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1 Introduction

The statistical properties of cointegrated time series have been extensively investigated over the last three

decades. The fully modified OLS estimator of Phillips and Hansen (1990) has been the most widely used

method in linear time series modelling. However, this semiparametric approach is static and shows only the

long-run relationship between integrated series, leaving the associated short-run dynamics to be recovered

through a potentially inefficient two-step approach, as in Engle and Granger (1987). In response, Pesaran

and Shin (1998) propose the autoregressive distributed lag error correction model (ARDL-ECM) that allows

us to simultaneously investigate the long-run relationship and the short-run dynamics in a fully parametric

manner. In particular, they generalise the ARDL approach for cointegration and develop the asymptotic

theory for estimation and inference. Furthermore, Pesaran, Shin, and Smith (2001) develop a pragmatic

bounds-testing procedure for the existence of a stable long-run relationship, which is valid irrespective of

whether the underlying regressors are either I(1), mutually cointegrated, or I(0).1

Recently, the literature on quantile time series regression has been rapidly growing, e.g., Koenker and

Xiao (2004, 2006).2 Importantly, Xiao (2009) advances a quantile cointegration approach in a static regres-

sion and develops the semiparametric fully modified and the parametrically augmented quantile estimators,

which can be regarded as the quantile counterparts of the estimators proposed by Phillips and Hansen (1990)

and Saikkonen (1991). It is well established that the quantile estimator is consistent and asymptotically nor-

mal when the stationarity condition is satisfied together with other regularity conditions, e.g., Koenker and

Basset (1978), Phillips (1991), Koenker and Zhao (1996), and Kim and White (2003). In this regard, Xiao’s

approach is a challenging contribution to the quantile regression context with nonstationary variables. As a

pioneer of cointegration analysis, Granger (2010) provides further insightful discussions on the analysis of

possibly cointegrated quantile time series. Xiao’s (2009) approach has also been adopted by a number of

studies, documenting evidence that the conventional cointegration analysis focusing on the mean behavior

may not be sufficiently informative.3

1The flexibility and utility of the ARDL technique are reflected in the vast literature that adopts its applications for the anal-
ysis of a wide range of economic variables (e.g., the video, available at http://www.youtube.com/watch?v=d9E8BKsocis, which
demonstrates its applications in Microfit and Eviews).

2Quantile regression models have been widely used in a number of fields, notably the analysis of stock market returns (e.g.,
Barnes and Huhes, 2002) and in labour economics (e.g., Martins and Pereira, 2004). They have also become an important tool in
risk management; see Engle and Manganelli (2004) for the value at risk (VaR) evaluation; Adrian and Brunnermeier (2010) for
conditional VaR; and Acharya et al. (2011) for marginal expected shortfall.

3Lee and Zeng (2011) find that the response of spot oil prices to shocks in one-month futures is much greater with higher spot
prices than with lower prices. Utilising the post Asian financial crisis sample of 1999–2010, Burdekin and Siklos (2012) document
evidence of integration of the Shanghai stock market with the US and many regional stock markets, though cointegration is found
to be prevalent at the higher end of the distribution. Tsong and Lee (2013) examine an empirical validity of the Fisher hypothesis
for six OECD countries and find that the cointegrating relationships between nominal interest rate and inflation display location
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In this paper, we aim to contribute to this growing literature by proposing the dynamic quantile ARDL-

ECM (QARDL-ECM), in which we can simultaneously address both the long-run (cointegrating) relation-

ship and the associated short-run dynamics across a range of quantiles in a fully parametric setting. As

this is an extension of the ARDL-ECM developed by Pesaran and Shin (1998) into the quantile regression

context, it is expected that all of the optimal estimation properties can be obtained in a similar manner to

Xiao’s (2009) quantile extension of Phillips and Hansen (1990) and Saikkonen (1991).

We provide an asymptotic theory for estimating and testing the QARDL model with nonstationary re-

gressors. The QARDL estimators of the short-run dynamic parameters and the long-run cointegrating pa-

rameters are shown to asymptotically follow the (mixture) normal distribution. We also show that the null

distribution of the Wald statistics for testing the restrictions on the short- and long-run parameters within

and across quantiles weakly converges to a chi-squared distribution. Via Monte Carlo simulation studies,

we find that the overall simulation results, focusing on empirical size and power of the statistics, provide

strong support for theoretical predictions both in the case with fixed QARDL orders and in the case where

(unknown) QARDL orders are consistently selected by the Bayesian information criterion (BIC).

In a seminal study on dividend policy, Lintner (1956) observes that firms gradually adjust dividends

in response to changes in earnings toward the long-run target payout ratio. Empirical researches at both

firm and aggregate levels generally support Lintner’s partial adjustment framework, e.g., Fama and Babiak

(1968) and Marsh and Merton (1987). Recently, Brav, Graham, Harvey and Michaely (2005) surveyed 384

financial executives to determine the factors that drive dividend and share repurchase decisions. Although

the new survey evidence is mostly consistent with Lintner’s observations, the link between dividends and

earnings was substantially weak. Using the firm-level data in the US, Leary and Michaely (2011) document

that dividend smoothing has steadily increased over the past century, even before firms began using share

repurchases in the mid-1980s. Chen, Da, and Priestley (2012) also demonstrate that aggregate dividends are

dramatically more smoothed in the postwar period than in the prewar period.

However, all of these studies examine dividend behavior only at the conditional mean and do not inves-

tigate an important possibility that the dividend policy may be fundamentally heterogeneous across different

quantiles of the conditional distribution of dividends. In this study, we aim to contribute to the existing

literature on dividend policy by incorporating location (quantile) asymmetries in the long-run target payout

ratios and the dynamic dividend adjustment at the aggregate level. In order to construct a simple but flex-

ible model for the dividend process that captures the stylised facts on management behavior, we apply the

asymmetries: the Fisher hypothesis is supported only in the upper quantiles. Furthermore, Wang (2012) studies inference on
multiple structural breaks within quantile cointegrating regressions. Another related extension is to predictive quantile regression
with highly persistent predictors (e.g., Maynard et al., 2011; Lee, 2014).
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QARDL model to the dataset over the period from1871Q3 to 2010Q2 extracted from Robert Shiller’s web

page (http://www.econ.yale.edu/shiller).

The full sample estimation results demonstrate that there is evidence of location asymmetries between

lower and medium-to-higher quantiles of dividends. In particular, we find that the long-run payout ratio is

higher and the dividend smoothing is stronger at higher quantiles than lower quantiles. Overall, our findings

are consistent with the cross-sectional evidence by Leary and Michaely (2011) and the aggregate time series

evidence in a global setting by Rangvid, Schmeling, and Schrimp (2012) that dividend smoothing is most

common among large and mature firms with stable cash flows that are not financially constrained, face low

levels of asymmetric information, and are readily susceptible to agency conflicts.4

We also allow for time-varying patterns of dividend policy by employing a rolling estimation technique

with a window length of 320 quarters. A thorough examination of the time-varying QARDL estimation

results provides a number of insightful findings on dividend policy in the US over the past century. First,

dividend smoothing has become monotonically stronger over time. Similar monotonic downward trends

have been observed for the impact coefficient with respect to contemporaneous changes in earnings. Both

factors contribute to the extremely strong dividend smoothing reported in recent periods. Second, payout

ratios have been monotonically decreasing over time, supporting the survey evidence by Brav et al. (2005)

that the target payout ratio may no longer be the preeminent variable affecting payout decisions. Finally

and more importantly, we find that the location asymmetries across different quantiles of the conditional

distribution of dividends, which were clearly visible and pervasive in earlier periods, are less frequent in

recent periods. These phenomena may indicate the establishment of financial deepening as a long-term

process in the US, which serves to promote the stability of the whole financial system.

The paper is organized as follows. Section 2 introduces the QARDL model and derives the asymp-

totic distribution of both the short-run and the long-run estimators. Section 3 extends the QARDL model

and its inference across multiple quantiles. Section 4 evaluates the finite-sample performance via Monte

Carlo simulations. Section 5 presents the empirical application to an analysis of dividend smoothing

and the long-run target payout ratio in the US. Section 6 presents concluding remarks and further re-

search extensions. All of the proofs are relegated to the supplementary Technical Annex available at

http://web.yonsei.ac.kr/jinseocho/research.htm.

Before proceeding, we discuss some notational details. A function is denoted using an empty argument.

4Denis and Osobov (2008) document that dividends are concentrated among the largest, most profitable payers in the US,
Canada, UK, Germany, France, and Japan. In particular, they document that dividend payers account for more than 90% of the
aggregate market capitalization except in the US and Canada, and the top 20% of dividend payers account for virtually all of the
market capitalization of dividend payers. The concentration of dividends among the largest, most profitable firms is consistent with
the life-cycle theory’s central prediction that the distribution of free cash flow is the primary determinant of dividend policy.
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Parameters without a subscript are used to indicate generic notations constituting the parameter space. Pa-

rameters attached with subscript or superscript “∗” are those characterizing the data generating process.

“⇒”, “ P→”, and “bac” denote “weakly converges”, “converges in probability”, and “the smallest integer

greater than a”. We let [aij ]i=1,...m,j=1,...,n be anm× nmatrix with an element aij and denote ι` as an `×1

vector of ones. A ◦B denotes the Hadamard product of A and B. Other notations are standard.

2 Quantile Autoregressive Distributed Lag Model

The autoregressive distributed lag (ARDL) process can be extended to the quantile regression context. Note

that the ARDL process is defined as Yt = α∗ +
∑p

j=1 φj∗Yt−j +
∑q

j=0 θ
′
j∗Xt−j + Ut, where Xt ∈ Rk

is an integrated process of a stationary and ergodic process with population mean zero, Ut is the error term

that is defined as Yt − E[Yt|Ft−1] with Ft−1 being the smallest σ-field generated by {X′t, Yt−1,X′t−1, ...},

and p and q are lag orders. We further assume that the k variables in Xt are not cointegrated among

themselves. Following this framework, we let the τ -th quantile of Yt conditional on Ft−1 be given as

α∗(τ) +
∑p

j=1 φj∗(τ)Yt−j +
∑q

j=0 θj∗(τ)′Xt−j and denote this as QYt(τ |Ft−1). We now represent Yt as

Yt = α∗(τ) +

p∑
j=1

φj∗(τ)Yt−j +

q∑
j=0

θj∗(τ)′Xt−j + Ut(τ) (1)

and call this the quantile autoregressive distributed lag (QARDL) process. Here, Ut(τ) is defined as Yt −

QYt(τ |Ft−1) as in Kim and White (2003).

To analyse the QARDL process we reformulate (1) as:

Yt = α∗(τ) +

q−1∑
j=0

W′
t−jδj∗(τ) + X′tγ∗(τ) +

p∑
j=1

φj∗(τ)Yt−j + Ut(τ), (2)

where γ∗(τ) :=
∑q

j=0 θj∗(τ), Wt := ∆Xt, and δj∗(τ) := −
∑q

i=j+1 θi∗(τ). All of the parameters in

(2) measure the short-run dynamics, and the long-run relationship between Yt and Xt can be captured by

reformulating (2) into the following long-run quantile process:

Yt = µ∗(τ) + X′tβ∗(τ) +Rt(τ) with (3)

β∗(τ) := γ∗(τ)

(
1−

p∑
i=1

φi∗(τ)

)−1
and Rt(τ) :=

∞∑
j=0

W′
t−jξ0,j∗(τ) +

∞∑
j=0

ρj∗(τ)Ut−j(τ),

where we let µ∗(τ) := α∗(τ) (1−
∑p

i=1 φi∗(τ))
−1, ξ0,j∗(τ) :=

∑∞
`=j+1 π`∗(τ), and {ρ0∗(τ), ρ1∗(τ), . . .}
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and {π0∗(τ),π1∗(τ), . . .} are such that
∑∞

j=0 ρj∗(τ)Lj ≡ (1−
∑p

j=1 φj∗(τ)Lj)−1 and

(1− L)−1

( ∑q
j=0 θj∗(τ)Lj

1−
∑p

j=1 φj∗(τ)Lj
−

∑q
j=0 θj∗(τ)

1−
∑p

j=1 φj∗(τ)

)
≡
∞∑
j=0

πj∗(τ)Lj ,

respectively. Here, the static equation (3) is obtained by solving for Yt from (2). The residual term Rt(τ)

represents the collection of serially correlated stationary variables irrelevant to the long-run relationship. We

capture this by β∗(τ) and call it the long-run parameter. As is clear from its definition, β∗ (τ) is defined

as a function of γ∗(τ) and φ∗(τ) := (φ1∗(τ), . . . , φp∗(τ))′, so that it can be consistently estimated by the

plug-in principle and consistently estimating γ∗(τ) and φ∗(τ).

Our main interests lie in developing the estimation theory for the long-run parameter β∗(τ). To this end,

we reformulate the QARDL process in (2) as

Yt = G′tλ∗(τ) + Ỹ′tφ∗(τ) + Ut(τ) = Z′tα∗(τ) + Ut(τ), (4)

where Zt := (G′t, Ỹ
′
t)
′ := (G′t, Yt−1, . . . , Yt−p)

′ := (1,W′
t, . . . ,W

′
t−q+1,X

′
t, Yt−1, . . . , Yt−p)

′, and

α∗(τ) := [λ∗(τ)′,φ∗(τ)′]′ := [α∗(τ), δ∗(τ)′,γ∗(τ)′,φ∗(τ)′]′ := [α∗(τ), δ1∗(τ)′, . . . , δ(q−1)∗(τ)′,γ∗(τ)′,

φ∗(τ)′]′. Here, each element of Ỹt in (4) has the following specific form:

Yt−i = µ∗(τ) + X′tβ∗(τ) +

q−1∑
j=0

W′
t−jξi,j∗(τ) +Kt,i(τ), i = 1, 2, . . . , p, (5)

where we let ξi,j∗(τ) := −β∗(τ), if i > j; and −
∑∞

`=j−i π`∗(τ), otherwise, and

Kt,i(τ) :=

 −
∑∞

j=q−i W
′
t−i−jξ0,j∗(τ) +

∑∞
j=0 ρj∗(τ)Ut−i−j(τ), if i ≤ q;

−
∑i−q−1

j=0 W′
t−q−jβ∗(τ) +

∑∞
j=0 W′

t−i−jπj∗(τ) +
∑∞

j=0 ρj∗(τ)Ut−i−j(τ), if i > q.

(5) is the lagged version of (3). Pesaran and Shin (1998) provide a detailed derivation of (5). As (5) is

iteratively used below, we rewrite it more compactly as Ỹt = Γ∗(τ)′Gt + Kt(τ) by letting

Γ∗(τ) :=



µ∗(τ) µ∗(τ) · · · µ∗(τ)

ξ1,0∗(τ) ξ2,0∗(τ) · · · ξp,0∗(τ)
...

