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Abstract
We provide a new characterization of the equality of two positive-definite matrices A and B,

and we use this to propose several new computationally convenient statistical tests for the equal-
ity of two unknown positive-definite matrices. Our primary focus is on testing the information
matrix equality (e.g., White, 1982, 1994). We characterize the asymptotic behavior of our new
trace-determinant information matrix test statistics under the null and the alternative and in-
vestigate their finite-sample performance for a variety of models: linear regression, exponential
duration, probit, and Tobit. The parametric bootstrap suggested by Horowitz (1994) delivers crit-
ical values that provide admirable level behavior, even in samples as small as n = 50. Our new
tests often have better power than the parametric-bootstrap version of the traditional IMT; when
they do not, they nevertheless perform respectably.
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1 Introduction

Testing the equality of two positive-definite matrices, say A and B, has a distinguished history in

multivariate statistics. Wilks (1935) showed that for data drawn from two independent multivariate

normal samples, the likelihood ratio (LR) test for independence is a ratio of the determinants of

the two maximum-likelihood covariance matrix estimators. This finding stimulated investigation of

other determinant-based tests. For example, Pillai and Nagarsenker (1972) and Das Gupta and Giri

(1973) examined the properties of a class of determinant ratio tests for equal covariance matrices.

Other researchers have studied tests based on the trace of two covariance matrix estimators. Roy

(1953), Pillai and Jayachandran (1968), and Nagao (1973, 1974) developed trace-based tests and

compared their performance to that of determinant-based tests.

Mauchly (1940) considered a related but weaker hypothesis, sphericity, i.e., that A= dB for some

unknown d > 0. For normal data, the LR statistic is a function of both the estimated traces and

determinants.

Testing the equality of two positive-definite matrices also plays a central role in model specifi-

cation analysis. Specifically, when a probability model used for maximum-likelihood estimation is

correctly specified, the information matrix equality A=B holds, where A is the opposite of the aver-

age log-likelihood Hessian and B is the average of the outer product of the log-likelihood scores, both

evaluated at the true parameter (see, e.g., Fisher, 1922, 1925). White (1982) proposed an information

matrix test (IMT) for model misspecification based on a comparison of estimates of the elements of

A and B. The omnibus or non-directional IMT compares all the non-redundant elements of A and B,

yielding an asymptotic chi-squared test statistic. Directional specification tests (e.g., for conditional

heteroskedasticity, skewness, or kurtosis) are obtained by comparing selected elements of A and B,

also yielding asymptotic chi-squared tests.

The intuitive appeal and generality of this proposal led to an extensive body of work studying

the properties of the IMT, including papers of Chesher (1983), Lancaster (1984), Orme (1988, 1990),

Taylor (1987), Hall (1987), Chesher and Spady (1991), Horowitz (1994), and Dhaene (2004), among

others. One early finding was negative: Taylor (1987) and Orme (1990), among others, showed that

previously proposed IMTs typically suffered from extreme level distortions, so much so as to render

them impractical for empirical application. Chesher and Spady (1991) showed that these level distor-

tions can be resolved by employing higher-order expansions for the IMT. As Horowitz (1994) pointed

out, however, this approach is extremely cumbersome because it involves higher-order cumulants,

making it impractical for all but the simplest models. Instead, Horowitz proposed use of the para-
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metric bootstrap. This method is computationally straightforward, and, as Horowitz’s Monte Carlo

experiments show, parametric bootstrap-based IMTs exhibit outstanding level performance, even for

modest sample sizes and in cases where the test statistic is not pivotal. Furthermore, it has power

properties similar to those exhibited by level distortion-adjusted IMTs. The parametric bootstrap

has been the preferred method for IMT implementation since its introduction. Nevertheless, it is

unclear whether the parametric bootstrap still works well for other non-pivotal tests not used by

Horowitz in his Monte Carlo experiments.

Until recently, little or no attention has been paid to the possibility of constructing IMTs based

on the trace or determinant of A and B. To the best of our knowledge, Golden, Henley, White, and

Kashner (2013) were the first to systematically investigate this possibility by proposing IMTs based

on functions of the log eigenspectra of A and B, including tests based on the trace and determinant.

A major contribution of the present paper is to extend this line of inquiry by proposing tests of A=B

based on trace and determinant properties that characterize the equality of two positive-definite

matrices. This characterization, namely that A = B if and only if det(BA−1)1/k = k−1tr(BA−1) = 1,

or det(AB−1)1/k = k−1tr(AB−1) = 1, is apparently new; we have not been able to find its applications

elsewhere. It is remarkably simple, and it is striking in that it enables an omnibus1 IMT based on

a comparison of only two quantities, regardless of the matrix dimension. This result also applies to

the classical problem of testing the equality of two covariance matrices, but without requiring data

to be generated by the multivariate normal distribution.

The resulting computational simplicity of these new trace-determinant tests is by itself appeal-

ing. As we further show, implementation using the parametric bootstrap yields tests with outstand-

ing level performance, which implies that the parametric bootstraps show excellent performance

even for our non-pivotal test statistics.

To date, the IMT literature has focused mostly on the level properties of the IMT. Here, we fur-

ther contribute to the extant literature by studying the power properties of standard IMTs, other

related tests, and our new trace-determinant IMTs by using the parametric bootstrap. Specifically,

we examine the power of the various tests to detect misspecification in four models: linear regres-

sion, exponential duration, probit, and Tobit. We find that our new trace-determinant tests often

outperform previous tests. When they do not, they nevertheless perform respectably. In addition,

we examine the local power properties of our new tests and associate them with the standard LR

statistics testing for covariance equality and sphericity under the multivariate normal distribution

1Directional versions can be constructed by selecting suitable submatrices of A and B.

2



condition.

The plan of the paper is as follows. In Section 2, we state the lemma characterizing the equality

of two positive-definite matrices, discuss its implications for information matrix testing, and pro-

pose three related IMTs. In Section 3, we study the asymptotic behavior of our test statistics under

the null, alternative, and local alternative hypotheses. We also examine how our test statistics are

interrelated with the LR test under the classical multivariate normal distribution condition and dis-

cuss implementation considerations; following Horowitz (1994), we recommend use of the parametric

bootstrap. In Section 4, we investigate by Monte Carlo experiments the finite-sample level, power,

and local power of our new trace-determinant IMTs, the Chesher (1983) and Lancaster (1984) IMTs,

and some related tests. Section 5 contains a summary and concluding remarks. Mathematical proofs

and additional assumptions are gathered in the Mathematical Appendix.

Before proceeding, we present the following notational details. A function will always be denoted

using an empty argument: a function mapping f from X to Y will be denoted by f (·) or f : X 7→Y .

When f alone is used, this denotes a variable in a Euclidean space. Also, for notational simplicity, we

denote f ′(x)|x=x∗ by f ′(x∗) and let ∂x f (x) and ∂2
x,y f (x, y) denote (∂/∂x) f (x) and (∂2/∂x∂y) f (x, y), respec-

tively. We use the following simple facts without reference: tr[AB]= tr[BA], det[AB]= det[A]det[B],

and det[A−1]= 1/det[A].

2 A Basic Lemma and Its Testing Implications

Our tests for the equality of two positive-definite matrices are based on the following simple but

striking lemma.

Lemma 1. Let A and B be real positive-definite k×k matrices with k ∈N. Then A=B if and only if

det[A−1/2BA−1/2]1/k = 1 and tr[A−1/2BA−1/2]/k = 1,

where A−1/2 is the real positive-definite k×k matrix square root of A−1. ä

Thus, A = B whenever the geometric and arithmetic means of the eigenvalues of A−1/2BA−1/2 both

equal 1. We state the result in terms of A−1/2BA−1/2 to make it obvious that this matrix has real

positive eigenvalues. Equivalently, with D := BA−1, A = B if and only if det(D)1/k = k−1tr(D) = 1. To

the best of our knowledge, one of the exercise questions in Magnus and Neudecker (1999) is closest

to ours; this states that for any positive semi-definite matrix M, det[M]1/k = tr[M]/k if and only if M
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is proportional to I. As another characterization, Strawderman (1994) also show that A = B if and

only if k−1tr(D)= 1 and k−1tr(D2)= 1.

No IMT exists using Lemma 1, although similar motivations using eigenvalues exist. Bera (1986)

and Bera and Hall (1991) regarded eigenvalues as key elements for testing two equal positive-definite

matrices. They focused on the eigenvalues of A−B and used their distances to test the equality of A

and B. Similarly, many tests using the eigenvalues can be developed, although developing a general

theory on their applications is not straightforward, mainly due to their non-differentiability.

To apply Lemma 1, we construct statistics testing any two of the following hypotheses:

tr[D]/k = 1 (1)

det[D]1/k = 1 (2)

tr[D]/k = det[D]1/k. (3)

Any two of these imply the other. Thus, to test

H0 : A=B versus H1 : A 6=B,

we consider three equivalent hypotheses, each of which yields a corresponding test statistic:

H
(1)
0 : tr[D]/k = 1 and det[D]1/k = 1 vs. H

(1)
1 : tr[D]/k 6= 1 or det[D]1/k 6= 1;

H
(2)
0 : tr[D]/k = 1 and tr[D]/k = det[D]1/k vs. H

(2)
1 : tr[D]/k 6= 1 or tr[D]/k 6= det[D]1/k;

H
(3)
0 : det[D]1/k = 1 and tr[D]/k = det[D]1/k vs. H

(3)
1 : tr[D]/k 6= 1 or tr[D]/k 6= det[D]1/k.

Clearly, H(1)
0 tests (1) and (2), H(2)

0 tests (1) and (3), and H(3)
0 tests (2) and (3).

To define test statistics corresponding to H(1)
0 − H

(3)
0 , let An and Bn be consistent estimators for A

and B, and write Dn :=BnA−1
n . Each test statistic combines two of the following:

Tn := tr[Dn]/k−1; Dn := det[Dn]1/k −1; and Sn := tr[Dn]/k−det[Dn]1/k.

When A = B, the consistency of (An,Bn) implies that each of these should be negligible in prob-

ability. For the estimators (An,Bn) studied here, it turns out that A = B implies Tn = OP(n−1/2),

Dn =OP(n−1/2), and Sn =OP(n−1), as we show in Lemma 3 below.

The given hypotheses and statistics are essential in testing H0 against H1 when the eigenvalues

of BA−1 are exploited. We do not need to consider any other transformation of the eigenvalues. As
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pointed out by Bera (1986) and Bera and Hall (1991), the eigenvalues of A−B can be transformed into

many statistics in various ways. Instead, our statistics simply focus on the trace and determinant of

BA−1 without introducing any exceptional case for A=B. In addition, our statistics do not estimate

eigenvectors. The level and power properties of their tests critically depend upon the way to estimate

the eigenvectors, as in Bera and Hall (1991). Strawderman (1994) also considers another testing

principle using his characterization. Comparing these test statistics with ours is left as a future

research topic.

Consider the following statistics, corresponding to H(1)
0 − H

(3)
0 :

B(1)
n := nk2

(
1
2

T2
n +

1
2

D2
n

)
; B(2)

n := 2nk
(

1
2

T2
n +Sn

)
; and B(3)

n := 2nk
(

1
2

D2
n +Sn

)
.

Under H0, each of these is bounded but not negligible in probability. Note that Tn and Dn are

squared, while Sn is not. This is due to their different orders of convergence. The coefficient 1/2

multiplying T2
n and D2

n ensures a straightforward asymptotic null distribution, and Sn ≥ 0 because

the arithmetic mean is always greater than or equal to the geometric mean.

To apply these methods to information matrix testing, we can let θ̂n be the (quasi-) maximum-

likelihood ((Q)ML) estimator (White, 1982) consistent for θ∗, an interior element of Θ ⊂ Rk, such

that
p

n(θ̂n −θ∗) A∼ N
[
0,A∗−1B∗A∗−1]

.

Here, A∗ is the negative Hessian matrix of the (quasi-) likelihood function at θ∗, and B∗ is the asymp-

totic covariance matrix of the (quasi-) log-likelihood scores. Correct specification implies the infor-

mation matrix equality, A∗ =B∗, under mild regularity conditions, justifying the classical maximum-

likelihood covariance matrix estimators. Thus, if we let A(·) and B(·) be continuous functions of θ (i.e.,

A :Θ 7→Rk×k and B :Θ 7→Rk×k), we can test A∗ :=A(θ∗)= B∗ := B(θ∗) using estimators Ân :=An(θ̂n)

and B̂n :=Bn(θ̂n), where An(·) and Bn(·) are sample analogs of A(·) and B(·). We also let D̂n := B̂nÂ−1
n

and define

T̂n := tr[D̂n]/k−1; D̂n := det[D̂n]1/k −1; and Ŝn := tr[D̂n]/k−det[D̂n]1/k,

from which we construct

B̂(1)
n := nk2

(
1
2

T̂2
n +

1
2

D̂2
n

)
; B̂(2)

n := 2nk
(

1
2

T̂2
n + Ŝn

)
; and B̂(3)

n := 2nk
(

1
2

D̂2
n + Ŝn

)
.
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As it turns out, estimating θ∗ using θ̂n impacts the asymptotic null behavior of our test statistics,

introducing certain additive terms.

Furthermore, we notice that the dimension condition can be relaxed to handle general cases.

That is, as we detail below, our constructions are valid even when Θ⊂ R` with ` ∈N. We, therefore,

suppose this from now on and impose `= k only when testing the information matrix equality.

We also consider the simpler but important special case of testing the equality of the population

covariance matrices of a(Yt,Xt) and b(Yt,Xt), where a(Yt,Xt) and b(Yt,Xt) are possibly nonlinear

transformations of (Yt,Xt). For this, we compare two sample covariance matrices Ãn and B̃n, defined

as

Ãn := Σ̂a,n − µ̂a,nµ̂
′
a,n, and B̃n := Σ̂b,n − µ̂b,nµ̂

′
b,n,

where, for the given vector-valued functions a(·, ·) and b(·, ·),

µ̂a,n := n−1
n∑

t=1
a(Yt,Xt), Σ̂a,n := n−1

n∑
t=1

a(Yt,Xt)a(Yt,Xt)′,

µ̂b,n := n−1
n∑

t=1
b(Yt,Xt), and Σ̂b,n := n−1

n∑
t=1

b(Yt,Xt)b(Yt,Xt)′.

Here, (µ̂a,n, Σ̂a,n, µ̂b,n, Σ̂b,n) is consistent for (µa,∗,Σa,∗,µb,∗,Σb,∗) := (E[a(Yt,Xt)],E[a(Yt,Xt)a(Yt,Xt)′],

E[b(Yt,Xt)],E[b(Yt,Xt)b(Yt,Xt)′]), and the other regularity conditions are provided in the Appendix

for our test statistics defined in Theorem 2 below.

3 Test Statistic Asymptotic Behavior

3.1 Asymptotic Null Behavior

To examine the asymptotic null behavior of T̂n, D̂n, and Ŝn ≡ T̂n − D̂n, we impose the following

regularity conditions:

Assumption 1. (i) (Ω,F ,P) is a complete probability space;

(ii) for ` ∈N, Θ⊂R` is a compact convex set with non-empty interior; and

(iii) there is a sequence of measurable mappings {θ̂n :Ω 7→Θ} consistent for a unique θ∗ ∈ int(Θ).

ä

Assumption 2. (i) For k ∈N, the symmetric matrix mapping A :Θ 7→ Rk×k is in C (2)(Θ) and is such

that A∗ :=A(θ∗) is positive definite; and
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(ii) the symmetric matrix mapping B : Θ 7→ Rk×k is in C (2)(Θ) and is such that B∗ := B(θ∗) is

positive definite. ä

Assumption 3. (i) There are symmetric matrix estimators An(·) and Bn(·) consistent for A(·) and B(·),
respectively, uniformly on Θ; and

(ii)
p

n[(θ̂n −θ∗)′,vech[An −A∗]′,vech[Bn −B∗]′]′ A∼ N(0,Ω∗), where An := An(θ∗), Bn := Bn(θ∗),

and Ω∗ is a (k2 +k+`)× (k2 +k+`) positive semi-definite matrix. ä

Here, vech(·) is used in Assumption 3(ii) to accommodate the symmetry of An, A∗, Bn, and B∗. An

appropriate central limit theorem (CLT) typically ensures Assumption 3(ii). Also, An and Bn used for

defining Tn, Dn, and Sn correspond to An(θ∗) and Bn(θ∗), respectively. That is, these are estimators

with known parameters. Similarly, we have Dn := Bn(θ∗)An(θ∗)−1. Finally, ` = k when testing the

information matrix equality, and the first k×k block of Ω∗ is equal to A−1∗ B∗A−1∗ .

To simplify notation, we let Mn :=A−1∗ (Bn−An) and S j,∗ :=A−1∗ (∂ jB∗−∂ jA∗) for j = 1, . . . ,`, where

∂ jB∗ := (∂/∂θ j)B∗ and ∂ jA∗ := (∂/∂θ j)A∗. We also write

Kn :=Mn +
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗.

The k× k statistic Kn plays the central role in determining the asymptotic distributions of all our

test statistics. Given Assumption 3(ii), Mn = OP(n−1/2), (θ̂n −θ∗) = OP(n−1/2), and Kn = OP(n−1/2).

Furthermore, Assumption 3(ii) implies that Kn is asymptotically a k× k matrix of normal random

variables. We omit deriving the asymptotic covariance matrix of Kn. This is mainly because we will

implement our testing by using the parametric bootstrap, which renders estimation of the covariance

matrix unnecessary.

We obtain asymptotic approximations by applying Taylor expansions to T̂n and D̂n. The following

lemma relies on first-order expansions.

Lemma 2. Given Assumptions 1, 2, 3, and H0,

(i) T̂n = tr[Kn]/k+ oP(n−1/2);

(ii) D̂n = tr[Kn]/k+ oP(n−1/2); and

(iii) Ŝn ≡ T̂n − D̂n = oP(n−1/2). ä

Given Assumption 3, both T̂n and D̂n are OP(n−1/2) under H0, and their asymptotic null distributions

are normal. Asymptotic null distributions for T̂2
n and D̂2

n follow straightforwardly. In contrast, a

first-order approximation is not sufficient to obtain an asymptotic distribution for Ŝn, regardless of

whether there are estimated parameters, as Ŝn = oP(n−1/2).

7



To fully specify the null behavior of our statistics, it turns out that second-order expansions for

tr[D̂n] and det[D̂n] are required. For these, we write Wn := B−1∗ (Bn −B∗), Un := A−1∗ (An −A∗), and,

for i, j = 1, . . . ,`, G j,n := B−1∗ ∂ j(Bn −B∗) and H j,n := A−1∗ ∂ j(An −A∗). We also write ∂2
ji := ∂2/∂θ j∂θi,

and we impose the following conditions.

Assumption 4. (i) For j = 1, . . . ,`, ∂ jAn(·) and ∂ jBn(·) are consistent for ∂ jA(·) and ∂ jB(·), uniformly

on Θ; and

(ii) for i, j = 1, . . . ,`, ∂2
jiAn(·) and ∂2

jiBn(·) are consistent for ∂2
jiA(·) and ∂2

jiB(·), uniformly on Θ. ä

Assumption 5. For j = 1, . . . ,`, H j,n =OP(n−1/2) and G j,n =OP(n−1/2). ä

Assumptions 4 and 5 easily hold for many interesting models such as those considered in Section 4.

