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Abstract

In this study, we introduce statistics for testing neglected nonlinearity using the extreme leaning
machines introduced by Huang, Zhu, and Siew (2006, Neurocomputing) and call them ELMNN tests.
The ELMNN tests are very convenient and can be widely applied because they are obtained as by-
products of estimating linear models, and they can serve as quick diagnostic test statistics complementing
the computational burdens of other tests. For the proposed test statistics, we provide a set of regularity
conditions under which they asymptotically follow a chi-squared distribution under the null and are
consistent under the alternative. We conduct Monte Carlo experiments and examine how they behave
when the sample size is finite. Our experiment shows that the tests exhibit the properties desired by the
theory of this paper.
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1 Introduction

Testing for neglected nonlinearity is an outstanding problem that has been examined by a number of studies.

As an example, Bierens (1990) provides a test statistic for this problem using the exponential function and

obtains its asymptotic null distribution as a function of a Gaussian stochastic process. As another example,

Stinchcombe and White (1998) show that tests constructed by any non-polynomial analytic function are

generically comprehensively revealing (GCR). The appealing feature of their tests is that they are omnibus,

so that they can consistently detect any departure from the linearity.

Nevertheless, the existing test statistics are inconvenient for applications. Because they are mostly

involved with a nuisance parameter identified only under the alternative as discussed in Davies (1977, 1987),

their asymptotic null distributions are difficult to obtain. The existing testing procedures provide their own

methodologies to overcome this, and this additional process requires more computational burdens than the

simple tests such as the Wald test statistic obtained from the least squares (LS) estimation.

The goal of this study is, therefore, to provide a new statistic for testing for neglected nonlinearity, that

is straightforward to compute and can be easily applied even to serially correlated data. We also desire the

test statistic to have the asymptotic properties as a desirable test, so that it can be properly evaluated for

data sets with large samples. That is, as the sample size tends to infinity, its empirical rejection rate should

converge to the level of significance under the null; and it should tend to one under the alternative.

Recently, Huang, Zhu, and Siew (2006) introduce a new model estimation method called extreme learn-

ing machines (ELMs) and show that it can universally approximate the conditional mean equation. Readers

can also refer to Huang, Wang, and Lan (2011). The breakthrough of this approach is that it can avoid many

computational difficulties. Under some mild conditions, the only process involved is to compute the LS

estimation. Due to this, the applications of ELMs continue to grow. For example, if we mention a few of

them, Chacko, Vimal Krishnan, Raju, and Babu Anto (2012) and Mohammed, Minhas, Jonathan Wu, and

Sid-Ahmed (2011) apply ELMs to recognize the characteristics of handwriting and human faces, respec-

tively. As other examples, Wu, Wang, and Chung (2011) and Wang, Chen and Feng (2011) demonstrate that

ELMs can be effectively used for data classifications.

We achieve the goal of this paper by applying ELMs. Using the efficiency property of ELMs, we

provide test statistics which can effectively test for neglected nonlinearity and avoid computational burdens

exhibited by most test statistics (e.g., Cho, Ishida, and White (2011, 2013)). In addition, using the properties

of ELMs enables our tests to have standard asymptotic null distributions whereas most of the other tests do

not have this property, so that applications of our tests are very straightforward. While developing our test

statistics, we further extend the applicability of our test statistics. Theories on ELMs are mostly developed

for independently and identically distributed (IID) data, and therefore they are not appropriate for dealing

with serially correlated data. We extend the theory on ELMs to the one appropriate for stationary time-series

data.
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The test statistics we introduce in the current study are different from the existing tests in many respects.

First, Cho and White (2011) consider questions similar to those in the current study and provide a test statis-

tic by applying the functional regression in Cho, Huang, and White (2010). Nevertheless, our tests do not

require the researcher to specify a particular alternative direction as for the test discussed in Cho and White

(2011). Due to this, if an irrelevant direction is specified for the test in Cho and White (2011), our tests can

perform better. Furthermore, our tests are computed more straightforwardly and can be applied more easily

than the test in Cho and White (2011). As detailed below, our tests are computed as by-products of LS

estimations. On the other hand, the testing procedure given by Cho and White (2011) requires to integrate

the score with respect to unidentified parameter under the null. Therefore, as the dimension of the uniden-

tified parameters gets bigger, the computation process becomes more complicated. That is why they let the

dimension of unidentified parameters be the smallest number. Although the multi-dimensional problem may

be resolved by using the distance and direction method in Cho (2012), the computational burdens can still

be immense. The testing procedure provided in the current paper does not have this limitation, and this is an

advantage over the test in Cho and White (2011) as well as other tests in the literature. Second, the asymp-

totic null distributions of our tests are standard chi-squared distributions, which implies that we can easily

obtain their critical values and we can partially achieve the goal of this study. This is different from the

test statistics having asymptotic null distributions represented as functions of a Gaussian stochastic process.

Due to this difference, we do not have to go through additional computation processes like the weighted

bootstrap in Hansen (1996). This is another advantage of our tests which apply the weighted bootstrap (e.g.,

Cho, Ishida, and White (2011, 2013)). Finally, our tests have respectable level and power properties. Al-

though our tests are not the most powerful test, they can be properly exploited for testing linearity thanks

to its convenience. That is, the researcher can use our tests as quick diagnostic tests complementing the

computational burdens of other test statistics existing in the literature.

The plan of this paper is as follows. Section 2 expounds the environments for our test statistics, and we

formally define them in the same section. In Section 3, we conduct Monte Carlo experiments and examine

their finite sample properties. Section 4 provides concluding remarks. Finally, we present our mathematical

proofs in the Appendix.

2 Testing for the Neglected Nonlinearity Using ELMs

2.1 Environments

We suppose the following data generating process (DGP) condition in order to proceed with our discussions

in a manageable way.

Assumption 2.1 (DGP). {(Yt ,X′t)′ ∈ R1+k(k ∈N) : t = 1,2, · · · } is a strictly stationary and absolutely reg-

ular process defined on the complete probability space (Ω,F ,P), with E(|Yt |) <∞ and mixing coefficients
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βτ such that for some ρ > 1,
∑∞
τ=1 τ

2ρ/(ρ−1)βτ <∞.

This DGP condition is widely used for the analysis of stationary time-series data. For example, Cho

and White (2007, 2011) and Cho, Ishida, and White (2011, 2013) also consider the same condition for their

analysis of time-series data. Many popular time-series data such as ARMA and GARCH processes satisfy

this condition.

The goal of this study is partially achieved by estimating the conditional mean equation of Yt given Xt ,

E[Yt |Xt], and the most popular model for the conditional mean is a linear model. In other words, for some

(α∗,β
′
∗)
′ ∈R1+k , it is popularly assumed that E[Yt |Xt] = α∗ +X′tβ∗.

Nevertheless, the linearity assumption may not be correct. That is, E[Yt |Xt] may be a nonlinear function

of Xt . Because of this possibility, testing the following hypotheses has been a popular research topic:

H0 : for some (α∗,β∗), E[Yt |Xt] = α∗ +X′tβ∗ with a probability of 1

H1 : for any (α,β), E[Yt |Xt] = α +X′tβ with a probability of less than 1.

