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Abstract

We provide an alternative proof that the Ordinary Least Squares estimator is the (conditionally) best
linear unbiased estimator.
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Textbook proofs that OLS is BLUE are often somewhat lengthy, or require in-depth knowledge of matrix

algebra (e.g., Judge, et al., 1988, Davidson and McKinnon, 2003, and Wooldridge, 2009, Appendix E). Here

we give an alternative proof that is relatively short and assumes only the rudimentary matrix algebra. We

impose the next conditions by following Wooldridge (2009, Appendix E),

Assumptions 1. For n, k ∈ N+,Y ∈ Rn and X ∈ Rn×k such that X has rank k, and U := Y− E[Y|X].

2. For some β∗ ∈ Rk, E[Y|X] = Xβ∗.

3. For some σ2∗ > 0, var[U|X] = σ2∗In.

The following facts are standard. The linear estimators of β∗ have the form β̃n := BY, where

B ∈ Rk×n and defined as a set of functions of X. Given linearity, A.1, and A.2, E(β̃n|X) =β∗, i.e.,

β̃n is (conditionally) unbiased, if and only if BX = Ik. In what follows, β̃n is linear unbiased. Given
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A.1, the OLS estimator β̂n := (X′X)−1X′Y exists and is unique; it is a linear estimator of β∗ with

A := (X′X)−1X′. Given A.1 and A.2, β̂n is linear unbiased.

Observe that for all B such that BX = Ik,

AB′ = (X′X)−1X′B′ = (X′X)
−1

Ik= AA′ = BA′.

Given A.1 – A.3, cov(β̃n|X) := E([β̃n − β∗][β̃n − β∗]
′|X) = E(BUU′B′| X) = σ2∗ BB′, as

E(UU′|X) =σ2∗ In. Also, it trivially follows that cov(β̂n|X) = σ2∗AA′ = σ2∗ (X
′X)−1.

With this foundation, we have

Theorem. Given A.1 – A.3, β̂n is the best linear unbiased estimator. That is, for all X and B such that

BX = Ik, cov(β̃n|X)−cov(β̂n|X) = σ2∗ [BB′ −AA′] is positive semi-definite (psd).

Proof: We show that BB′ −AA′ is psd. As AB′ = AA′,

BB′ −AA′ = BB′ −AB′.

As BA′ = AA′,

BB′ −AA′ = BB′ −AB′ −BA′ +AA′.

Collecting terms gives

BB′ −AA′ = [B−A][B−A]′,

a positive semi-definite matrix. �
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