The following lemma provides the required second-order asymptotic approximations. For this,

we let J j,n := G j,n −H j,n, we let ∇2
θ

denote the Hessian operator with respect to θ, and we define

D∗ :=B∗A−1∗ .

Lemma 3. Given Assumptions 1, 2, 3, 4, 5, and H0,

(i) T̂n = T̂?
n + oP(n−1), where T̂?

n := T̂?
n,1 + T̂?

n,2, T̂?
n,1 := 1

k tr[Kn], and

T̂?
n,2 :=−1

k
tr[KnUn]+ 1

k
[tr[J j,n −MnA−1

∗ ∂ jA∗]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θtr[D∗](θ̂n −θ∗)

with T̂?
n,1 =OP(n−1/2) and T̂?

n,2 =OP(n−1);

(ii) D̂n = D̂?
n + oP(n−1), where D̂?

n := D̂?
n,1 + D̂?

n,2, D̂?
n,1 := 1

k tr[Kn], and

D̂?
n,2 := 1

2k

(
1
k
−1

)
tr[Kn]2 + 1

2k
(tr[Mn]2 + tr[U2

n]− tr[W2
n])+ 1

k
[tr[Mn]tr[S j,∗]]′(θ̂n −θ∗)

+ 1
k

[tr[J j,n +UnA−1
∗ ∂ jA∗−WnA−1

∗ ∂ jB∗]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θ det[D∗](θ̂n −θ∗)

with D̂?
n,1 =OP(n−1/2) and D̂?

n,2 =OP(n−1);

(iii) Ŝn = Ŝ?n + oP(n−1), where

Ŝ?n :=− 1
2k

(
1
k
−1

)
tr[Kn]2 − 1

2k
(tr[Mn]2 − tr[M2

n])+ 1
k

tr[Mn
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]

− 1
k

tr[Mn]tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]+ 1
2k

tr[(
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗)2]− 1
2k

tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]2

with Ŝ?n =OP(n−1). ä
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Here, we let [Vj] say, denote a vector V with j-th row element Vj.

These results suffice to obtain asymptotic distributions for our test statistics. First, the asymp-

totic null distribution of B̂(1)
n is easily obtained from Lemma 2(i, ii), because

B̂(1)
n := nk2

(
1
2

T̂2
n +

1
2

D̂2
n

)
= n(tr[Kn])2 + oP(1).

Given that
p

ntr[Kn] is asymptotically normal by Assumption 3, the asymptotic null distribution of

B̂(1)
n is the square of a normal random variable. Second, we can combine Lemma 2(i) and Lemma

3(iii) to obtain the asymptotic null distribution of B̂(2)
n . This follows from

B̂(2)
n = n

{
tr[Kn]2 − (tr[Mn]2 − tr[M2

n])+2tr[Mn
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]+ tr[(
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗)2]

− 2tr[Mn]tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]− tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]2

}
+ oP(1)

= n

{
tr[(

∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗)2]+2tr[(
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗)Mn]+ tr[M2
n]

}
+ oP(1)= ntr[K2

n]+ oP(1).

The asymptotic null approximation of B̂(3)
n is obtained in the same way. The definition of B̂(3)

n and

the approximation for D̂n give B̂(3)
n = ntr[K2

n]+ oP(1), so that B̂(2)
n −B̂(3)

n = oP(1) under H0.

We summarize these results as follows.

Theorem 1. Given Assumptions 1, 2, 3, 4, 5, and H0:

(i) B̂(1)
n = ntr[Kn]2 + oP(1);

(ii) B̂(2)
n = ntr[K2

n]+ oP(1); and

(iii) B̂(3)
n = ntr[K2

n]+ oP(1). ä

For the case in which Ãn and B̃n are sample covariance matrices, replacing A∗ and B∗ to provide

M̃n, we have a simplified result that does not involve θ̂n: we have

Theorem 2. Given Assumptions A 1, A 2, A 3, and H0,

(i) B̃(1)
n = ntr[M̃n]2 + oP(1);

(ii) B̃(2)
n = ntr[M̃2

n]+ oP(1); and

(iii) B̃(3)
n = ntr[M̃2

n]+ oP(1), where

B̃(1)
n := nk2

(
1
2

T̃2
n +

1
2

D̃2
n

)
; B̃(2)

n := 2nk
(

1
2

T̃2
n + S̃n

)
; B̃(3)

n := 2nk
(

1
2

D̃2
n + S̃n

)
;

and M̃n :=A−1∗ (B̃n − Ãn) with T̃n := tr[D̃n]/k−1; D̃n := det[D̃n]1/k −1; S̃n := tr[D̃n]/k−det[D̃n]1/k; and
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D̃n := B̃nÃ−1
n . ä

To obtain this result, we write

p
n(Ãn −A∗)=p

n(Σ̂a,n −Σa,∗)−p
n(µ̂a,n −µa,∗)µ̂′

a,n −
p

nµa,∗(µ̂a,n −µa,∗)′ and

p
n(B̃n −B∗)=p

n(Σ̂b,n −Σb,∗)−p
n(µ̂b,n −µb,∗)µ̂′

b,n −
p

nµb,∗(µ̂b,n −µb,∗)′,

and require that the multivariate CLT applies to
p

n[vech[(Σ̂a,n −Σa,∗)]′,vech[(Σ̂b,n −Σb,∗)]′, (µ̂a,n −
µa,∗)′, (µ̂b,n −µb,∗)′]′. The difference between Theorems 1 and 2 is that, due to the structure of Ãn

and B̃n, θ̂n no longer plays an explicit role. Consequently, M̃n replaces Kn. We state the referenced

regularity conditions in the Appendix. Because the proof of Theorem 2 closely parallels that of

Theorem 1, we omit this from the Appendix.

3.2 Asymptotic Behavior under the Alternative

We next examine the asymptotic behavior of T̂n, D̂n, and Ŝn under the alternative. To simplify

notation, for j = 1, . . . ,`, we let Pn := Wn −Un and R j,∗ := B−1∗ ∂ jB∗ −A−1∗ ∂ jA∗; these definitions

correspond to Mn and S j,∗. Under H0, Pn =Mn and R j,∗ =S j,∗. We also let

Ln :=Pn +
∑̀
j=1

(θ̂ j,n −θ j,∗)R j,∗,

so that Ln =Kn under H0. In particular, Pn =OP(n−1/2) and Ln =OP(n−1/2) by Assumptions 3 and 5,

even under the alternative. For the next result, we let T∗ := k−1tr[D∗]−1 and D∗ := det[D∗]1/k −1.

Recall that D∗ := B∗A−1∗ . We also note that T∗ ≥ D∗ from the property that the arithmetic mean is

always greater than or equal to the geometric mean.

Lemma 4. Given Assumptions 1, 2, 3, 4, and 5, the following hold:

(i) T̂n =T∗+ 1
k

tr[LnA−1
∗ B∗]− 1

k
tr[LnUnA−1

∗ B∗]+ 1
k

[tr[(J j,n −PnA−1
∗ ∂ jA∗)A−1

∗ B∗]]′(θ̂n −θ∗) (4)

+ 1
2k

(θ̂n −θ∗)′∇2
θtr[D∗](θ̂n −θ∗)+ oP(n−1); and

10



(ii)det[D∗]−
1
k D̂n = det[D∗]−

1
k D∗+ 1

k
tr[Ln]+ 1

2k

(
1
k
−1

)
tr[Ln]2 + 1

k
tr[Pn][tr[R j,∗]]′(θ̂n −θ∗) (5)

+ 1
2k

(tr[Pn]2 + tr[U2
n]− tr[W2

n])+ 1
k

[tr[J j,n +UnA−1
∗ ∂ jA∗−WnB−1

∗ ∂ jB∗]]′(θ̂n −θ∗)

+ 1
2k

det[D∗]−1(θ̂n −θ∗)′∇2
θ det[D∗](θ̂n −θ∗)+ oP(n−1).

Lemma 3 follows easily from Lemma 4 given H0. Under H0, T∗ = D∗ = 0, Ln =Kn, Pn =Mn, A−1∗ B∗ =
I, det[D∗] = 1, and R j,∗ = S j,∗ for each j = 1,2, . . . ,`. Using these, we obtain Lemma 3 from Lemma

4. We also note that only the second terms on the right of Eqs. (4) and (5) are OP(n−1/2); the rest

are OP(n−1). Thus, asymptotic behavior under the alternative is mainly determined by the first two

terms in each case. It follows that the behavior of Ŝn := T̂n− D̂n is similarly determined. We have

Corollary 1. Given Assumptions 1, 2, 3, 4, and 5,

(i) if for all d > 0, B∗ 6= dA∗, Ŝn = (T∗−D∗)+ 1
k tr[(A−1∗ B∗−det[D∗]

1
k I)Ln]+ oP(n−1/2); and

(ii) if for some d∗ > 0, B∗ = d∗A∗, Ŝn =− d∗
2k2 tr[Ln]2 + d∗

2k tr[L2
n]+ oP(n−1). ä

Although Corollary 1 follows easily from Lemma 4, we provide its proof in the Appendix to make the

role of the second-order derivatives clear.

Indeed, tr[(A−1∗ B∗−det[D∗]
1
k I)Ln] = 0 if and only if B∗ is proportional to A∗. Also, if B∗ = d∗A∗,

then T∗ = D∗ = d∗−1. We use this fact in obtaining Corollary 1(ii), which implies that Ŝn =OP(n−1).

This suggests that the analysis of the statistics under the alternative must separately treat the

cases where B∗ is proportional to A∗ and where B∗ is not proportional to A∗. In terms of correct

model specification, the literature typically assumes that for some d∗, B∗ = d∗A∗ by assuming that

conditional disturbances obey conditional homoskedasticity.

The power properties of our test statistics now follow easily. We have

B̂(1)
n = nk2

2
(T2

∗+D2
∗)+nk(tr[(T∗A−1

∗ B∗+D∗det[D∗]
1
k I)Ln])+OP(1) (6)

from the definition of B̂(1)
n and Lemma 4. The first term is O(n), and the second is OP(

p
n). Thus, for

any cn = o(n), limn→∞P(B̂(1)
n ≥ cn)= 1.

As seen above, the behavior of B̂(2)
n and B̂(3)

n depends on whether B∗ is proportional to A∗. Specif-

ically, we cannot expect power from Ŝn if B∗ is proportional to A∗. When B∗ is not proportional to

A∗, we have

B̂(2)
n = nk(T2

∗+2T∗−2D∗)+2ntr[[(T∗+1)A−1
∗ B∗−det[D∗]

1
k I]Ln]+OP(1); and (7)
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B̂(3)
n = nk(D2

∗−2D∗+2T∗)+2n{(D∗+1)(D∗−1)tr[Ln]+ tr[A−1
∗ B∗Ln]}+OP(1) (8)

by the definitions of B̂(2)
n and B̂(3)

n , Lemma 4, and Corollary 1(i). The first term of B̂(2)
n is O(n) if

T2∗+2T∗−2D∗ 6= 0, and that of B̂(3)
n is O(n) if D2∗−2D∗+2T∗ 6= 0. The second terms are OP(

p
n).

Also, if T∗ 6= D∗, T∗ > D∗ from the inequality of the arithmetic and geometric means. Using this,

we can obtain the power properties of B̂(2)
n and B̂(3)

n as follows: if T2∗+2T∗−2D∗ > 0, for the same

cn = o(n) as above, limn→∞P(B̂(2)
n ≥ cn)= 1; and if D2∗+2T∗−2D∗ > 0, limn→∞P(B̂(3)

n ≥ cn)= 1. Here,

we do not have to consider the absolute values of B̂(2)
n and B̂(3)

n , as the sign of T2∗+2T∗−2D∗ or of

T2∗+2T∗−2D∗ cannot be negative. A two-sided test is therefore inappropriate in general.

Furthermore, we can compare the global powers of the tests using the power properties. First,

we compare B̂(2)
n with B̂(3)

n . The leading term of B̂(2)
n diverges more rapidly than B̂(3)

n if and only if

|T∗| > |D∗|. Second, the leading term of B̂(1)
n diverges more rapidly than B̂(3)

n if and only if k
2 (T2∗+

D2∗)> D2∗+2(T∗−D∗). Likewise, the leading term of B̂(1)
n diverges more rapidly than B̂(2)

n if and only

if k
2 (T2∗+D2∗)> T2∗+2(T∗−D∗). From these aspects, it follows that the global powers of the tests are

interrelated in 3!(= 6) different ways.

• Condition A: |T∗| ≥ |D∗|, k
2 (T2∗+D2∗)≥ D2∗+2(T∗−D∗), and k

2 (T2∗+D2∗)≥ T2∗+2(T∗−D∗);

• Condition B: |T∗| ≥ |D∗|, k
2 (T2∗+D2∗)≥ D2∗+2(T∗−D∗), and k

2 (T2∗+D2∗)≤ T2∗+2(T∗−D∗);

• Condition C: |T∗| ≥ |D∗|, k
2 (T2∗+D2∗)≤ D2∗+2(T∗−D∗), and k

2 (T2∗+D2∗)≤ T2∗+2(T∗−D∗);

• Condition D: |T∗| ≤ |D∗|, k
2 (T2∗+D2∗)≤ D2∗+2(T∗−D∗), and k

2 (T2∗+D2∗)≤ T2∗+2(T∗−D∗);

• Condition E: |T∗| ≤ |D∗|, k
2 (T2∗+D2∗)≤ D2∗+2(T∗−D∗), and k

2 (T2∗+D2∗)≥ T2∗+2(T∗−D∗);

• Condition F: |T∗| ≤ |D∗|, k
2 (T2∗+D2∗)≥ D2∗+2(T∗−D∗), and k

2 (T2∗+D2∗)≥ T2∗+2(T∗−D∗).

Under different conditions, the tests behave differently. For example, if (T∗,D∗) satisfies Condition

F, the leading term of B̂(1)
n is greater than those of B̂(2)

n and B̂(3)
n , and the leading term of B̂(3)

n is

greater than that of B̂(2)
n . Thus, for cn = o(n), limn→∞P(B̂(1)

n ≥ B̂(3)
n + cn ≥ B̂(2)

n + cn) = 1, or, for

notational simplicity, we may denote this as B̂(1)
n & B̂(3)

n & B̂(2)
n . Table 1 summarizes the global

power relationships arranged by Conditions A to F.

These global power behaviors provide guidance for selecting better tests. From the given condi-

tion, (T̂n −1, D̂n −1)→ (T∗,D∗) in probability, so that if (T̂n −1, D̂n −1) satisfies Condition A, say, we

should expect better power properties from B̂(1)
n than from the other tests. As another example, if

T∗ = D∗ under H1, Conditions A or F holds, and the others do not hold. This implies that B̂(1)
n or B̂(2)

n

are globally most powerful.

The dimension of Ân or B̂n also delivers various power properties. Figure 1 shows how the space

of (T∗,D∗) is partitioned into the regions satisfying Conditions A to F for k = 2, 3, 4, 10, 20, and 50.
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For example, if (T∗,D∗) belongs to the region indexed by D, this implies that Condition D governs

the data. Here, only the region below the 45-degree line is considered because T∗ has to be greater

than or equal to D∗. As we can see from Figure 1, the regions governed by Conditions B, C, D, and

E get smaller and eventually vanish to the origin as k tends to infinity. Most space is indexed by

A or F. This fact implies that if (T̂n, D̂n) is moderately different from the origin and the number of

the dimension is fairly large, B̂(1)
n or B̂(2)

n delivers more powerful results. We can also see that the

regions indexed by E and F are relatively smaller than other regions when k is small.

Now suppose that for some d∗(6= 1), B∗ = d∗A∗. The definitions of B̂(1)
n , B̂(2)

n , and B̂(3)
n , Lemma 4,

and Corollary 1(ii) imply that

B̂(1)
n = nk2(d∗−1)2 +2nk(d∗−1)d∗tr[Ln]+OP(1); (9)

B̂(2)
n = nk(d∗−1)2 +2n(d∗−1)d∗tr[Ln]+OP(1); and (10)

B̂(3)
n = nk(d∗−1)2 +2n(d∗−1)d∗tr[Ln]+OP(1). (11)

Alternatively, we can also obtain these results from Eqs. (6), (7), and (8) by letting B∗ = d∗A∗ for

d∗ 6= 1. The first terms on the right are O(n), and the second are OP(
p

n). Thus, for any cn = o(n),

limn→∞P(B̂(2)
n ≥ cn)= 1 and limn→∞P(B̂(3)

n ≥ cn)= 1.

We can also compare the global powers of the tests in a similar manner to the general case. First,

the leading terms of B̂(2)
n and B̂(3)

n are identical. This implies that their global powers are similar.

Second, the leading term of B̂(1)
n is always greater than or equal to those of B̂(2)

n and B̂(3)
n , so that we

can always expect the global power of B̂(1)
n to be bigger than those of B̂(2)

n and B̂(3)
n . Thus, we obtain

that limn→∞P(B̂(1)
n ≥ max[B̂(2)

n ,B̂(3)
n ]+ cn) = 1. When there is additional information that for some

d∗, B∗ = d∗A∗ (e.g., conditional homoskedasticity in testing correct model specification), the testing

results of B̂(1)
n should be more valuable than the other tests.

We summarize these results as follows.

Theorem 3. Given Assumptions 1, 2, 3, 4, 5, and H1, for any cn = o(n),

(i) limn→∞P(B̂(i)
n ≥ cn)= 1, where i = 1,2, and 3; and

(ii) when for all d > 0, B∗ 6= dA∗,

(ii.a) limn→∞P(B̂(2)
n ≥ B̂(3)

n + cn)= 1 if and only if |T∗| > |D∗|;
(ii.b) limn→∞P(B̂(1)

n ≥ B̂(2)
n + cn)= 1 if and only if ( k

2 −1)T2∗+ k
2 D2∗−2(T∗−D∗)> 0;

(ii.c) limn→∞P(B̂(1)
n ≥ B̂(3)

n + cn)= 1 if and only if ( k
2 −1)D2∗+ k

2 T2∗−2(T∗−D∗)> 0;

(iii) when for some d∗ > 0, B∗ = d∗A∗, limn→∞P(B̂(1)
n ≥max[B̂(2)

n ,B̂(3)
n ]+ cn)= 1. ä
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The results are similar for the case when the estimators are sample covariance matrices: for the

case in which Ãn and B̃n are sample covariance matrices, we have

Theorem 4. Given Assumptions A 1, A 2, A 3, and H1, for any cn = o(n),

(i) limn→∞P(B̃(i)
n ≥ cn)= 1, where i = 1,2,3;

(ii) when for all d > 0, B∗ 6= dA∗,

(ii.a) limn→∞P(B̃(2)
n ≥ B̃(3)

n + cn)= 1 if and only if |T∗| > |D∗|;
(ii.b) limn→∞P(B̃(1)

n ≥ B̃(2)
n + cn)= 1 if and only if ( k

2 −1)T2∗+ k
2 D2∗−2(T∗−D∗)> 0;

(ii.c) limn→∞P(B̃(1)
n ≥ B̃(3)

n + cn)= 1 if and only if ( k
2 −1)D2∗+ k

2 T2∗−2(T∗−D∗)> 0;

(iii) when for some d∗ > 0, B∗ = d∗A∗, limn→∞P(B̃(1)
n ≥max[B̃(2)

n ,B̃(3)
n ]+ cn)= 1. ä

Because we explained earlier the key idea of Theorem 3 and because the proof of Theorem 4 closely

parallels that of Theorem 3, we omit their proofs from the Appendix.