The hypotheses given above have been examined by many previous studies. The first and most widely

used test is probably Ramsey’s (1969) RESET statistic, which tests whether the coefficients of higher-

order polynomial terms of Xt,j are zero, where Xt,j is the j-th element of Xt . Bierens (1990) considers

another model with an additional component constructed using the exponential function and shows that the

standard test statistic has a non-standard asymptotic null distribution. It can be represented as a function

of a Gaussian stochastic process because of Davies’s (1977, 1987) identification problem. Stinchcombe

and White (1998) look at this problem from another perspective and note that the exponential function

advocated by Bierens (1990) is one of many functions having the omnibus power property. They show

that any non-polynomial analytic function can be used for the same purpose and call this the “generically

comprehensively revealing property (GCR).” Cho, Ishida, and White (2011) further note that the GCR tests

cannot be analyzed in a manner to apply a second-order Taylor’s expansion. They classify the set of analytic

functions and provide an appropriate theory for analyzing their quasi-likelihood ratio (QLR) test using first-

type analytic functions. They find that the QLR test requires a fourth-order Taylor’s expansion. They also

show that different analytic functions in other sets have to be analyzed in a manner different from that for the

first-type analytic functions. For the same test statistic, White and Cho (2012) and Cho, Ishida, and White

(2013) extend the analysis in Cho, Ishida, and White (2011) into second-type analytic functions. Although

the analysis is more complicated, the QLR test using the second-type analytic functions has properties

similar to those of the first-type analytic functions.

The common feature of the tests considered in the literature and mentioned above is that their asymptotic

null distributions are not standard. As discussed in Davies (1977, 1987), the so-called nuisance parameter

identified only under the alternative hypothesis is present in their contexts, and testing for neglected nonlin-

earity using the test statistics is more complicated than the process with the standard test statistics such as
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the Wald, the Lagrange multiplier (LM), and the likelihood-ratio (LR) test statistics.

We first fix our idea by considering a single layer feedforward network (SLFN) model and associate this

with the ELM model.

Assumption 2.2 (SLFN). For a non-polynomial analytic function Ψ : R 7→ R such that Ψ (0) , 0, we let

f (Xt ;θ,λ,γ ,δ) := X̃′tθ +
∑m
j=1λjΨ (X̃′tδj ), where X̃t = (1,X′t)

′ and δ := (δ′1,δ
′
2, . . . ,δ

′
m)′, and let single

hidden layer feedforward network model be defined as S := {f ( · ;θ,λ,δ) : (θ,λ,δ) ∈ Θ ×Λ ×∆}, where

Θ ⊂ Rk+1, Λ ⊂ Rm, and ∆ ⊂ R(k+1)×m are non-empty compact and convex sets such that 0 ∈ int(Λ) and

0 ∈ int(∆).

The SLFN has been applied to approximate the conditional mean equation. Indeed, Hornik, Stinch-

combe, and White (1989, 1990) show that multilayer feedforward networks are universal approximations.

In addition, the previously mentioned tests are constructed by using the SLFN. For example, when m = 1

andΨ (·) = exp(·), testing λ∗ = 0 reduces to Bierens’s (1990) test statistic, where λ∗ is the probability limit of

the nonlinear least squares (NLS) estimator of λ. As another example, Cho, Ishida, and White (2011, 2013)

test δ∗ = 0 or λ∗ = 0 by using the QLR test when m = 1. Although their asymptotic null distributions are

not normal, their tests are asymptotically consistent against any departure from the null hypothesis. This

omnibus power property has made them popular test statistics.

Nevertheless, the computational complexity of the SLFN has been pointed out as a drawback, and many

efforts have been made to overcome this. ELMs are also developed for this purpose. ELMs modify the

model assumption to the following model.

Assumption 2.3 (ELM). (i) {δj ∈ R1+k(k ∈N) : j = 1,2, · · · ,m} is an IID process defined on the complete

probability space (∆,D,Q) such that∆ is a compact subset ofR(1+k)×m with 0 ∈ int(∆),D is the Borel-sigma

field on ∆, and Q is an absolutely continuous probability measure with respect to Lebesgue measure µ; (ii)

(Ω×∆,F ⊗D,P ·Q) is a complete probability space such that P is independent of Q; and (iii) for a non-

polynomial analytic function Ψ :R 7→R with Ψ (0) , 0, we let f (Xt ,δ;θ,λ) := X̃′tθ+
∑m
j=1λjΨ (X̃′tδj ) and

let ELM model be defined as E := {f ( · ;θ,λ) : (θ,λ) ∈Θ×Λ}, whereΘ ⊂Rk+1, andΛ ⊂Rm are non-empty

compact and convex sets such that 0 ∈ int(Λ).

Thus, the model E plugs randomly generated {δj} into S and estimates the other linear parameters

(α,β,λ). Thus, estimating unknown parameters is not so difficult. Furthermore, the compact parameter

space assumption on ∆ and the IID assumption of {δj} imply that ∆ can be considered to be a Cartesian

product of k + 1 dimensional identical compact parameter spaces, say T ∈R1+k , so that ∆ ≡
�m

j=1T.

This model is first examined by Huang, Zhu, and Siew (2006),1 and Theorem 2.2 of Huang, Zhu, and

1Huang, Wang, and Lan (2011) survey popular uses of ELMs in the literature. Furthermore, many variations of ELMs are
developed. For example, to overcome the instability and over-fitting problems of ELMs, Zhai, Xu, and Wang (2012) provide
another data classification algorithm called the dynamic ensemble ELM which is developed from the maximum ambiguity-based
sample selection rule (e.g., Wang, Dong, and Yan (2012)).
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Siew (2006) shows that E can also universally approximate the conditional mean under mild regularity

conditions.

2.2 The ELMLS Estimator and Its Probability Limits under the Two Hypotheses

The goal of the current study is achieved more specifically by examining the objective function defined to

estimate the linear coefficients. We may let the LS estimator be defined as

(θ̂n(δ), λ̂n(δ)) := argmin
θ,λ

n∑
t=1

(
Yt − X̃′tθ −Ht(δ)′λ

)2
,

where Ht(δ) := [Ht(δ1), . . . ,Ht(δm)]′ := [Ψ (X̃′tδ1), . . . ,Ψ (X̃′tδm)]′. Note that the LS estimator is indexed

by δ, and we use this index to indicate that obtained estimates are different for different δ. We call it the

ELM least squares (ELMLS) estimator. When the number of parameters 1 + k +m is less than the sample

size n, its formula is as follows:

ξ̂n(δ) :=

 θ̂n(δ)

λ̂n(δ)

 =

 X̃′X̃ X̃′H(δ)

H(δ)′X̃ H(δ)′H(δ)


−1  X̃′Y

H(δ)′Y

 , (1)

where X̃ := [X̃1, . . . , X̃n]′, H(δ) := [H1(δ), . . . ,Hn(δ)]′, and Y := [Y1, . . . ,Yn]′. Here, n is larger thanm+k+1,

so that we can compute the ELMLS estimator by using the LS estimation. In casem+k+1 ≥ n, the ELMLS

estimator is computed in a different way. Huang, Zhu, and Siew (2006) and Huang, Wang, and Lan (2011)

suggest computing this by Moore-Penrose’s generalized inverse matrix, and Yuan, Wang, and Cao (2011)

provide practical guidance for this purpose. The main reason to restrict our interests to m+ k + 1 < n is to

see how the ELMLS estimator behaves when the sample size is large. When the number of parameters is

larger than the sample size, the analysis of the ELMLS estimator is more challenging. We leave this as a

future research topic.

Given the definition of the ELMLS estimator, we impose the following assumption for its regular large

sample properties.

