.22) 66.85 (5.40) 84.55 (5.72) 93.75 (5.98) 97.10 (5.66)

Table 3: GLOBAL AND LOCAL POWERS OF THE QLR AND ICM TEST STATISTICS (SIGNIFICANCE

LEVEL: 5%). Number of Repetitions: 2,000 (resp. 5,000). MODEL: Yt = α+ ξXt + βXγ
t +Ut. GLOBAL

DGP: Yt = 1 + Xt + log(Xt) + Ut, and the other conditions are identical to those of Table 2. LOCAL

DGP: Yt = 1 + Xt + log(Xt)/
√
n + Ut, and the others are identical to the global DGP. The figures (resp.

in round parentheses) are the empirical rejection rates obtained by the weighted bootstrap under the global
(resp. local) DGP; the number of bootstrap iterations is 500; and the figures are measured in per cent.

QLR test is smaller than that of the ICM test.

Next, we compare the global and local powers of the tests. For this purpose, we let Yt = 1 + Xt +

log(Xt) + Ut and Yt = 1 + Xt + log(Xt)/
√
n + Ut for global and local power examination, respectively.

The conditions for Xt and Ut are identical to those of Table 2. Table 3 contains the empirical rejection

rates, and the figures in parentheses are local powers. The number of replications used is 2,000 (5,000) for

calculation of global (respectively, local) power. Overall in these experiments, the global and local powers

of the QLR test are higher than those of the ICM test. Although these results do not imply that power of the

QLR test always dominates that of the ICM test, they do indicate that the QLR test is superior in many cases

and is therefore highly competitive test. For brevity, we do not report other simulations that were conducted,

including those for time trends and errors exhibiting conditional heteroskedasticity. Interested readers can
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refer to the earlier version for more details.

5 Empirical Applications

A popular empirical topic that comes within the aegis of the present work is the identification detrended crop-

yield distributions in agricultural economics. Characterizations of production have significant implications

for crop insurance and farming business. For this reason, a key focus in the literature has been on identifying

whether detrended crop yields follow a normal distribution in order to facilitate convenient use of the mean-

variance principle for expected utility maximization. Detrending is an important feature of this process in

order to remove technology bias in estimating the underlying distribution.

Many controversies are present concerning this identification process. These can be classified into two

groups. Swinton and King (1991), Ramirez, Misra, and Field (2003) among others report that detrended crop

yields are skewed and non-Gaussian. On the other hand, Just and Weninger (1999) point to methodological

problems in previous identification work, reporting that Gaussianity cannot be easily rejected when proper

corrections are made for trends in the data. They claim the biggest methodological problem is potential

misspecification of the time trend model, which is precisely the central concern of Section 3.

We apply our methodology to the data used by Just and Weninger (1999) and explore support for their

empirical findings. When Yt is the crop yield, we specify the following polynomial model for trend: Yt =

α∗ +
∑p

j=1 ξj∗t
j + Ut. Just and Weninger (1999) select the integer trend degree p by Akaike’s information

criterion (AIC) and show that a number of crop yields without trend or with a linear trend have Gaussian

errors. We apply the QLR test and, if their trend assumption is refuted, we test normality using residuals

obtained by our alternative methods that allow for non-integer trends. Otherwise, we test normality using

residuals obtained from the no-trend or linear trend model.

For this purpose, we collect data from the US department of agriculture, following Just and Weninger

(1999). They consider time series data on alfalfa, corn, sorghum, soybeans and wheat obtained from Finney,

Ford, Gray, and Hodgeman counties in Kansas. Of these 20 series, they report that 9 series do not have

trend or have a linear trend. Results for these 9 series are given in Table 4. The first panel provides results

using the same sample of data as those in Just and Weninger (1999). The polynomial orders in Table 4 are

selected by AIC with a correction for finite sample sizes (AICc), and these are same as those given in Just

and Weninger (1999). Next we sequentially apply the QLR test, testing for any neglected trend, so that the

null is simply E[Yt] = α∗. Although the null is different from that in Theorem 7, it is a simple exercise to

derive the same asymptotic null distribution for the QLR test in this case. We let the parameter space for γ

be [0.00, 2.50], noting that trend is positive mainly due to technological developments. This QLR test and
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Crops Counties Sample Order QLR†1 p-val.†1 QLR†2 p-val.†2 p-val.§ JB†3 p-val.†3

Sorghum

Finney 80–94 1 4.32 7.01∗ 2.10 27.3 21.3 1.25 53.3
Ford 80–94 0 0.26 82.3 0.11 94.8 87.9 0.70 70.2
Gray 80–94 0 2.30 21.9 1.28 44.2 35.8 0.73 69.3

Hodgeman 80–94 0 1.19 43.2 2.45 22.4 17.7 2.26 32.2

Alfalfa
Finney 60–93 1 15.19 0.00∗∗∗ 1.41 40.9 33.5 2.85 24.0
Ford 60–93 1 8.05 1.01∗∗ 0.11 94.8 90.9 0.29 86.1
Gray 60–93 1 7.10 1.70∗∗ 1.37 41.9 33.7 6.25 4.38∗∗