...
. . .

...

ξ1,q−1∗(τ) ξ2,q−1∗(τ) · · · ξp,q−1∗(τ)

β∗(τ) β∗(τ) · · · β∗(τ)


and Kt(τ) :=



Kt,1(τ)

Kt,2(τ)
...

Kt,p−1(τ)

Kt,p(τ)


.
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We provide a couple of remarks about the quantile dependency of the QARDL parameters. First, we

allow the short- and long-run parameters to be quantile-dependent, implying that the QARDL parameters

can be affected by the innovation Ut(τ) received at each period and thus can be different across quantiles.

Therefore, the (dynamic) conditioning variables not only shift the location, but also alter the scale and shape

of the conditional distribution of Yt. Furthermore, Xiao (2009) shows that the zero correlation between

regressors and errors is a key condition for consistently estimating the quantile-dependent cointegrating

vector. Notice that this is the main reason why Xiao allows the quantile-dependent cointegrating parameters

only under the dynamic OLS approach using leads and lags, not under the semiparametric fully-modified

framework. In the ARDL context, this condition is equivalent to E [∆XtUt] = 0 and E [Yt−jUt] = 0 (j =

1, ..., p) that typically hold if sufficiently large lag orders are given for p and q. Second, it is straightforward

to rewrite the QARDL process, (1) in the following error correction model (ECM) form:

∆Yt = α∗(τ) + ζ∗(τ)
(
Yt−1 − β∗(τ)′Xt−1

)
+

p−1∑
j=1

φ∗j (τ)∆Yt−j +

q−1∑
j=0

θ∗j (τ)′∆Xt−j + Ut(τ), (6)

where ζ∗(τ) :=
∑p

i=1 φi∗ (τ)− 1, θ∗0(τ) = θ0∗(τ), and for j = 1, ..., p− 1, φ∗j (τ) := −
∑p

h=j+1 φh∗ (τ)

and θ∗j (τ) := −
∑p

h=j+1 θj∗ (τ). We refer to (6) as the QARDL-ECM representation. The special case of

this is the quantile-invariant homogeneous cointegration with β∗ (τ) = β∗ for all τ ’s. Even for this simple

case, we may still be interested in testing whether the speed of adjustment ζ∗(τ) is quantile dependent.

We now define our estimators. First, the reformulation in (4) can be used to estimate the unknown short-

run parameters by applying the standard quantile regression approach, e.g., Koenker and Hallock (2001). For

a given τ ∈ (0, 1), we obtain the QARDL estimator as α̃n(τ) := arg min α(τ)

∑n
t=1 %τ {Yt − Z′tα (τ)},

where %τ (u) := uψτ (u) is the so-called check function with ψτ (u) := τ − I(u ≤ 0). Conformably

with α∗ (τ), we partition α̃n (τ) into α̃n(τ) := (λ̃n(τ)′, φ̃n(τ)′)′ := (α̃n(τ), δ̃n(τ)′, γ̃n(τ)′, φ̃n(τ)′)′

for future references. Next, we estimate the long-run parameter using the plug-in principle: β̃n(τ) :=

γ̃n(τ)(1 −
∑p

j=1 φ̃j,n(τ))−1. It is clear from this definition that the behavior of β̃n(τ) governing the

quantile long-run equilibrium is intrinsically related to the short-run estimators φ̃j,n(τ) and γ̃n(τ).

Recently, Xiao (2009) advances a quantile cointegration approach in a static regression context and de-

velops both the semiparametric fully modified estimator and the parametrically augmented estimator using

leads and lags of the first-differenced regressors. These correspond to the quantile extensions of the esti-

mators proposed by Phillips and Hansen (1990) and by Saikkonen (1991), respectively. These estimators

are asymptotically shown to follow the mixture normal distributions even in the presence of endogenous

regressors and/or serially correlated residuals. We also note that our proposed QARDL-ECM approach is
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different from Xiao’s (2009) approach, which is typically built upon Engle and Granger’s (1987) static coin-

tegrating regression. On the other hand, the QARDL estimator simultaneously addresses both the long-run

relationship and the associated short-run dynamics across a wide range of quantiles.

We impose the following assumptions to examine the regular properties of the QARDL estimator.

Assumption 1. (i) {Ut} is an IID sequence with finite variance such that it has a continuous probability

density function (PDF) f( · ) and cumulative density function (CDF) F ( · ) with f( · ) > 0 and fτ :=

f
[
F−1(τ)

]
< ∞; (ii) Xt is a k × 1 vector of integrated regressors such that Wt := ∆Xt is a general

linear multivariate stationary and ergodic process with E[Wtj ] = 0 and E[|Wtj |2] <∞ for j = 1, 2, . . . , k;

(iii) For each τ ∈ (0, 1) and t, s = 1, 2, . . ., Ut(τ) and Ws are independent;

(iv) The cointegration order of Xt is zero;

(v) For each τ ∈ (0, 1), the roots of (1 −
∑p

j=1 φj∗(τ)Lj) lie outside the unit circle, and for all i =

1, . . . , k,
∑∞

j=0

∣∣ξ0,j,i∗(τ)
∣∣ < ∞ and

∑∞
j=0 |πj,i∗(τ)| < ∞, where ξ0,j,i∗(τ) and πj,i∗(τ) are the i-th

elements of ξ0,j∗(τ) and πj∗(τ), respectively; and

(vi) For each r, τ ∈ (0, 1), Bn (·, τ) ⇒ B (·, τ), where Bn(r, τ) := 1√
n

∑bnrc
t=1 [W̄′

t, K̄t(τ)′, ψτ [Ut(τ)],

ψτ [Ut(τ)]W̄′
t, ψτ [Ut(τ)]Kt(τ)′]′, K̄t(τ) := Kt(τ) − E[Kt(τ)], W̄t :=

[
W′

t,W
′
t−1, . . . ,W

′
t−q+1

]′, and

B (·, τ) := [BW (·)′ ,BK (·, τ)′ ,Bψ(·, τ), Bψ·W (·, τ)′ ,Bψ·K (·, τ)′]′ is a multivariate Gaussian process

such that E[B(·, τ)] = 0, and for each r, r̃ ∈ (0, 1), E [B(r, τ) B(r̃, τ)′] = Ω (r, r̃, τ) with Ω (r, r̃, τ) :=

limn→∞ E[Bn(r, τ) Bn(r̃, τ)′] being positive definite. �

A number of remarks are in order. First, the infinite density case is eliminated by Assumption 1(i).5

Second, {Ut} is assumed to be an IID process for analytical convenience. Allowing {Ut} to be a martingale

difference array (MDA) does not alter the main results, although more tedious derivations are required. In

addition, the IID condition of Assumption 1(i) implies that fUt|Zt( ·|Zt ) = f( · ). Third, Assumption 1(v)

is imposed for the existence of a stable long-run relationship between Yt and Xt. Fourth, the structure

of Ω(r, r̃, τ) in Assumption 1(vi) is obtained as limt→∞ E [Bn(r, τ)Bn(r̃, τ)′]. In particular, BW (·) ,

Bψ (·, τ) and Bψ·W (·, τ) are independent according to Assumption 1(iii) and the fact that E[ψτ [Ut(τ)]] = 0,

E[W̄s] = 0, E[W̄sψτ [Ut(τ)]] = 0, E[W̄sW̄
′
sψτ [Ut(τ)]] = 0, and E[W̄sψτ [Ut(τ) ]2] = 0. This renders

the covariances of BW (·), Bψ (·, τ) and Bψ·W (·, τ) to be zero. On the other hand, Ks(τ) is not necessarily

independent of Ut(τ), although Ks(τ) is a vector of stationary and ergodic processes based on the definition

of Kt,i(τ) and Assumptions 1(ii, iii). This aspect makes the covariance between BK (·, τ)′ and Bψ·K (·, τ)′

indeterministic. We impose the positive-definite matrix condition to Ω (r, r̃, τ) as its minimal condition.

5Cho, Han, and Phillips (2010) and Han, Cho, and Phillips (2011) examine the asymptotic behavior of the LAD estimator when
the density function has infinite value at the median using the methodology of Knight (1998).
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This is a technical condition that usually holds for most empirical data. Fifth, by the definition of Xt, it

is straightforward to derive that n−1
∑n

t=1 ψτ [Ut(τ)]Xt ⇒
∫ 1
0 B̄W (r)dBψ(r, τ) and n−2

∑n
t=1 XtX

′
t ⇒∫ 1

0 B̄W (r)B̄W (r)′dr, where B̄W ( · ) is the first k elements of BW(·). Since ψτ [Ut(τ)] is independent of

Wt, the one-sided long-run covariance is equal to zero. Sixth, the independence condition in Assumption

1(iii) is not as strong as it appears. In particular, the empirical application in Section 5 illustrates how one

can control for endogeneity of regressors by projecting the regression errors on ∆Xt. See also Pesaran and

Shin (1998) and Pesaran et al. (2001). We, therefore, stick to this condition without loss of generality of our

analysis.6 Seventh, we impose the positive-definite condition to Ω (r, r̃, τ) to prevent identical or constant

sample paths in B(·, τ). Eighth, the high level condition in Assumption 1(vi) can be attained in a couple

of ways. Given the other conditions, if {(W̄′
t,Kt(τ)′)′} is an adapted mixingale of size −1 with finite

global variance, Theorem 3 in Scott (1973) provides the desired result. Alternatively, Assumption 1(vi)

follows if the summability condition on Assumption 1(v) is further strengthened and their fourth moment is

finite. See for example Phillips and Solo (1992) for this derivation. As one of these two assumptions does

not necessarily imply the other, we opt to impose the high level assumption. Finally, Assumptions 1(i and

iii) imply that E [ψτ (Ut(τ))|Yt−1, Yt−2, ...,Xt,Xt−1, ...] = 0, so that the τ -th quantile of the conditional

distribution of Ut(τ) is zero. Hence, the coefficients of the QARDL model in (1) are identified.

We provide the asymptotic distributions of the short-run estimators φ̃j,n(τ) and γ̃n(τ) below.

Theorem 1 (Short-Run Estimators). Under Assumption 1,

(i) For each τ ∈ (0, 1),
√
n(φ̃n (τ) − φ∗ (τ)) ⇒ N [0,Π(τ)], where Π(τ) := τ(1− τ)f−2τ E[H̃t(τ)

H̃t(τ)′]−1, H̃t(τ) := Kt(τ)− E[Kt(τ)W̃′
t]E[W̃tW̃

′
t]
−1W̃t, and W̃t := [1,W̄′

t]
′; and

(ii) For each τ ∈ (0, 1),
√
n (γ̃n(τ)− γ∗ (τ))⇒ N

[
0,β∗ (τ) ι′pΠ (τ) ιpβ∗ (τ)′

]
. �

Therefore, (φ̃n (τ)′ , γ̃n(τ)′)′ is consistent for
(
φ∗ (τ)′ ,γ∗(τ)′

)′, and its convergence rate is n1/2. We

outline the key steps of the proof. Using Assumption 1, we show that

√
n
(
φ̃n(τ)− φ∗ (τ)

)
= f−1τ E

[
H̃t(τ)H̃t(τ)′

]−1 (
n−1/2H̃(τ)′Ψτ (U)

)
+ oP(1), (7)

where H̃(τ) := [H̃1(τ), . . . , H̃n(τ)]′, and Ψτ (U) := [ψτ [U1(τ)], . . . , ψτ [Un(τ)]]′. It is also straightfor-

ward to show that

n−1/2H̃(τ)′Ψτ (U)⇒ N
[
0, τ(1− τ)E

[
H̃t(τ)H̃t(τ)′

]]
(8)

by applying the central limit theorem (CLT) for MDA. Theorem 1(i) follows by combining (7) and (8).

6We also note that the independence assumption can be relaxed into the zero correlation condition, as in OLS regression, in
which case the variance-covariance matrix will be expressed in the usual sandwich form.
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Pesaran and Shin (1998) derive the asymptotic covariance matrix in their context by implicitly imposing

that E[KtW̃
′
t] is zero. However, this is too strong unless {Wt} is an IID process. Hence, we relax this

restriction in what follows. Second, we can prove Theorem 1(ii) by first showing that

√
n
{

(γ̃n(τ)− γ∗ (τ)) + β∗ (τ) ι′p(φ̃n(τ)− φ∗ (τ))
}

= oP(1), (9)

and then using the asymptotic distribution of
√
n(φ̃n(τ) − φ∗ (τ)) given in Theorem 1(i). It is clear from

(9) that the asymptotic distribution of γ̃n(τ) depends upon that of φ̃n(τ).

We examine the asymptotic behaviors of the long-run parameter estimator in the following theorem.

Theorem 2 (Long-Run Estimator). Under Assumption 1, and for each τ ∈ (0, 1),

(i) n(β̃n(τ) − β∗ (τ)) ⇒ {fτ (1 −
∑p

j=1 φj∗ (τ))}−1[
∫ 1
0 B̃W (r)B̃W (r)′dr]−1

∫ 1
0 B̃W (r)dBψ(r, τ),

where B̃W (r) := B̄W (r)−
∫ 1
0 B̄W (r)dr; and

(ii) nM1/2(β̃n(τ)− β∗ (τ))⇒ N [0, τ(1− τ){fτ (1−
∑p

j=1 φj∗ (τ))}−2Ik], where M := n−2X′[I−

W̃(W̃′W̃)−1W̃′]X and W̃ := [W̃1,W̃2, . . . ,W̃n]′. �

Theorem 2(i) is implies that β̃n(τ) is consistent for β∗(τ) at the convergence rate of n. Notice that the

normality result of Theorem 2(ii) is important for testing the hypotheses as developed below, and it is mainly

obtained by the independence condition between W̃ and Ψτ (U) by Assumption 1(iii). More specifically,

the key steps of our proof are described as follows. First, we note the following identity:

(
β̃n(τ)− β∗ (τ)

)
≡

1−
p∑
j=1

φ̃j,n(τ)

−1 (γ̃n(τ)− γ∗ (τ)) + β∗ (τ)

p∑
j=1

(φ̃j,n(τ)− φj∗ (τ))

 . (10)

Using this identity, it follows that n{(γ̃n(τ)−γ∗ (τ))+β∗ (τ)
∑p

j=1(φ̃j,n(τ)−φj∗ (τ))} = f−1τ M−1{n−1

X′[I − W̃(W̃′W̃)−1W̃′]Ψτ (U)} + oP(1). This holds by noting the fact that n{(γ̃n(τ) − γ∗ (τ)) +

β∗ (τ)
∑p

j=1(φ̃j,n(τ)−φj∗ (τ))} is equivalent to the last k elements of DG{(λ̃n(τ)−λ∗ (τ))+Γ∗(τ)(φ̃n (τ)

−φ∗ (τ))} in probability, where DG := diag([
√
nι′1+qk, nι

′
k]
′). Furthermore, the latter is equal to f−1τ M−1

{n−1X′[I − W̃(W̃′W̃)−1W̃′]Ψτ (U)} in probability. As the right-hand side (RHS) of this equation is

bounded in probability, we can apply Theorem 1(i) and obtain that n(β̃n(τ)−β∗ (τ)) = [1−
∑p

j=1 φ̃j,n(τ)]−1

(fτM)−1{n−1 X′[I− W̃(W̃′W̃)−1W̃′]Ψτ (U)}+ oP(1). As a result, the asymptotic distribution in The-

orem 2(i) is established. Next, Theorem 2(ii) holds as a corollary of Theorem 2(i). By Assumption 1(iii),

W̃ and Ψτ (U) are independent, and thus the weak limit in Theorem 2(i) can be viewed as a mixture of nor-

mal random variables. Theorem 2(ii) captures this implication, and its standardized version asymptotically
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follows a multivariate normal distribution.