Assumption 2.4 (Regularity). (i) E[Y 2
t ] < ∞; (ii) for each j = 1,2, . . . , k, E[X2

t,j ] < ∞; (iii) E[supτ∈T

|Ψ (X̃tτ)|2] <∞; (iv) for each j = 1,2, . . . , k + 1, E[supτ∈T |∂/∂τj Ψ (X̃tτ)|2] <∞; and (v) A(δ) is positive

definite with a probability of 1, where

A(δ) :=

 E[X̃tX̃′t] E[X̃tHt(δ)′ |δ]

E[Ht(δ)X̃′t |δ] E[Ht(δ)Ht(δ)′ |δ]

 .
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This is a standard moment condition for applying the law of large numbers (LLN) although Assumption

2.4(v) is additionally added. Nevertheless, this additional condition is not difficult to satisfy. As δ is ran-

domly drawn from the continuous probability measure Q, the chance for δj and δi to be identical is zero,

where δj and δi are the j-th and i-th column of δ, respectively. Thanks to this, many popular DGPs easily

satisfy Assumption 2.4(v).

Given these regularity conditions, we can interrelate the probability limit of the ELMLS estimator with

the probability limit of the objective function. The following lemma formally states this.

Lemma 2.1. Given Assumptions 2.1, 2.3, and 2.4, ξ̂n(δ)
P·Q
→ ξ∗(δ), where

ξ∗(δ) := [θ∗(δ)′ ,λ∗(δ)′]′ := argmin
θ,λ

E[(E[Yt |Xt]− X̃′tθ −Ht(δ)′λ)2|δ].

Lemma 2.1 is not hard to prove. We note that [θ̂n(δ)′ , λ̂n(δ)′] is the argument minimizing n−1 ∑n
t=1(Yt−

X′tθ −Ht(δ)′λ)2, and applying the uniform law of large numbers (ULLN) yields

1
n

n∑
t=1

(Yt − X̃′tθ −Ht(δ)′λ)2 P→ E[(Yt − X̃′tθ −Ht(δ)′λ)2|δ]

from the fact that δ is independent of {(Yt ,X′t)′}. As proved in the Appendix (see the Proof of Lemma 2.1),

it also follows that

E[(Yt − X̃′tθ −Ht(δ)′λ)2|δ]

= E[(Yt −E[Yt |Xt])2] +E[(E[Yt |Xt]− X̃′tθ −Ht(δ)′λ)2|δ], (2)

so that the argument minimizing the left-hand side (LHS) is also the argument minimizing the second term

on the right-hand side (RHS). This is mainly because the first term does not involve itself with (θ,λ). We

can exploit this feature to test for neglected nonlinearity.

In addition, from Eq. (2), additional clues can be obtained for testing the hypotheses. First, the null

hypothesis implies that for some θ∗ := (α∗,β
′
∗)
′, E[Yt |Xt] = X̃′tθ∗, so that we can minimize the RHS of Eq.

(2) by letting (θ∗(δ),λ∗ (δ)) be (θ∗,0), and

min
θ,λ

E[(Yt − X̃′tθ −Ht(δ)′λ)2|δ] = E[(Yt −E[Yt |Xt])2].

Furthermore, this argument uniquely minimizes the LHS of Eq. (2), given that Ht(δ) is constructed by using

the analytic functions, and this holds irrespective of how δ is generated. Second, the ELMLS estimator
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behaves differently under the alternative. For this examination, we note that

λ̂n(δ) = (H(δ)′H(δ)−H(δ)′X̃(X̃′X̃)−1X̃′H(δ))−1(H(δ)′Y−H(δ)′X̃(X̃′X̃)−1X̃′Y)

from Eq. (1). We can further apply the LLN to this estimator and obtain the following probability limit:

λ∗(δ) := (E[Ht(δ)Ht(δ)|δ]−E[Ht(δ)X̃′t |δ]E[X̃tX̃
′
t]
−1E[X̃tHt(δ)′ |δ])−1

×E[Ht(δ){Yt − X̃′tE[X̃tX̃
′
t]
−1E[X̃tYt]}|δ].

We note that {Yt − X̃′tE[X̃tX̃′t]
−1E[X̃tYt]} is the linear projection error of Yt on X̃t . In addition, A(δ) is

positive definite with a probability of 1 according to Assumption 2.4(v). Therefore, λ∗(δ) = 0 with a proba-

bility of 1 if and only if E[Ht(δ){Yt − X̃′tE[X̃tX̃′t]
−1E[X̃tYt]}|δ] = 0 with a probability of 1, implying that if

E[Ht(δ){Yt−X̃′tE[X̃tX̃′t]
−1E[X̃tYt]}|δ] , 0 with a probability greater than zero, λ∗(δ) , 0 with a probability

greater than zero, which cannot arise underH0. Thus testing λ∗(δ) = 0 with a probability greater than zero

is equivalent to testing H0. The following lemma further strengthens this argument and provides a result

key to the goal of this paper.

Lemma 2.2. Given Assumptions 2.1, 2.3, and 2.4, (i) E[Ht(δ){Yt − X̃′tE[X̃tX̃′t]
−1 E[X̃tYt]}|δ] = 0 with

probabilities equal to one and zero under H0 and H1, respectively; (ii) if for any ε > 0, there are n0 and

F ∈ D with Q(F) = 1 and 0 under H0 and H1, respectively, such that for any n > n0, P ·Q(‖λ̂n(δ)‖ >
ε|F) < ε, where ‖ · ‖ is the Euclidean norm.

It is not difficult to prove Lemma 2.2(i). Indeed, similar results are available in the literature. By

letting Ψ (·) = exp(·), Bierens’s (1990) shows that E[exp(X̃′tτ){Yt − X̃′tE[X̃tX̃′t]
−1E[X̃tYt]}] = 0 at τ ∈ F

such that µ(F) = 0 under the alternative. Stinchcombe and White (1998) further extend this, and their

corollary 3.9 shows that any other non-polynomial analytic function is GCR. In other words, E[Ψ (X̃′tτ){Yt−
X̃′tE[X̃tX̃′t]

−1E[X̃tYt]}] , 0 essentially for every τ. This fact leads to Lemma 2.2(i), and Lemma 2.2(ii) states

its implication: the hypotheses can be tested by using the probability limit of λ̂n(δ). If λ∗(δ) = 0 with a

probability 1,H0 holds and vice versa. From this aspect, we can construct test statistics with omnibus power

by testing λ∗(δ) = 0 with a probability 1.

2.3 Asymptotic Distribution of the ELMLS Estimator underH0

Given the implication of Lemma 2.2, we now examine the asymptotic null distribution of the ELMLS

estimator to determine the asymptotic null distribution of our tests defined below. For this purpose, we first

apply the functional central limit theorem (FCLT) to the ELMLS estimator. We first let U be the vector of
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projector errors. Using the definition of ξ̂n(δ),

ξ̂n(δ)−ξ∗(δ) =

 X̃′X̃ X̃′H(δ)

H(δ)′X̃ H(δ)′H(δ)


−1  X̃′U

H(δ)′U


underH0, and we can apply the FCLT to the RHS of this equation. For this examination, we let

Wn(δ) :=
1
√
n

 X̃′U

H(δ)′U

 =
1
√
n

n∑
t=1

[
X̃′tUt ,Ψ (X̃′tδ1)Ut , · · · ,Ψ (X̃′tδm)Ut

]′
and note that this can be interpreted as a vector constructed by plugging {δj : j = 1, . . . ,m} into n−1/2 ∑n

t=1

Ψ (X̃′t(·))Ut such that Q is independent of P, and {δj : j = 1, . . . ,m} is a set of continuous random variables.