Soybeans Ford 69–94 1 19.41 0.00∗∗∗ 0.32 82.3 70.0 0.19 90.7
Gray 65–94 1 23.17 0.00∗∗∗ 0.45 75.2 63.3 9.51 0.85∗∗∗

Sorghum

Finney 80–07 0 0.37 75.7 1.02 52.0 39.0 2.27 32.0
Ford 80–07 0 1.43 37.1 0.30 83.4 70.7 1.82 40.0
Gray 80–07 4 9.76 0.40∗∗∗ 4.83 6.04∗ 4.85∗∗ 0.94 62.4

Hodgeman 80–07 0 0.53 67.2 0.12 94.1 88.8 0.84 65.5

Alfalfa
Finney 60–07 3 12.63 0.10∗∗∗ 4.58 6.90∗ 4.56∗∗ 3.98 13.6
Ford 60–07 1 12.51 0.11∗∗∗ 1.45 40.0 34.1 1.13 56.5
Gray 60–07 1 8.71 0.70∗∗∗ 1.21 46.2 37.7 4.41 10.9

Soybeans Ford 69–02 3 20.00 0.00∗∗∗ 2.41 22.8 18.3 0.50 77.5
Gray 65–02 1 28.08 0.00∗∗∗ 0.17 91.1 84.3 10.28 0.58∗∗∗

Table 4: SUMMARY OF EMPIRICAL FINDINGS. Order denotes the polynomial order selected by AICc;
QLR†1 and p-val.†1 denote the QLR statistic and its p-value that test the no-trend assumption; QLR†2 and
p-val.†2 denote the QLR statistic and its p-value that test the linear trend assumption; p-val.§ denotes the p-
value of the QLR†2 obtained by the weighted bootstrap; JB†3 and p-val†3 denote the Jarque and Bera ( 1980)
statistic and its p-value that tests normality; data are obtained from http://quickstats.nass.usda.gov; alfalfa
yields are measured in tons per acre, and the other is measured in bushels per acre; p-values are figures in
per cent; affixes ‘*’, ‘**’, and ‘***’ denote “significant at 10%, 5%, and 1%”, respectively; and the number
of bootstrap iterations is 50,000.

its p-value are denoted as QLR†1 and p-value†1, respectively. We test the null using the critical values in

Table 1. The null of those series with AICc-based order equal to one is rejected by QLR†1. For the others,

the null is hard to reject. We next test the linear trend null E[Yt] = α∗ + ξ∗t. The QLR test and its p-value

are denoted as QLR†2 and p-value†2, respectively. We also apply the weighted bootstrap, and its p-value is

denoted as p-value§. We let the parameter space for γ be [−0.20, 2.50]. Note that none of the 9 cases is

rejected by the QLR test, implying that the 9 data series have at most a linear trend. The same conclusion

is also obtained even when the weighted bootstrap is applied, affirming the trend specification of Just and

Weninger (1999). Finally, the Jarque and Bera (1980) statistic is applied to test normality. Their test and

its p-value are denoted as JB†3 and p-value†3, respectively. Seven cases out of 9 turn out to accept the

Gaussian null. This feature generally matches the results obtained by Just and Weninger (1999), although

their empirical analysis shows that the alfalfa data of Gray county are also normally distributed.

We next extend the series to currently available samples and repeat the above procedure to see if the

previous findings are corroborated in the longer series. The second panel of Table 4 provides the empirical

results. Three data sets (Sorghum (Gray), Alfalfa (Finney), and Soybeans (Ford)) turn out to have nonlinear
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trends according to AICc. The QLR tests also reject the linear trend assumption for Sorghum (Gray) and

Alfalfa (Finney) data sets, although the QLR test cannot reject the linear trend assumption for Soybean

(Ford) data. When applying the weighted bootstrap, its p-value is 18.3%. This is different from the AICc-

based result. We also note that normality is rejected by only the Soybean (Ford) data, so that only one

series appears to be non-Gaussian out of these 9 cases. These results reinforces the empirical findings of

Just and Weninger (1999) that the majority of the detrended crops examined follow Gaussian distributions.

Thus, while the focus of the present methodology is on testing linearity, the current example shows that

the methods may be used as an alternative to order selection methods by directly estimating (potentially

non-integer) trend degree and conducting tests using the QLR procedure.

6 Conclusion

Linear models continue to be the mainstay of much empirical research, making specification tests of linear-

ity an important feature of model robustness checks. Power transforms offer a natural alternative to linearity

and provide a more general framework than simple polynomial specifications. However, tests of linearity

in models using power transforms raise critical identification issues, which amount to a trifold identifica-

tion problem. The approach adopted here resolves these issues by using a QLR test to provide a unified

mechanism for capturing the trifold forms of the null hypothesis.

Under some weak conditions, the asymptotic null distribution of the QLR test is shown to be a functional

of a Gaussian stochastic process. The limit theory for the stationary regressor case is extended to a model

with a time trend and stationary regressors. For such cases, the QLR test has an asymptotic null distribution

that takes the form of a functional of a power Gaussian process. Asymptotic critical values of the QLR test

are obtained, and simulations confirm the asymptotic theory. An empirical application of our methodology

to agricultural crop yields affirms earlier findings by Just and Weninger (1999).
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