The mixture normal distribution property for the long-run parameter estimator implies that the Wald

statistic asymptotically follows a chi-squared distribution under a suitable null hypothesis for β∗(τ). To

investigate this property, we consider the following null and alternative hypotheses:

H(1)
0 : Rβ∗(τ) = r versus H(1)

1 : Rβ∗(τ) 6= r,

where R is an r × k matrix and r is an r × 1 vector. The Wald statistic is defined as

Wn(β) :=
n2f̂2τ

τ(1− τ)

1−
p∑
j=1

φ̃j,n(τ)

2 (
Rβ̃n(τ)− r

)′ (
RM−1R′

)−1 (
Rβ̃n(τ)− r

)
,

where f̂τ is a consistent estimator of fτ . Using the definition of β̃n(τ), the Wald statistic can be rewritten as

n2f̂2τ
τ(1− τ)

Rγ̃n(τ)−

1−
p∑
j=1

φ̃j,n(τ)

 r

′ (RM−1R′)−1

Rγ̃n(τ)−

1−
p∑
j=1

φ̃j,n(τ)

 r

 .
Note that this Wald test statistic is a generalized version of the t-test statistic given by

Tm,n := n

1−
p∑
j=1

φ̃j,n(τ)

 f̂τ (Rmβ̃n(τ)− rm)

{τ(1− τ)RmM−1R′m}
1/2

,

where Rm := [0′(m−1)×1, 1,0
′
(k−m)×1] and rm is a constant. It is easily seen that T 2

m,n equals the Wald

statistic that tests H(0)
0 : βm∗(τ) = rm against H(0)

1 : βm∗(τ) 6= rm, where βm∗(τ) is an m-th element of

β∗(τ).

The following corollary provides the asymptotic behaviors ofW(β) and Tm,n statistics.

Corollary 1. Suppose that Assumption 1 holds.

(i) For each m = 1, ..., k,

(i.a) Tm,n ⇒ N(0, 1) under H(0)
0 ;

(i.b) P (|Tm,n| ≥ cn)→ 1 for any sequence {cn} s.t. cn = o(n) under H(0)
1 ; and

(ii) If rank(R) = r and f̂τ
P→ fτ ,

(ii.a)Wn(β)⇒ X 2
r under H(1)

0 ; and

(ii.b) P (Wn(β) ≥ c′n)→ 1 for any sequence {c′n} s.t. c′n = o(n2) under H(1)
1 . �

Corollary 1 is a straightforward consequence of Theorem 2(ii). In particular,
∑p

j=1 φ̃j,n(τ) consistently
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estimates
∑p

j=1 φj∗ (τ) by Theorem 1 under Assumption 1. Thus, employing φ̃n(τ) to define the test

statistics does not alter their asymptotic null distributions. We can also see that both t-test and Wald tests

have nontrivial powers against the local alternatives converging to the null at the rate of n−1 by associating

Corollaries 1(i.b) and (ii.b) along with the convergence rate of each test under the null hypothesis.

We construct statistics for testing linear restrictions on the short-run parameters and consider the follow-

ing null and alternative hypotheses:

H(2)
0 : Qφ∗(τ) = q versus H(2)

1 : Qφ∗(τ) 6= q, and (11)

H(3)
0 : Rγ∗(τ) = r versus H(3)

1 : Rγ∗(τ) 6= r, (12)

where Q is an r × p matrix, q is an r × 1 vector, and rank(R) = 1 that is needed to prevent the Wald test

from being degenerate. The asymptotic null distributions of the Wald statistics that test the hypotheses in

(11) and (12) are regular by Theorem 1. We formally define the following Wald test statistic:

Wn(φ) := n
(
Qφ̃n(τ)− q

)′ (
QΠ̂n(τ)Q′

)−1 (
Qφ̃n(τ)− q

)
.

Here, Π̂n(τ) is any consistent estimator for Π(τ) := τ(1− τ)f−2τ E[H̃tH̃
′
t]
−1. By definition, Π(τ) can be

estimated in a number of ways. As an example, for a given consistent estimator f̂τ for fτ , we let:

Π̂n(τ) := f̂−1τ τ(1− τ)

{(
n−1K̂(τ)′K̂(τ)

)
−
(
n−1K̂(τ)′W̃

)(
n−1W̃′W̃

)−1 (
n−1W̃′K̂(τ)

)}
, (13)

where K̂(τ) := [K̃1, K̃2, . . . , K̃n]′, K̂t(τ) := [K̂t,1(τ), K̂t,2(τ), . . . , K̂t,p(τ)]′, and for each i, K̂t,i(τ) is

the quantile regression error obtained from regressing W̃t against Yt−i − X′tβ̃n(τ). By (5), for each t,

K̂t(τ) is a consistent quantile regression error for Kt(τ), and this leads to Π̂n(τ)
P→ Π(τ). In addition,

many other estimators can be similarly defined. The following corollary provides the asymptotic behaviors

of the Wald statisticW(φ).

Corollary 2. Suppose that Assumption 1 holds and Π̂n(τ)
P→ Π(τ). If rank(Q) = r,

(i)Wn(φ)⇒ X 2
r under H(2)

0 ; and

(ii) P (Wn(φ) ≥ c′′n)→ 1 for any sequence {c′′n} s.t. c′′n = o(n) under H(2)
1 .

Under the conditions in Corollary 2, it is straightforward to prove Corollary 2 using Theorem 1. We, there-

fore, omit the proof. Also, the Wald test in Corollary 2 has a nontrivial power against the local alternatives

converging to the null at the rate of n−1/2 because the convergence rate of φ̃n(τ) is n−1/2. Furthermore, as
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the speed of adjustment or error correction coefficient is defined by ζ∗(τ) :=
∑p

i=1 φi∗ (τ) − 1 in (6), we

can test the null hypothesis that this coefficient is nil by letting Q = [1, ..., 1] and q = 1 + ζ0.

We now examine the asymptotic behaviors of the Wald statistic that tests H(3)
0 versus H(3)

1 under the

null and alternative hypotheses in (12). The asymptotic distribution of
√
n(γ̃n(τ) − γ∗(τ)) is degenerate

because its asymptotic covariance β∗(τ)ι′pΠ(τ)ιpβ∗(τ)′ has a rank equal to unity by Theorem 1(ii). This

implies that, if R has a rank greater than unity, the corresponding Wald test has a degenerate asymptotic null

distribution. That is why we let rank(R) = 1. The Wald test statistic is defined as

Wn(γ) := n (Rγ̃n(τ)− r)′
(
Rβ̃n(τ)ι′pΠ̂n(τ)ιpβ̃n(τ)′R′

)−1
(Rγ̃n(τ)− r) .

The asymptotic covariance matrix is estimated by estimating β∗(τ) and Π(τ) through β̃n(τ) and Π̂n(τ),

respectively. The regular asymptotic behaviors of this Wald test statistic can be summarised as follows:

Corollary 3. Suppose that Assumption 1 holds and Π̂n(τ)
P→ Π(τ).

(i)Wn(γ)⇒ X 2
1 under H(3)

0 ; and

(ii) P (Wn(γ) ≥ c′′′n )→ 1 for any sequence {c′′′n } s.t. c′′′n = o(n) under H(3)
1 .

Corollary 3 is trivially implied by Theorem 1(ii).

There are additional remarks relevant to Corollary 3. As pointed out above, it is difficult to applyWn(γ)

if the rank of R is greater than unity. Nevertheless, this difficulty does not arise if R and r are designed to

test the ratios of the elements in γ∗(τ). Note that γ∗(τ) ≡ {1−
∑p

j=1 φj∗(τ)}β∗(τ) by definition, so that a

ratio of the elements in γ∗(τ) is virtually the ratio of the elements in β∗(τ). This also implies that the same

hypothesis can be tested usingWn(β). Similarly toWn(φ),Wn(γ) has a nontrivial power against the local

alternatives that converge to the null at the rate, n−1/2.

3 Inference with Multiple Quantiles

In the quantile regression, we typically estimate the model using multiple quantile indices. In this case, one

may wish to test the null that the short- or the long-run parameters at a low quantile (τ = 0.1) are the same

as those at an upper quantile (τ = 0.9). Any evidence of disparity can be regarded as an indication of an

asymmetric behavior associated with the distributional location of the dependent variable.

We develop a systematic inference procedure for testing the hypotheses that are constructed by multiple

quantile indices. Consider an s number of quantile indices, say τ1 < . . . < τ s, and let their correspond-

ing multi-quantile short-run and long-run parameters be [Φ∗(τ )′,Γ∗(τ )′]′ := [φ∗(τ1)
′, . . . ,φ∗(τ s)

′,γ∗
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(τ1)
′, . . . ,γ∗(τ s)

′]′ and B∗(τ ) := [β∗(τ1)
′, · · · ,β∗(τ s)′]

′, respectively. We wish to test the validity of

linear restrictions on Φ∗(τ ), Γ∗(τ ), and B∗(τ ) and express them as

H′0 : FΦ∗(τ ) = f versus H′1 : FΦ∗(τ ) 6= f , (14)

H′′0 : SΓ∗(τ ) = s versus H′′1 : SΓ∗(τ ) 6= s, (15)

H′′′0 : SB∗(τ ) = s versus H′′′1 : SB∗(τ ) 6= s, (16)

where F and f are h× ps and h× 1 pre-specified matrices, respectively, and S and s are h× ks and h× 1

pre-specified matrices with h being the number of restrictions. As a benchmark case, we test whether the

short-run and the long-run parameters are equal at two quantile indices. For example, if we intend to test

β∗(τ1) = β∗(τ2), we let S = (Ik,−Ik), s = 0k×1 and B∗(τ ) := [β∗(τ1)
′,β∗(τ2)

′]′ .

We impose the following assumptions in addition to Assumption 1 so that the test statistics defined

below behave appropriately for moderately large sample sizes.

Assumption 2. (i) Ξ(τ ) := [(fτ ifτ j )
−1(min[τ i, τ j ]− τ iτ j)L(τ i, τ i)

−1L(τ i, τ j)L(τ j , τ j)
−1]i,j=1,2,...,s is

a ps× ps positive-definite matrix, where s ∈ N and L(τ i, τ j) := E[H̃t(τ i)H̃t(τ j)
′];

(ii) For each r, τ ∈ (0, 1), we let Gn (r, τ) := n−1/2
∑bnrc

t=1 ψτ [Ut(τ)][W̃′
t,Kt(τ)′]′ and suppose that

Gn (·, ·) ⇒ G (·, ·), where G (·, ·) :=
[
Bψ (·, ·) ,Bψ·W (·, ·)′ , Bψ·K (·, ·)′

]′ is a multivariate Gaussian

process such that E [G (· , ·)] = 0, and for each r, r̃, τ , τ̃ ∈ (0, 1), E [G(r, τ)G(r̃, τ̃)′] = (min[τ , τ̃ ] −

τ τ̃)Π (r, r̃, τ , τ̃) with Π (r, r̃, τ , τ̃) := limn→∞ E [Cn(r; τ)Cn(r̃; τ̃)′] and Cn(r; τ) := n−1/2
∑bnrc

t=1 [W̃′
t,

Kt(τ)′]′; and

(iii) Σ(τ ) := T(τ ) ◦ P(τ ) is positive definite, where T(τ ) := [min[τ i, τ j ]− τ iτ j ]i,j=1,2,...,s and

P(τ ) := [(fτ i{1−
∑p

`=1 φ`∗(τ i)})
−1(fτ j{1−

∑p
`=1 φ`∗(τ j)})

−1]i,j=1,2,...,s. �

Some remarks are warranted. First, L(·, ·) is introduced for notational simplicity. Second, if Kt(·) is in-

variant to the level of τ , we write it as Kt, and Ξ(τ ) can be simplified to Ξ(τ ) = [(fτ ifτ j )
−1(min[τ i, τ j ]−

τ iτ j)]i,j=1,2,...,s ⊗ {E[KtK
′
t] − E[KtW̃

′
t]E[W̃tW̃

′
t]
−1E[W̃tK

′
t]}−1. Assumption 1(vi) also implies that

Ξ(τ ) is positive definite, so that Assumption 2(i) becomes redundant for this case. Third, although it

is possible to derive Assumption 2(ii) from Assumption 1 by imposing other primitive conditions, we

introduce it for brevity. Fourth, for τ ∈ (0, 1), G (·, τ)
d
= [Bψ (·, τ) ,Bψ·W (·, τ)′ ,Bψ·K (·, τ)′]′ has a

positive-definite covariance matrix by Assumption 1(vi). It is clear that the multivariate Gaussian process

[G (·, τ1)′ ,G (·, τ2)′ , . . . ,G (·, τ s)′]′ is well defined under Assumption 2. Finally, Assumption 2(iii) is im-

posed to derive a non-degenerate asymptotic distribution of the multi-quantile long-run estimator.
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By Theorem 1, Φ̃n(τ ) and Γ̃n(τ ) consistently estimate Φ∗(τ ) and Γ∗(τ ), respectively. Hence, we first

establish the asymptotic joint distribution of these short-run estimators by extending Theorem 1 into the

multi-quantile framework.