We assume the following regularity conditions so that we can apply the FCLT.

Assumption 2.5 (Bounds and Covariance). There is a stationary and ergodic process {Mt} such that (i) for

η ≥ 2(ρ−1), E[M
4+2η
t ] <∞; (ii) |Ut | ≤Mt; (iii) for each j = 1,2, . . . , k, |Xt,j | ≤Mt; (iv) supτ∈T |Ψ (X̃′tτ)| ≤

Mt; and (v) for each j = 1,2, . . . , k + 1, supτ∈T |∂/∂τjΨ (X̃′tτ)| ≤Mt . Furthermore, for each τ ∈ T, Σ(τ,τ)

is positive definite, where for each τ and τ̃,

Σ(τ, τ̃) := acov

 1
√
n

n∑
t=1

 X̃tUt

Ψ (X̃′t(τ))Ut

 , 1
√
n

n∑
t=1

 X̃tUt

Ψ (X̃′t (̃τ))Ut


 ,

and acov(·, ·) indicates the asymptotic covariance matrix of given arguments.

Given our DGP condition in Assumption 2.1, the mixing coefficient condition combined with the mo-

ment coefficient condition in Assumption 2.5(i, ii, and iii) enables us to apply the FCLT discussed in

Doukhan, Massrt, and Rio (1995). These conditions are popularly used in the previous studies. For ex-

ample, Cho and White (2011) use similar conditions to obtain the asymptotic null distribution of their test

statistic. In addition, Hansen (1996), and Cho, Ishida, and White (2011, 2013) employ similar conditions for

their FCLTs. As many stationary time-series data satisfy this condition, we also use this condition. In addi-

tion to this, the positive-definite covariance matrix assumption is imposed for obtaining a regular Gaussian

stochastic process as the limit of Zn(·), where

Zn(·) :=

 Zn,0

Zn(·)

 :=
1
√
n

n∑
t=1

 X̃tUt

Ψ (X̃′t(·))Ut

 .
Without satisfying this condition, we cannot apply the Carmér-Wold device, which is necessary to extend a

finite dimensional CLT to an infinite dimensional CLT.
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The following lemma provides the asymptotic distribution of Zn(·) by using the regularity conditions

provided so far.

Lemma 2.3. Given Assumptions 2.1, 2.3 –2.5, andH0, (i) Zn(·)⇒Z(·) := [G′0, G(·)]′, whereZ(·) is a zero-

mean Gaussian stochastic process such that for each τ and τ̃ ∈ T, E[Z(τ)Z(̃τ)] = Σ(τ, τ̃); (ii) Wn(δ)|δ⇒
W (δ)|δ, where W (δ) := [G′0,G(δ1),G(δ2), . . . ,G(δm)]′; and (iii)

√
n[̂ξn(δ) − ξ∗(δ)]|δ ⇒ U(δ)|δ, where

U(δ) := A(δ)−1W (δ).

Lemma 2.3(i) implies that for every τ ∈ T, the weak distribution of Zn(τ) is available and that the

asymptotic conditional distribution of Zn(δj ) on δj is derived as Z(δj ) conditional on δj . Even when

multiple δj’s are drawn randomly and independently, so that δ is defined as [δ1,δ2, . . . ,δm] as before, we

can obtain similar results thanks to the FCLT and the independence property between P and Q. Lemma

2.3(ii and iii) are obtained by exploiting this simple fact. Specifically, the asymptotic distribution U(δ)

conditional on δ is provided as

U(δ)|δ ∼N
(
0m×1,A(δ)−1B(δ)A(δ)−1

)
, (3)

where

B(δ) := acov

 1
√
n

 X̃′U

H(δ)′U

 , 1
√
n

 X̃′U

H(δ)′U


∣∣∣∣∣∣∣∣δ

 .
Most statistics testing for neglected nonlinearity have asymptotic null distributions represented as func-

tions of the given Gaussian stochastic process U(·). For example, Baek and Cho (2013), Bierens (1990),

Cho and Han (2009), Cho and Ishida (2012), Cho and White (2007, 2010, 2011), Cho, Ishida, and White

(2011, 2013), Hansen (1996), among others, define their test statistics using the Gaussian stochastic pro-

cess in Lemma 2.3. Although their test statistics have respectable level and power properties, it is not so

convenient to exploit them due to their exploitation of the Gaussian stochastic process.

2.4 Testing Hypotheses

We define test statistics in this subsection to overcome the drawbacks of the existing tests. As Demsăr

(2006) point out, there are many ways to define test statistics and their finite sample properties are not

uniquely determined. We define our test statistics so that they are obtained as by-products of linear model

estimations for the goal of this paper. Furthermore, we desire standard chi-squared distributions as their

asymptotic null distributions, which implies that we can test for neglected nonlinearity by using standard

statistical packages.

To achieve this goal, we obtain the asymptotic null distribution of λ̂n(δ)|δ using Lemma 2.3. If we let
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S := [Om×(k+1)
... Im], S(̂ξn(δ)−ξ∗(δ)) = (λ̂n(δ)−λ∗(δ)), so that Lemma 2.3(iii) implies that

√
n(λ̂n(δ)−λ∗(δ))|δ =

√
nS(̂ξn(δ)−ξ∗(δ))|δ⇒ SU(δ)|δ,

and the asymptotic conditional null distribution of λ̂n(δ) on δ is easily determined by this.

Before converting this asymptotic conditional null distribution into the asymptotic null distribution of

the tests defined below, we consider the following additional condition.

Assumption 2.6 (MDA). (i) For some σ2
∗ > 0, E[U2

t |Xt] = σ2
∗ ; and (ii) {Ut ,Ft} is a martingale difference

array (MDA), where for each t, Ft−1 is the σ -field generated by {Xt ,Ut−1,Xt−1,Ut−2, . . .}.

Assumption 2.6 may be too strong a condition for general time-series data: it assumes the MDA and

conditional homoskedasticity condition. Although this is more restrictive, we nevertheless consider this and

examine its implications to the asymptotic conditional null distribution mainly because this condition is often

assumed for analyses of empirical data (e.g., Demsăr (2006)). In addition, when data are IID observations,

Assumption 2.6 is relevant under a conditional homoskedasticity condition.

We now define our test statistics. We note thatH0 implies that λ∗(δ) = 0 with a probability 1 and vice

versa by Lemma 2.2. Thus, ifH0 is correct,

√
nλ̂n(δ)|δ A∼N (0,SA(δ)−1B(δ)A(δ)−1S′); (4)

otherwise, the the location parameter of
√
nλ̂n(δ)|δ is different from 0 for whatever δ realizes. We exploit

this to test the hypotheses using our test statistics defined as

T̃n(δ) := nλ̂n(δ)′[SA(δ)−1B(δ)A(δ)−1S′]−1λ̂n(δ);

T̈n(δ) :=
n

σ2
∗
λ̂n(δ)′[SA(δ)−1S′]−1λ̂n(δ).

In particular, T̈n(δ) is defined for data sets satisfying Assumption 2.6. Note that the tests are defined based

on the Wald testing procedure.2 The asymptotic conditional distributions of our tests are provided as chi-

squared distributions under the null; otherwise, they are not bounded in probability due to the fact that the

location parameter of
√
nλ̂n(δ)|δ is different from 0.