3.3 Asymptotic Behavior under the Local Alternative

The tests we consider here are consistent under the alternative as we analyzed in the previous

subsection. Their local powers, which we consider in this subsection, can be similarly analyzed.

There can be many local alternatives to the null hypothesis. An analytically convenient local

alternative is constructed by letting B∗,n approach A∗. To keep our presentation concise, we consider

the following Pitman type local alternative:

H(1)
a : B∗,n =B∗+n−1/2B̄∗ and B∗ =A∗,

where B̄∗ := B̄(θ∗), and B̄(·) is a continuously differentiable function of θ. That is, B̄ :Θ 7→ Rk×k. If

B̄∗ = 0, the local alternative H(1)
a reduces to the null hypothesis. Therefore, as n tends to infinity, B∗,n

approaches B∗, and the two matrices become identical.

The motivation for considering H(1)
a is that it has a simple form. Our statistics defined by T̂n, D̂n,

and Ŝn have the core element B∗,nA−1∗ under H(1)
a , and this feature simplifies the analysis of B∗,nA−1∗

without losing the insights of the tests. If we had considered the following local alternative:

H(2)
a : A∗,n =A∗+n−1/2Ā∗ and B∗ =A∗,

where Ā∗ := Ā(θ∗) and Ā :Θ 7→ Rk×k, the analysis becomes more complicated. This also implies that

there are many local alternatives other than H(1)
a , and they can be used to examine the local powers

of the tests in other directions.
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Before examining the asymptotic behaviors of T̂n, D̂n, and Ŝn under H(1)
a , we first fix our ideas

by defining notations relevant to our discussions. We let Wo,n :=B−1∗ (Bn−B∗,n), which is identical to

A−1∗ (Bn −B∗,n) under H(1)
a ;

Mo,n :=Wo,n −Un;

Ko,n :=Mo,n +
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗;

J j,o,n :=G j,o,n −H j,n :=B−1
∗ ∂ j(Bn −B∗,n)−H j,n;

T̂o,n := 1
k

tr[Ko,n(I−Un)]+ 1
k

[tr[J j,o,n −Mo,nA−1
∗ ∂ jA∗]]′(θ̂n −θ∗)+ 1

2k
(θ̂n −θ∗)′∇2

θtr[D∗](θ̂n −θ∗);

D̂o,n := 1
k

tr[Ko,n]+ 1
2k

(
1
k
−1

)
tr[Ko,n]2 + 1

2k
(tr[Mo,n]2 + tr[U2

n]− tr[W2
o,n])

+ 1
k

[tr[J j,o,n +UnA−1
∗ ∂ jA∗−Wo,nA−1

∗ ∂ jB∗]]′(θ̂n −θ∗)

+ 1
k

[tr[Mo,n]tr[S j,∗]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θ det[D∗](θ̂n −θ∗);

Ŝo,n :=− 1
2k

(
1
k
−1

)
tr[Ko,n]2 − 1

2k
(tr[Mo,n]2 − tr[M2

o,n])

+ 1
k

tr[Mo,n
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]− 1
k

tr[Mo,n]tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]

+ 1
2k

tr[(
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗)2]− 1
2k

tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]2.

Note that they are identical to the previous statistics if B̄∗ = 0. All these statistics are defined to

capture the local asymptotic behaviors of the previous statistics. Mainly, their difference stems from

that the key parameter of interest is not B∗ but B∗,n, so that it is now
p

n(Bn −B∗,n) that obeys the

CLT asymptotically.

We formally impose the following assumptions.

Assumption 6. (i) There are symmetric matrix estimators An(·) and Bn(·) consistent for A(·) and B(·),
respectively, uniformly on Θ; and

(ii)
p

n[(θ̂n −θ∗)′,vech[An −A∗]′,vech[Bn −B∗,n]′]′ A∼ N(0,Ω∗), where An := An(θ∗), Bn := Bn(θ∗),

and Ω∗ is a (k2 +k+`)× (k2 +k+`) positive semi-definite matrix. ä

Assumption 7. For j = 1, . . . ,`, H j,n =OP(n−1/2) and G j,o,n =OP(n−1/2). ä
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Assumption 8. The symmetric mapping B̄ :Θ 7→ Rk×k is in C (1)(Θ) and is such that B̄∗ := B̄(θ∗) is

positive definite. ä

Assumptions 6 and 7 are provided to replace Assumptions 3 and 5, respectively. We replaced the key

parameter B∗ with B∗,n, so that we can expect Wo,n, Mo,n, Ko,n, J j,o,n, T̂o,n, D̂o,n, and Ŝo,n under

H
(1)
a to have asymptotic behaviors identical to those of Wn, Mn, Kn, J j,n, T̂n, D̂n, and Ŝn under H0,

respectively. Therefore, all of them are OP(n−1/2) under H(1)
a . Furthermore, Assumption 8 is added to

endow the local parameter B̄∗ with an appropriate structure of positive definiteness.

The following lemma shows the asymptotic expansions of the statistics under the local alterna-

tive.

Lemma 5. Given Assumptions 1, 2, 4, 6, 7, 8, and H(1)
a ,

(i) T̂n = T̂o,n + 1p
nk

{tr[N∗] − tr[N∗Un] + [tr[A−1
∗ (∂ jB̄∗) − N∗A−1

∗ (∂ jA∗)]]′(θ̂n − θ∗)} + oP(n−1),

where N∗ :=B−1∗ B̄∗;

(ii) D̂n = D̂o,n + 1p
nk

{tr[N∗]− tr[N∗Wo,n]+ [tr[C j,∗]]′(θ̂n −θ∗)}

+ 1p
nk2 tr[N∗]tr[Ko,n]− 1

2nk
tr[N2

∗]+ 1
2nk2 tr[N∗]2 + oP(n−1),

where C j,∗ :=B−1∗ ∂ jB̄∗−N∗B−1∗ (∂ jB∗); and

(iii) Ŝn = Ŝo,n + 1p
nk

{tr[N∗Mo,n]+ [tr[N∗S j,∗]]′(θ̂n −θ∗)}

− 1p
nk2 tr[N∗]tr[Ko,n]+ 1

2nk
tr[N2

∗]− 1
2nk2 tr[N∗]2+oP(n−1).

Proving Lemma 5 is not difficult. Using Lemma 4 and the expansion that (I−n−1/2B−1∗ (−B̄∗))−1 = I−
n−1/2B−1∗ B̄∗+n−1B−1∗ B̄∗B−1∗ B̄∗+. . . provides the proof of Lemma 5. Here, this expansion is applicable

because for sufficiently large n, ‖n−1/2B−1∗ (−B̄∗)‖ < 1.

The local asymptotic behaviors of the statistics in Lemma 5 are not identical. Lemmas 5(i and ii)

imply that
p

nkT̂n = tr[N∗]+OP(1) and
p

nkD̂n = tr[N∗]+OP(1), whereas 2nk2Ŝn = ktr[N2∗]−tr[N∗]2+
OP(1) by Lemma 5(iii). Using these features, we derive the following theorem.

Theorem 5. Given Assumptions 1, 2, 3, 4, 5, 6, and H(1)
a ,

(i) B̂(1)
n = tr[N∗+

p
nKo,n]2 + oP(1);

16



(ii) B̂(2)
n = tr[(N∗+

p
nKo,n)2]+ oP(1); and

(iii) B̂(3)
n = tr[(N∗+

p
nKo,n)2]+ oP(1). ä

We note that Theorem 1 can also be derived from Theorem 5 if we let B̄∗ = 0. In addition, the local

parameter N∗ is added to
p

nKo,n as a location parameter. Theorem 5 further implies that the local

power of B̂(1)
n is not automatically acquired. The product of two positive-definite matrices is not

necessarily positive definite, so that N∗ := B−1∗ B̄∗ can have tr[N∗] = 0, implying that B̂(1)
n may not

have local power for such a case. Similarly, if tr[N2∗] = 0, B̂(2)
n and B̂(3)

n do not have local powers,

either. For them to have their local powers, it is necessary to have tr[N∗] 6= 0 and tr[N2∗] 6= 0.

When Ãn and B̃n are sample covariance matrices, we have

Corollary 2. Given Assumptions A 1, A 2, A 4, A 5, and H(1)
a ,

(i) B̃(1)
n = tr[(N∗+

p
nM̃o,n)]2 + oP(1);

(ii) B̃(2)
n = tr[(N∗+

p
nM̃o,n)2]+ oP(1); and

(iii) B̃(3)
n = tr[(N∗ +

p
nM̃o,n)2]+ oP(1) and B̃(2)

n − B̃(3)
n = oP(1), where M̃o,n := A−1∗ (B̃n −B∗,n)−

A−1∗ (Ãn −A∗). ä

As before, M̃o,n replaces Ko,n because θ̂n no longer plays an explicit role. The referenced regularity

conditions are in the Appendix. As the proof of Corollary 2 is parallel to that of Theorem 5, we omit

it from the Appendix.

3.4 The Trace-Determinant Tests and the Likelihood Ratio Tests

In this subsection, we consider how the trace-determinant tests are associated with the LR test

statistic under the local alternative. The LR test statistic gives reasonable power in all directions

under the local alternative, and it is uniformly most powerful under some restrictive assumptions

(e.g., proposition 15.2 of van der Vaart, 2000). This motivates us to compare the trace-determinant

test statistics with the LR test statistic.

For the purpose of comparison, we first assume a particular distribution. Specifically, an inde-

pendently and identically distributed (IID) multivariate normal random variable is assumed. We

assume this because the LR test can be easily computed for the equality of two matrices. In par-

ticular, the normal distribution condition enables the LR test to be associated with the trace and

determinant tests. As it turns out, our tests can be reformulated into a test which is asymptotically

equivalent to the LR test.

We consider two different null hypotheses to examine the LR test. First, Nagao (1967) and Na-

garsenker and Pillai (1973) tested whether the covariance matrix is equal to a specified matrix under
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the same data condition. We exploit their results to examine the LR test. Second, Mauchly (1940)

assumed a similar condition to ours and examined the LR statistic to test whether the covariance

matrix of the random variable is a diagonal matrix with the same diagonal elements. We consider the

LR test under the same condition and examine how the LR test is associated with our test statistics.

Before investigating the LR test, we first define statistics relevant to our investigations and

provide their asymptotic behaviors under the local alternative. We first let Q̂n := ln[tr[D̂n]/k] and

L̂n := ln[det(D̂n)]/k. They are the logarithms of the trace and the determinant, respectively, so that

T̂n and D̂n now correspond to Q̂n and L̂n, respectively. We next let Ŵn := Q̂n− L̂n and M̂n := T̂n− L̂n.

The motivations of these statistics are identical to Ŝn. As the same roles are played by Q̂n and T̂n,

we are able to define two different test statistics with identical roles. The following lemma provides

their asymptotic behaviors under the local alternative.

Lemma 6. Given Assumptions 1, 2, 4, 6, 7, 8, and H(1)
a ,

(i) L̂n = 1p
nk

tr[N∗]− 1p
nk

tr[N∗Wo,n]+ 1p
nk

[tr[C j,∗]]′(θ̂n −θ∗)

− 1
2nk

tr[N2
∗]− 1

2k2 tr[Ko,n]2 + D̂o,n + oP(n−1);

(ii) Q̂n = 1p
nk

tr[N∗]− 1p
nk

tr[N∗Un]+ 1p
nk

[tr[A−1
∗ ∂ jB̄∗−N∗A−1

∗ ∂ jA∗]]′(θ̂n −θ∗)

− 1
2nk

tr[N2
∗]− 1

2k2 tr[Ko,n]2 − 1p
nk2 tr[N∗]tr[Ko,n]+ T̂o,n + oP(n−1);

(iii) M̂n = 1
2nk tr[(N∗+

p
nKo,n)2]++oP(n−1); and

(iv) Ŵn = 1
2nk tr[(N∗+

p
nKo,n)2]− 1

2nk2 tr[N∗+
p

nKo,n]2 + oP(n−1). ä

Proving Lemma 6 is straightforward. We note that L̂n = ln[D̂n +1] and Q̂n = ln[T̂n +1], and Lemma

5 already provided the asymptotic behaviors of D̂n and T̂n. We exploit them to prove Lemma 6(i and

ii). The asymptotic behaviors of M̂n and Ŵn are obtained by combining these results with Lemma 5(i

and ii). The statistics M̂n and Ŵn form the expansion of the LR statistic as we detail below.

In this section, we also provide assumptions distinct from those in the previous section.

Assumption 9. (i) {Xt ∈ Rk} is a set of IID multivariate normal random variables such that Xt ∼
N(θ∗,B∗) such that θ∗ ∈Rk. ä

Here, it follows that k = ` by the normal distribution condition. Although this assumption is too

strong for general data and we can easily generalize the assumption, we stick to this condition so
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that a direct comparison of the tests can be made in a straightforward manner. Given Assumption 9,

if we let Ln(θ,B) be the likelihood, the ML estimator is

θ̂n := 1
n

n∑
t=1

Xt and B̂n := 1
n

n∑
t=1

(Xt − θ̂n)(Xt − θ̂n)′,

and the maximum-likelihood is obtained as Ln(θ̂n,B̂n) = (2π)−nk/2(det[B̂n])−n/2 exp(−nk/2). In addi-

tion to this, we further impose the following assumption on an estimator Ân.

Assumption 10. (i) There is a symmetric matrix estimator An(·) consistent for A(·) uniformly on Θ;

(ii) the symmetric matrix mapping A : Θ 7→ Rk×k is in C (2)(Θ) and is such that A∗ := A(θ∗) is

positive definite;

(iii) for j = 1, . . . ,`, ∂ jAn(·) is consistent for ∂ jA(·) uniformly on Θ;

(iv) for i, j = 1, . . . ,`, ∂2
jiAn(·) is consistent for ∂2

jiA(·);
(v) for j = 1, . . . ,`, H j,n =OP(n−1/2);

(vi)
p

n[(θ̂n −θ∗)′,vech[An −A∗]′,vech[Bn −B∗,n]′]′ A∼ N(0,Ω∗), where An := An(θ∗), Bn := Bn(θ∗),

and Ω∗ is a (k2 +k+`)× (k2 +k+`) positive semi-definite matrix; and

(vii) The symmetric mapping B̄ :Θ 7→ Rk×k is in C (1)(Θ) and is such that B̄∗ := B̄(θ∗) is positive

definite. ä

The conditions in Assumption 10 are virtually identical assumptions on Ân in the previous sections.

We slightly modified the structure to fit Assumption 9.

When testing the unknown covariance matrix B∗, we consider it to be identical to A∗, which can

be consistently estimated by Ân. That is, we are interested in testing B∗ = A∗ as before, so that we

are supposing the same environment as in Theorem 5.

Given this, the LR test can be easily obtained. If we let Ln(θ,B) be the likelihood, the maximum-

likelihood constrained by B= Ân is obtained as Ln(θ̂n,Ân)= (2π)−nk/2(det[Ân])−n/2 exp
(
− nk

2 tr[Â−1
n B̂n]

)
,

and the LR test defined as L R(1)
n := 2{ln[Ln(θ̂n,B̂n)]− ln[Ln(θ̂n,Ân)]} has the following asymptotic

behavior under the local alternative.

Theorem 6. Given Assumptions 9, 10, and H(1)
a ,

(i) L R(1)
n = 1

2 tr[(N∗+
p

nKo,n)2]+ oP(n−1);

(ii) L R(1)
n = 1

2B̂(2)
n + oP(n−1); and

(iii) L R(1)
n = 1

2B̂(3)
n + oP(n−1). ä

Therefore, Theorem 6(i) implies that the LR test is asymptotically equivalent to nkM̂n under the

local alternative.
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Mauchly (1940) tested the sphericity assumption under the same condition as above. That is,

he tested whether for some d∗, B∗ = d∗A∗. Here, B∗, A∗, and d∗ are unknown, and A∗ can be

consistently estimated by Ân as before, so that the relevant local alternative hypothesis is given as

follows: for some d∗, H(s)
a : B∗,n =B∗+n−1/2B̄∗ and B∗ = d∗A∗.

The sphericity assumption can be associated with our test statistics, too. The constrained maximum-

likelihood is obtained by maximizing Ln(θ,dÂn) with respect to θ and d, and it turns out equal to

Ln(θ̃n, d̃nÂn)= (2π)−nk/2(tr[Â−1
n B̂n]/k)−nk/2(det[Ân])−n/2 exp(−nk/2), where (θ̃n, d̃n) is the constrained

ML estimator. Specifically, (θ̃n, d̃n) = (θ̂n, tr[Â−1
n B̂n]/k), and the LR test is obtained as L R(2)

n :=
2{ln[Ln(θ̂n,B̂n)]− ln[Ln(θ̃n, d̃nÂn)]}. The LR test has the following asymptotic behavior under the

local alternative.

Theorem 7. Given Assumptions 9, 10, and H(s)
a ,

(i) L R(2)
n = 1

2 (tr[(N∗+
p

nKo,n)2]− 1
k tr[N∗+

p
nKo,n]2)+ oP(n−1);

(ii) L R(2)
n = 1

2 (B̂(2)
n − 1

kB̂(1)
n )+ oP(n−1); and

(iii) L R(2)
n = 1

2 (B̂(3)
n − 1

kB̂(1)
n )+ oP(n−1). ä

Theorem 7(i) implies that the LR test is asymptotically equivalent to nkŴn under the local alterna-

tive.

We can see that the trace-determinant tests form the major components of the LR tests ob-

tained under different circumstances from Theorems 6 and 7. They provide several further im-

plications. First, the meanings of the trace-determinant tests become clear by using the LR test

statistics. If we let L R(3)
n := 2{ln[Ln(θ̃n, d̃nÂn)]− ln[Ln(θ̃n,Ân)]}, L R(1)

n ≡ L R(2)
n +L R(3)

n , and this

implies that L R(1)
n is the sum of L R(2)

n and L R(3)
n such that L R(3)

n tests whether the sphericity

parameter (d∗) is one. Second, the asymptotic behavior of L R(3)
n is determined from this. That is,

L R(3)
n = 1

2k tr[N∗+
p

nKo,n]2 + oP(n−1) under the local alternative, so that L R(3)
n = 1

2kB̂(1)
n + oP(n−1).

Finally, therefore, 1
2 (B̂(2)

n − 1
kB̂(1)

n ) or 1
2 (B̂(3)

n − 1
kB̂(1)

n ) tests the sphericity condition, and 1
2kB̂(1)

n tests

the sphericity parameter condition under the given conditions, so that testing the equal covariance

matrix condition can be accomplished by summing the two test statistics: 1
2 (B̂(2)

n − 1
kB̂(1)

n ) and 1
2kB̂(1)

n ;

or 1
2 (B̂(3)

n − 1
kB̂(1)

n ) and 1
2kB̂(1)

n .