Theorem 3 (Multi-Quantile Short-Run Estimators). Under Assumptions 1 and 2,

(i)
√
n(Φ̃n(τ )−Φ∗(τ ))⇒ N [0ps×1,Ξ(τ )]; and

(ii)
√
n(Γ̃n(τ ) − Γ∗(τ )) ⇒ N [0ks×1,Λ (τ ) Ξ(τ )Λ (τ )′], where Λ (τ ) is a ks × ps block diagonal

matrix with s diagonal blocks β∗ (τ i) ι
′
p for i = 1, 2, . . . , s. �

We establish Theorem 3(i) by noting that

√
n
(
φ̃n(τ j)− φ∗(τ j)

)
= f−1τ j L(τ j , τ j)

−1

(
n−1/2

n∑
t=1

H̃t(τ j)ψτ j [Ut(τ j)]

)
+ oP(1). (17)

This equality follows from (7). As Ξ(τ ) is positive definite by Assumption 2(i), it is straightforward

to apply the multivariate CLT and conclude Theorem 3(i). Next, we note that
√
n(Γ̃n(τ ) − Γ∗(τ )) =

−
√
nΛ (τ ) (Φ̃n(τ ) − Φ∗(τ )) + oP(1) that is obtained by extending (9) into the multi-quantile version.

The limit distribution of
√
n(Γ̃n(τ )− Γ∗(τ )) is obtained from Theorem 3(i). Here, the asymptotic covari-

ance matrix of
√
n(Γ̃n(τ )−Γ∗(τ )) is not necessarily positive definite. Although Ξ(τ ) is positive definite,

rank[Λ (τ ) Ξ(τ)Λ (τ )′] is at most s. Note that rank[Λ (τ ) Ξ(τ)Λ (τ )′] ≤ min [rank(Λ(τ )), rank(Ξ(τ ))]

with rank(Λ(τ )) = s and rank(Ξ(τ )) = ps. Theorem 3 is a multi-quantile generalisation of Theorem 1

and establishes that the multi-quantile short-run parameter estimators asymptotically follow the multivariate

normal distribution. In the special case with s = 1, Theorem 1 is obtained.

We provide the asymptotic distribution of the multi-quantile long-run estimator below.

Theorem 4 (Multi-Quantile Long-Run Estimator). Under Assumptions 1 and 2,

(i) n(B̃n(τ ) − B∗(τ )) ⇒ [Is ⊗ (
∫ 1
0 B̃W (r)B̃W (r)′dr)−1] J β(τ ), where J β(τ )ks×1 := [f−1i (1 −∑p

j=1 φj∗(τ i))
−1 ∫ 1

0 B̃W (r)′dBψ (r, τ i)]
′
i=1,...,s; and

(ii) n(Is ⊗M1/2)(B̃n(τ )−B∗(τ ))⇒ N [0,Σ(τ )⊗ Ik]. �

Theorem 4 holds by Assumption 2. Here, the asymptotic covariance matrix Σ(τ ) ⊗ Ik is positive definite

by Assumption 2(iii). Notice that if k < p,
√
n( Γ̃n(τ ) − Γ∗( τ )) may converge to a degenerate distribu-

tion. Nevertheless, by Assumption 2(iii), the asymptotic distribution of n(Is ⊗M1/2)(B̃n(τ )−B∗(τ )) is

nondegenerate.

We now extend the single-quantile Wald statistics into the multi-quantile counterparts by using the
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asymptotic mixture normal distribution in Theorems 3 and 4. We consider the following test statistics:

Wn(Φ) := n
(
FΦ̃n(τ )− f

)′ (
FΞ̂n(τ )F′

)−1 (
FΦ̃n(τ )− f

)
,

Wn(Γ) := n
(
SΓ̃n(τ )− s

)′ (
SΛ̂n(τ )Ξ̂n(τ )Λ̂n(τ )′S′

)−1 (
SΓ̃n(τ )− s

)
, and

Wn(B) := n2
(
SB̃n(τ )− s

)′ [
S
(
Σ̂n(τ )⊗M−1

)
S′
]−1 (

SB̃n(τ )− s
)

to test the joint hypotheses in (14), (15), and (16), respectively, where for each i, j = 1, 2, . . . , s,

Ξ̂n(τ ) :=
[
f̂−1τ i f̂

−1
τ j (min[τ i, τ j ]− τ iτ j) L̂n(τ i, τ i)

−1L̂n(τ i, τ j)L̂n(τ j , τ j)
−1
]
i,j=1,...,s

;

L̂n(τ i, τ j) :=
(
n−1K̂(τ i)

′K̂(τ j)
)
−
(
n−1K̂(τ i)

′W̃
)(

n−1W̃′W̃
)−1 (

n−1W̃′K̂(τ j)
)

;

Σ̂n (τ ) :=

[
(min[τ i, τ j ]− τ iτ j) f̂−1τ i f̂

−1
τ j

(
1−

∑p
j=1 φ̃j,n(τ i)

)−1 (
1−

∑p
j=1 φ̃j,n(τ j)

)−1]
i,j=1,...,s

;

Λ̂n(τ ) is a ks×ps block diagonal matrix with β̃n (τ i) ι
′
p as its i-th diagonal block (i = 1, 2, . . . , s); and f̂τ j

is a consistent estimator for fτ j for j = 1, 2, ..., s. Here, Σ̂n (τ ) consistently estimates Σ (τ ) by Theorem

1, and K̂(τ) is assumed to consistently estimate K(τ) := [K1(τ), . . . ,Kn(τ)]′ in the sense that for each τ i

and τ j , L̂n(τ i, τ j) consistently estimates L(τ i, τ j).

The null and alternative asymptotic behaviors of the multi-quantile Wald test statisticsWn(Φ),Wn(Γ),

andWn(B) are summarised in the following corollary.

Corollary 4. Suppose that Assumptions 1 and 2 hold, and for j = 1, 2, . . . , s, f̂τ j
P→ fτ j .

(i) If rank(F) = h, and for each τ i and τ j , L̂n(τ i, τ j)
P→ L(τ i, τ j), then

(i.a)Wn(Φ)⇒ X 2
h under H′0; and

(i.b) P (Wn(Φ) ≥ d′n)→ 1 for any sequence {d′n} s.t. d′n = o(n) under H′1;

(ii) If rank(SΛ (τ ) Ξ(τ )Λ (τ )′ S′) = h ≤ s, and for each τ i and τ j , L̂n(τ i, τ j)
P→ L(τ i, τ j), then

(ii.a)Wn(Γ)⇒ X 2
h under H′′0; and

(ii.b) P (Wn(Γ) ≥ d′′n)→ 1 for any sequence {d′′n} s.t. d′′n = o(n) under H′′1; and

(iii) If rank(S) = h, then

(iii.a)Wn(B)⇒ X 2
h under H′′′0 ; and

(iii.b) P (Wn(B) ≥ d′′′n )→ 1 for any sequence {d′′′n } s.t. d′′′n = o(n2) under H′′′1 . �

As Corollary 4 follows from Theorems 3 and 4, its proof is omitted. Notice that Corollary 4 imposes an

additional condition, rank[SΛ (τ ) Ξ(τ )Λ (τ )′ S′] ≤ s, as rank[Λ (τ ) Ξ(τ )Λ (τ )′] is at most s.
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4 Monte Carlo Simulations

This section conducts Monte Carlo experiments to investigate the finite sample performances of our pro-

posed estimators and test statistics. We separate our simulations into two parts. First, we verify the theoret-

ical claims developed in Section 3 by assuming that the QARDL orders are known. Next, we consider the

case where the unknown QARDL orders are estimated by BIC. Furthermore, we compare the performance

of the Wald test relative to the augmented-model based Wald test considered by Xiao (2009) using the case

of unknown lag order.

4.1 Known QARDL Orders

In this subsection, we focus on the joint testing procedure under the multiple quantiles framework. To this

end, we examine the following QARDL(1,1) process:

Yt = α∗(τ) + φ∗(τ)Yt−1 + θ0∗(τ)Xt + θ1∗(τ)Xt−1 + Ut(τ) and Xt = Xt−1 +Wt, (18)

where Ut(τ) := Ut − F−1(τ), Wt := ρ∗Rt−1 +
(
1− ρ2∗

)
Rt with Rt ∼ IID N(0, 1), and Ut is generated

independently ofRt. We generate Ut to follow either normal or t distribution: Ut ∼ IIDN(0, 1) or Ut ∼ IID

t5. Notice that t5 distribution can deal with fat-tails. We consider three different quantile indices, τ1 = 0.25,

τ2 = 0.50, and τ3 = 0.75. By construction, the true values of φ∗(τ), θ0∗(τ), and θ1∗(τ) are set to be the

same for each τ although α∗(τ) can vary with τ .

We examine the finite sample performance of the Wald statistics using the QARDL(1,1) model. We con-

sider the three Wald test statisticsWn(B),Wn(Φ), andWn(Γ). First, we test the following four hypotheses

on the long-run parameters B∗(τ ) = [β∗(0.25), β∗(0.5),β∗(0.75)]′: for j = 1, 2, 3, and 4,

H(j)
0 (B) : SjB∗(τ ) = sj versus H(j)

1 (B) : SjB∗(τ ) 6= sj , (19)

where S1 = [1,−1, 0], S2 = [0, 1,−1], S3 = [1, 0,−1] and S4 = [S′1,S
′
2]
′ with s1 = s2 = s3 = 0, and

s4 = [0, 0]′. We denote these Wald statistics respectively asW(1)
n (B),W(2)

n (B),W(3)
n (B), andW(4)

n (B).

Second, we test the four restrictions on the short-run parameters, Φ∗(τ ) = [φ∗(0.25),φ∗(0.5),φ∗(0.75)]′

and Γ∗(τ ) = [γ∗(0.25),γ∗(0.5),γ∗(0.75)]′: for j = 1, 2, 3, and 4,

H(j)
0 (Φ) : SjΦ∗(τ ) = sj versus H(j)

1 (Φ) : SjΦ∗(τ ) 6= sj , and (20)

H(j)
0 (Γ) : SjΓ∗(τ ) = sj versus H(j)

1 (Γ) : SjΓ∗(τ ) 6= sj . (21)
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For each j = 1, 2, 3, and 4, these Wald statistics are denoted respectively asW(j)
n (Φ) andW(j)

n (Γ).

To estimate the relevant statistics for testing the hypotheses in (19), (20), and (21), the density function

needs to be consistently estimated. For this purpose, we employ the following kernel density estimator:

f̂τ` :=
1

nhB(τ `)

n∑
t=1

φ

(
− Ût(τ `)
hB(τ `)

)
, ` = 1, 2, 3,

where hB is the bandwidth proposed by Bofinger (1975): hB(τ `) := n−1/5[4.5φ(Φ−1(τ `))
4/(2(Φ−1(τ `))

2

+1)2]1/5, and φ(·) and Φ(·) are the standard normal PDF and CDF, respectively. It is well established that

f̂τ` is a consistent estimator of fτ` , e.g., Koenker and Xiao (2002).7 Next, we consistently estimate Π(τ ) for

evaluatingW(j)
n (Φ) andW(j)

n (Γ). For this, (5) is first estimated by the quantile regression, and we compute

{K̂t,i(τ)} as the quantile regression error. Using the sequence of {Wt}, Π(τ ) is estimated by (13).

We summarise the null simulation setup as follows: first, for each τ , we set the parameter values at

α∗(τ) = 1, φ∗(τ) = 0.25, θ0∗(τ) = 2, θ1∗(τ) = 3, and ρ∗ = 0.5, and we examine the empirical rejection

rates of the Wald tests under the null hypotheses. By construction, γ∗(τ) = 5 and β∗(τ) = 20/3. We set the

number of replications at 5,000 and report the empirical rejection rates ofW(j)
n (B),W(j)

n (Φ), andW(j)
n (Γ)

for six different sample sizes, n = 50, 200, 400, 600, 800, 1, 000, and 2, 000.

We consider the finite sample testing performance for the long-run parameter. Table 1 presents the

empirical rejection frequencies ofW(j)
n (B) under the null hypothesis H(j)

0 (B) at a significance level of 5%.

In all four cases, the Wald statistics tend to moderately over-reject the null when the sample size is relatively

small for both normal and t errors. Especially for n = 50, the level distortions are non-negligible, but

this is not a surprising finding given the common empirical findings in the stationary case that requires a

sufficiently large sample for an accurate estimation of the quantile regression. As the sample size increases,

as expected, empirical levels of all four Wald statistics tend to converge to the nominal level.

<<<<<<< Insert Table 1 around here. >>>>>>>>

These findings generally affirm the theoretical predictions in Corollary 4(iii.a) thatW(j)
n (B) andW(4)

n (B)

converge to X 2
1 and X 2

2 asymptotically under H(j)
0 (B) and H(4)

0 (B), respectively (j = 1, 2, 3).

Second, we turn to testing the performance of the short-run parameters under the null. Tables 2 and 3

present the empirical rejection rates ofW(j)
n (Φ) andW(j)

n (Γ) under H(j)
0 (Φ) and H(j)

0 (Γ) at a significance

level of 5%. These statistics tend to moderately over-reject the null when the sample size is relatively small.

7Alternatively, the bandwidth advocated by Hall and Sheather (1988) can be used to estimate the density. However, this method
is affected by a particular choice of a significance level that is used as an ingredient of the estimator.
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Nevertheless, as expected, empirical levels of all four Wald statistics tend to converge to the nominal levels

as the sample size increases for both normal and t errors.

<<<<<<< Insert Tables 2 and 3 around here. >>>>>>>>

These aspects are as claimed in Corollary 4(i.a, ii.a): (i) W(j)
n (Φ) and W(4)

n (Φ) converge to X 2
1 and X 2

2

asymptotically under H(j)
0 (Φ) and H(4)

0 (Φ), respectively; (ii) W(j)
n (Γ) and W(4)

n (Γ) converge to X 2
1 and

X 2
2 asymptotically under H(j)

0 (Γ) and H(4)
0 (Γ), (j = 1, 2, 3).

Next, we report the power performance of the Wald statistics under the alternative. For this, we let

sj = 0.1 (j = 1, 2, 3) and s4 = [0.1, 0.1]′ and consider the sample sizes {50, 100, 200, 300, 400, 500} for

W(j)
n (B) and W(j)

n (Φ) and {200, 400, 600, 800, 1200, 1600, 2000} for Wn(Γ). We summarise the simu-

lation results as follows: first, Table 4 reports the empirical rejection rates of the W(j)
n (B) tests for the

long-run parameter under the four alternative hypotheses H(j)
1 (B) (j = 1, 2, 3) and H(4)

1 (B), from which

we find that the powers increase quickly with the sample size. This is a satisfactory finding given that the

alternative hypotheses are not much different from the null and that the different error distributions produce

similar results. Overall, this evidence provides strong support for the theoretical predictions in Corollary

4(iii.b) thatW(j)
n (B) is consistent.