Nevertheless, A(δ) and B(δ) are unknown, so that T̃n and T̈n cannot be computed using the data set.

We, therefore, replace them with their consistent estimators Ân(δ) and B̂n(δ). We specifically define them

2Thus, our test statistic has a similar motivation to the paired t-test discussed by Demsăr (2006), who advocates using non-
parametric tests more than the paired t-test under his circumstance. Demsăr (2006) explains that this is mainly due to the wrong
assumption on the normality and the homoskedasticity. Nevertheless, our set of assumptions relaxes these conditions.
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as follows:

Ân(δ) :=
1
n

n∑
t=1

 X̃tX̃t X̃tHt(δ)′

Ht(δ)X̃t Ht(δ)Ht(δ)′

 ; (5)

B̂n(δ) :=
ωn0

n

n∑
t=1

Ũ2
t Γ t(δ)Γ t(δ)′ +

qn∑
j=1

ωnj
n− j

n∑
t=j+1

ŨtŨt−j
(
Γ t(δ)Γ t−j(δ)′ + Γ t−j(δ)Γ t(δ)′

)
, (6)

where Γ t(δ) := [1,Yt−1,Ψ (X̃′tδ1),Ψ (X̃′tδ2), . . . ,Ψ (X̃′tδm)]′; Ũt := Yt − X̃tθ̂n(δ) −Ht(δ)′λ̂(δ); and qn and

ωnj are functions of n that satisfy the conditions given below.

Similar estimators are used in the context of NLS estimation. For example, Gallant and White’s (1988)

theorem 6.8 provides a similar estimator. In addition, Newey and West’s (1987) and Andrews’ (1991) consis-

tent covariance estimators have structures similar to ours. We modify their structures to fit the environments

for our test statistics. For this modification, we let Qt(θ,λ,δ) := (Yt − X̃′tθ −Ht(δ)′λ)2 and impose the

following additional conditions for the consistency of Ân(·) and B̂n(·):

Assumption 2.7 (Covariance). (i) {Qt(·)} is a near epoch dependent (NED) process on {Yt ,Xt} of size

−(2ρ − 1)/(ρ − 1) uniformly on Θ ×Λ ×∆; (ii) {∇(θ,λ)Qt(·)} is a near epoch dependent (NED) process on

{Yt ,Xt} of size −(2ρ − 1)/(ρ − 1) uniformly on Θ ×Λ×∆; and (iii) {qn} is a sequence of integers such that

qn tends to infinity as n tends to infinity with qn = O(n1/4), and {ωnj} is a sequence of positive numbers

uniformly bounded by a finite number such that for each j = 1,2, . . ., ωnj converges to one as n tends to

infinity.

We note that Assumption 2.7(i and ii) further restricts the scope of DGPs. Nevertheless, many DGPs

still satisfy Assumption 2.7. From this respect, Assumption 2.7 does not sacrifice too many DGPs for the

applications of our test statistics. The following lemma shows that Ân(δ) and B̂n(δ) are consistent for A(δ)

and B(δ), respectively.

Lemma 2.4. Given Assumptions 2.1, 2.3–2.5, 2.7, and H0, if for any ε > 0, there are n0 and F ∈ D with

Q(F) = 1 such that for any n > n0, P ·Q(‖Ân(δ)−A(δ)‖∞ > ε|F) < ε and P ·Q(‖B̂n(δ)−B(δ)‖∞ > ε|F) < ε,

where ‖ · ‖∞ is the matrix norm.

Using these covariance estimators, we may redefine our new test statistics as follows:

T̂n := nλ̂n(δ)′[SÂn(δ)−1B̂n(δ)Ân(δ)−1S′]−1λ̂n(δ), (7)

and

Ṫn :=
n

σ̂2
n
λ̂n(δ)′[SÂn(δ)−1S′]−1λ̂n(δ), (8)
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where σ̂2
n := n−1Û′Û and Û := Y − X̃(X̃′X̃)−1X̃Y. Note that every unknown element in T̃n(δ) and Ṫn(δ)

is replaced by its consistent estimator. We call these test statistics the extreme learning machine tests for

neglected nonlinearity and abbreviate this as the ELMNN tests.

The following theorem states the asymptotic behaviors of the ELMNN tests under the null hypothesis.

Theorem 2.1. (i) Given Assumptions 2.1, 2.3–2.5, and 2.7, ifH0 holds, T̂n|δ
A∼ X 2

m; and (ii) Given Assump-

tions 2.1, 2.3–2.7 ifH0 holds, Ṫn|δ
A∼ X 2

m.

Therefore, the asymptotic null behaviors of T̂n(δ) and Ṫn(δ) are now obtained, although their finite

sample size properties are expected to be different from Theorem 2.1. We affirm this expectation in the

section for Monte Carlo experiments. Here, σ̂2
n used for Ṫn(δ) is not the only estimator used to define

the ELMNN tests. When σ̃2
n := n−1Ũ′Ũ, where Ũ := [Ũ1, Ũ2, . . . , Ũn]′, this statistic is also a consistent

estimator for σ2
∗ underH0 because ξ̂n(δ) is consistent for (θ′∗,0

′)′. Thus, the test statistic associated with

σ̃2
n still follows the chi-squared distribution underH0 as well.

3 Monte Carlo Experiments

Testing neglected nonlinearity using ELMNN tests is practically straightforward. In this section, we provide

a practical guide to ELMNN tests and conduct Monte Carlo experiments using the guide. The following

steps summarize the key steps to apply the ELMNN tests:

• Step 1: Generate δ ∈ R(k+1)×m from ∆ to follow Q, where m is a pre-specified number such that

k +m+ 1 < n;

• Step 2: Compute the additional regressors by Ht(δ) := [Ψ (X̃′tδ1),Ψ (X̃′tδ2), . . . , Ψ (X̃′tδm)], where for

j = 1,2, . . . ,m, δj is the j-th column of δ;

• Step 3: Estimate the unknown coefficient by ξ̂n(δ) in Eq. (1);

• Step 4: Estimate the Hessian and asymptotic covariance matrices A(δ) and B(δ) by Ân(δ) and B̂n(δ)

in Eqs. (5) and (6), respectively;

• Step 5: Compute the test statistic T̂n according to the formula in Eq. (7); if Ut further exhibits

conditional homoskedasticity and MDA, compute Ṫn in Eq. (8);

• Step 6: If T̂n or Ṫn is greater than the critical value implied by X 2
m, reject the null hypothesis; other-

wise, do not reject the null.

As can be seen from this practical guide, the testing procedure using the ELMNN tests is quite straightfor-

ward. Only if δ is generated and Ht(δ) is defined accordingly, the other steps are computed by standard

statistical packages.

12



The goal of our Monte Carlo experiments is twofold. First, we want to verify the level and power proper-

ties of the ELMNN tests. The previous theoretical results do not provide any guidance for the performances

of the ELMNN tests particularly when the sample size is finite. Through our Monte Carlo experiments, we

aim to validate the theoretical results in the previous section and further investigate the finite sample prop-

erties. Second, we aim to examine the properties of the ELMNN tests under different contexts and draw

meaningful implications. More specifically, our theory in the previous section does not examine how the

ELMNN tests behave as the number of activation functions m increases, although examining this through

Monte Carlo experiments is straightforward. We examine this in this section.

Our Monte Carlo experiments examine Ṫn and T̂n separately. First, we examine Ṫn by assuming that the

researcher has additional information that Ut exhibits conditional homoskedasticity and the MDA property.