3.5 Implementation Considerations

The previous literature provides useful guidance for implementing our tests. As Taylor (1987) and

Orme (1990), among others, have pointed out, the level distortions of the classical IMTs can be

huge. A major reason for this is the ill-conditioning of the estimated asymptotic covariance matrix
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used to form the IMT (see, e.g., Golden, Henley, White, and Kashner, 2013). We may therefore

expect that our test statistics will suffer from similar finite-sample level distortions. Chesher and

Spady (1991) examined higher-order expansions of the IMT as a way to reduce the finite-sample

level distortion. Their Monte Carlo experiments showed that these methods can work well. As

Horowitz (1994) pointed out, however, this approach is extremely cumbersome because it requires

use of higher-order cumulants, which differ from model to model. This suggests that higher-order

approximations and methods that estimate an asymptotic covariance matrix should be avoided.

The parametric bootstrap proposed by Horowitz (1994) avoids both of these pitfalls, and, as

Horowitz showed, gives tests with negligible finite-sample level distortions, even for small sam-

ple sizes and when the tests are non-pivotal. The parametric bootstrap is also appealing because

it can deliver well-behaved asymptotic critical values for our statistics, despite their non-standard

asymptotic distributions and non-pivotal properties. Furthermore, the Monte Carlo experiments by

Horowitz showed that powers obtained by the parametric bootstrap are very close to those obtained

by correcting level distortions; on this fact, he suggested using the parametric bootstrap to compare

powers of IMT statistics. In particular, the parametric bootstrap is appealing when comparing var-

ious IMTs, given that the maximum-likelihood-based approach is hard to apply to construct IMTs.

Thus, we implement the parametric bootstrap to apply our tests.

The use of the parametric bootstrap is theoretically justified by the fact that the asymptotic ap-

proximations of T̂n, D̂n, and Ŝn are already derived. More specifically, Lemma 4 and Corollary 1

show that the distributions of T̂n, D̂n, and Ŝn are mainly determined by their own location parame-

ters and Ln :=B−1∗ (Bn−B∗)−A−1∗ (An−A∗)+∑`
j=1(θ̂ j,n−θ j,∗)R j,∗, which are zeros and Kn, respectively,

under H0. Furthermore, Assumption 3(ii) implies that Ln asymptotically follows a normal distribu-

tion, implying that the asymptotic distributions of T̂n, D̂n, and Ŝn are well defined under the null

and are first-order correct. These observations, along with the arguments given by Horowitz (1994),

justify use of the parametric bootstrap.

Although the parametric bootstrap is well known, we explain its procedure in order for our paper

to be self-contained and to fix our test statistics. We proceed as follows:

1. Given the model M := { f (·|·,θ) : θ ∈Θ} for Yt|Xt, obtain the (Q)MLE θ̂n by maximizing Ln(·) on

Θ, where Ln(θ) := n−1 ∑n
t=1`t(θ) and `t(θ) := log[ f (Yt|Xt,θ)], with IID {(Yt,X′

t)
′ ∈R1+d};

2. Estimate A∗ and B∗ as Ân := −∇2
θ
Ln(θ̂n) and B̂n := n−1 ∑n

t=1∇θ`t(θ̂n)∇′
θ
`t(θ̂n). Using these,

compute B̂(1)
n , B̂(2)

n , and B̂(3)
n ;
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3. For each Xt, generate B independent samples of Y b
t from f (·|Xt, θ̂n), yielding data sets (Y b

t ,Xt),

t = 1,2, . . . ,n, b = 1,2, . . . ,B;

4. Form the bootstrap (Q)MLE θ̂
b
n by maximizing Lb

n(·) := n−1 ∑n
t=1`

b
t (·), where `b

t (θ) := log[ f (Y b
t |

Xt,θ)]. Compute Ab
n :=−∇2

θ
Lb

n(θ̂b
n) and Bb

n := n−1 ∑n
t=1∇θ`

b
t (θ̂b

n)∇′
θ
`b

t (θ̂b
n), and use these to form

test statistics B
(1),b
n , B

(2),b
n , and B

(3),b
n ;

5. Estimate p-values by p̂(1)
n := B−1 ∑B

b=1 I(B(1),b
n ≥ B̂(1)

n ), p̂(2)
n := B−1 ∑B

b=1 I(B(2),b
n ≥ B̂(2)

n ), and

p̂(3)
n := B−1 ∑B

b=1 I(B(3),b
n ≥ B̂(3)

n ), respectively.

6. If the estimated p-values are less than the pre-specified level of significance, we reject the null;

otherwise, we do not.

4 Monte Carlo Experiments

In this section, we examine the performance of our statistics when applied to a variety of parametric

models, estimated by quasi-maximum-likelihood applied to IID data. We consider four different

models: linear regression, exponential duration, probit, and Tobit.2

Our Monte Carlo experiments replicate the steps of the parametric bootstrap multiple times.

When a test statistic, B̂(1)
n , say, is evaluated using the parametric bootstrap, we also write this as

B̂
(1,p)
n .

4.1 Linear Regression

Suppose that data are generated as

Yt =X′
tβ∗+Ut,

where Ut |Xt ∼ N(0,σ2∗). We estimate the unknown β∗ using the normal MLE with the typical model

element Yt |Xt ∼ N(X′
tβ,σ2). We consider the case when Xt = (1, X t)′ and X t ∼ N(0,1).

We compare our tests to other familiar test statistics. Specifically, we consider Chesher’s (1983)

and Lancaster’s (1984) IMT,3 denoted IMn. We also consider Jarque and Bera’s (1987) test for the

normality of Ut, denoted JBn. Both IMn and JBn obey standard chi-square distributions asymp-

2GAUSS codes for the linear regression, exponential duration, Weibull duration, probit, and Tobit models are down-
loadable at the following URL: http://web.yonsei.ac.kr/jinseocho/research.htm.

3To construct this IMT, we need to include the first-order and second-order derivatives as testing components. Never-
theless, including the second-order derivative with respect to the intercept coefficient yields a singular covariance matrix.
We thus omit this redundant term.

22



totically under the null. We also apply the parametric bootstrap to these tests, denoted IMp
n and

JBp
n.

We present our simulation results in Table 2. Here, we take β∗ = (0.5,1)′ with σ2∗ = 1. We let

B = 1,000 and perform 20,000 Monte Carlo replications. The simulation results under the null can

be summarized as follows. First, our tests based on the parametric bootstrap perform quite well, with

nominal levels closely comparable to actual levels even for n = 50. As expected, IMn performs quite

poorly, exhibiting the familiar level distortions. In contrast, JBn performs much better, although it

does suffer modest level distortion for smaller samples. The parametric bootstrap nicely fixes these

problems. Only IMn is adversely affected by increasing the number of parameters.

To examine power, we conduct further Monte Carlo experiments using six different alternative

DGPs:

• ALT 1: Ut|Xt ∼ N(0,exp(X′
tβ∗));

• ALT 2: Ut|Xt ∼ N(0,exp(2X′
tβ∗));

• ALT 3: Ut|Xt ∼ MxN(−1,1;1,1;0.5);

• ALT 4: Ut|Xt ∼ MxN(−1.5,1;1.5,1;0.5);

• ALT 5: Ut|Xt ∼ t30; and

• ALT 6: Ut|Xt ∼ t20.

Here, Z ∼ MxN(a,b; c,d; p) denotes a mixed normal distribution where Z ∼ N(a,b) with probability

p and Z ∼ N(c,d) with probability 1− p.

Although the normal model is correctly specified for the conditional mean, the conditional vari-

ance or conditional distribution is misspecified for these alternatives. The first two alternatives

exhibit conditional heteroskedasticity, with the first closer to the null than the second. The next two

alternatives have PDFs with two peaks and dispersed distributions. The third is closer to the null

than the fourth. The final two alternatives have fat tails, with the first closer to the null than the

second.

We present our simulation results in Table 3. The results are for the nominal 5% level, obtained

using the parametric bootstrap, and are somewhat nuanced. First, with conditional heteroskedas-

ticity, our tests perform better than the others. B̂
(2,p)
n and B̂

(3,p)
n outperform B̂

(1,p)
n . Second, with

normal mixture disturbances, the best test is IMp
n , followed by B̂

(1,p)
n , which noticeably outper-

forms B̂
(2,p)
n and B̂

(3,p)
n in smaller samples. JBp

n underperforms in smaller samples, although it

catches up in larger samples. The t−distribution alternatives are harder for all tests to detect, as

these alternatives are not as far from the null. The JBp
n test is best, followed fairly closely by our
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trace-determinant tests. Overall, it appears that our tests are consistent against these alternatives,

sometimes performing best and otherwise performing respectably.

We also conduct other experiments to examine the global powers of the trace-determinant tests.

More specifically, Table 1 shows how the most powerful test is globally determined by the conditions

for (T∗,D∗). As the sample size increases, the leading terms in Eqs. (6), (7), and (8) become the main

factors to determine the powers. We investigate this by Monte Carlo experiments. For this purpose,

we use the following procedure: First, for each DGP and sample size, we estimate (T∗,D∗) by Monte

Carlo simulations. The number of replications is 10,000. This experiment is conducted to avoid the

difficulties in computing (T∗,D∗) analytically. Second, we predict the most powerful test by using

this estimate and Table 1. Third, we compare the empirical powers in Table 3 with our predictions

and indicate the results as follows: if the prediction is correct (resp. wrong), we denote this by “#”

(resp. “ ”); and if all three tests reject the null hypothesis, so that we cannot say which one is the

most powerful test, we denote this by “4.” If the global powers are effectively determined by Table

1, “#” should eventually appear as the sample size increases.

The results of this experiment are contained in Table 4. For ALTs 1, 3, 4, and 5, “#” is observed

more frequently, or it appears eventually as the sample size increases before all three tests reject the

null. On the other hand, for ALTs 2 and 6, the most powerful test is not correctly predicted by the

global power patterns.

These wrong predictions occur mainly because (T∗,D∗) is too close to the other regions. For

example, the estimated (T∗,D∗) of ALT 6 is approximately (0.0608,0.0544) when n = 2,000, and

it belongs to the region indexed by C, which predicts B̂
(2,p)
n to be the most powerful test statistic.

Nevertheless, this value is very close to the origin, whose neighbors are the regions indexed by A, B,

and D. We can see this from the second panel of Figure 1. Under Conditions A, B, and D, B̂
(2,p)
n , B̂

(1,p)
n ,

and B̂
(3,p)
n are the most powerful test statistics, respectively, so that the null hypothesis can also be

frequently rejected by B̂
(1,p)
n and B̂

(3,p)
n . This leads to the wrong prediction, and it also explains why

one test does not have a dominant power over the other tests, as we can see from Table 3.

We also conducted parallel simulations with Xt drawn from a uniform distribution and/or Xt =
(1, X t, Zt)′ with (X t, Zt)′ ∼ N(0,I2). The results were almost identical, so we do not report them here.
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4.2 Exponential Duration

Next, we consider duration structures following a conditionally exponential distribution. The DGP

is

Yt|(δt,Xt)∼Exp(δt exp(X′
tβ∗)),

where ‘Exp’ stands for the exponential distribution, and Xt = X t with X t ∼ N(0,1), as before. We

assume that δt is not observable and that the researcher observes only Yt and Xt. The conditional

distribution of Yt|Xt is the exponential if δt is a constant with probability one. Otherwise, the simple

exponential model is misspecified. We consider the following null and alternative DGPs for δt:

• NULL (Constant case): δ= 1 with probability 1;

• ALT 1 (Discrete): δt ∼ DM(0.7370,1.9296;0.5);

• ALT 2 (Gamma): δt ∼ Gamma(5,5);

• ALT. 3 (Log-normal): δt ∼Log-normal(− ln(1.2)/2, ln(1.2));

• ALT 4 (Uniform I): δt ∼ Uniform[0.30053,2.3661]; and

• ALT 5 (Uniform II): δt ∼ Uniform[1,5/3],

where DM(a,b; p) denotes a discrete mixture with P(δt = a) = p and P(δt = b) = 1− p. These DGPs

are identical to those considered by Cho and White (2010) and Cho, Cheong, and White (2011). In

each case, we let β∗ be the unit vector.

The alternative DGPs represent various forms of unobservable heterogeneity, a subject of con-

siderable interest in the literature. As Heckman (1984) pointed out, unobservable heterogeneity can

have serious adverse consequences for estimation and inference. Among others, Lancaster (1979) de-

veloped a test for unobserved heterogeneity; Lancaster’s test is designed to detect misspecifications

in the direction of a gamma distribution. The other three DGPs also represent alternative lines of

inquiry in the literature. See Cho and White (2010) for further discussion.

We suppose that the researcher specifies a model for Yt|Xt that treats δt as a constant:

{ f (·|· :α,β) : f (y|x :α,β)=αexp(x′β)exp(−αexp(x′β)y), (α,β) ∈Θ},

where Θ is a parameter space for (α,β) such that each parameter has a lower bound and upper bound

equal to 0 and 10, respectively. Thus, the above model is correctly specified only for the first DGP

and misspecified for the others. The parameter space is relatively large, ensuring that the probability

limits of the (Q)MLEs are interior to Θ. We test model misspecification using our tests, the Chesher
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(1983) and Lancaster (1984) IMT, and Lancaster’s (1979) Lagrange multiplier test for unobserved

heterogeneity, which we denote LMn. As before, we also consider parametric bootstrap versions of

the IMTs and Lancaster’s (1979) LM test, denoted LMp
n .

Our simulation results appear in Tables 5 and 6. Table 5 focuses on the null behavior of the

tests, whereas Table 6 shows the behaviors under the alternative. Here, B = 1,000, and we perform

20,000 Monte Carlo replications. We summarize the results as follows. The levels for all parametric

bootstrap procedures are good, with actual levels close to nominal levels. Except for IMn, we observe

similar null behavior in Table 5.

Second, we see from Table 6 that our tests outperform IMp
n and LMp

n for every alternative DGP.

Among our tests, the most powerful test for smaller samples is B̂
(2,p)
n , followed by B̂

(3,p)
n and B̂

(1,p)
n ,

in that sequence. In particular, the finite sample power of LMp
n is very weak. Even when we apply

the parametric bootstrap to LMn, it can yield poor performance under the alternative. This indicates

that choosing the appropriate IMT is important to have better finite sample properties. Our IMTs

appear to avoid the poor properties. This ordering changes in larger samples.

We finally examine the predictions of the most powerful test by using the global powers. The

process is the same as in the linear regression case. The prediction results are contained in Table

7, which shows that many alternative DGPs exhibit correct predictions as the sample size increases.

On the other hand, a wrong prediction is obtained for ALT 5.

The reason for this wrong prediction is the same as before. That is, (T∗,D∗) is too close to other

regions. The estimated (T∗,D∗) using 2,000 observations is approximately (0.0401,0.0382), and this

value belongs to the region indexed by C but is also very close to the regions indexed by A, B, and D.

We can see this from the first panel of Figure 1. Thus, the null hypothesis is frequently rejected by

the other test statistics.

We also conducted experiments using Xt ∼ N(0,I2) and/or the Weibull specifications studied by

Cho and White (2010) and Cho, Cheong, and White (2011) for the same DGPs, and we obtained

similar level and power patterns. We omit reporting these results for the sake of brevity. Thus,

our parametric bootstrap tests appear promising for detecting unobserved heterogeneity in duration

models.

4.3 Probit

For our third experiment, we consider a probit specification, as did Horowitz (1994).
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Again, we consider Xt = (1, X t)′, where X t ∼ N(0,1). The probit model has the typical element

f (Yt|Xt;β)=Φ(X′
tβ),

where Φ is the standard normal CDF. We take B = [−5, 5].

We examine the following four DGPs in our experiments:

• NULL: Yt|Xt ∼Probit(X′
tβ∗);

• ALT 1: Yt|Xt ∼Probit(X′
tβ∗/exp(0.5X′

tβ∗));

• ALT 2: Yt|Xt ∼Probit((X′
tβ∗)2); and

• ALT 3: Yt|Xt ∼Logit(X′
tβ∗),

where ‘Probit(X′
tβ∗)’ denotes that the conditional distribution of Yt|Xt satisfies P(Yt = 1|Xt)=Φ(X′

tβ∗).

The model is correctly specified for the first DGP but misspecified for the rest. ‘Logit(X′
tβ∗)’ de-

notes that the conditional distribution of Yt|Xt satisfies P(Yt = 1|Xt) = {1+ exp(X′
tβ∗)}−1. We take

β∗ = (0.5,1)′.

We conduct the same simulations as before, and we again compare our tests to parametric boot-

strap versions of the Chesher (1983) and Lancaster (1984) IMT. As the asymptotic covariance matrix

for the full IMT is singular, we drop redundant terms.

We present our simulation results in Tables 8 and 9. Table 8 presents the null behaviors of the

test statistics, and Table 9 examines the alternatives. Here, the number of bootstrap replications is

B = 500. We conduct 10,000 Monte Carlo replications under the null and 3,000 under the alternative.

We summarize the results as follows. As before, the levels of all the parametric bootstrap tests

accord well with nominal values, and again the raw IMn statistic performs poorly. With regard to

power, IMp
n performs best for the third DGP in smaller samples, although it is dominated in the

other two cases. Overall, the trace-determinant tests perform respectably.

We also examine the global powers of the test statistics as before. For all alternative DGPs, Table

10 shows that as the sample size increases, “#” is observed more frequently or eventually before all

three tests reject the null, implying that Table 1 correctly predicts the most powerful test statistic.

We also conducted experiments using Xt := (1, X t, Zt)′ and (X t, Zt)′ ∼ N(0,I2) and obtained similar

level and power patterns. We omit reporting these results for the sake of brevity.
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4.4 Tobit

As a final experiment, we consider the Tobit model. Horowitz (1994) also examined the performance

of the IMT for the Tobit model, describing it as a successful application of the parametric bootstrap.

The experimental design is similar to that for the probit model. As before, Xt = (1, X t)′, where

X t ∼ N(0,1). The Tobit model has the typical element

Yt =max[0,X′
tβ+Ut],

where Ut ∼ N(0,σ2). Again, we take B = [−5, 5], and we let σ lie between 0.1 and 10. The unknown

parameters β and σ are estimated by (Q)ML estimation. We consider the following four DGPs:

• NULL: Yt =max[0,X′
tβ∗+Ut] and Ut|Xt ∼ N(0,1);

• ALT 1: Yt =max[0,X′
tβ∗+Ut] and Ut|Xt ∼ N(0,exp(0.5X′

tβ∗));

• ALT 2: Yt =max[0,(X′
tβ∗)2 +Ut] and Ut|Xt ∼ N(0,1); and

• ALT 3: Yt =max[0,X′
tβ∗+Ut] and Ut|Xt ∼ t30.

We let β∗ = (0,1)′. Thus, the Tobit model is correctly specified for the first DGP and misspecified for

the others.

We again compare our tests with parametric bootstrap versions of the Chesher (1983) and Lan-

caster (1984) IMT. As before, we drop redundant terms.

The results appear in Tables 11 and 12. Table 11 contains results for levels, and Table 12 reports

results for the alternatives. As for the probit case, the number of bootstrap replications is B = 500,

with 10,000 Monte Carlo replications under the null and 3,000 under the alternatives.