<<<<<<< Insert Table 4 around here. >>>>>>>>

Second, we present the empirical rejection rates ofW(j)
n (Φ) andW(j)

n (Γ) for the short-run parameters

under the alternative hypotheses, respectively, in Tables 5 and 6. The power ofW(j)
n (Φ) approaches unity

very quickly, faster than that of W(j)
n (B). Surprisingly, however, we observe that the power of W(j)

n (Γ)

approaches unity at a much slower rate than those ofW(j)
n (B) orW(j)

n (Φ).

<<<<<<< Insert Tables 5 and 6 around here. >>>>>>>>

Two remarks are in order. First, the finite sample performance of the Wald tests depends on the distance

between quantiles. Recall that the distance between quantile indices for H(1)
0 (·) and H(2)

0 (·) is 0.25 (i.e.,

|τ1 − τ2| = |τ2 − τ3| = 0.25), whereas the distance is 0.5 under H(3)
0 (·) (|τ1 − τ3| = 0.5). The level

distortions of W(j)
n (B), W(j)

n (Φ), and W(j)
n (Γ) are smaller for H(1)

0 (·) and H(2)
0 (·) than for H(3)

0 (·). On

the other hand, the empirical powers of W(j)
n (B), W(j)

n (Φ), and W(j)
n (Γ) are higher against H(1)

0 (·) and

H(2)
0 (·) than against H(3)

0 (·). Second, it is easily seen from Tables 4, 5, and 6 that the empirical powers of

W(4)
n (B),W(4)

n (Φ), andW(4)
n (Γ) are higher than those ofW(j)

n (B),W(j)
n (Φ), andW(j)

n (Γ) (j = 1, 2, 3).

Nevertheless, this result should be somewhat discounted because the level distortions ofW(4)
n (B),W(4)

n (Φ),
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andW(4)
n (Γ) are also higher than those ofW(j)

n (B),W(j)
n (Φ), andW(j)

n (Γ) (j = 1, 2, 3). This implies that

testing hypotheses with a smaller quantile interval tends to deliver more precise inference results, especially

when the sample size is relatively small. Alternatively, sufficiently large samples are required for reliable

inference when the quantile interval is relatively wide and/or multiple restrictions are tested.

4.2 Unknown QARDL Orders

4.2.1 Testing Under the Multiple Quantile Framework

We extend the simulation set-up and consider the case with unknown QARDL orders. To this end, we

construct the DGP as follows:

Yt = α∗(τ) + φ∗(τ)Yt−1 + θ0∗(τ)Xt + θ1∗(τ)Xt−1 + Ut(τ) and Xt = Xt−1 +Wt, (22)

where Ut(τ) := Ut − F−1(τ), Ut := σ∗R
(1)
t−1 +

(
1− σ2∗

)
R

(1)
t , and Wt := ρ∗R

(2)
t−1 +

(
1− ρ2∗

)
R

(2)
t with

(R
(1)
t , R

(2)
t )′ ∼ IID N(0, I2). Notice that the only difference of this DGP from that of (18) is that we now

allow {Ut} to be an MA(1) process with σ∗ ∈ (0, 1). If σ∗ = 0, then the DGP condition is identical to

that in (18) with normal errors. We are interested in examining how the Wald test statistics perform in the

presence of the MA error terms.

In this case, we estimate the unknown QARDL orders using the BIC. Specifically, we consider 49 models

by letting (p, q) = {(1, 1), (1, 2), . . . , (7, 6), (7, 7)} and select the best fitting model with the smallest

BIC. Note that the conditional mean equation is the weighted average of the quantile equations and BIC

can consistently estimate the ARDL orders as confirmed by Pesaran and Shin (1998). On the other hand,

applying the BIC may estimate consistently higher orders for some quantiles.

Our simulations are conducted across three quantile levels, τ1 = 0.25, τ2 = 0.50 and τ3 = 0.75

as follows: for the long-run parameters, B∗(τ ) = [β∗(0.25), β∗(0.5),β∗(0.75)]′ and the the short-run

parameters, Γ∗(τ ) := [γ∗(0.25),γ∗(0.5),γ∗(0.75)]′, we use W̃(j)
n (B) and W̃(j)

n (Γ) to test the hypotheses:

H(j)
0 (B) : SjB∗(τ ) = sj versus H(j)

1 (B) : SjB∗(τ ) 6= sj and H(j)
0 (Γ) : SjΓ∗(τ ) = sj versus H(j)

1 (Γ) :

SjΓ∗(τ ) 6= sj for j = 1, 2, 3, 4. Next, for Φ∗(τ ) := [φ1∗(0.25), . . . , φp∗(0.25), φ1∗(0.50), . . . , φp∗(0.50),

φ1∗(0.75), . . . , φp∗(0.75)]′, we use W̃(j)
n (Φ) to test the hypotheses: H̃(j)

0 (Φ) : S̃jΦ∗(τ ) = sj versus

H̃(j)
1 (Φ) : S̃jΦ∗(τ ) 6= sj , for j = 1, 2, 3, 4, where S̃1 = [1,0′p−1,−1,0′p−1, 0,0

′
p−1], S̃2 = [0,0′p−1, 1,

0′p−1,−1,0′p−1], S̃3 = [1,0′p−1, 0,0
′
p−1,−1,0′p−1], and S̃4 = [S̃′1, S̃

′
2]
′.

In principle, if the different lag orders are selected based on BIC, the null hypotheses can be different

for the short-run parameters (of course, the same for the long-run parameter). Nevertheless, the essence

19



of inference is intact when testing the coefficients on the first lagged dependent variable. For example,

W̃(1)
n (Φ) tests φ1∗(0.25) = φ1∗(0.50), and W̃(4)

n (Φ) tests φ1∗(0.25) = φ1∗(0.50) = φ1∗(0.75). Under the

DGP condition in (22), we expect the empirical rejection rates of the Wald test statistics to be close to the

nominal level. For j = 1, 2, and 3, W̃(j)
n (B), W̃(j)

n (Φ), and W̃(j)
n (Γ) follow X 2

1 ; and W̃(4)
n (B), W̃(4)

n (Φ),

and W̃(4)
n (Γ) follow X 2

2 under the null. We consider sample sizes of 50, 200, 400, 600, 800, 1, 000, and

2, 000, and we let σ∗ = 0.00, 0.10, 0.20, 0.30, and 0.40. Notice that, as σ∗ increases, {Ut} becomes more

serially correlated; and thus, the larger level distortion is expected for σ∗ = 0.4. We compute the Wald test

statistics using the same methodology as in the previous subsection and present simulation results in Tables

7, 8, and 9. For brevity, we examine the empirical rejection rates at a significance level of 5% only.

<<<<<<< Insert Tables 7, 8, and 9 around here. >>>>>>>>

The overall simulation results are as follows. First, all the empirical levels of the Wald tests tend to the

nominal level as the sample size increases, implying that the Wald tests are asymptotically well approxi-

mated by the claimed null distributions even in the presence of MA(1) errors. Second, as expected, there

are somewhat non-negligible level distortions in the small sample (say, n = 50) as σ∗ increases. Hence, the

researcher needs to be cautious when using the proposed test with small sample sized data. Nevertheless,

for all the values of σ∗, they are almost negligible as the sample size becomes moderately large.

4.2.2 Comparison with the Wald Test in Xiao ( 2009)

In this subsection we aim to compare the finite sample performance of our proposed Wald tests relative to

that of Xiao’s (2009) augmented model-based Wald test. The augmented quantile model in Xiao (2009) is

specified as: QYt(τ |Zt) = α∗(τ) + X′tβ∗(τ) +
∑K

j=−K ∆X′t−jΠ∗(τ). Accordingly, the augmented Wald

statistic is obtained by W
(K)
n (β) := f̂2τ

τ(1−τ)(Rβ̂n(τ) − r)′[RM−1
X R′]−1(Rβ̂n(τ) − r), where MX :=∑n

t=1(Xt − X̄)(Xt − X̄)′ and X̄ is the sample average of {Xt}. It tests the restrictions on the long-run

parameters: H∗0 : Rβ∗(τ) = r vs H∗1 : Rβ∗(τ) 6= r. For sufficiently large K, Xiao (2009) shows that

W
(K)
n (β) follows X 2 distribution asymptotically under his regularity conditions.

To make the fair comparison, we set up the simulation design as follows: First, we employ the DGP with

unknown lag orders as considered in Section 4.2.1 and test the hypotheses on the long-run parameters: H∗0 :

β∗(τ) = β0 vs. H∗1 : β∗(τ) 6= β0, where τ is set at 0.5 for simplicity and we set β0 = (θ0∗+ θ1∗)/(1− φ∗)

and (θ0∗ + θ1∗)/(1 − φ∗) + 0.1 under the null and under the alternative hypothesis, respectively. Other

simulation set-ups and the testing procedures for the Wald tests are identical to those in Section 4.2.1.

Second, we only consider the case with φ∗ = 0. If φ∗ 6= 0, then the DGP does not satisfy Assumption A′
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in Xiao (2009) because the value of K should be infinite.8 Third, as unknown QARDL orders are selected

by BIC in Section 4.2.1, we have also selected unknown K by BIC. Specifically, we select the best fitting

model with the smallest BIC for K = 1, 2, . . . , 7.

These simulation results are reported in Table 10. First, as described in 4.2.1, the rejection frequencies

of our proposed Wald test tends to the nominal level (5%) quickly as the sample size rises, despite the serial

correlation in Ut. By contrast, Xiao’s W(K)
n (β) test tends to display large size distortions. Only in the case

where the errors are not serially correlated (σ∗ = 0), its empirical rejection frequency becomes close to the

nominal level as the sample size increases. Next, turning to the (size-adjsuted) power performance, we find

that both tests tend to display similar power across all the sample sizes considered. Overall, the simulation

results clearly show potential advantages of our proposed testing procedure, especially in the context of most

time series data being subject to complex dynamics.

<<<<<<< Insert Table 10 around here. >>>>>>>>

5 Empirical Application

In a classic study on dividend policy, based on interviews with 28 managers, Lintner (1956) observes that

firms gradually adjust dividends in response to changes in earnings. Lintner also observes that firms are

reluctant to make dividend changes that have to be reversed in the near future. An important implication

of this finding is that managers make dividend adjustments in response to unanticipated and non-transitory

changes in their firms’ earnings in order to attain a long-run target payout ratio. Empirical research generally

supports Lintner’s partial adjustment framework at both the firm and the aggregate level, e.g., Fama and

Babiak (1968), Marsh and Merton (1987), Garrett and Priestley (2000), and Andres et al. (2009). In

the literature, however, the estimates of adjustment speed are widely different. Using the US real estate

investment trusts data from 1992-2003, Hanyunga and Stephens (2009) report widely different estimates of

the speed of adjustment: 0.028 and 0.04 at a quarterly frequency and 0.38 and 0.37 at an annual frequency

by the panel OLS and Tobit methods, respectively. These large differences are mainly due to the well-known

small-T bias in dynamic AR regression (e.g., Hurwicz, 1950).

Recently, Brav et al. (2005) surveyed 384 financial executives to determine the factors that drive div-

idend and share repurchase decisions. The most important findings are as follows: executives try to avoid

reducing dividends per share (93.8% agreed) and aims to maintain a smooth dividend stream (89.6%); they

8We have also conducted an additional simulation experiment using the same DGP but with φ∗ = 0.25. To save space we do
not report these simulation results. Here we find that our proposed Wald test displays more or less similar results to those with
φ∗ = 0.00 whilst the Xiao’s Wald test now tends to suffer from severe size distortions.
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are reluctant to make changes that will be reversed (77.9%) because there are negative consequences to cut-

ting dividends (88.1%). These responses are mostly consistent with Lintner’s observations, although the link

between dividends and earnings has weakened in the subsequent 50 years. With the new survey evidence in

mind, Leary and Michaely (2011) address an important issue of why firms smooth dividends by studying the

cross-sectional differences in the behavior of dividend smoothing. Their main findings suggest that dividend

smoothing is most common in the U.S. in large and mature firms that are not financially constrained, pos-

sess low levels of asymmetric information, and are readily susceptible to agency conflicts. Furthermore, they

document that dividend smoothing has steadily increased over the past century, even before firms began to

repurchase shares in the mid-1980s. Chen et al. (2012) also show that aggregate dividends are dramatically

more smoothed in the post-world war II period (1946-2006) than in the prewar period (1871-1945). In par-

ticular, they report that, during the post-war period, dividends adjust to the earnings target at a speed about

one-fourth of the prewar period. This implies that dividend growth is unpredictable for the firms that have

most smoothed dividends but predictable for the firms that have least smoothed dividends. By a simulation

analysis, they draw two important conclusions. First, even if dividends are supposed to be strongly pre-

dictable without smoothing, dividend smoothing can negate this predictability. Second, dividend smoothing

leads to a persistent dividend yield. Motivated by these, Rangvid et al. (2012) investigate the relationship

between dividend predictability and dividend smoothing in a global framework using aggregated data of

dividend yields, prices, and total returns in 50 countries at a quarterly frequency. They find that dividend

predictability is driven by cross-country differences in firm characteristics, dividend smoothing, and institu-

tions. In particular, aggregate dividend growth is highly predictable by dividend yields in medium-sized and

smaller countries, although this predictability disappears for large countries.

However, all of these empirical findings are obtained from examining dividend behaviors only at the

conditional mean, and the literature has not yet investigated an important possibility that the degree of

dividend smoothing can be fundamentally heterogeneous across different quantiles of dividend distribution.

The relationship between the dependent variable and covariates may differ depending on the location of the

dependent variable in its own distribution. We contribute to the existing literature on dividend policy by

incorporating location asymmetries into dividend adjustment and target payout ratio at the aggregate level.

Lintner (1956) suggests that firms partially adjust toward their target dividend, and models this adjust-

ment by ∆Dt = a∗ − ζ∗ (D∗t −Dt−1) + εt, where Dt and D∗t are the current (observed) and target levels

of dividends at time t, respectively, and |ζ∗| is the speed of adjustment or smoothing coefficient (expected

to lie between 0 and 1), which represents how quickly firms adjust toward the target dividend. It is widely
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suggested that the target dividend has a long-run relationship with the current earning Et as9 D∗t = β∗Et,

where β∗ is the target payout ratio. Combining this with Lintner’s (1956) specification yields the following

partial adjustment model: ∆Dt = a∗ + ζ∗Dt−1 + θ∗Et + εt, where θ∗ := −ζ∗β∗.