Second, we examine T̂n without any information on Ut .

The environments for our Monte Carlo experiments are specified as follows. First, we consider three

DGPs. The first DGP is an MDA with conditional homoskedasticty:

Yt = εt ,

where εt ∼ IID N (0,1). The second DGP we consider is a simple autoregressive process with an order 2,

AR(2) process. In other words,

Yt = 0.75Yt−1 − 0.25Yt−2 + εt ,

where εt is the same εt as for the first DGP. The third DGP is the following nonlinear process:

Yt = cos(Yt−1) + εt ,

where εt is the same εt as for the first DGP. This DGP is different from the previous DGPs as it has a

nonlinear component, so that a linear model is not correctly specified.

Second, we consider the following AR(1) model for the above DGPs:

Yt = α∗ + β∗Yt−1 +Ut .

Note that this model is correctly specified for the first DGP. When α∗ = 0 and β∗ = 0, εt =Ut , implying that

this linear model is correctly specified, and Ut is an MDA and does not exhibit conditional heteroskedastic-

ity. Thus, we can use the first DGP for our null simulations. Furthermore, as Ut is an MDA and exhibits

conditional homoskedasticity, we can use this to examine the null behavior of Ṫn. For the second DGP, the

AR(1) model is also correctly specified. Although the AR(1) model cannot estimate AR(2) DGP, E[Yt |Yt−1]

is still a linear function of Yt−1, so that the AR(1) model is correctly specified for AR(2) DGP. On the other

hand, we can use this to examine the null behavior of T̂n as it is dynamically misspecified. Finally, the
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third DGP is a nonlinear process, so that the AR(1) model is misspecified for the third DGP. We use this to

examine the power properties of T̂n and Ṫn.

There are additional components we specify for our Monte Carlo experiments. First, we consider three

different numbers of activation functions. As discussed above, different number of activation functions

can lead to different results. We let m be 1, 2, and 3 and examine how the ELMNN tests perform under

different values of m. Second, we generate δ from independent uniform distributions. More specifically,

(k + 1) ×m number of δ’s are randomly generated. We let each δj be randomly drawn from U [−10,10]

and be independent of another δi , where δj and δi are j-th and i-th random draw of δ. This random draw

is exactly the same random draw as given in Huang, Zhu, and Siew (2006). In addition to this experiment,

we also let δj be randomly drawn from U [−0.5,0.5] and U [−1.0,1.0] so that various DGPs for δ can be

investigated. Third, according to theorem 2.2 of Huang, Zhu, and Siew (2006), any analytic function can

be used to approximate E[Yt |Yt−1] universally. We use the logistic function based on Huang, Zhu, and

Siew (2006), which is also advocated by White (1989). Finally, we consider various sample sizes by letting

n = 50, 100, 200, 500, and 1,000 for the null behaviors of the ELMNN tests and n = 50, 100, 200, 400, 600,

and 1,000 for the alternative behaviors. The number of replications are 10,000 and 2,000 underH0 andH1,

respectively. We iterate more times underH0 to obtain precise empirical rejection rates.

3.1 Examination of Ṫn

We present our null simulation results in Table 1. As mentioned above, the simulations are conducted

using different numbers of activation functions, m = 1,2, and 3; different distributions for δj , U [−0.5,0.5],

U [−1.0,1.0], andU [−10,10]; and 5 different sample sizes, n = 50, 100, 200, 500, and 1,000. Therefore, the

simulations have to be conducted under 45 different environments. Although this may sound challenging,

the required times are not so long. This is mainly because our ELMNN tests are constructed by using the

ELMLS estimator, and this is quite a convenient aspect of the ELMNN test when compared with other

tests available under similar contexts (e.g., Cho, Cheong, and White (2011), Cho, Ishida, and White (2011,

2013)). Computing the simple LS estimators does not require much time.

<<<<<< Insert Table 1 here. >>>>>>

We summarize the simulation results under H0 as follows. First, when the number of activation func-

tions m is small as in our environment, few level distortions are observed for the ELMNN tests. In other

words, when m = 1, 2, and 3, the nominal levels could be exactly delivered by our ELMNN tests. The

distribution of δj does not matter in obtaining this result. This remarkable aspect is observed even when the

sample size is only 50. Figures 1, 2, and 3 also show the P-P plots of the ELMNN tests when the sample

size is 200 and m = 1, 2, and 3, respectively. In other words, we draw the empirical distribution of Fm(Ṫn),

where Fm(·) is the cumulative distribution function of a chi-squared random variable with degrees of free-

dom m. If Ṫn ∼ X 2
m, Fm(Ṫn) has to follow the standard uniform distribution by Rosenblatt (1950). As we
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can see from Figures 1, 2, and 3, the P-P plots exactly overlap with the 45-degree line, implying that there is

no serious level distortion. This affirms the result in Theorem 2.1(i). Even for other sample sizes, we could

obtain similar P-P plots, but we do not report them for brevity.

<<<<<< Insert Figure 1 here. >>>>>>

<<<<<< Insert Figure 2 here. >>>>>>

<<<<<< Insert Figure 3 here. >>>>>>

Second, although the empirical rejection rates are very close to the nominal levels as given in Tables 1,

we also note that the empirical rejection rates begin to differ from the nominal levels as m increases. We

can see that the empirical rejection rates in Figure 3 differ more greatly from the 45-degree line than those

in Figure 1. Although they are not reported here, we observed that the empirical rejection rates are quite

different from the nominal levels when the sample size is finite andm = 5. This level distortion disappears as

the sample size increases but very slowly. For conservative researchers, choosing small m is recommended.

Next, we examine the power properties of the ELMNN tests. The simulation results under H1 are

presented in Table 2. We conduct the same experiments as for the null simulations. The only difference is

that the number of replications has reduced from 10,000 to 2,000 and the DGP is modified to the alternative

DGP associated with the cosine function.

<<<<<< Insert Table 2 here. >>>>>>

We summarize the simulation results as follows. First, as the sample size increases to infinity, the

empirical rejection rates tend to one, affirming that our test is a consistent test. Second, the powers of the

ELMNN tests have a tendency to increase as m increases. In other words, as we can see from Table 2, the

ELMNN tests are most powerful when m = 3 and the sample size is moderately large. This fact implies

that the ELMNN tests exhibit more power when they are constructed by using more activation functions.

Nevertheless, this does not necessarily imply that larger powers are necessarily gained without limit by

increasing the number of activation functions. Although we do not report the results when m = 10, we

could observe that the powers of the ELMNN tests are smaller than the ELMNN tests with m = 1.

We now sum up the results of our Monte Carlo experiments for Ṫn as follows. First, the empirical

rejection rates are close to the nominal levels when m = 1, 2, or 3, but level distortions begin to increase as

m increases. Second, the powers of the ELMNN tests tend to increase as m increases but not without limit.

Thus, there is a trade-off between the level distortions and the powers of the ELMNN tests. The researcher

needs to choose the number of activation functions m with caution and balance this trade-off.
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3.2 Examination of T̂n

We now examine the Monte Carlo experiments using T̂n. The simulation environments are already ex-

pounded above. The only thing we add here is the construction of B̂n(δ). When estimating this, we use

Bartletts’s kernel (1950) based on Newey and West (1987). In addition, we truncate the lag at qn := b2n2/9c,
which is the truncation order same as that in Newey and West (1987). Specifically, we let

B̂n(δ) :=
1
n

n−1∑
t=1

Û2
t Γ t(δ)Γ t(δ)′ +

qn∑
j=1

(
1−

j

qn + 1

)
1

n− 1− j

n−1∑
t=j+1

ÛtÛt−j
(
Γ t(δ)Γ t−j(δ)′ + Γ t−j(δ)Γ t(δ)′

)
,

where Γ t(δ) := [1,Yt−1,Ψ ([1,Yt−1]δ1),Ψ ([1,Yt−1]δ2), . . . ,Ψ ([1,Yt−1]δm)]′. Under the given conditions,

Lemma 2.4 implies that B̂n(δ) is consistent for B(δ).