Again, we see that all the parametric bootstrap tests have levels close to nominal, while IMn

does not perform well. In each alternative, our new tests outperform IMp
n .

We also predict the most powerful test statistic using the global powers as before. For all the

alternative DGPs we consider here, Table 13 shows that as the sample size increases, Table 1 cor-

rectly predicts the most powerful test statistic. This is affirmed from the fact that as the sample size

increases, “#” is more frequently observed, or it appears eventually before “4” is observed.

We also conducted experiments using Xt := (1, X t, Zt)′ and (X t, Zt)′ ∼ N(0,I2) and obtained similar

level and power patterns. We omit reporting these results for the sake of brevity.
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5 Conclusion

We provide a new characterization of the equality of two positive-definite matrices A and B, namely

that det(BA−1)1/k = k−1tr(BA−1)= 1, and we use this to propose several new, computationally conve-

nient statistical tests for the equality of two unknown positive-definite matrices. Our primary focus

is on testing the information matrix equality (e.g. White, 1982, 1994), where the matrices A and B

depend on underlying parameters that require estimation. We characterize the asymptotic behav-

ior of our test statistics under the null, alternative, and local alternative, and we investigate their

finite-sample performance for a variety of models: linear regression, exponential duration, probit,

and Tobit. Although our statistics have non-standard asymptotic distributions, the parametric boot-

strap easily accommodates these and delivers critical values that provide admirable level behavior,

even in samples as small as n = 50. Reinforcing Horowitz’s (1994) findings, we find that the paramet-

ric bootstrap also eradicates the well-documented poor level performance of the traditional IMT in

all of our experiments. Our new tests often have better power than the traditional IMT; when they

do not, they nevertheless perform respectably. In particular, the trace-determinant tests are always

better than the conventional IMTs for duration data.

The simplicity, reliable level performance, and respectable power properties of our new paramet-

ric bootstrap trace-determinant IMTs remove the obstacles that might have previously dissuaded re-

searchers from applying an IMT. Our findings here, and the versatility of information matrix testing

methods generally, lead us to strongly recommend routine application of parametric bootstrap-based

IMTs.

A Appendix

A.1 Proofs

Proof of Lemma 1: If A=B, then clearly [det(A−1/2BA−1/2)]1/k = tr(A−1/2BA−1/2)/k = 1.

For the converse, we have that [det(A−1/2BA−1/2)]1/k = tr(A−1/2BA−1/2)/k. Equivalently, (
∏k

j=1

λ j)1/k = k−1 ∑k
j=1λ j, where λ j, j = 1, . . . ,k, are the real non-negative eigenvalues of A−1/2BA−1/2. It

is well-known that equality of the geometric and arithmetic means follows if and only if the ele-

ments of the means are identical, i.e., λ1 = . . . = λk = λ, say. As [det(A−1/2BA−1/2)]1/k = 1, we have

det(A−1/2BA−1/2)1/k = λ = 1. That is, A−1/2BA−1/2 has eigenvalues identically equal to 1, so that

A−1/2BA−1/2 = CIC′ = I, where C is the orthonormal matrix of the eigenvectors of A−1/2BA−1/2. Now

A−1/2BA−1/2 = I implies A1/2A−1/2BA−1/2A1/2 =A1/2A1/2, which simplifies to B=A. ■
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Before proving our results, we first state some useful lemmas, allowing us to avoid repeating certain

arguments. We provide proofs only for those lemmas that are not elementary.

Lemma A1. Given Assumptions 1, 2, and 3,

(i) A−1
n −A−1∗ =−UnA−1∗ +U2

nA−1∗ + oP(n−1);

(ii) B−1
n −B−1∗ =−WnB−1∗ +W2

nB−1∗ + oP(n−1);

(iii) Dn −D∗ =B∗Pn(I−Un)A−1∗ + oP(n−1), where Pn :=Wn −Un; and

(iv) if H0 further holds, Dn −D∗ =B∗Mn(I−Un)A−1∗ + oP(n−1). ä

Proof of Lemma A1: (i) We apply exercise 13.21 of Abadir and Magnus (2005): dX−1 = −X−1(dX)

X−1, so that d2X−1 = −dX−1(dX)X−1 −X−1(d2X)X−1 −X−1(dX)dX−1. This implies that the second-

order approximation of X−1 −X−1
o is obtained as dX−1 + 1

2 d2X−1 = −X−1
o (dX)X−1

o + {X−1
o (dX)X−1

o (dX)

X−1
o }− 1

2X−1
o (d2X)X−1

o , where dX captures (X−Xo).

We now obtain the second-order approximation of A−1
n −A−1∗ by letting Xo =A∗ and dX=An−A∗,

where the remainder term is oP(n−1) from the fact that An−A∗ =OP(n−1/2). We also use the definition

of Un :=A−1∗ (An −A∗) and obtain the desired result.

(ii) The proof is identical to (i). We can replace An, A∗, and Un with Bn, B∗, and Wn, respectively.

(iii) We note the following identity: Dn−D∗ ≡ (Bn−B∗)A−1∗ +(Bn−B∗)(A−1
n −A−1∗ )+B∗(A−1

n −A−1∗ ).

By reasoning analogous to Lemma A1(i) for (A−1
n −A−1∗ ) we obtain (Bn −B∗)U2

nA−1∗ =OP(n−3/2). This

yields the desired approximation.

(iv) We have Pn =Mn in (iii) under H0. This completes the proof. ■

Lemma A2. Given Assumptions 1, 2, and 3,

(i) det[An]−det[A∗]= det[A∗](tr[Un]+ 1
2 tr[Un]2 − 1

2 tr[U2
n])+ oP(n−1);

(ii) det[Bn]−det[B∗]= det[B∗](tr[Wn]+ 1
2 tr[Wn]2 − 1

2 tr[W2
n])+ oP(n−1);

(iii) det[An]−1 −det[A∗]−1 =−det[A∗]−1(tr[Un]+ 1
2 tr[Un]2 − 1

2 tr[U2
n])+ oP(n−1);

(iv) det[Dn]−det[D∗]= det[D∗]{tr[Pn]+ 1
2 tr[Pn]2 − 1

2 (tr[W2
n]− tr[U2

n])}+ oP(n−1); and

(v) if H0 further holds, det[Dn]−1= tr[Mn]+ 1
2 (tr[Mn])2 − 1

2 (tr[W2
n]− tr[U2

n])+ oP(n−1). ä

Proof of Lemma A2: (i) By exercise 13.32 of Abadir and Magnus (2005): d|X| = |X|tr(X−1dX). This

also implies that d2|X| = d|X|tr(X−1dX)+|X|dtr(X−1dX) = |X|tr(X−1dX)2 +|X|tr(dX−1 dX+X−1d2X).

We also note that dX−1 =−X−1(dX)X−1 by exercise 13.21 of Abadir and Magnus (2005). Thus, d2|X| =
|X|{tr(X−1dX)2−tr[X−1(dX)X−1dX]+tr[X−1d2X]}, which implies that the second-order approximation

of |X| − |Xo| is obtained as d|X| + 1
2 d2|X| = |Xo|tr(X−1

o dX)+ 1
2 |Xo|{tr(X−1

o dX)2 − tr[X−1
o (dX)X−1

o dX]+
tr[X−1

o d2X]}, where dX captures (X−Xo).
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We now apply this result by letting Xo, |Xo|, and dX be A∗, det[A∗], and An −A∗, respectively.

Thus,

det[An]−det[A∗]=det[A∗]tr[A−1
∗ (An −A∗)]

+ 1
2

det[A∗]{tr[A−1
∗ (An −A∗)]2 − tr[A−1

∗ (An −A∗)A−1
∗ (An −A∗)]}+ oP(n−1),

where the final terms are obtained from Assumption 3, that (An −A∗) = OP(n−1/2). Finally, we note

that Un :=A−1∗ (An −A∗), so that det[An]−det[A∗]= det[A∗](tr[Un]+ 1
2 tr[Un]2 − 1

2 tr[U2
n])+ oP(n−1).

(ii) We apply the same argument, replacing An, A∗, and Un with Bn, B∗, and Wn, respectively.

(iii) Applying Taylor’s expansion gives det[An]−1 − det[A∗]−1 = −det[A∗]−2(det[An]− det[A∗])+
det[A∗]−3(det[An]−det[A∗])2 + oP(n−1) using Assumption 3, that (An −A∗) = OP(n−1/2). Replacing

(det[An]−det[A∗]) with the expression in Lemma A2(i) and rearranging gives the desired result.

(iv) We note that det[Dn]−det[D∗] = det[Bn]/det[An]−det[B∗]/det[A∗] by the definitions of Dn

and D∗, so that the following identity holds:

det[Dn]−det[D∗]≡ 1
det[A∗]

(det[Bn]−det[B∗])

+
(

1
det[An]

− 1
det[A∗]

)
(det[Bn]−det[B∗])+

(
1

det[An]
− 1

det[A∗]

)
det[B∗].

Using LemmaA2(ii and iii) and rearranging the terms according to the rate of convergence gives the

result.

(v) We note that Pn =Mn under H0. The desired result follows from Lemma A2(iv). ■

Lemma A3. Given Assumptions 1, 2, and 3,

(i) ∇θtr[Dn]= [tr[R j,nA−1
n Bn]], where R j,n :=B−1

n ∂ jBn −A−1
n ∂ jAn;

(ii) ∇θtr[D∗]= [tr[R j,∗A−1∗ B∗]], where R j,∗ :=B−1∗ ∂ jB∗−A−1∗ ∂ jA∗; and

(iii) if H0 further holds, ∇θtr[D∗]= [tr[S j,∗]]. ä

Proof of Lemma A3: (i) By the fact that ∂ jA−1
n =−A−1

n (∂ jAn) A−1
n and the definition of Dn :=BnA−1

n ,

the desired result holds.

(ii) The proof is the same as that of (i). That is, D∗ :=B∗A−1∗ and ∂ jA−1∗ =−A−1∗ (∂ jA∗)A−1∗ .

(iii) If H0 holds, B∗A−1∗ = I, so that ∇θtr[D∗]= [tr[(∂ jB∗−∂ jA∗)A−1∗ ]]= [tr[S j,∗]]. ■

Lemma A4. Given Assumptions 1, 2, 3, and 4,

(i) ∇θ det[Dn]= det[Dn][tr[R j,n]];

(ii) ∇θ det[D∗]= det[D∗][tr[R j,∗]];
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(iii) if H0 further holds, ∇θ det[D∗]= [tr[S j,∗]];

(iv) ∇θ(det[Dn]−det[D∗])= det[D∗]{tr[Pn][tr[R j,∗]]+[tr[A−1∗ (∂ jA∗)Un−B−1∗ (∂ jB∗) Wn]]+[tr[J j,n]]}+
oP(n−1/2); and

(v) if H0 further holds, ∇θ(det[Dn]−det[D∗])= tr[Mn][tr[S j,∗]]+ [tr[A−1∗ {(∂ jA∗)Un − (∂ jB∗)Wn}]]+
[tr[J j,n]]+ oP(n−1/2). ä

Proof of Lemma A4: (i) By exercise 13.32 of Abadir and Magnus (2005): d|X| = |X|tr(X−1dX), with

d|X| be ∂ j det[Dn], and ∂ j det[Dn] = det[Dn]tr[D−1
n ∂ jDn]. Also, ∂ jDn = (∂ jBn)A−1

n −BnA−1
n (∂ jAn)A−1

n .

If we combine these, ∂ j det[Dn]= det[Dn]tr[R j,n], and the definition of the gradient yields the result.

(ii) We repeat the proof of (i), replacing the subscript ‘n’ with the subscript ‘∗’.

(iii) Under H0, det[D∗]= 1 and A∗ =B∗, so that ∂ j det[D∗]= tr[A−1∗ ∂ jB∗−A−1∗ ∂ jA∗]= tr[S j,∗].

(iv) We note the following identity:

∇θ(det[Dn]−det[D∗])≡ (det[Dn]−det[D∗])[tr[R j,n]]

+det[D∗][ tr[B−1
n ∂ jBn −B−1

∗ ∂ jB∗]]−det[D∗][ tr[A−1
n ∂ jAn −A−1

∗ ∂ jA∗]]. (12)

We examine the asymptotic approximation of each component in the RHS. First, Lemma A2(iv) im-

plies that det[Dn]−det[D∗]= det[D∗](tr[Pn])+ oP(n−1/2). Thus,

(det[Dn]−det[D∗])[tr[R j,n]]= det[D∗](tr[Pn])[tr[R j,∗]]+ oP(n−1/2) (13)

by Assumptions 3 and 4. Second, we note that

B−1
n ∂ jBn −B−1

∗ ∂ jB∗ ≡ (B−1
n −B−1

∗ )∂ jBn +B−1
∗ ∂ j(Bn −B∗)

=−WnB−1
∗ ∂ jB∗+B−1

∗ ∂ j(Bn −B∗)+ oP(n−1/2), (14)

where the last equality holds by Lemma A1(ii). Third, it follows similarly that

A−1
n ∂ jAn −A−1

∗ ∂ jA∗ =−UnA−1
∗ ∂ jA∗+A−1

∗ ∂ j(An −A∗)+ oP(n−1/2). (15)

Finally, we plug Eqs. (13), (14), and (15) into Eq. (12) and obtain

∇θ(det[Dn]−det[D∗])= det[D∗]{tr[Pn][tr[R j,∗]]+ [tr[A−1
∗ (∂ jA∗)Un −B−1

∗ (∂ jB∗)Wn]]}

+det[D∗][ tr[B−1
∗ ∂ j(Bn −B∗)−A−1

∗ ∂ j(An −A∗)]]+ oP(n−1/2). (16)
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Here, we note that B−1∗ ∂ j(Bn−B∗)−A−1∗ ∂ j(An−A∗)=G j,n−H j,n =J j,n by the definitions of G j,n, H j,n

and J j,n. This yields the desired result.

(v) Under H0, det[D∗] = 1 and Pn = Mn. Also, tr[WnB−1∗ ∂ jB∗−UnA−1∗ ∂ jA∗] = tr[A−1∗ (∂ jB∗) Wn −
A−1∗ (∂ jA∗)Un] and tr[B−1∗ ∂ jB∗−A−1∗ ∂ jA∗]= tr[A−1∗ (∂ jB∗−∂ jA∗)]= tr[S j,∗]. ■

Lemma A5. Given Assumptions 1 and 2,

(i) ∂2
jitr[D∗]= tr[A−1∗ B∗{(B−1∗ ∂2

jiB∗−A−1∗ ∂2
jiA∗)− (R j,∗A−1∗ ∂iA∗+Ri,∗A−1∗ ∂ jA∗)}]; and

(ii) if H0 further holds, ∂2
jitr[D∗]= tr[[A−1∗ (∂2

jiB∗−∂2
jiA∗)− (S j,∗A−1∗ ∂iA∗+Si,∗A−1∗ ∂ jA∗)]]. ä

Proof of Lemma A5: (i) Some tedious algebra shows that

∂2
jiD∗ = (∂2

jiB∗)A−1
∗ − (∂iB∗)A−1

∗ (∂ jA∗)A−1
∗ − (∂ jB∗)A−1

∗ (∂iA∗)A−1
∗

+B∗A−1
∗ (∂ jA∗)A−1

∗ (∂iA∗)A−1
∗ −B∗A−1

∗ (∂2
i jA∗)A−1

∗ +B∗A−1
∗ (∂iA∗)A−1

∗ (∂ jA∗)A−1
∗ ,

so that

∂2
jitr[D∗]= tr[B∗A−1

∗ [(∂ jA∗)A−1
∗ (∂iA∗)A−1

∗ + (∂iA∗)A−1
∗ (∂ jA∗)A−1

∗ ]]

− tr[(∂ jA∗)A−1
∗ (∂iB∗)A−1

∗ + (∂ jB∗)A−1
∗ (∂iA∗)A−1

∗ ]+ tr[[(∂2
jiB∗)− (∂2

i jA∗)A−1
∗ B∗]A−1

∗ ].

We now rearrange this using the definitions of R j,∗ and Ri,∗, yielding the desired result.

(ii) We note that R j,∗ =S j,∗ and Ri,∗ =Si,∗ under H0. This completes the proof. ■

Lemma A6. Given Assumptions 1 and 2,

(i) ∂2
ji det[D∗]= det[D∗]{ tr[Ri,∗]tr[R j,∗]+tr[B−1∗ ∂2

jiB∗−A−1∗ ∂2
jiA∗−Ri,∗B−1∗ (∂ jB∗)−R j,∗A−1∗ ∂iA∗]};

and

(ii) if H0 also holds,

∂2
ji det[D∗]= tr[Si,∗]tr[S j,∗]+ tr[A−1

∗ (∂2
jiB∗−∂2

jiA∗)−Si,∗B−1
∗ (∂ jB∗)−S j,∗A−1

∗ ∂iA∗].

Proof of Lemma A6: (i) From the proof of Lemma A4(ii), ∂i det[D∗]= det[D∗]tr[Ri,∗]. Therefore,

∂2
ji det[D∗]= tr[Ri,∗]∂ j det[D∗]+det[D∗]tr[∂ jB−1

∗ ∂iB∗+B−1
∗ ∂2

jiB∗−∂ jA−1
∗ ∂iA∗−A−1

∗ ∂2
jiA∗].

Now replace ∂ j det[D∗], ∂ j(B−1∗ ), and ∂ j(A−1∗ ) with det[D∗]tr[R j,∗], −B−1∗ (∂ jB∗)B−1∗ , and −A−1∗ (∂ j

A∗)A−1∗ , respectively. Using the definitions of R j,∗ and Ri,∗ and rearranging yields the desired result.

(ii) Under H0, A∗ =B∗ and B∗A−1∗ = I. Further, R j,∗ =S j,∗ and Ri,∗ =Si,∗. ■

33



Proof of Lemma 2: Lemma 3 implies Lemma 2. ■

The following supplementary lemma is useful in obtaining the second-order expansion of Ŝn :=
tr[D̂n]/k−det[D̂n]1/k.

Lemma A7. Given Assumptions 1, 2, and H0, ∇2
θ
tr[D∗]−∇2

θ
det[D∗] = [tr[S j,∗Si,∗]− tr[S j,∗]tr[Si,∗]].

ä

Proof of Lemma A7: We apply Lemmas A5(ii) and A6(ii) and obtain

∂2
ji(tr[D∗]−det[D∗])= tr[A−1

∗ ∂ jA∗A−1
∗ ∂iA∗]− tr[A−1

∗ ∂ jB∗A−1
∗ ∂iA∗]

− tr[A−1
∗ ∂ jA∗A−1

∗ ∂iB∗]+ tr[A−1
∗ ∂ jB∗A−1

∗ ∂iB∗]− tr[S j,∗]tr[Si,∗]= tr[S j,∗Si,∗]− tr[S j,∗]tr[Si,∗].