We find that Dt and Et are non-stationary, as in Garrett and Priestley (2000). Hence, the target div-

idend relationship in D∗t = β∗Et is indeed a cointegrating relationship between Dt and Et (these are

confirmed by unit root and the cointegration test results, which are unreported to save space). Importantly,

εt is highly likely to be serially correlated. Therefore, it is more useful to generalise the model as fol-

lows: ∆Dt = α∗ + ζ∗Dt−1 + γ∗Et−1 +
∑p−1

j=1 λj∗∆Dt−j +
∑q−1

j=0 dj∗∆Et−j + εt, where εt is assumed

to be serially uncorrelated given sufficiently large lag orders of p and q. Notice, however, that ∆Et may

be contemporaneously correlated with the error term εt, in which case we can control for such correlation

by employing a projection of εt on ∆Et: εt = ω∗∆Et + Ut, where Ut is not correlated with ∆Et by

construction. Substituting this projection, we obtain the final ARDL(p, q) specification as

∆Dt = α∗ + ζ∗ (Dt−1 − β∗Et−1) +

p−1∑
j=1

λj∗∆Dt−j +

q−1∑
j=0

δj∗∆Et−j + Ut, (23)

where β∗ := −γ∗
ζ∗

, δ0∗ := d0∗ + ω∗ and δj∗ := dj∗ for j = 1, . . . , q − 1. Unless ω∗ = 0,10 the ARDL(p, q)

model in (23) is unable to identify a contemporaneous causal relationship between ∆Dt and ∆Et due to the

projection between them. However, under the additional and acceptable assumption that earning changes

can immediately cause dividend changes, but not vice versa, we can interpret the new coefficient on ∆Et,

δ0∗, as an impact reaction parameter. Furthermore, all the other parameters, including β∗ and ζ∗ in (23), can

be estimated free of endogeneity since ∆Et is included in the regression.

In particular, we are interested in the following four parameters: (i) the ECM parameter ζ∗ measuring the

degree of dividend smoothing, (ii) the long-run (cointegrating) target payout ratio β∗, (iii) the momentum

effect of the dividend growth captured by λ∗ :=
∑p−1

j=1 λj∗, which measures the cumulative impact of past

dividend growth on the current dividend growth, i.e.
∑p−1

j=1 ∂∆Dt/∂∆Dt−j (there is pervasive evidence that

stock returns with positive momentum in the short-run are followed by reversals in the long-run, e.g., Koijen

et al. (2009)), and (iv) the impact reaction of dividend growth to earnings growth, δ0∗, which measures the

effect of contemporaneous change in earnings on the current dividend growth, i.e., ∂∆Dt/∂∆Et. Based on

9The literature provides a number of ways to measure permanent earnings. Marsh and Merton (1987) suggest using the one-
period lagged real stock price. Garrett and Priestley (2000) apply the Kalman filtering method and separate permanent earnings
from a transitory component in the reported earnings. Alternatively, Andres et al. (2009) suggest using cash flow as an alternative
measure of (permanent) earnings. In this study, we consider aggregated earnings in its simplest form.

10The sign of ω∗ may dictate whether the impact effect, δ0∗ in (23) is overreacting (ω∗ > 0) or underreacting (ω∗ < 0).
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existing empirical and theoretical studies (e.g., Koijen et al., 2009; Chen et al., 2012), our priors about these

four parameters are given as follows: ζ∗ < 0, 0 < β∗ < 1, λ∗ ≥ 0, and δ0∗ ≥ 0.

We employ the dataset collected by Shiller (2005) for Irrational Exuberance. We construct a quarterly

dataset on real price, real dividend, and real earnings for the Standard and Poor’s 500 stocks over the period

1871Q3 - 2010Q2 with 558 quarterly observations. As a baseline case, we first estimate the ARDL(p, q)

model in (23) by OLS. Employing the BIC lag selection procedure, we find that the appropriate lag orders

are p = 3 and q = 1, respectively. The conditional mean estimation results for the four key parameters

are reported in Table 11(a). The ECM coefficient is −0.04, which implies that the adjustment speed is only

about 4%, whereas the long-run payout coefficient is 0.36. Further, the momentum and the impact reaction

parameters are estimated at 0.48 and 0.01, respectively. Combined together, we conclude that the changes

in dividend appear to be driven more strongly by history than the changes in earnings. The magnitude and

the sign of all four key coefficients are generally in line with our priors.

Next, in order to apply the QARDL approach, we consider the quantile counterpart of the ARDL(3,1)

model as follows:11 ∆Dt = α∗ (τ) + ζ∗ (τ)Dt−1 + γ∗ (τ)Et−1 +
∑2

j=1 λj∗ (τ) ∆Dt−j + δ∗ (τ) ∆Et +

Ut (τ) for τ ∈ (0, 1). To the best of our knowledge, our dynamic quantile regression application to an

investigation of the long-run target payout policy and the associated dividend smoothing is the first attempt

in the literature. Based on the existing literature discussed above, we aim to address the following issues

that may challenge many studies relying upon the conditional mean models:

• Issue 1: locational asymmetry is associated with the notion that the four parameters may depend on

the location of the dividend within its conditional distribution. In particular, we are keen to determine

whether the long-run target payout ratio and dividend smoothing are heterogeneous across quantiles.

This allows for a natural distinction among firms with low- and high-dividend payout policies.

• Issue 2: through employing the rolling estimation technique, we wish to investigate the time-varying

patterns of dividend policy. Given the empirical evidence that the link between dividends and earn-

ings has recently weakened (Brav et al., 2005) and that aggregate dividends are dramatically more

smoothed in the post-world war II period than in the prewar period (Chen et al. 2012), we are inter-

ested in elucidating whether the location asymmetries are monotonic over the whole periods.

11When estimating the QARDL model, we acknowledge that the lag orders, p and q, should be selected according to quantile in
a data-coherent manner. However, extending the analysis to allow for lag order selection or approximability of infinite order models
could lead to an overly long and complicated paper and is beyond the scope of the current study. We have briefly addressed this
issue in the Monte Carlo section using BIC. Making p and q dependent on the quantile index τ not only increases the computation
complexity, but also reduces the comparability across different quantile estimation results. Thus, we find it reasonable to employ
the common lag orders selected via the BIC applied to the conditional mean model across quantiles in order to make quantile
estimation results comparable to the baseline conditional mean model, as similarly implemented in Covas et al. (2012).
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The full sample quantile estimation results are reported in Table 11(b), showing that most of the coef-

ficients are statistically significant across all of the quantiles that we consider. The only exceptions are the

estimates of δ∗(τ) at higher quantiles.

<<<<<<< Insert Table 11 around here. >>>>>>>>

We also plot the estimation results in Figure 1, which displays the quantile estimates of the four parame-

ters ζ∗(τ), β∗(τ), λ∗(τ) =
∑2

j=1 λj∗(τ), and δ∗(τ) with 90% confidence intervals against quantile indices

ranging from 0.05 to 0.95.12

<<<<<<< Insert Figure 1 around here. >>>>>>>>

The estimation results are summarised as follows. First, the quantile estimates of the ECM parameter

|ζ̂(τ)| start with a 6% adjustment speed at the low quantiles (τ = 0.05 and 0.1) and decrease monotonically

as the quantile increases. The estimate reaches a minimum of 3% at τ = 0.4 and stays between 3% and

4% at higher quantiles, which indicates that dividend smoothing is stronger in medium-to-higher quantiles

than in lower quantiles; i.e., the dividend policy is more conservative at medium-to-higher quantiles. This

evidence is consistent with the hypotheses of the free cash flow problem and/or agency conflicts resulting

from market frictions. For example, Easterbrook (1984) and DeAngelo and DeAngelo (2007) predict a

positive relationship between the level of dividends and smoothing. Second, the quantile estimates of the

long-run target payout ratio, β̂(τ) increase monotonically with quantiles, reaching a peak of 0.40 at τ = 0.3

and remaining at similar levels at higher quantiles, except the highest quantile, τ = 0.95 where the long-run

payout ratio drops to 0.33. Such stable and high levels contrast with the low long-run payout ratio observed

at low quantiles (e.g., β̂(τ) = 0.27at τ = 0.05).13 Third, the quantile estimates of the momentum parameter

λ̂(τ) generally decrease with quantile indices (from 0.58 at τ = 0.05 to 0.30 at τ = 0.9), providing evidence

of locational asymmetry. Thus, the higher momentum effects are observed at the lower quantiles. Finally,

the impact reaction coefficient δ̂(τ) tends to decrease with quantiles, although the magnitudes are negligibly

small across all quantiles, ranging between 0.02 and −0.01. This suggests that a change in current earnings

flow that is viewed by management as essentially transitory would be unlikely to give rise to a noticeable

and immediate change in dividends.

12We employed the wild bootstrap method proposed by Feng et al. (2011) to produce confidence intervals because bootstrapping
can provide a better approximation of the underlying sampling distribution than the asymptotic theory.

13Notice that the difference between β̂(τ)’s mostly stays within the confidence band except at the lower quantiles, indicating that
the overall locational asymmetry is statistically weak. Similar remarks apply to other parameters whenever their differences are
inside the confidence band.
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The full sample estimation results clearly confirm that there is evidence of location asymmetries between

lower and medium-to-higher quantiles for all four key parameters. Overall, these findings are consistent with

the cross-sectional evidence by Leary and Michaely (2011) and the aggregate time series evidence shown in

a global setting by Rangvid et al. (2012) that large and mature firms with stable cash-flow and return pro-

cesses have a greater tendency to smooth dividends. Our findings of the quantile-dependent cointegrating

relationship between dividends and earnings provide further support for the number of recent studies that

report similar results; namely, the quantile-varying cointegrating relationship between stock price and divi-

dend in Xiao (2009), between spot and future oil prices in Lee and Zeng (2011), and between the nominal

interest rate and inflation in Tsong and Lee (2013). As discussed by Xiao (2009), a plausible explanation

for quantile-varying cointegration is that the underlying relationship between integrated time series may

vary over time due to (heterogeneous) shocks arising at each point of time. If so, the quantile cointegrating

framework is naturally fitted for such a situation because quantile coefficients can be viewed as random

coefficients, as explained in Koenker and Xiao (2006), in which such randomness is driven by a common

shock arriving at each time period.

Considering that the sample period is quite long at more than 140 years, we find it more prudent to allow

for time-varying patterns of dividend policy. Any model estimated over a long span of time that does not

incorporate structures of time-varying mechanisms can result in only the average tendency of the dividend

policy as examined using a range of regime-switching models. In this paper, we instead employ a robust

rolling estimation technique with a window length of 320 quarters, a figure that should balance the data

requirement of the QARDL model with our desire to examine the richest possible range of regimes. To

this end, we re-estimate the QARDL(3,1) model by successively moving the estimation window forward by

one quarter until we reach the end of the sample. In Figure 2 we present the time-series plots of the rolling

quantile estimates of the four parameters together with 90% confidence intervals.

<<<<<<< Insert Figure 2 around here. >>>>>>>>

The rolling quantile estimates of |ζ∗ (τ)| display quite strong time-varying patterns. In general, we

observe that dividend smoothing has been stronger in recent periods, a finding consistent with Leary and

Michaely (2011) and Chen et al. (2012). In the earlier periods, the location asymmetry was stronger with an

order |ζ̂(0.25)| > |ζ̂(0.5)| > |ζ̂(0.75)|, where the average adjustment speeds were about 8.50% and 4.00%

at τ = 0.25 and τ = 0.75, respectively. This ordering is generally consistent with the full sample results.

On the other hand, in the later periods, the location asymmetry was much weaker. Interestingly, we observe

a reversed order with |ζ̂(0.75)| > |ζ̂(0.5)| > |ζ̂(0.25)| at some later periods, although their differences are
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negligible and insignificant. In particular, we find that the speed of adjustment at lower quantiles begins to

fall with a steep downward trend. For example, the adjustment speed at τ = 0.25 decreases dramatically

from about 9% in the earlier period to below 1% in the recent period (the late 2000s). In contrast, the

adjustment speed seems quite stable over the whole period at the higher quantile τ = 0.75.

Next, the rolling quantile estimates of β∗ (τ) display a strong downward time-varying pattern, show-

ing that payout ratios have become significantly lower in recent periods. This finding generally supports

the study by Fama and French (2001) who report a substantial decline in the proportion of U.S. firms pay-

ing dividends. A significant decrease in the residual propensity to pay dividends was observed even after

controlling for firm characteristics. Chen et al. (2012) also document that the aggregate payout ratio has

declined in the postwar period. Notice, however, that this (monotonic) downward trend is observed only at

τ = 0.5 and 0.75. The payout ratio at τ = 0.25 tends to increase from the middle of the sample period

(approximately after the 1960s) and starts to decrease from the 1970s. The location asymmetry was stronger

in the earlier periods with an order β̂ (0.75) > β̂ (0.5) > β̂ (0.25), where the average payout ratios are

about 35% and 60% at τ = 0.25 and τ = 0.75, respectively. On the other hand, we observe weaker location

asymmetry in the later periods but with a reversed order β̂ (0.25) > β̂ (0.5) > β̂ (0.75). Especially since

1980s, the location asymmetry was almost negligible, and the payout ratio remains generally at a low level,

except at the noted spikes.14 This finding can be explained by the evidence provided by Skinner (2008),

who observes that repurchases are increasingly responsive to earnings by substituting themselves for div-

idends, especially over the last two decades, since stock repurchases emerged as significant in the early

1980s.15 Hence, the most recent ongoing downward trend can be attributed to the popularity of repurchase

as a means of disbursing temporal increases of cash flow.

Turning to the rolling quantile estimates of λ∗ (τ), we observe volatile time-varying patterns. The lo-

cation asymmetry is stronger in the earlier periods with an order λ̂ (0.25) > λ̂ (0.5) > λ̂ (0.75), in which

the average momentum coefficients are 0.45 and 0.32 at τ = 0.25 and τ = 0.75, respectively. The lo-

cation asymmetry is less significant in the later periods, although they tend to increase substantially at

τ = 0.75 (from 0.30 to 0.60) such that significant location asymmetry is observed very recently with

λ̂ (0.75) > λ̂ (0.5) ' λ̂ (0.25). From this evidence, we conclude that dividend policy has evolved in

such a way that its own lags have become the more important predictor in the postwar period. Using the

14Three conspicuous spikes are observed at τ = 0.25 during the late 2000s. These coincide with the corresponding three spikes
in ECM parameter, where estimates of ζ̂ (0.25) are very close to zero. As the long-run coefficient is evaluated by β̂ (0.25) =

−γ̂ (0.25) /ζ̂ (0.25), we should bear in mind that these three extreme estimates may be unreliably inflated.
15One of the main reasons behind this structural shift is Rule 10b–18 introduced in 1982 which provided a non-exclusive safe

harbor for issuer repurchase. Furthermore, the Securities Exchange Commission proposed amendments of the rule in 2010 to clarify
and modernise the safe harbor provision in light of developments in automated trading systems and technology.
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univariate regression of dividend change on its own lags, Chen et al. (2012) also document a similar finding

that the autoregressive coefficient is 0.061 for the prewar period (statistically insignificant), whereas it is

0.687 in the postwar period (significant).