<<<<<< Insert Table 3 here. >>>>>>

The simulation results under H0 are presented in Table 3. As we can see from Table 3, the empirical

level distortions are relatively larger than Ṫn when the sample size is small. This is not due to the serial cor-

relation in Ut but due to the covariance estimation, which accommodates serial correlation and conditional

heteroskedasticity. Even when T̂n is applied for the first DGP, we can observe similar patterns.

Nevertheless, the level distortions begin to disappear as the sample size increases. When the number of

observations is close to 1,000, the level distortions almost disappear. This aspect reinforces the consequences

in Theorem 2.1(ii). Although the finite sample size performances of T̂n is disappointing, the ELMNN test

provides asymptotically precise level performances for a large sample size. Figures 4, 5, and 6 show the P-P

plots of the ELMNN tests when δj is randomly drawn from U [−1.0,1.0]. As we can from these figures, the

ELMNN tests with larger sample sizes are closer to the 45-degree line than the other ELMNN tests.

<<<<<< Insert Figure 4 here. >>>>>>

<<<<<< Insert Figure 5 here. >>>>>>

<<<<<< Insert Figure 6 here. >>>>>>

Another aspect of the ELMNN tests is that the level distortion increases as the number of activation

functions m increases. As we can see from Table 3 and Figures 4, 5, and 6, the empirical distributions are

quite different when m = 3, even if level distortions decrease by increasing the sample size. This implies

that the researcher needs to choose m carefully when applying the ELMNN tests. If the researcher wants to

minimize the level distortion, choosing m = 1 is recommended.

<<<<<< Insert Table 4 here. >>>>>>
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Next, we examine the power properties of the ELMNN tests. The simulation results are presented in

Table 4. As we can see from Table 4, the ELMNN tests are consistent against neglected nonlinearity. In

other words, they are consistent test statistics even when the prediction error Ut exhibits conditional het-

eroskedasticity and serial correlation as expected by our discussions. Furthermore, the power of the ELMNN

test increases when the number of activation functions increases. This is the same trade-off observed from

Ṫn, and the researcher needs to balance this trade-off when choosing m as well.

4 Conclusion

In this study, we introduce test statistics testing for neglected nonlinearity. The primary motivation of

introducing new tests is for the use of ELMs. According to theorem 2 of Huang, Zhu, and Siew (2006), the

ELMs can estimate the conditional mean equation consistently and universally. We exploit this convenient

feature to define our test statistic and call it the ELMNN test.

The main contribution of the ELMNN test is in its convenience and efficacy in computing unknown

parameters. Because they are present as the linear coefficients of explanatory variables and activation func-

tions, the only necessary computational process is the LS estimation. Thus, its application is straightforward

and can be widely applied under the model and DGP conditions provided in the current study. In particular,

we examine the ELMNN tests in the context of stationary time-series data, and the researcher can use our

tests as quick diagnostic statistics complementing the computational burdens of other tests available in the

literature.

Another contribution of the ELMNN test is that it has a standard asymptotic null distribution, a chi-

squared distribution, so that it can also be easily applied for testing the linearity. This aspect is different

from most popular statistics defined for the same goal, and this fact makes them inconvenient to apply.

Finally, the ELMNN test does not requires the researcher to choose a particular alternative direction as

for the Wald ELM test of Cho and White (2011). This aspect is mainly due to the fact that the ELMNN test

is based upon the universal approximation feature.

Nevertheless, applying the ELMNN tests requires cautions from the researcher. Finite sample level

distortions can be relatively large when a large number of activation functions are employed. In particular,

when the serial correlation and/or conditional heteroskedasticity structure of prediction errors is unknown,

the level distortions can be immense. For reducing level distortions, choosing a small number of activation

functions is recommended. On the other hand, the power of the ELMNN test is relatively large when

multiple activation functions are employed.
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5 Appendix: Proofs

We first provide preliminary lemmas and their proof before proving the main claims. For notational sim-

plicity, we let Ht(δj ) := Ψ (X̃′tδj ).

Lemma 5.1. Given Assumptions 2.1, 2.3, and 2.4,

sup
(θ,δ,λ)∈Θ×∆×Λ

∣∣∣∣∣∣∣n−1
n∑
t=1

(Yt − X̃′tθ −Ht(δ)′λ)2 −E[(Yt − X̃′tθ −Ht(δ)′λ)2]

∣∣∣∣∣∣∣ P→ 0

as n tends to infinity, where Θ := A×B.

Lemma 5.2. Given Assumptions 2.1, 2.3, and 2.4, (i)

sup
(δi ,δj )∈T×T

∣∣∣∣∣∣∣1n
n∑
t=1

Ht(δi)Ht(δj )−E[Ht(δi)Ht(δj )]

∣∣∣∣∣∣∣ P→ 0;

and (ii) for i = 1,2, . . . , k + 1,

sup
δj∈T

∣∣∣∣∣∣∣1n
n∑
t=1

X̃t,iHt(δj )−E[X̃t,iHt(δj )]

∣∣∣∣∣∣∣ P→ 0.

Proof of Lemma 5.1: We now note that

sup
(θ,δ,λ)

∣∣∣∣∣∣∣n−1
n∑
t=1

(Yt − X̃′tθ −Ht(δ)′λ)2 −E[(Yt − X̃′tθ −Ht(δ)′λ)2]

∣∣∣∣∣∣∣ (9)

≤sup
θ

∣∣∣∣∣∣∣1n
n∑
t=1

(Yt − X̃′tθ)2 −E[(Yt − X̃′tθ)2]

∣∣∣∣∣∣∣
+ sup

(δ,λ)

∣∣∣∣∣∣∣1n
n∑
t=1

(Ht(δ)′λ)2 −E[(Ht(δ)′λ)2]

∣∣∣∣∣∣∣
+ sup

(θ,δ,λ)
2

∣∣∣∣∣∣∣1n
n∑
t=1

(Yt − X̃′tθ)(Ht(δ)′λ)−E[(Yt − X̃′tθ)(Ht(δ)′λ)]

∣∣∣∣∣∣∣ .
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We examine each element in the RHS one-by-one. We note that

sup
θ

∣∣∣∣∣∣∣1n
n∑
t=1

(Yt − X̃′tθ)2 −E[(Yt − X̃′tθ)2]

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣1n

n∑
t=1

Y 2
t −E[Y 2

t ]

∣∣∣∣∣∣∣
+ sup

θ

∣∣∣∣∣∣∣1n
n∑
t=1

(X̃′tθ)2 −E[(X̃′tθ)2]

∣∣∣∣∣∣∣+ 2sup
θ

∣∣∣∣∣∣∣1n
n∑
t=1

Yt(X̃
′
tθ)−E[Yt(X̃

′
tθ)]