Therefore, ∇2
θ
tr[D∗]−∇2

θ
det[D∗]= [tr[S j,∗Si,∗]− tr[S j,∗]tr[Si,∗]]. This completes the proof. ■

Proof of Lemma 3: (i) Note that tr[D̂n −D∗]= tr[D̂n −Dn]+ tr[Dn −D∗] and Lemma A1(iii) gives

tr[Dn]− tr[D∗]= tr[PnA−1
∗ B∗]− tr[PnUnA−1

∗ B∗]+ oP(n−1). (17)

We next consider the approximation of (D̂n −Dn). Applying a Taylor expansion gives

tr[D̂n −Dn]=∇′
θtr[Dn]θ̃n + 1

2
θ̃
′
n∇2

θtr[D∗]θ̃n + oP(n−1), (18)

where θ̃n := θ̂n −θ∗. We also note that

∇′
θtr[Dn]θ̃n =∇′

θtr[D∗]θ̃n +∇′
θ(tr[Dn]− tr[D∗])θ̃n + oP(n−1) and (19)

∇θtr[D∗]= [tr[R j,∗A−1
∗ B∗]] (20)

by Lemma A3(ii). Further, applying Lemma A3(i and ii) implies that

∇θ(tr[Dn]− tr[D∗]) = [tr[(∂ jBn)A−1
n − (∂ jB∗)A−1

∗ ]]

−[tr[BnA−1
n (∂ jAn)A−1

n −B∗A−1
∗ (∂ jA∗)A−1

∗ ]]. (21)
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We examine each element in Eq. (21) separately. The first term in Eq. (21) is

(∂ jBn)A−1
n − (∂ jB∗)A−1

∗

≡ ∂ j(Bn −B∗)A−1
∗ +∂ j(Bn −B∗)(A−1

n −A−1
∗ )+ (∂ jB∗)(A−1

n −A−1
∗ ).

We now apply Lemma A1(i) and obtain

(∂ jBn)A−1
n − (∂ jB∗)A−1

∗ = ∂ j(Bn −B∗)A−1
∗ − (∂ jB∗)UnA−1

∗ + oP(n−1/2). (22)

For the second term in Eq. (21), note that

BnA−1
n (∂ jAn)A−1

n −B∗A−1
∗ (∂ jA∗)A−1

∗ ≡ (Bn −B∗)A−1
n (∂ jAn)A−1

n

+B∗(A−1
n −A−1

∗ )(∂ jAn)A−1
n +B∗A−1

∗ ∂ j(An −A∗)A−1
n

+B∗A−1
∗ (∂ jA∗)(A−1

n −A−1
∗ ),

and apply Lemma A3(i) and the definitions of Wn and H j,n to obtain

BnA−1
n (∂ jAn)A−1

n −B∗A−1
∗ (∂ jA∗)A−1

∗ =B∗WnA−1
∗ (∂ jA∗)A−1

∗

−B∗UnA−1
∗ (∂ jA∗)A−1

∗ +B∗H j,nA−1
∗ −B∗A−1

∗ (∂ jA∗)UnA−1
∗ + oP(n−1/2). (23)

We now subtract Eq. (23) from Eq. (22) to obtain the approximation of the RHS in Eq. (21) as follows:

∇θ(tr[Dn]− tr[D∗])= [tr[{J j,n −PnA−1
∗ ∂ jA∗−R j,∗Un}A−1

∗ B∗]]+ oP(n−1/2), (24)

where letting J j,n := G j,n −H j,n, G j,n := B−1∗ ∂ j(Bn −B∗), Pn := Wn −Un, and R j,∗ := B−1∗ ∂ jB∗ −
A−1∗ ∂ jA∗. We now plug Eqs. (20) and (24) into Eq. (19) and obtain

∇′
θtr[Dn]θ̃n = [tr[R j,∗A−1

∗ B∗+ {J j,n −PnA−1
∗ ∂ jA∗−R j,∗Un}A−1

∗ B∗]]′θ̃n + oP(n−1).

Plugging this into Eq. (18) yields

tr[D̂n −Dn]=[tr[R j,∗A−1
∗ B∗+ {J j,n −PnA−1

∗ ∂ jA∗−R j,∗Un}A−1
∗ B∗]]′θ̃n

+ 1
2
θ̃
′
n∇2

θtr[D∗]θ̃n + oP(n−1). (25)
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We now combine Eqs. (17) and (25) and obtain

tr[D̂n]− tr[D∗]=tr[LnA−1
∗ B∗]− tr[LnUnA−1

∗ B∗]+ [tr[(J j,n −PnA−1
∗ ∂ jA∗)A−1

∗ B∗]]′θ̃n

+ 1
2
θ̃
′
n∇2

θtr[D∗]θ̃n + oP(n−1), (26)

where we let Ln := Pn +∑`
j=1 θ̃ j,nR j,∗. Finally, imposing H0 implies that Ln = Mn +∑`

j=1 θ̃ j,nS j,∗,

A−1∗ B∗ = I, and Pn =Mn, so that the desired result follows.

(ii) We note that

det[D̂n]
1
k −det[D∗]

1
k ≡ (det[D̂n]

1
k −det[Dn]

1
k )+ (det[Dn]

1
k −det[D∗]

1
k ). (27)

We separately examine the approximation for each term of the RHS and then combine them under

the null.

First, we consider det[Dn]
1
k −det[D∗]

1
k . We note that

det[Dn]
1
k −det[D∗]

1
k =1

k
det[D∗]

1
k−1(det[Dn]−det[D∗])

+ 1
2k

(
1
k
−1

)
det[D∗]

1
k−2(det[Dn]−det[D∗])2 + oP(n−1)

by a second-order Taylor expansion. We apply Lemma A2(iv) to obtain

det[Dn]
1
k −det[D∗]

1
k = det[D∗]

1
k {

1
k

tr[Pn]+ 1
2k2 tr[Pn]2 − 1

2k
(tr[W2

n]− tr[U2
n])}+ oP(n−1). (28)

Next, we approximate det[D̂n]1/k −det[Dn]1/k. A second-order Taylor expansion gives

det[D̂n]
1
k −det[Dn]

1
k =1

k
det[Dn]

1
k−1∇′

θ det[Dn]θ̃n + 1
2k

det[Dn]
1
k−1θ̃

′
n∇2

θ det[Dn]θ̃n

+ 1
2k

(
1
k
−1

)
det[Dn]

1
k−2{∇′

θ det[Dn]θ̃n}2 + oP(n−1). (29)

Here, each term on the RHS can be approximated as follows: we have

det[Dn]
1
k−2{θ̃′n∇θ det[Dn]}2 = det[D∗]

1
k {θ̃′n[tr[R j,∗]]}2 + oP(n−1) (30)

by Assumption 4 and Lemma A4(i,ii), and

det[Dn]
1
k−1θ̃

′
n∇2

θ det[Dn]θ̃n = det[D∗]
1
k−1θ̃

′
n∇2

θ det[D∗]θ̃n + oP(n−1). (31)
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Here, we have used Assumption 3. Also, we can decompose the main part of the first term on the

RHS as

det[Dn]
1
k−1∇′

θ det[Dn]θ̃n ≡det[D∗]
1
k−1∇′

θ det[D∗]θ̃n + (det[Dn]
1
k−1 −det[D∗]

1
k−1)∇′

θ det[D∗]θ̃n

+det[Dn]
1
k−1(∇′

θ det[Dn]−∇′
θ det[D∗])θ̃n. (32)

We examine the approximation of each term on the RHS of Eq. (32): (a) the first term is

det[D∗]
1
k−1∇′

θ det[D∗]θ̃n = det[D∗]
1
k [tr[R j,∗]]′θ̃n (33)

by Lemma A4(ii); (b) the second term on the RHS of Eq. (32) can be written

(det[Dn]
1
k−1 −det[D∗]

1
k−1)∇′

θ det[D∗]θ̃n

=
(

1
k
−1

)
det[D∗]

1
k−2(det[Dn]−det[D∗])∇′

θ det[D∗]θ̃n + oP(n−1)

=
(

1
k
−1

)
det[D∗]

1
k tr[Pn][tr[R j,∗]]′θ̃n + oP(n−1) (34)

by Lemmas A2(iv) and A4(ii); (c) the final term on the RHS of Eq. (32) can be written as

det[Dn]
1
k−1(∇′

θ det[Dn]−∇′
θ det[D∗])θ̃n = det[D∗]

1
k tr[Pn][tr[R j,∗]]′θ̃n

+det[D∗]
1
k [tr[J j,n +UnA−1

∗ ∂ jA∗−WnB−1
∗ ∂ jB∗]]′θ̃n + oP(n−1) (35)

by Lemma A4(iv); (d) we now plug Eqs. (33), (34), and (35) into Eq. (32) and obtain

det[Dn]
1
k−1∇′

θ det[Dn]θ̃n = det[D∗]
1
k {1+k−1tr[Pn]}[tr[R j,∗]]′θ̃n

+det[D∗]
1
k [tr[J j,n +UnA−1

∗ ∂ jA∗−WnB−1
∗ ∂ jB∗]]′θ̃n + oP(n−1). (36)

Plugging Eqs. (30), (31), and (36) into Eq. (29) gives

det[D̂n]
1
k −det[Dn]

1
k = 1

k
det[D∗]

1
k

{
1+ 1

k
tr[Pn]

}
[tr[R j,∗]]′θ̃n

+ 1
k

det[D∗]
1
k [tr[J j,n +UnA−1

∗ ∂ jA∗−WnB−1
∗ ∂ jB∗]]′θ̃n

+ 1
2k

(
1
k
−1

)
det[D∗]

1
k {[tr[R j,∗]]′θ̃n}2 + 1

2k
det[D∗]

1
k−1θ̃

′
n∇2

θ det[D∗]θ̃n + oP(n−1). (37)
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Summing Eqs. (28) and (37) then gives

det[D∗]−
1
k

{
det[D̂n]1/k −det[D∗]1/k

}
= 1

k
tr[Ln]+ 1

2k

(
1
k
−1

)
tr[Ln]2

+ 1
k

tr[Pn]tr[
∑̀
j=1

θ̃ j,nR j,∗]+ 1
2k

(tr[Pn]2 + tr[U2
n]− tr[W2

n])

+ 1
k

[tr[J j,n +UnA−1
∗ ∂ jA∗−WnB−1

∗ ∂ jB∗]]′θ̃n + 1
2k

det[D∗]−1θ̃
′
n∇2

θ det[D∗]θ̃n + o(n−1). (38)

Here, we let Ln :=Pn+∑`
j=1(θ̂ j,n−θ j,∗)R j,∗. This reduces to the desired result by noting that det[D∗]=

1, Ln =Kn, Pn =Mn, and R j,∗ =S j,∗ under H0.

(iii) By the definitions of T̂?
n and D̂?

n , it also follows that Ŝ?n = T̂?
n − D̂?

n , so that

Ŝ?n =− 1
2k

(
1
k
−1

)
tr[Kn]2 − 1

k
tr[KnUn]− 1

2k
(tr[Mn]2 + tr[U2

n]− tr[W2
n])

− 1
k

[tr[MnA−1
∗ ∂ jA∗+UnA−1

∗ ∂ jA∗−WnA−1
∗ ∂ jB∗]]′θ̃n − 1

k
[tr[Mn]tr[S j,∗]]′θ̃n

+ 1
2k

θ̃
′
n(∇2

θtr[D∗]−∇2
θ det[D∗])θ̃n.

Here, Lemma A7 implies that (∇2
θ
tr[D∗]−∇2

θ
det[D∗])= [tr[S j,∗Si,∗]− tr[S j,∗]tr[Si,∗]]. Therefore,

1
2k

θ̃
′
n(∇2

θtr[D∗]−∇2
θ det[D∗])θ̃n = 1

2k
tr[(

∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗)2]− 1
2k

tr[
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]2. (39)

Next, we note that Mn =Wn −Un and Kn =Mn +∑`
j=1(θ̂ j,n −θ j,∗)S j,∗ under H0, so that

− 1
2k

(tr[U2
n]− tr[W2

n])= 1
2k

tr[M2
n]+ 1

k
tr[MnUn] and (40)

−1
k

tr[KnUn]=−1
k

tr[MnUn]− 1
k

tr[Un
∑̀
j=1

(θ̂ j,n −θ j,∗)S j,∗]. (41)

Finally, we note that under H0,

1
k

tr[MnA−1
∗ ∂ jA∗+UnA−1

∗ ∂ jA∗−WnA−1
∗ ∂ jB∗]=−1

k
tr[MnS j,∗+UnS j,∗]. (42)

We now replace these new representations in (39), (40), (41), and (42) and rearrange the terms to

obtain the desired result. ■

Proof of Lemma 4: The given claims are already proven by Eqs. (26) and (38). ■

Proof of Corollary 1: We let Qn := (A−1∗ B∗ −det[D∗]
1
k I) for notational simplicity. We also have

38



Ŝn = (T∗−D∗)+αn +βn + oP(n−1), where αn :=α(1)
n +α(2)

n , α(1)
n := 1

k tr[QnLn],

α(2)
n := 1

k
[tr[QnJ j,n]]′θ̃n − 1

k
θ̃
′
n[tr[QnR j,∗A−1

∗ ∂iA∗+Qn(B−1
∗ ∂2

jiB∗−A−1
∗ ∂2

jiA∗)]]′ θ̃n,

and

βn :=− 1
k

tr[A−1
∗ B∗LnUn]−det[D∗]

1
k {

1
2k2 tr[Ln]2 − 1

2k
tr[W2

n −U2
n]}

− 1
k

[tr[A−1
∗ B∗PnA−1

∗ ∂ jA∗]]′θ̃n + 1
k

det[D∗]
1
k [tr[UnR j,∗+PnB−1

∗ ∂ jB∗]]′θ̃n

+ 1
2k

det[D∗]
1
k θ̃

′
n[tr[R j,∗Ri,∗]]θ̃n

by Lemmas 4, A5, and A6.

(i) It is not hard to see that α(1)
n = OP(n−1/2), α(2)

n = OP(n−1), and βn = OP(n−1). Thus, Ŝn =
(T∗−D∗)+α(1)

n +oP(n−1/2)= (T∗−D∗)+ 1
k tr[(A−1∗ B∗−det[D∗]

1
k I)Ln]+oP(n−1/2) by the definition of Qn.

(ii) If for some d∗ > 0, B∗ = d∗A∗, det[D∗]
1
k = d∗, and Qn = 0. Also, T∗ = D∗, αn = 0, and

βn =− d∗
2k2 tr[Ln]2 − d∗

k
tr[LnUn]+ d∗

2k
tr[W2

n −U2
n]+ d∗

2k
θ̃
′
n[tr[R j,∗Ri,∗]]θ̃n

+ d∗
k

[tr[UnR j,∗+Pn(B−1
∗ ∂ jB∗−A−1

∗ ∂ jA∗)]]′θ̃n.

Here, we let Ln :=Wn −Un +∑`
j=1 θ̃ j,nR j,∗ and R j,∗ :=B−1∗ ∂ jB∗−A−1∗ ∂ jA∗, so that

βn =− d∗
2k2 tr[Ln]2 + d∗

2k
tr[(Wn −Un)2 +2(Wn −Un)

∑̀
j=1

θ̃ j,nR j,∗+ (
∑̀
j=1

θ̃ j,nR j,∗)2].

Finally, we note that tr[L2
n]= tr[W2

n+U2
n−2WnUn+2(Wn−Un)

∑`
j=1 θ̃ j,nR j,∗+(

∑`
j=1 θ̃ j,nR j,∗)2], yield-

ing

βn =− d∗
2k2 tr[Ln]2 + d∗

2k
tr[L2

n].

This completes the proof. ■

The following lemmas are useful in examining the test statistics under the local alternative: H(1)
a .

Lemma A8. Given the same conditions as in Lemma 5 and H(1)
a ,

(i) B−1∗,n =B−1∗ −n−1/2N∗B−1∗ +O(n−1);

(ii) tr[B∗,nA−1∗ ]= k+n−1/2tr[N∗];

(iii) R̃ j,∗,n =S j,∗+n−1/2C j,∗+O(n−1), where R̃ j,∗,n :=B−1∗,n∂ jB∗,n −A−1∗ ∂ jA∗;
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(iv) P̃n =Mo,n −n−1/2N∗Wo,n +OP(n−3/2), where P̃n :=B−1∗,n(Bn −B∗,n)−A−1∗ (An −A∗);

(v) L̃n = Ko,n + n−1/2 ∑`
j=1(θ̂ j,n −θ j,∗)C j,∗− n−1/2N∗Wo,n +OP(n−3/2), where L̃n := P̃n +∑`

j=1(θ̂ j,n −
θ j,∗)R̃ j,∗,n;

(vi) tr[L̃nA−1∗ B∗,n]= tr[Ko,n]+n−1/2tr[
∑`

j=1(θ̂ j,n −θ j,∗){S j,∗N∗+C j,∗}−UnN∗]+OP(n−3/2);

(vii) tr[L̃nUnA−1∗ B∗,n]= tr[Ko,nUn]+OP(n−3/2); and

(viii) J̃ j,n =J j,o,n +OP(n−1), where J̃ j,n :=B−1∗,n∂ j(Bn −B∗,n)−A−1∗ ∂ j(An −A∗). ä

Proof of Lemma A8: (i) From the definition of B∗,n, B∗,n =B∗(I−n−1/2B−1∗ (−B̄∗)), so that B−1∗,n = (I−
n−1/2B−1∗ (−B̄∗))−1B−1∗ . We also note that when the sample size n is moderately large, all eigenvalues

of n−1/2B−1∗ (−B̄∗) are less than one in modulus, so that

(I−n−1/2B−1
∗ (−B̄∗))−1 = I−n−1/2B−1

∗ B̄∗+n−1B−1
∗ B̄∗B−1

∗ B̄∗+ . . . .

This implies that B−1∗,n =B−1∗ −n−1/2N∗B−1∗ +n−1N2∗B−1∗ + . . .. The desired result follows from this.

(ii) Under H(1)
a , B∗,nA−1∗ = I+n−1/2B̄∗B−1∗ . Thus, tr[B∗,nA−1∗ ]= k+n−1/2tr[N∗].

(iii) Using Lemma A8(i) and B∗,n, B−1∗,n∂ jB∗,n = (B−1∗ −n−1/2N∗B−1∗ )(∂ jB∗+n−1/2∂ jB̄∗)+O(n−1) =
B−1∗ ∂ jB∗ + n−1/2C j,∗ +O(n−1). Also, under H(1)

a , A∗ = B∗. Thus, the desired result follows by the

definition of S j,∗.

(iv) Using Lemma A8(i) and the definition of Wo,n := B−1∗ (Bn −B∗,n), P̃n = (B−1∗ − n−1/2N∗B−1∗ +
O(n−1))(Bn −B∗,n)−A−1∗ (An −A∗)=Mo,n −n−1/2N∗Wo,n +OP(n−3/2).

(v) From the definition of L̃n, L̃n = P̃n +∑`
j=1(θ̂ j,n −θ j,∗)R̃ j,∗,n. Lemmas A8(iii and iv) now imply

that L̃n =Mo,n −n−1/2N∗Wo,n +∑`
j=1(θ̂ j,n −θ j,∗)S j,∗+n−1/2 ∑`

j=1(θ̂ j,n −θ j,∗)C j,∗+OP(n−3/2).