Finally, the rolling quantile estimates of δ∗ (τ) show that there is a strong downward trend from 12–14%

in the earliest sample period to almost zero in very recent period. These time-varying patterns are somewhat

similar to those observed from |ζ̂(τ)|, and both contribute to the extremely strong dividend smoothing

reported in more recent periods. The location asymmetry looks insignificant over the whole rolling period,

with no clear pattern or order. In the earlier periods (mostly in the prewar period), managers tend to make

a noticeable change in dividends immediately following current earnings changes, although such impact

reactions decrease monotonically over time. These downward trends in conjunction with a zero bound in

the most recent periods clearly confirm that managers now favor repurchase out of current earnings changes

because they are more flexible than dividends, as documented in the survey evidence by Brav et al. (2005).

As our last step in data examination, we provide formal testing results for the location asymmetries for all

four parameters over three selected quantiles τ = 0.25, 0.5 and 0.75; i.e. we wish to test if each parameter is

constant across quantiles. For example, if β∗ (τ) is the parameter of interest, then we consider the following

four null hypotheses: Hβ
01 : β∗ (0.25) = β∗ (0.5),Hβ

02 : β∗ (0.5) = β∗ (0.75),Hβ
03 : β∗ (0.25) = β∗ (0.75),

and Hβ
04 : β∗ (0.25) = β∗ (0.5) = β∗ (0.75). To this end, we employ the Wald test statistics proposed in

Section 3, denoted asW(1)
n (β),W(2)

n (β),W(3)
n (β), andW(4)

n (β). Figure 3 plots the p-values of these Wald

statistics using rolling estimation. In the earlier periods, the null hypotheses are strongly rejected across all

three quantiles. In later periods, such location asymmetries become statistically significant only between

β∗ (0.5) and β∗ (0.75) and between β∗ (0.25) and β∗ (0.75). Figure 4 displays the testing result for ζ∗ (τ).

We find that the locational asymmetries are significantly observed only in the earlier periods, especially

between ζ∗ (0.25) and ζ∗ (0.75). On the other hand, in the later periods, such location asymmetries become

statistically insignificant, except in a few recent periods. These results confirm our earlier findings that

strong locational asymmetries are observed in both target payout ratio and smoothing pattern between the

low and the high quantiles only in the earlier periods.

<<<<<<< Insert Figures 3 and 4 around here. >>>>>>>>

Figures 5 and 6 provide the test results for λ∗ (τ) and δ∗ (τ), respectively. The p-values for λ∗ (τ) indicate

that there is weak evidence in favor of the location asymmetry between λ∗ (0.25) and λ∗ (0.75) only in the

very early periods. With regard to δ∗ (τ), we find that there exist some evidence of location asymmetry

across quantiles around the 1990s.
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<<<<<<< Insert Figures 5 and 6 around here. >>>>>>>>

In summary, we conclude that a thorough examination using the QARDL method sheds further light

on the evolution of dividend policy in the U.S. over the past century. First, we document that dividend

smoothing has become monotonically stronger over time. Similar monotonic downward trending patterns

have been observed in the impact coefficient with respect to changes in current earnings, and they reach

almost zero in the most recent periods. Both factors contribute to the extremely strong dividend smoothing

reported in very recent periods. Second, our results clearly display that payout ratios have been monotoni-

cally decreasing over time and have recently stayed below 30%, providing support for the survey evidence

by Brav et al. (2005) that the target payout ratio may no longer be the preeminent decision variable affect-

ing payout decisions. Furthermore, we find that the location asymmetries across different quantiles of the

conditional distribution of dividends, which are clearly visible in the earlier periods, are mostly negligible in

the recent periods. These findings may indicate the establishment of financial deepening as a consequence

of the long-term process to promote the stability of the whole financial system in the U.S. Rangvid et al.

(2012) also provide international evidence that developed countries with more stable returns and dividend

processes and with a higher quality of legal systems and corporate governance, such as the U.S., the UK,

and Japan, tend to smooth dividends more than other countries.

6 Concluding Remarks

Recently, the literature on quantile time series regression, especially with nonstationary variables, has been

rapidly increasing. In particular, Xiao (2009) advances a novel quantile cointegration estimation technique

in a static regression. In this paper, we propose the dynamic QARDL modelling approach to simultaneously

address the long-run relationship between integrated time series as well as the associated short-run dynamics

across a range of quantiles of the conditional distribution of the dependent variable.

We have derived the asymptotic theory for the QARDL model with nonstationary regressors. The

QARDL estimators of both the short-run dynamic and the long-run (cointegrating) parameters are shown

to asymptotically follow a (mixture) normal distribution. Hence, the null distribution of the Wald statistics

for testing the restrictions on both parameters weakly converges to a chi-squared distribution. We have also

provided a general package in which the model can be estimated across multiple quantiles, and any linear

restrictions on the parameters involving multiple quantiles can be tested using the standard Wald statistics.

Monte Carlo simulation results provide strong support for theoretical predictions. The key strengths of the

QARDL framework have been demonstrated in the empirical analysis of dividend policy in the U.S. using
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quarterly data on real dividends and earnings for the S&P 500 stocks over the period 1871Q3 - 2010Q2.

Finally, we note several avenues for further researches. First, foremost among these must be the devel-

opment of a formal cointegration testing mechanism that could address the issues of whether the long-run

cointegration relationship exists at each of quantiles. In a similar context, Koenker and Xiao (2004) and

Galvao (2009) suggest that the stationary property of individual time series may change across quantiles.

Considering that the distribution of nonstationary variables is changing over time, it is a challenging issue

to analyse such stochastic trends of nonstationary data within the scope of the quantile regression. In this

regard, we conjecture that a quantile-dependent cointegration testing framework can be developed by ex-

tending the findings of Pesaran et al. (2001), although this approach significantly differs from the existing

approaches adopted by Koenker and Xiao (2004, 2006) and Xiao (2009). Second, we find it quite useful

to develop a quantile regression extension of the asymmetric ARDL framework advanced by Shin, Yu, and

Greenwood-Nimmo (2014). This combined approach is expected to provide us the flexible econometric

framework, which can help us to identify several forms of distinct asymmetry. Finally, given that conven-

tional estimation can be significantly affected by conditional heteroskedasticity, it would be desirable to

explicitly control for time-varying volatilities in the QARDL framework.
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Distributions Tests \ Sample Size 50 200 400 600 800 1,000 2,000

Ut ∼ N(0, 1)

W(1)
n (B) 12.24 7.26 6.50 5.82 6.02 5.66 5.20
W(2)
n (B) 12.66 7.22 6.36 5.88 5.72 5.60 5.46
W(3)
n (B) 18.96 8.58 6.92 6.22 6.46 5.78 6.20
W(4)
n (B) 18.54 9.72 7.18 6.20 6.32 5.84 5.42

Ut ∼ t5

W(1)
n (B) 14.88 8.06 6.72 6.30 6.42 5.14 5.62
W(2)
n (B) 14.58 8.10 5.84 6.16 5.00 5.66 5.40
W(3)
n (B) 20.72 9.26 6.86 6.70 6.20 5.88 5.50
W(4)
n (B) 22.38 9.70 7.58 6.82 6.20 6.00 5.90

Table 1: EMPIRICAL LEVELS OF W(1)
n (B), W(2)

n (B), W(3)
n (B), AND W(4)

n (B) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: (i) Number of iterations: 5,000. (ii) DGP: Yt = α∗+φ∗Yt−1+θ0∗Xt+θ1∗Xt−1+Ut,
Xt := Xt−1 + Wt, Wt := ρ∗Rt−1 + (1 − ρ2∗)Rt, and Rt ∼ IID N(0, 1). (iii) Model: Yt =
α∗(τ) + W′

tδ∗(τ) + X′tγ∗(τ) + φ∗(τ)Yt−1 + Ut(τ). (iv) The null hypothesis: s1 = s2 = s3 = 0,
and s4 = [0, 0]′ for W(1)

n (B), W(2)
n (B), W(3)

n (B), and W(4)
n (B), respectively. (v) α∗ = 1, φ∗ = 0.25,

θ0∗ = 2, θ1∗ = 3, and ρ∗ = 0.5.

Distributions Tests \ Sample Size 50 200 400 600 800 1,000 2,000

Ut ∼ N(0, 1)

W(1)
n (Φ) 9.80 6.68 5.88 6.08 4.98 4.82 5.40
W(2)
n (Φ) 10.66 6.44 5.74 5.88 5.26 5.44 5.14
W(3)
n (Φ) 15.04 8.24 6.08 6.74 5.38 5.92 5.84
W(4)
n (Φ) 14.90 8.40 6.28 6.96 5.54 5.98 5.76

Ut ∼ t5

W(1)
n (Φ) 11.84 7.56 6.76 6.20 5.40 5.74 4.96
W(2)
n (Φ) 11.90 8.12 6.40 6.44 6.16 5.84 5.54
W(3)
n (Φ) 18.30 8.98 7.40 7.38 6.32 6.26 5.18
W(4)
n (Φ) 18.62 9.64 7.02 7.64 6.28 6.40 5.46

Table 2: EMPIRICAL LEVELS OF W(1)
n (Φ), W(2)

n (Φ), W(3)
n (Φ), AND W(4)

n (Φ) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: Refer to Table 1 for the simulation environments.

Distributions Tests \ Sample Size 50 200 400 600 800 1,000 2,000

Ut ∼ N(0, 1)

W(1)
n (Γ) 8.08 6.64 5.90 6.00 5.04 4.78 5.42
W(2)
n (Γ) 8.74 6.04 5.58 6.04 5.02 5.50 5.26
W(3)
n (Γ) 13.54 7.84 5.84 6.60 5.22 5.86 5.92
W(4)
n (Γ) 12.70 7.68 6.14 6.82 5.46 5.84 5.60

Ut ∼ t5

W(1)
n (Γ) 10.10 7.28 6.60 6.28 5.48 5.74 4.92
W(2)
n (Γ) 10.36 7.66 6.08 6.32 6.08 5.78 5.52
W(3)
n (Γ) 16.58 8.38 7.06 7.28 6.14 6.30 5.08
W(4)
n (Γ) 15.68 8.84 6.96 7.64 6.14 6.24 5.66

Table 3: EMPIRICAL LEVELS OFW(1)
n (Γ),W(2)

n (Γ),W(3)
n (Γ), ANDW(4)

n (Γ) (LEVEL OF SIGNIFICANCE;
5%). Notes: Refer to Table 1 for the simulation environments.
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Distributions Tests \ Sample Size 50 100 200 300 400 500

Ut ∼ N(0, 1)

W(1)
n (B) 41.75 74.90 97.80 99.85 99.95 100.0
W(2)
n (B) 42.50 75.00 98.00 99.75 99.90 100.0
W(3)
n (B) 37.00 64.15 93.30 98.95 99.85 100.0
W(4)
n (B) 64.20 90.20 99.70 100.0 100.0 100.0

Ut ∼ t5

W(1)
n (B) 42.62 72.68 95.70 99.56 99.98 100.0
W(2)
n (B) 41.36 70.96 95.66 99.70 100.0 100.0
W(3)
n (B) 37.86 59.10 88.70 97.84 99.60 100.0
W(4)
n (B) 63.12 87.96 99.40 100.0 100.0 100.0

Table 4: EMPIRICAL POWERS OF W(1)
n (B), W(2)

n (B), W(3)
n (B), AND W(4)

n (B) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: Refer to Table 1 for the simulation environments.

Distributions Tests \ Sample Size 50 100 200 300 400 500

Ut ∼ N(0, 1)

W(1)
n (Φ) 78.66 96.42 99.98 100.0 100.0 100.0
W(2)
n (Φ) 79.18 96.12 100.0 100.0 100.0 100.0
W(3)
n (Φ) 65.22 85.50 98.52 99.88 100.0 100.0
W(4)
n (Φ) 97.56 99.92 100.0 100.0 100.0 100.0

Ut ∼ t5

W(1)
n (Φ) 74.58 93.92 99.90 100.0 100.0 100.0
W(2)
n (Φ) 73.22 93.72 99.82 99.98 100.0 100.0
W(3)
n (Φ) 61.32 80.34 96.18 99.36 99.90 99.98
W(4)
n (Φ) 94.40 99.68 100.0 100.0 100.0 100.0

Table 5: EMPIRICAL POWERS OF W(1)
n (Φ), W(2)

n (Φ), W(3)
n (Φ), AND W(4)

n (Φ) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: Refer to Table 1 for the simulation environments.