(vi) From the definition of L̃n, L̃nA−1∗ B∗,n = P̃nA−1∗ B∗,n +∑`
j=1(θ̂ j,n −θ j,∗)R̃ j,∗,nA−1∗ B∗,n. We ex-

amine the traces of the terms in the RHS. First, tr[P̃nA−1∗ B∗,n] = tr[Wo,n −Un]− n−1/2tr[UnN∗] =
tr[Mo,n]− n−1/2tr[UnN∗] by noting that tr[B−1∗,n(Bn −B∗,n)A−1∗ B∗,n] = tr[A−1∗ (Bn −B∗,n)] = tr[Wo,n].

Second, using Lemma A8(iii),
∑`

j=1(θ̂ j,n −θ j,∗)R̃ j,∗,nA−1∗ B∗,n =∑`
j=1(θ̂ j,n −θ j,∗)S j,∗+n−1/2 ∑`

j=1(θ̂ j,n −
θ j,∗)S j,∗N∗+n−1/2 ∑`

j=1(θ̂ j,n−θ j,∗)C j,∗+OP(n−3/2). Therefore, if we add these two terms and note that

Ko,n =Mo,n +∑`
j=1(θ̂ j,n −θ j,∗)S j,∗, the desired result follows.

(vii) From the proof of Lemma A8(v), L̃n = Ko,n +OP(n−1). This implies that L̃nUn = Ko,nUn +
OP(n−3/2), so that we can conclude that tr[L̃nUnA−1∗ B∗,n]= tr[Ko,nUnA−1∗ B∗,n]+OP(n−3/2).

(viii) By Lemma A8(i), it trivially holds. This completes the proof. ■

Lemma A9. Given the same conditions as in Lemma 5 and H(1)
a ,

(i) det[B∗,n]= det[B∗]+n−1/2 det[B∗]tr[N∗]+ 1
2n det[B∗]{tr[N∗]2 − tr[N2∗]}+O(n−3/2);
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(ii) det[B∗,nA−1∗ ]= 1+n−1/2tr[N∗]+ 1
2n {tr[N∗]2 − tr[N2∗]}+O(n−3/2); and

(iii) det[B∗,nA−1∗ ]1/k = 1+ 1p
nk tr[N∗]+ 1

2nk {tr[N∗]2 − tr[N2∗]}+ 1
2nk ( 1

k −1)tr[N∗]2 +O(n−3/2). ä

Proof of Lemma A9: (i) We can apply Taylor’s expansion to the determinant. That is,

det[B∗,n]=det[B∗]+det[B∗]tr[B−1
∗ (B∗,n −B∗)]

+ det[B∗]
2

{
tr[B−1

∗ (B∗,n −B∗)]2 − tr[B−1
∗ (B∗,n −B∗)B−1

∗ (B∗,n −B∗)]
}+ oP(n−1).

We also note that B∗,n −B∗ = n−1/2B̄∗, and plugging this into the above equation now yields the

desired result.

(ii) By Lemma A9(i) and the facts that det[B∗,nA−1∗ ] = det[B∗,n]/det[A∗] and det[B∗] = det[A∗],

the desired result follows by dividing the equation in Lemma A9(i) with det[A∗].

(iii) If we expand the power function x1/k around 1,

x1/k = 1+ 1
k

(x−1)+ 1
2k

(
1
k
−1

)
(x−1)2 + . . . .

We now let x be det[B∗,nA−1∗ ] and instead plug its expansion in Lemma A9(ii) into this equation.

Next, we arrange the terms in the RHS according to their convergence rates. The desired result

follows from this. ■

Proof of Lemma 5: (i) As the key parameter is now B∗,n, we approximate T̂n around A∗ and B∗,n

using Lemma 4(i). Then,

T̂n =1
k

tr[B∗,nA−1
∗ ]−1+ 1

k
tr[L̃nA−1

∗ B∗,n]− 1
k

tr[L̃nUnA−1
∗ B∗,n]

+ 1
k

[tr[(J̃ j,n − P̃nA−1
∗ ∂ jA∗)A−1

∗ B∗,n]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θtr[B∗,nA−1

∗ ](θ̂n −θ∗)+ oP(n−1).

We note that the asymptotic approximation of the first line in this equation is provided in Lemma

A8(iii, vi, and vii). In addition, Lemma A8 provides the asymptotic expansions of P̃n and K̃ j,n, so

that

1
k

[tr[(J̃ j,n − P̃nA−1
∗ ∂ jA∗)A−1

∗ B∗,n]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θtr[B∗,nA−1

∗ ](θ̂n −θ∗)

=1
k

[tr[(J̃ j,o,n −Mo,nA−1
∗ ∂ jA∗)A−1

∗ B∗,n]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θtr[D−1

∗ ](θ̂n −θ∗)+ oP(n−1).
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Therefore, if we collect all these results, it is not hard to obtain that

T̂n = T̂o,n + 1p
nk

{
tr[N∗]− tr[N∗Un]+ [tr[A−1

∗ (∂ jB̄∗)−N∗A−1
∗ (∂ jĀ∗)]]′(θ̂n −θ∗)

}+ oP(n−1)

using the definition of T̂o,n. This is the desired result.

(ii) The proof is almost identical. If we approximate D̂n around A∗ and B∗,n using Lemma 4(ii),

D̂n =det[B∗,nA−1
∗ ]

1
k −1+ 1

k
det[B∗,nA−1

∗ ]
1
k tr[L̃n]+ 1

2k

(
1
k
−1

)
det[B∗,nA−1

∗ ]
1
k tr[L̃n]2

+ 1
k

det[B∗,nA−1
∗ ]

1
k tr[P̃n][tr[R̃ j,∗,n]]′(θ̂n −θ∗)+ 1

2k
det[B∗,nA−1

∗ ]
1
k (tr[P̃n]2 + tr[U2

n]− tr[W̃2
n])

+ 1
k

det[B∗,nA−1
∗ ]

1
k [tr[J̃ j,n +UnA−1

∗ ∂ jA∗−W̃nB−1
∗ ∂ jB∗]]′(θ̂n −θ∗)

+ 1
2k

det[B∗,nA−1
∗ ]

1
k−1(θ̂n −θ∗)′∇2

θ det[B∗,nA−1
∗ ](θ̂n −θ∗)+ oP(n−1),

where W̃n := B−1∗,n(Bn −B∗,n). We note that the last three lines of this equation is OP(n−1), so that

they can be reformulated into

1
k

tr[Mo,n][tr[S j,∗]]′(θ̂n −θ∗)+ 1
2k

(tr[Mo,n]2 + tr[U2
n]− tr[W2

o,n])

+ 1
k

[tr[J j,o,n +UnA−1
∗ ∂ jA∗−Wo,nA−1

∗ ∂ jB∗]]′(θ̂n −θ∗)+ 1
2k

(θ̂n −θ∗)′∇2
θ det[D∗](θ̂n −θ∗)+OP(n−3/2)

under H(1)
a . On the other hand, the first line of the equation is formed by det[B∗,nA−1∗ ] and tr[L̃n],

and their asymptotic expansions are given in Lemmas A8(v) and A9(iii), respectively. Using these,

we obtain that

det[B∗,nA−1
∗ ]

1
k −1+ 1

k
det[B∗,nA−1

∗ ]
1
k tr[L̃n]+ 1

2k

(
1
k
−1

)
det[B∗,nA−1

∗ ]
1
k tr[L̃n]2

=1
k

tr[K̃o,n]+ 1p
nk

tr[N∗]+ 1
2k

(
1
k
−1

)
tr[K̃o,n]2 − 1p

nk
tr[N∗Wo,n]+ 1p

nk
[tr[C j,∗]]′(θ̂n −θ∗)

+ 1p
nk2 tr[N∗]tr[Ko,n]+ 1

2nk2 tr[N∗]2 − 1
2nk

tr[N2
∗]+OP(n−3/2).

We now combine them and note the definition of D̂o,n to obtain the desired result.

(iii) Using the definition of Ŝn := T̂n− D̂n, we rearrange the terms according to their convergence

rate. Using the fact that S j,∗ :=B−1∗ ∂ jB∗−A−1∗ ∂A∗ under H(1)
a , we can derive the desired result. This

completes the proof. ■

Proof of Theorem 5: (i) From Lemma 5, we note that k
p

nT̂n = tr[N∗]+ k
p

nT̂o,n +OP(n−1/2) and
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k
p

nD̂n = tr[N∗]+k
p

nD̂o,n +OP(n−1/2), so that

nk2

2
(T̂2

n + D̂2
n)= tr[N∗]2 +k

p
n(T̂o,n + D̂o,n)tr[N∗]+ k2n

2
(T̂2

o,n + D̂2
o,n)+OP(n−1/2).

Also, T̂o,n = 1
k tr[Ko,n]+OP(n−1) and D̂o,n = 1

k tr[Ko,n]+OP(n−1) by the definitions of T̂o,n and D̂o,n and

the given conditions. Thus, it follows that

nk2

2
(T̂2

n + D̂2
n)= tr[N∗]2 +2

p
ntr[Ko,n]tr[N∗]+ntr[Ko,n]2 +OP(n−1/2),

and we note that B̂(1)
n := nk2

2 (T̂2
n+D̂2

n), implying that B̂(1)
n = (tr[N∗]+pntr[Ko,n])2+OP(n−1/2)= (tr[N∗+

p
nKo,n])2 +OP(n−1/2). This is the desired result.

(ii) By Lemma 5(i),
p

nT̂n = 1
k tr[N∗]+

p
n

k tr[Ko,n]+OP(n−1/2), so that

nkT̂2
n = 1

k
tr[N∗]2 + n

k
tr[Ko,n]2 + 2

p
n

k
tr[N∗]tr[Ko,n]+OP(n−1/2).

Next, Lemma 5(iii) implies that

2nkŜn =tr[N2
∗]+ntr[K2

o,n]− 1
k

tr[N∗]2 − n
k

tr[Ko,n]2 − 2
p

n
k

tr[N∗]tr[Ko,n]

+2
p

ntr[N∗Mo,n]+2
p

n[tr[N∗A−1
∗ (∂ jB∗−∂ jA∗)]]′(θ̂n −θ∗)+OP(n−1/2).

Thus, if we add nkT̂2
n to 2nkŜn,

nkT̂2
n +2nkŜn =tr[N2

∗]+ntr[K2
o,n]

+2
p

n
{
tr[N∗Mo,n]+ [tr[N∗A−1

∗ (∂ jB∗−∂ jA∗)]]′(θ̂ j,n −θ j,∗)
}+OP(n−1/2).

We now note that tr[N∗Mo,n]+ [tr[N∗A−1∗ (∂ jB∗−∂ jA∗)]]′(θ̂n−θ∗)= tr[N∗Ko,n], so that B̂(2)
n = nkT̂2

n+
2nkŜn = tr[N2∗]+2

p
ntr[N∗Ko,n]+ntr[K2

o,n]+OP(n−1/2), implying that B̂(2)
n = tr[(N∗+

p
nKo,n)2]+oP(1),

as desired.

(iii) By Lemma 5(ii),
p

nD̂n = 1
k tr[N∗]+

p
n

k tr[Ko,n]+OP(n−1/2), and this expansion is the same

as that of
p

nT̂n. We can thus conclude that B̂(3)
n has the same asymptotic expansion as B̂(2)

n . This

completes the proof. ■

Proof of Lemma 6: (i) We note that L̂n = ln[D̂n +1] and D̂n = OP(n−1/2). We now approximate L̂n
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around 1 by using Taylor’s expansion, which yields that

L̂n = D̂n − 1
2

D̂2
n + oP(n−1). (43)

Given this, Lemma 5(ii) provides the asymptotic expansion of D̂n, so that it follows that

1
2

D̂2
n = 1

2nk2 tr[N∗]2 + 1
2k2 tr[Ko,n]2 + 1p

nk2 tr[N∗]tr[Ko,n]+ oP(n−1). (44)

We now combine the results in Lemma 5(ii) and Eq. (44) with Eq. (43), and this yields the desired

result.

(ii) We note that Q̂n = ln[T̂n+1] and T̂n =OP(n−1/2). We now approximate Q̂n around 1 by Taylor’s

expansion, and we obtain that

Q̂n = T̂n − 1
2

T̂2
n + oP(n−1). (45)

We further note that

T̂2
n = 1

nk2 tr[N∗]2 + 1
k2 tr[Ko,n]2 + 2p

nk2 tr[N∗]tr[Ko,n]+ oP(n−1) (46)

and combine this with Lemma 5(i) according to Eq. (45). This gives the desired result.

(iii) We simply combine the results in Lemmas 5(i) and 6(ii) by using the definition of M̂n. This

shows that

M̂n = 1
2kn

tr[(N∗+
p

nKo,n)2]+ 1
2k2 tr[Ko,n]2 − 1

2k
tr[K2

o,n]+ Ŝo,n + oP(n−1).

We next substitute Ŝo,n in this equation with its definition. Most terms are canceled by others, and

the only surviving term is tr[(N∗+
p

nKo,n)2]/(2kn)+ oP(n−1).

(iv) We combine the results in Lemma 6(i and ii) by using the definition of Ŵn. Then, it follows

that

Ŵn = Q̂n − L̂n

= 1
2nk

tr[(N∗+
p

nKo,n)2]− 1
2nk2 tr[N∗+

p
nKo,n]2 + 1

2k2 tr[Ko,n]2 − 1
2k

tr[K2
o,n]+ Ŝo,n + oP(n−1).

We now use the definition of Ŝo,n to obtain the desired result. This completes the proof. ■

Proof of Theorem 6: (i) We note that L R(1)
n = 2{ln[Ln(θ̂n,B̂n)]− ln[Ln(θ̂n,Ân)]} = nk(T̂n − L̂n) =
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nkM̂n = 1
2 tr[(N∗+

p
nKo,n)2]+ oP(n−1) by Lemma 6(ii).

(ii and iii) The desired results follow from Theorem 6(i) and Theorem 5(ii and iii). ■

Proof of Theorem 7: (i) We note that L R(2)
n =−n ln[det(B̂n)]+nk ln[tr[Â−1

n B̂n]/k]+n ln[det(Ân)] =
n(k ln[tr[Â−1

n B̂n]/k]− ln[det(Â−1
n B̂n)])= n(kQ̂n −kL̂n)= nkŴn. Given this, the desired result holds by

Lemma 6(iv).

(ii and iii) We can combine Theorem 7(i) with Theorem 5 to complete the proof. ■

B.2 Additional Assumptions for Theorem 2

Assumption A 1. (Ω,F ,P) is a complete probability space. ä

Assumption A 2. (i) For k ∈N, the symmetric matrix A∗ := E[a(Yt,Xt)a(Yt,Xt)′]−E[a(Yt,Xt)]E[a(Yt,

Xt)′] is positive definite; and

(ii) the symmetric matrix B∗ := E[b(Yt,Xt)b(Yt,Xt)′]−E[b(Yt,Xt)]E[b(Yt,Xt)′] is positive definite.

ä

Assumption A 3. (i) The estimators Ãn and B̃n are consistent for A∗ and B∗, respectively; and

(ii)
p

n[vech[(Σ̂a,n−Σa,∗)]′,vech[(Σ̂b,n−Σb,∗)]′, (µ̂a,n−µa,∗)′, (µ̂b,n−µb,∗)′]′ A∼ N(0,Υ∗), where Υ∗ is

a (k2 +3k)× (k2 +3k) positive semi-definite matrix. ä

Assumption A 4. (i) The estimators Ãn and B̃n are consistent for A∗ and B∗, respectively; and

(ii)
p

n[vech[(Σ̂a,n−Σa,∗)]′,vech[(Σ̂b,n−Σb,∗,n)]′, (µ̂a,n−µa,∗)′, (µ̂b,n−µb,∗,n)′]′ A∼ N(0,Υ∗), where Υ∗

is a (k2 +3k)× (k2 +3k) positive semi-definite matrix. ä

Assumption A 5. The symmetric mapping B̄∗ is positive definite. ä
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Conditions for (T∗,D∗) Relationships
A B̂(2)

n & B̂(1)
n & B̂(3)

n
B B̂(1)

n & B̂(3)
n & B̂(2)

n
C B̂(2)

n & B̂(3)
n & B̂(1)

n
D B̂(3)

n & B̂(2)
n & B̂(1)

n
E B̂(3)

n & B̂(1)
n & B̂(2)

n
F B̂(1)

n & B̂(2)
n & B̂(3)

n

Table 1: GLOBAL POWER RELATIONSHIPS. This table shows the power orders of B̂(1)
n , B̂(2)

n , and B̂(3)
n

under Conditions A to F. These orders are obtained by the divergence rates of the test statistics given
by Eqs. (6), (7), and (8). This implies that if the sample size is fairly large and (T∗,D∗) belongs to the
region indexed by F, say, then B̂(1)

n is more powerful than B̂(2)
n , and B̂(2)

n is more powerful than B̂(3)
n .

Statistics Levels \ n 50 100 200 400 600 800 1,000 2,000
1% 1.07 1.02 1.03 1.05 1.21 1.18 1.06 1.01

B̂
(1,p)
n 5% 5.32 5.42 4.99 5.12 5.25 5.33 4.98 5.01

10% 10.48 10.23 9.82 10.06 10.06 10.44 9.86 10.14
1% 1.02 1.12 1.13 1.12 1.08 1.13 1.07 1.06

B̂
(2,p)
n 5% 5.00 5.10 4.95 5.29 5.28 5.22 4.86 5.20

10% 9.81 10.23 10.16 10.19 10.46 10.30 9.83 10.23
1% 1.06 1.08 1.14 1.15 1.01 1.14 1.04 1.02

B̂
(3,p)
n 5% 5.02 5.15 4.84 5.25 5.33 5.21 4.89 5.09

10% 9.90 10.10 9.97 10.30 10.51 10.24 9.85 10.17
1% 36.93 25.91 16.68 10.40 7.98 6.51 5.73 3.43

IMn 5% 53.28 40.14 28.45 20.22 16.45 14.15 13.22 9.60
10% 62.79 49.01 36.45 27.38 23.51 20.86 19.61 15.56
1% 1.62 1.90 1.76 1.78 1.37 1.54 1.33 1.13

JBn 5% 3.51 4.21 4.48 4.87 5.04 4.96 4.92 4.88
10% 5.22 6.70 7.61 8.58 9.15 9.40 9.28 9.68
1% 1.11 1.05 0.97 1.08 1.11 1.03 1.08 1.01

IMp
n 5% 5.14 5.15 4.97 4.85 5.06 5.15 5.27 5.03

10% 10.37 10.00 9.86 9.80 10.16 9.98 10.35 9.89
1% 1.09 1.15 1.06 1.21 1.05 1.25 1.03 0.98

JBp
n 5% 4.73 5.09 4.98 5.30 5.35 5.24 5.05 4.96

10% 9.91 10.16 9.94 9.98 10.23 10.45 10.12 10.06

Table 2: LEVELS OF THE TEST STATISTICS. Number of Repetitions: 20,000. Number of Bootstrap
Repetitions: 1,000. MODEL: Yt =X′

tβ+Ut and Ut ∼ N(0,σ2). DGP: Yt =X′
tβ∗+Ut and Ut ∼ N(0,σ2∗),

Xt = (1, X t)′, and X t ∼ N(0,1).
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Statistics \ n 50 100 200 400 600 800 1,000 2,000
Ut|Xt ∼ N(0,exp(X′

tβ∗))
B̂

(1,p)
n 53.68 80.76 97.48 100.0 100.0 100.0 100.0 100.0

B̂
(2,p)
n 87.62 99.64 100.0 100.0 100.0 100.0 100.0 100.0

B̂
(3,p)
n 89.29 99.74 100.0 100.0 100.0 100.0 100.0 100.0

IMp
n 22.22 88.64 100.0 100.0 100.0 100.0 100.0 100.0

JBp
n 50.82 78.94 96.98 99.98 100.0 100.0 100.0 100.0

Ut|Xt ∼ N(0,exp(2X′
tβ∗))

B̂
(1,p)
n 96.18 99.96 100.0 100.0 100.0 100.0 100.0 100.0

B̂
(2,p)
n 99.94 100.0 100.0 100.0 100.0 100.0 100.0 100.0

B̂
(3,p)
n 99.98 100.0 100.0 100.0 100.0 100.0 100.0 100.0

IMp
n 80.72 100.0 100.0 100.0 100.0 100.0 100.0 100.0

JBp
n 94.44 99.92 100.0 100.0 100.0 100.0 100.0 100.0

Ut|Xt ∼ 0.5 ·N(−1,1)+0.5 ·N(1,1)
B̂

(1,p)
n 9.42 14.90 25.32 44.92 63.18 76.76 85.14 99.32

B̂
(2,p)
n 1.04 1.32 3.98 23.78 48.18 70.44 84.76 99.70

B̂
(3,p)
n 1.60 2.64 8.94 32.16 55.24 75.56 87.38 99.76

IMp
n 16.10 25.90 43.72 67.08 81.20 90.20 95.20 99.86

JBp
n 0.88 1.04 7.80 36.84 65.28 83.28 92.80 99.94

Ut|Xt ∼ 0.5 ·N(−1.5,1)+0.5 ·N(1.5,1)
B̂

(1,p)
n 33.46 59.90 88.34 99.62 99.98 100.0 100.0 100.0

B̂
(2,p)
n 1.84 15.16 74.88 99.76 100.0 100.0 100.0 100.0

B̂
(3,p)
n 7.40 34.86 85.60 99.88 100.0 100.0 100.0 100.0

IMp
n 51.86 82.42 97.42 99.98 100.0 100.0 100.0 100.0

JBp
n 0.58 20.40 86.90 99.96 100.0 100.0 100.0 100.0

Ut|Xt ∼ t30

B̂
(1,p)
n 5.40 7.40 8.94 11.96 16.44 18.00 20.86 34.70

B̂
(2,p)
n 8.14 10.08 12.24 15.54 20.58 22.26 24.90 39.98

B̂
(3,p)
n 8.18 9.50 11.66 14.80 19.44 21.34 23.92 38.86

IMp
n 4.14 3.32 2.72 2.28 1.86 2.24 2.84 5.78

JBp
n 8.68 10.76 14.02 18.04 23.14 25.34 28.46 45.82

Ut|Xt ∼ t20

B̂
(1,p)
n 2.32 6.40 9.14 13.80 17.70 22.92 26.66 48.82

B̂
(2,p)
n 0.08 0.20 1.04 4.20 8.80 14.70 20.44 45.00

B̂
(3,p)
n 0.06 0.16 0.56 2.66 6.30 11.86 17.24 42.10

IMp
n 4.00 2.76 2.12 1.62 1.70 2.58 3.46 14.86

JBp
n 10.68 15.34 19.90 29.78 37.64 44.18 51.84 74.14

Table 3: POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). NUMBER OF REP-
ETITIONS: 5,000. NUMBER OF BOOTSTRAP REPETITIONS: 1,000. MODEL: Yt = X′

tβ+Ut and
Ut ∼ N(0,σ2). DGP: Yt =X′

tβ∗+Ut, Xt = (1, X t)′, and X t ∼ N(0,1).
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Xt Alternatives \ n 50 100 200 400 600 800 1,000 2,000

(1, X t)′

ALT 1   # 4 4 4 4 4
ALT 2   4 4 4 4 4 4
ALT 3       # #
ALT 4    # # 4 4 4
ALT 5 #  # # # # # #
ALT 6         

Table 4: PREDICTION OF THE MOST POWERFUL TEST. MODEL: Yt = X′
tβ+Ut and Ut ∼ N(0,σ2).

This table shows the results of the most powerful tests predicted by Table 1. “#” and “ ” indicate
that the prediction is correct and wrong, respectively. “4” indicates that the prediction of the most
powerful test cannot be properly made because B̂

(1,p)
n , B̂

(2,p)
n , and B̂

(3,p)
n all reject the null.

Statistics Levels \ n 50 100 200 400 600 800 1,000 2,000
1% 1.15 1.02 1.01 0.90 1.10 1.15 1.05 1.21

B̂
(1,p)
n 5% 5.12 5.00 4.89 5.45 5.16 5.38 4.99 5.35

10% 10.53 10.25 9.77 10.30 10.50 10.67 9.97 10.25
1% 1.13 1.05 1.04 0.90 1.13 1.11 1.05 1.17

B̂
(2,p)
n 5% 5.15 4.92 4.88 5.40 5.11 5.44 4.96 5.17

10% 10.20 9.93 9.96 10.00 10.35 10.74 10.25 10.24
1% 1.11 1.05 1.06 0.95 1.17 1.09 1.05 1.15

B̂
(3,p)
n 5% 5.20 5.03 4.82 5.45 5.19 5.53 4.93 5.20

10% 10.20 10.12 9.89 9.75 10.30 10.84 10.12 10.27
1% 16.47 16.08 12.76 10.90 10.16 8.94 8.30 5.89

IMn 5% 33.79 31.29 26.67 22.55 20.09 18.05 17.01 13.26
10% 45.36 41.41 35.53 30.30 27.28 25.45 23.77 19.49
1% 30.65 19.77 12.14 7.98 5.70 4.96 3.92 2.79

LMn 5% 35.54 24.99 17.24 12.64 9.84 9.24 8.08 7.01
10% 39.01 28.26 20.90 16.22 13.61 13.12 12.02 11.11
1% 1.09 1.11 1.09 1.05 1.16 1.18 1.16 1.12

IMp
n 5% 5.04 4.96 4.95 4.95 5.11 5.37 5.33 5.33

10% 9.96 10.12 9.83 9.05 10.26 10.26 10.52 10.31
1% 1.03 1.06 1.11 1.11 1.03 1.20 1.02 1.04

LMp
n 5% 5.38 4.91 5.09 5.53 5.17 5.21 4.98 5.33

10% 10.34 9.92 9.81 10.41 9.74 10.38 9.95 10.48

Table 5: LEVELS OF THE TEST STATISTICS. NUMBER OF REPETITIONS: 20,000. NUM-
BER OF BOOTSTRAP REPETITIONS: 1,000. MODEL: Yt|Xt ∼ Exp(αexp(X′

tβ)). DGP: Yt|Xt ∼
Exp(α∗ exp(X′

tβ∗)), Xt = X t, and X t ∼ N(0,1).
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Statistics \ n 50 100 200 400 600 800 1,000 2,000
δt ∼ DM(0.7370, 1.9296; 0.5)

B̂
(1,p)
n 15.52 28.12 48.46 74.44 88.94 95.72 98.16 99.98

B̂
(2,p)
n 20.84 30.38 47.60 71.60 86.86 94.40 97.56 100.0

B̂
(3,p)
n 17.72 28.00 45.88 76.48 86.34 94.20 97.52 100.0

IMp
n 0.92 0.54 0.72 6.44 24.98 53.44 75.84 99.96

LMp
n 0.80 0.20 0.02 0.02 1.24 17.42 60.20 100.0

δt ∼ Gamma(5,5)
B̂

(1,p)
n 21.14 37.32 62.04 87.14 96.42 98.64 99.48 100.0

B̂
(2,p)
n 27.10 42.38 63.82 86.72 95.94 98.72 99.58 100.0

B̂
(3,p)
n 24.44 39.80 62.20 86.20 95.76 98.62 99.54 100.0

IMp
n 1.74 1.32 1.80 8.88 26.56 51.54 73.38 99.20

LMp
n 0.68 0.26 0.02 0.00 0.08 2.44 16.22 87.58

δt ∼ LN(− ln(1.2)/2, ln(1.2))
B̂

(1,p)
n 14.06 14.06 41.68 67.20 84.46 90.58 95.72 99.98

B̂
(2,p)
n 19.46 19.46 43.82 66.54 83.12 89.62 94.90 99.90

B̂
(3,p)
n 17.08 17.08 42.36 65.10 82.44 89.26 94.72 99.90

IMp
n 1.68 1.68 0.94 2.66 10.80 24.68 44.64 96.73

LMp
n 0.96 0.42 0.18 0.00 0.08 1.98 16.24 98.68

δt ∼ U(0.30053,2.3661)
B̂

(1,p)
n 32.96 53.62 82.44 97.34 99.50 99.96 99.98 100.0

B̂
(2,p)
n 40.72 57.30 82.76 97.38 99.60 99.98 100.0 100.0

B̂
(3,p)
n 36.08 54.70 81.54 97.14 99.58 99.98 100.0 100.0

IMp
n 1.12 1.94 5.72 32.98 71.00 91.02 97.90 100.0

LMp
n 0.02 0.06 0.00 0.00 0.38 6.68 31.44 97.76

δt ∼ U(1,5/3)
B̂

(1,p)
n 4.78 5.54 6.36 7.56 8.44 10.00 9.62 13.90

B̂
(2,p)
n 5.62 7.06 7.52 8.20 8.74 10.20 10.02 12.84

B̂
(3,p)
n 5.32 6.68 7.20 7.92 8.52 9.88 9.68 12.50

IMp
n 4.32 3.76 3.34 3.44 2.84 2.78 3.00 2.58

LMp
n 4.10 4.00 2.84 2.20 1.82 1.48 1.08 2.54

Table 6: POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). NUMBER OF REPE-
TITIONS: 5,000. NUMBER OF BOOTSTRAP REPETITIONS: 1,000. MODEL: Yt|Xt ∼ Exp(αexp(X′

tβ)).
DGP: Yt|(δt,Xt)∼Exp(δt exp(X′

tβ∗)), Xt = X t, and X t ∼ N(0,1).
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Xt Alternatives \ n 50 100 200 400 600 800 1,000 2,000

(1, X t)′

ALT 1 # #      #
ALT 2 #  #   # # 4
ALT 3 # # #     #
ALT 4 # # # # # # # 4
ALT 5   # # # # #  

Table 7: PREDICTION OF THE MOST POWERFUL TEST. MODEL: Yt|Xt ∼Exp(αexp(X′
tβ)). This table

shows the results of the most powerful tests predicted by Table 1. “#” and “ ” indicate that the
prediction is correct and wrong, respectively. “4” indicates that the prediction of the most powerful
test cannot be properly made because B̂

(1,p)
n , B̂

(2,p)
n , and B̂

(3,p)
n all reject the null.

Statistics Levels \ n 50 100 200 300 400 500 600 700
1% 0.99 1.00 1.26 1.29 1.20 1.09 1.16 1.38

B̂
(1,p)
n 5% 2.95 4.20 5.07 4.98 5.20 5.13 4.87 5.11

10% 6.85 8.61 9.98 9.80 10.40 9.64 9.79 10.20
1% 0.96 1.07 1.20 1.14 1.28 1.18 1.08 1.27

B̂
(2,p)
n 5% 3.89 4.36 4.96 4.87 5.10 5.01 4.82 5.11

10% 7.21 8.67 9.62 9.66 10.41 9.52 9.42 10.10
1% 0.79 0.92 1.19 1.16 1.31 1.14 1.10 1.25

B̂
(3,p)
n 5% 3.04 4.20 5.02 4.74 5.11 4.84 4.76 5.06

10% 6.51 8.47 9.49 9.53 10.38 9.68 9.36 10.06
1% 35.98 28.89 21.72 1.68 1.52 12.13 11.34 10.51

IMn 5% 53.38 42.48 31.94 27.03 25.30 20.87 19.50 18.51
10% 61.85 49.87 39.17 33.91 31.63 26.94 25.66 25.12
1% 0.58 0.80 1.10 1.10 1.06 1.01 1.26 1.14

IMp
n 5% 3.54 4.52 5.00 5.19 5.37 4.89 5.35 5.27

10% 8.01 9.40 9.96 9.88 10.60 9.50 9.94 10.41

Table 8: LEVELS OF THE TEST STATISTICS. NUMBER OF REPETITIONS: 10,000. NUMBER OF

BOOTSTRAP REPETITIONS: 500. MODEL: Yt|Xt ∼ Probit(X′
tβ). DGP: Yt|Xt ∼ Probit(X′

tβ∗), Xt =
(1, X t)′, and X t ∼ N(0,1).
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Statistics \ n 50 100 200 300 400 500 600 700
Yt|Xt ∼Probit(X′

tβ∗/exp(0.5X′
tβ∗))

B̂
(1,p)
n 9.03 15.40 22.13 27.10 34.93 38.83 43.93 47.73

B̂
(2,p)
n 15.86 38.90 71.23 89.86 97.06 99.16 99.90 99.96

B̂
(3,p)
n 14.03 37.93 71.16 90.06 97.10 99.30 99.90 99.96

IMp
n 6.93 27.80 67.93 90.00 97.40 99.63 99.93 100.0

Yt|Xt ∼Probit((X′
tβ∗)2)

B̂
(1,p)
n 25.56 70.00 92.83 97.96 99.40 99.70 99.93 99.96

B̂
(2,p)
n 36.46 93.50 100.0 100.0 100.0 100.0 100.0 100.0

B̂
(3,p)
n 45.53 95.43 100.0 100.0 100.0 100.0 100.0 100.0

IMp
n 63.96 97.96 100.0 100.0 100.0 100.0 100.0 100.0

Yt|Xt ∼Logit(X′
tβ∗)

B̂
(1,p)
n 3.36 4.40 5.20 6.03 7.13 7.70 7.80 7.60

B̂
(2,p)
n 3.70 4.30 5.20 6.50 6.93 7.20 7.73 8.26

B̂
(3,p)
n 2.96 3.93 4.90 6.56 6.90 7.06 7.63 7.90

IMp
n 1.53 3.43 3.60 4.33 3.73 3.33 4.13 3.80

Table 9: POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). NUMBER OF REPE-
TITIONS: 3,000. NUMBER OF BOOTSTRAP REPETITIONS: 500. MODEL: Yt|Xt ∼ Probit(X′

tβ). DGP:
Xt = (1, X t)′ and X t ∼ N(0,1).

Xt Alternatives \ n 50 100 200 300 400 500 600 700

(1, X t)′
ALT 1 # # #    # #
ALT 2 # # # # # # # #
ALT 3 # # #     #

Table 10: PREDICTION OF THE MOST POWERFUL TEST. MODEL: Yt|Xt ∼ Probit(X′
tβ). This table

shows the results of the most powerful tests predicted by Table 1. “#” and “ ” indicate that the
prediction is correct and wrong, respectively.
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Statistics Levels \ n 50 100 200 300 400
1% 0.92 1.32 1.15 1.20 1.04

B̂
(1,p)
n 5% 4.90 5.25 4.99 5.45 4.97

10% 10.07 10.49 10.18 10.32 10.05
1% 0.99 1.17 1.03 1.22 0.98

B̂
(2,p)
n 5% 4.79 4.93 4.87 4.68 5.06

10% 9.31 9.57 9.75 9.62 10.37
1% 0.95 1.27 1.07 1.18 1.03

B̂
(3,p)
n 5% 4.79 4.84 4.92 4.83 5.10

10% 9.31 9.73 9.65 9.80 10.30
1% 52.43 41.72 30.54 24.60 20.66

IMn 5% 69.66 56.86 44.81 37.67 32.94
10% 77.01 65.59 52.92 45.76 41.25
1% 1.09 1.16 1.21 1.39 1.20

IMp
n 5% 4.65 5.84 6.00 5.88 5.21

10% 10.15 11.86 11.35 11.29 9.53

Table 11: LEVELS OF THE TEST STATISTICS. NUMBER OF REPETITIONS: 10,000. NUMBER

OF BOOTSTRAP REPETITIONS: 500. MODEL: Yt = max[0,X′
tβ+Ut] and Ut ∼ N(0,σ2). DGP:

Yt =max[0,X′
tβ∗+Ut], Xt = (1, X t)′, and (X t,Ut)′ ∼ N(0,I2).
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Statistics \ n 50 100 200 300 400
Yt =max[0,X′

tβ∗+Ut] and Ut|Xt ∼ N(0,exp(0.5X′
tβ∗))

B̂
(1,p)
n 32.30 50.63 75.26 88.73 94.46

B̂
(2,p)
n 62.96 89.66 99.73 99.93 100.0

B̂
(3,p)
n 64.80 91.43 99.73 100.0 100.0

IMp
n 8.33 24.00 92.76 99.90 100.0

Yt =max[0, (X′
tβ∗)2 +Ut] and Ut|Xt ∼ N(0,1)

B̂
(1,p)
n 81.76 98.36 99.96 100.0 100.0

B̂
(2,p)
n 80.03 98.56 99.96 100.0 100.0

B̂
(3,p)
n 76.13 97.90 99.96 100.0 100.0

IMp
n 37.43 62.23 87.63 96.10 98.53

Yt =max[0,X′
tβ∗+Ut] and Ut|Xt ∼ t30

B̂
(1,p)
n 5.00 6.33 7.76 8.63 9.63

B̂
(2,p)
n 7.26 8.16 9.86 10.70 13.20

B̂
(3,p)
n 6.96 7.73 9.26 10.56 12.63

IMp
n 4.36 4.80 4.30 4.20 2.66

Table 12: POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). NUMBER OF REPE-
TITIONS: 3,000. NUMBER OF BOOTSTRAP REPETITIONS: 500. MODEL: Yt = max[0,X′

tβ+Ut] and
Ut ∼ N(0,σ2). DGP: Xt = (1, X t)′ and X t ∼ N(0,1).

Xt Alternatives \ n 50 100 200 300 400

(1, X t)′
ALT 1     #
ALT 2  # # 4 4
ALT 3   # # #

Table 13: PREDICTION OF THE MOST POWERFUL TEST. MODEL: Yt = max[0,X′
tβ+Ut] and Ut ∼

N(0,σ2). This table shows the results of the most powerful tests predicted by Table 1. “#” and “ ”
indicate that the prediction is correct and wrong, respectively. “4” indicates that the prediction of
the most powerful test cannot be properly made because B̂

(1,p)
n , B̂

(2,p)
n , and B̂

(3,p)
n all reject the null.
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Figure 1: PARTITIONED SPACE OF (T∗,D∗) . For k = 2, 3, 4, 10, 20, and 50, this figure shows the
space of (T∗,D∗) partitioned by the conditions A to F. For example, if (T∗,D∗) belongs to the region
indexed by A, we have that B̂(2)

n & B̂(1)
n & B̂(3)

n in probability by Table 1. As another case, if (T∗,D∗)
belongs to the region indexed by B, we have that B̂(1)

n & B̂(3)
n & B̂(2)

n in probability by Table 1. We also
observe that the number of parameters (k) matters in partitioning the space of (T∗,D∗). As k tends
to infinity, most space of (T∗,D∗) is indexed by A and F.
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