Distributions Tests \ Sample Size 200 400 600 800 1,200 1,600 2,000

Ut ∼ N(0, 1)

W(1)
n (Γ) 15.70 22.10 29.82 37.54 49.78 62.20 72.94
W(2)
n (Γ) 15.12 21.80 29.72 36.28 49.96 61.80 71.04
W(3)
n (Γ) 13.68 16.64 19.60 24.84 32.80 41.86 50.22
W(4)
n (Γ) 24.22 36.48 49.72 61.30 77.96 89.12 94.84

Ut ∼ t5

W(1)
n (Γ) 14.48 19.56 26.96 33.38 43.38 56.16 64.40
W(2)
n (Γ) 14.62 20.36 26.28 32.42 44.76 56.16 64.30
W(3)
n (Γ) 13.76 15.14 18.32 22.02 27.78 36.12 43.12
W(4)
n (Γ) 22.36 31.68 42.72 53.20 68.62 81.86 88.52

Table 6: EMPIRICAL POWERS OF W(1)
n (Γ), W(2)

n (Γ), W(3)
n (Γ), AND W(4)

n (Γ) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: Refer to Table 1 for the simulation environments.
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W̃(1)
n (B)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 13.60 7.68 6.68 5.68 6.26 5.92 5.28
0.10 13.46 7.66 7.10 6.48 5.90 5.74 5.12
0.20 12.98 7.70 6.76 5.74 5.78 5.92 5.28
0.30 14.32 7.52 7.32 6.60 6.22 5.80 5.40
0.40 13.08 8.28 7.24 6.00 6.48 6.06 5.90

W̃(2)
n (B)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 13.84 7.16 6.44 5.44 6.06 5.44 5.92
0.10 13.48 8.80 7.04 6.30 5.96 5.34 4.72
0.20 12.32 7.88 6.54 6.24 5.92 5.82 5.20
0.30 13.64 7.48 7.04 6.40 5.32 5.62 5.46
0.40 12.14 6.98 6.64 6.74 5.18 5.80 5.58

W̃(3)
n (B)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 21.44 9.00 7.56 6.34 6.92 6.12 5.62
0.10 20.38 9.36 8.32 7.18 6.58 6.60 4.98
0.20 19.96 9.90 7.52 6.68 5.88 6.76 5.22
0.30 21.50 9.86 8.28 7.24 6.24 6.60 5.80
0.40 20.36 10.04 8.52 7.44 6.82 6.52 6.58

W̃(4)
n (B)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 21.64 9.42 7.68 6.10 7.10 6.00 5.98
0.10 20.66 10.00 7.86 7.20 6.36 6.28 5.32
0.20 20.06 9.80 7.28 6.80 6.64 6.74 4.96
0.30 21.84 9.36 8.66 7.24 6.56 6.24 5.28
0.40 19.60 9.84 7.92 7.42 6.54 6.26 6.00

Table 7: EMPIRICAL LEVELS OF W̃(1)
n (B), W̃(2)

n (B), W̃(3)
n (B), AND W̃(4)

n (B) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: (i) Number of iterations: 5,000. (ii) DGP: Yt = α∗+φ∗Yt−1+θ0∗Xt+θ1∗Xt−1+Ut,
Xt := Xt−1 + Wt, Ut := σ∗R

(1)
t−1 + (1 − σ2∗)R

(1)
t , Wt := ρ∗R

(2)
t−1 + (1 − ρ2∗)R

(2)
t , and (R

(1)
t , R

(2)
t )′ ∼

IID N(0, I2) with α∗ = 1, φ∗ = 0.25, θ0∗ = 2, θ1∗ = 3, and ρ∗ = 0.5. (iii) Model: Yt = α∗(τ) +∑q−1
j=0 W′

t−jδj∗(τ) + X′tγ∗(τ) +
∑p

j=1 φj∗(τ)Yt−j + Ut(τ). (iv) The null hypothesis: s1 = s2 = s3 = 0,

and s4 = [0, 0]′ for W̃(1)
n (B), W̃(2)

n (B), W̃(3)
n (B), and W̃(4)

n (B), respectively. (v) BIC is applied to deter-
mine the QARDL orders p and q.
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W̃(1)
n (Φ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 12.58 7.48 6.70 5.54 5.42 5.54 5.42
0.10 12.66 8.14 6.84 6.22 5.78 5.68 5.32
0.20 12.00 7.26 6.74 6.32 5.50 5.26 5.14
0.30 10.88 7.32 6.62 6.24 5.60 4.68 5.06
0.40 10.00 7.04 6.22 5.94 6.38 5.74 5.34

W̃(2)
n (Φ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 13.66 7.56 6.20 5.78 5.46 6.22 6.36
0.10 11.42 7.62 6.74 6.06 5.74 5.42 5.08
0.20 12.00 7.66 6.00 5.92 6.10 5.50 4.98
0.30 11.20 7.20 6.84 6.12 5.62 5.78 4.86
0.40 10.38 7.08 6.32 5.68 6.08 5.60 5.18

W̃(3)
n (Φ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 20.38 9.46 7.32 6.46 6.02 6.38 6.32
0.10 19.68 10.24 7.18 7.00 6.30 6.20 5.04
0.20 19.46 9.56 7.16 6.44 6.26 6.30 4.94
0.30 16.40 8.78 7.08 7.26 6.42 5.44 5.28
0.40 16.90 8.94 7.14 6.34 6.48 6.14 6.02

W̃(4)
n (Φ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 20.78 9.20 7.58 5.96 6.06 6.20 6.44
0.10 19.16 9.72 7.42 6.64 6.38 5.70 5.32
0.20 18.78 9.40 7.24 6.84 5.90 5.76 4.92
0.30 16.68 8.84 7.32 7.06 6.14 5.42 5.44
0.40 15.72 8.96 7.20 6.36 6.82 6.06 5.60

Table 8: EMPIRICAL LEVELS OF W̃(1)
n (Φ), W̃(2)

n (Φ), W̃(3)
n (Φ), AND W̃(4)

n (Φ) (LEVEL OF SIGNIFI-
CANCE: 5%). Notes: Refer to Table 7 for the simulation environments.
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W̃(1)
n (Γ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 12.26 7.32 6.70 5.44 5.42 5.66 5.44
0.10 11.78 8.02 6.70 6.16 5.82 5.60 5.26
0.20 11.46 7.04 6.74 6.38 5.50 5.20 5.18
0.30 10.36 7.18 6.58 6.10 5.48 4.68 5.10
0.40 9.74 6.68 6.10 5.92 6.46 5.68 5.32

W̃(2)
n (Γ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 13.06 7.36 6.14 5.78 5.42 6.26 6.36
0.10 11.00 7.40 6.78 6.08 5.82 5.44 5.10
0.20 11.52 7.48 6.00 5.98 6.06 5.58 5.04
0.30 10.62 7.14 6.78 6.12 5.56 5.74 4.86
0.40 9.90 7.04 6.30 5.70 6.04 5.56 5.18

W̃(3)
n (Γ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 19.66 9.22 7.32 6.32 6.08 6.40 6.42
0.10 19.28 10.16 7.12 6.96 6.30 6.14 5.04
0.20 18.94 9.56 7.04 6.42 6.24 6.18 4.90
0.30 15.74 8.58 7.02 7.08 6.32 5.48 5.34
0.40 16.36 8.88 7.24 6.32 6.42 6.26 6.02

W̃(4)
n (Γ)

σ∗\ Sample Size 50 200 400 600 800 1,000 2,000
0.00 20.18 9.12 7.56 5.98 6.02 6.10 6.44
0.10 18.42 9.58 7.24 6.68 6.22 5.54 5.34
0.20 18.16 9.08 7.12 6.72 5.84 5.80 4.82
0.30 15.42 8.76 7.10 6.94 6.08 5.38 5.40
0.40 14.60 8.88 7.00 6.34 6.68 6.02 5.42

Table 9: EMPIRICAL LEVELS OF W̃(1)
n (Γ), W̃(2)

n (Γ), W̃(3)
n (Γ), AND W̃(4)

n (Γ) (LEVEL OF SIGNIFICANCE:
5%). Notes: Refer to Table 7 for the simulation environments.
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Empirical Level
Tests σ∗ \ Sample Size 50 200 400 600 800 1,000

Wn(β)

0.00 13.36 6.76 5.86 5.00 5.54 5.56
0.10 15.80 7.36 6.80 6.52 6.24 5.70
0.20 16.18 7.48 6.12 4.92 5.00 5.02
0.30 17.04 7.36 5.10 5.10 5.62 5.18
0.40 18.02 7.64 6.08 6.32 6.72 5.92

Wn(β)

0.00 17.02 7.84 6.52 6.10 5.68 5.28
0.10 19.22 9.96 7.50 7.42 6.96 7.44
0.20 22.04 10.76 9.56 9.24 8.50 8.54
0.30 24.12 12.70 11.30 10.78 10.50 10.36
0.40 26.98 14.60 12.70 11.78 11.30 11.16

Empirical Power
Tests σ∗ \ Sample Size 50 100 200 300 400 500

Wn(β)

0.00 54.22 85.34 99.22 99.94 100.0 100.0
0.10 50.86 83.10 80.84 99.94 100.0 100.0
0.20 49.98 80.84 98.56 99.94 100.0 100.0
0.30 48.30 78.02 97.08 99.82 100.0 100.0
0.40 46.62 74.32 96.78 99.76 100.0 100.0

Wn(β)

0.00 53.12 85.44 99.10 99.96 100.0 100.0
0.10 52.58 85.36 99.04 100.0 100.0 100.0
0.20 55.68 84.60 99.10 99.98 100.0 100.0
0.30 56.60 84.40 99.00 99.96 100.0 100.0
0.40 56.30 85.58 99.18 99.94 100.0 100.0

Table 10: EMPIRICAL REJECTION RATES OF Wn(β) AND Wn(β) (LEVEL OF SIGNIFICANCE: 5%).
Notes: Wn(β) and Wn(β) indicate the Wald test of this paper and the augmented model-based Wald test
in Xiao (2009), respectively. The current simulation environments are identical to those in Table 7 with
the only difference that φ∗ is modified to 0 from 0.25. The empirical level is obtained by testing β(0.5) =
(θ0∗ + θ1∗)/(1− φ∗), and the empirical power is obtained by testing β(0.5) = (θ0∗ + θ1∗)/(1− φ∗) + 0.1.
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(a) OLS Estimation Results
ζ∗ β∗ λ∗ δ∗

-0.04 0.36 0.48 0.01
(0.005) (0.013) (0.039) 0.007

(b) Quantile Estimation Results
Quantile index (τ ) ζ∗(τ) β∗(τ) λ∗(τ) δ∗(τ)

0.05 -0.06 0.27 0.58 0.02
(0.014) (0.030) (0.043) (0.015)

0.10 -0.06 0.33 0.55 0.02
(0.006) (0.020) (0.051) (0.012)

0.20 -0.04 0.37 0.55 0.02
(0.009) (0.050) (0.057) (0.007)

0.30 -0.04 0.40 0.53 0.02
(0.007) (0.027) (0.053) (0.010)

0.40 -0.03 0.36 0.48 0.02
(0.008) (0.041) (0.059) (0.012)

0.50 -0.03 0.35 0.47 0.03
(0.008) (0.043) (0.066) (0.013)

0.60 -0.03 0.38 0.50 0.02
(0.006) (0.023) (0.067) (0.013)

0.70 -0.04 0.36 0.45 0.02
(0.006) (0.022) (0.065) (0.012)

0.80 -0.04 0.39 0.37 0.01
(0.008) (0.024) (0.053) (0.008)

0.90 -0.04 0.39 0.30 -0.00
(0.009) (0.033) (0.063) (0.008)

0.95 -0.04 0.33 0.44 -0.01
(0.008) (0.039) (0.050) (0.009)

Table 11: OLS AND QUANTILE ESTIMATION RESULTS BASED ON THE WHOLE SAMPLE. Notes: (i)
Standard errors are in parentheses, and those for the long-run coefficient are calculated via the delta method.
(ii) OLS estimation results are based on the following model: ∆Dt = α∗+ζ∗Dt−1+γ∗Et−1+λ∗∆Dt−1+
δ∗∆Et + Ut = α∗ + ζ∗ (Dt−1 − β∗Et−1) + λ∗∆Dt−1 + δ∗∆Et + Ut. (iii) Quantile estimation results are
based on the following model: ∆Dt = α∗ (τ)+ζ∗ (τ)Dt−1 +γ∗ (τ)Et−1 +λ∗ (τ) ∆Dt−1 +δ∗ (τ) ∆Et+
Ut (τ) = α∗ (τ) + ζ∗ (τ) (Dt−1 − β∗ (τ)Et−1) + λ∗ (τ) ∆Dt−1 + δ∗ (τ) ∆Et + Ut (τ).
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ECM Parameter (ζ∗(τ)) Long-Run Target Payout Parameter (β∗(τ))

Momentum Parameter (λ∗(τ)) Impact Reaction Parameter (δ∗(τ))

Figure 1: PARAMETER ESTIMATES USING THE WHOLE SAMPLE. These are estimated parameters (the
middle solid line) using all available observations for different quantile levels: 0.05, 0.10, ... 0.95, with 90%
confidence intervals (the outer dotted lines).
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Changes in ζ∗(0.25) Changes in ζ∗(0.50) Changes in ζ∗(0.75)

Changes in β∗(0.25) Changes in β∗(0.50) Changes in β∗(0.75)

Changes in λ∗(0.25) Changes in λ∗(0.50) Changes in λ∗(0.75)

Changes in δ∗(0.25) Changes in δ∗(0.50) Changes in δ∗(0.75)

Figure 2: PARAMETER ESTIMATES ζ∗(τ), β∗(τ), λ∗(τ), AND δ∗(τ) USING THE ROLLING WINDOW

METHOD. These are estimated parameters using the rolling window method, and each window has 320
observations. Three different quantile levels are considered: 0.25, 0.5, 0.75. The horizontal axis indicates
the last date for the corresponding estimation window. For example, the first estimation window uses obser-
vations from 1871Q1 to 1950Q4 so that the first date on the horizontal axis is 1950Q4. The number of the
out-of-sample observations is 239.
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p-values ofW(1)
n (β) Tests p-values ofW(2)

n (β) Tests

p-values ofW(3)
n (β) Tests p-values ofW(4)

n (β) Tests

Figure 3: p-VALUES OF Wn(β) TEST STATISTICS. The figures show the estimated p-values of the
Wald tests, where W(1)

n (β) tests β∗(0.25) = β∗(0.5); W(2)
n (β) tests β∗(0.5) = β∗(0.75); W(3)

n (β) tests
β∗(0.25) = β∗(0.75); andW(4)

n (β) tests β∗(0.25) = β∗(0.5) = β∗(0.75). The horizontal axis indicates the
last date for the corresponding estimation window. The number of the out-of-sample observations is 239.

p-values ofW(1)
n (ζ) Tests p-values ofW(2)

n (ζ) Tests

p-values ofW(3)
n (ζ) Tests p-values ofW(4)

n (ζ) Tests

Figure 4: p-VALUES OF Wn(ζ) TEST STATISTICS. The figures show the estimated p-values of the Wald
tests, whereW(1)

n (ζ) tests ζ∗(0.25) = ζ∗(0.5);W(2)
n (ζ) tests ζ∗(0.5) = ζ∗(0.75);W(3)

n (ζ) tests ζ∗(0.25) =

ζ∗(0.75); andW(4)
n (ζ) tests ζ∗(0.25) = ζ∗(0.5) = ζ∗(0.75). See notes to Figure 3.
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p-values ofW(1)
n (λ) Tests p-values ofW(2)

n (λ) Tests

p-values ofW(3)
n (λ) Tests p-values ofW(4)

n (λ) Tests

Figure 5: p-VALUES OF Wn(λ) TEST STATISTICS. The figures show the estimated p-values of the
Wald tests, where W(1)

n (λ) tests λ∗(0.25) = λ∗(0.5); W(2)
n (λ) tests λ∗(0.5) = λ∗(0.75); W(3)

n (λ) tests
λ∗(0.25) = λ∗(0.75); andW(4)

n (λ) tests λ∗(0.25) = λ∗(0.5) = λ∗(0.75). See notes to Figure 3.

p-values ofW(1)
n (δ) Tests p-values ofW(2)

n (δ) Tests

p-values ofW(3)
n (δ) Tests p-values ofW(4)

n (δ) Tests

Figure 6: p-VALUES OF Wn(δ) TEST STATISTICS. The figures show the estimated p-values of the Wald
tests,W(2)

n (δ) tests δ∗(0.5) = δ∗(0.75);W(3)
n (δ) tests δ∗(0.25) = δ∗(0.75); andW(4)

n (δ) tests δ∗(0.25) =
δ∗(0.5) = δ∗(0.75). See notes to Figure 3.
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