∣∣∣∣∣∣∣ .
Given this, applying the ergodic theorem implies that

∣∣∣1
n

∑n
t=1Y

2
t −E[Y 2

t ]
∣∣∣ P→ 0, and |1n

∑n
t=1(X̃′tθ)2 −

E[(X̃′tθ)2]| = |
∑k+1
j=1

∑k+1
i=1

1
n

∑n
t=1(X̃t,jX̃t,i − E[X̃t,jX̃t,i])θjθi |, where n−1 ∑n

t=1(X̃t,jX̃t,i − E[X̃t,jX̃t,i])
P→ 0

by the ergodic theorem for each j, i = 1,2, . . . , k+1. Furthermore, θj and θi are the elements of the compact

parameter spaceΘ, so that supθ |n−1 ∑n
t=1(X̃′tθ)2−E[(X̃′tθ)2]| P→ 0. Finally, |1n

∑n
t=1Yt(X̃

′
tθ)−E[Yt(X̃′tθ)]|

= |
∑k+1
j=1 (n−1 ∑n

t=1 X̃t,jYt − E[X̃t,jYt])θj |. Using the moment condition and Cauchy-Schwarz’s inequality,

we can obtain n−1 ∑n
t=1 X̃t,jYt

P→ E[X̃t,jYt]. In addition, θj is the element of the compact parameter space,

so that |1n
∑n
t=1Yt(X̃

′
tθ)−E[Yt(X̃′tθ)]| P→ 0. Therefore, it now follows that

sup
θ

∣∣∣∣∣∣∣1n
n∑
t=1

(Yt − X̃′tθ)2 −E[(Yt − X̃′tθ)2]

∣∣∣∣∣∣∣ P→ 0. (10)

Next, we examine the second term in the RHS of Eq. (9). We note that
∑m
i=1

∑m
j=1 n

−1 ∑n
t=1{Ht(δi)

Ht(δj )−E[Ht(δi)Ht(δj )]}λiλj , and applying Ranga-Rao’s ULLN shows that for each i, j = 1,2, . . . ,m,

sup
δi ,δj

|n−1
n∑
t=1

{Ht(δi)Ht(δj )−E[Ht(δi)Ht(δj )]}|
P→ 0

using Assumption 2.4(iii). Furthermore, λi and λj are the elements of the compact parameter space Λ.

Thus, it follows that

sup
(δ,λ)

∣∣∣∣∣∣∣1n
n∑
t=1

(Ht(δ)′λ)2 −E[(Ht(δ)′λ)2]

∣∣∣∣∣∣∣ P→ 0. (11)

Finally, we examine the final term in the RHS of Eq. (9). We note that |1n
∑n
t=1(Yt − X̃′tθ)(Ht(δ)′λ) −

E[(Yt−X̃′tθ)(Ht(δ)′λ)]| ≤ |
∑m
j=1{n−1 ∑n

t=1YtHt(δj )−E[YtHt(δj )]} λj |+ |
∑m
j=1

∑k+1
i=1 {n−1 ∑n

t=1 X̃t,iHt(δj )−
E[X̃t,iHt(δj )]}λjθi |. Here, we note that for each i = 1,2, . . . ,m and j = 1,2, . . . , k + 1, supδj

|n−1 ∑n
t=1Yt

Ht(δj )−E[YtHt(δj )]|
P→ 0, and supδj

|
∑m
j=1

∑k+1
i=1 {n−1 ∑n

t=1 X̃t,iHt(δj )−E[X̃t,iHt(δj )]}λjθi |
P→ 0 accord-

ing to Assumption 2.4(iii). In addition, λj and θi are the elements of the compact parameter spaces. Thus,

it follows that

sup
(θ,δ,λ)

2

∣∣∣∣∣∣∣1n
n∑
t=1

(Yt − X̃′tθ)(Ht(δ)′λ)−E[(Yt − X̃′tθ)(Ht(δ)′λ)]

∣∣∣∣∣∣∣ P→ 0. (12)
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We now combine the given inequalities in (10), (11), and (12), and this shows that

sup
(θ,δ,λ)

∣∣∣∣∣∣∣n−1
n∑
t=1

(Yt − X̃′tθ −Ht(δ)′λ)2 −E[(Yt − X̃′tθ −Ht(δ)′λ)2]

∣∣∣∣∣∣∣ P→ 0,

as desired. �

Proof of Lemma 5.2: (i) We already proved this while proving Eq. (11). (ii) This was also proved while

proving Eq. (12), and this completes the proof. �

We now prove the main claims of this paper.

Proof of Lemma 2.1: For this proof, we note that

(α̂n(δ), β̂n(δ), λ̂n(δ)) := argmin
α,β,λ

n−1
n∑
t=1

(Yt −α −X′tβ −Ht(δ)′λ)2 ,

and Lemma 5.1 implies that the ULLN holds. Further,P is independent ofQ, so that (α̂n(δ), β̂n(δ), λ̂n(δ))
P→

argminα,β,λE[(Yt −α −X′tβ −Ht(δ)′λ)2|δ]. We can further simplify the RHS. We note that

E[ (Yt −α −X′tβ −Ht(δ)′λ)2 |δ]

= E[(Yt −E[Yt |Xt])2]|δ] +E[(E[Yt |Xt]−α −X′tβ −Ht(δ)′λ)2|δ]

+ 2E[(Yt −E[Yt |Xt])(E[Yt |Xt]−α −X′tβ −Ht(δ)′λ)|δ],

and applying the law of iterated expectation yields that

E[(Yt −E[Yt |Xt])(E[Yt |Xt]−α −X′tβ −Ht(δ)′λ)|δ]

= E[E[Yt −E[Yt |Xt]|Xt ,δ](E[Yt |Xt]−α −X′tβ −Ht(δ)′λ)|δ],

and E[Yt −E[Yt |Xt]|Xt ,δ] = E[Yt −E[Yt |Xt]|Xt] because Xt and δ are independent, so that E[Yt −E[Yt |Xt]|
Xt ,δ] = 0. This now implies that

E[ (Yt −α −X′tβ −Ht(δ)′λ)2 |δ]

= E[(Yt −E[Yt |Xt])2]|δ] +E[(E[Yt |Xt]−α −X′tβ −Ht(δ)′λ)2|δ],
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so that it follows that

argmin
α,β,λ

E[ (Yt −α −X′tβ −Ht(δ)′λ)2 |δ]

= argmin
α,β,λ

E[(E[Yt |Xt]−α −X′tβ −Ht(δ)′λ)2|δ].

The desired result now follows from this. �

Proof of Lemma 2.2: (i) We first consider the null behavior of λ̂n(δ). If we decompose Yt into E[Yt |Xt]+Ut ,

it trivially follows that

E[Ht(δ){Yt − X̃′tE[X̃tX̃
′
t]
−1E[X̃tYt]}|δ]

=E[Ht(δ){E[Yt |Xt]− X̃′tE[X̃tX̃
′
t]
−1E[X̃tE[Yt |Xt]]}|δ]

=E[Ht(δ){X̃′tθ∗ − X̃′tE[X̃tX̃
′
t]
−1E[X̃tX̃

′
tθ∗]}|δ] = 0

by noting that E[Yt |Xt] = X̃′tθ∗ under H0. We next consider the probability limit of λ̂n(δ) under H1. By

corollary 3.9 of Stinchcombe and White (Stinchcombe 1998), if we let F ∈ D such that for each τ ∈ F,

E[Ht(δ){Yt − X̃′tE[X̃tX̃′t]
−1E[X̃tYt]}|δ] = 0, then µ(F) = 0. We also note that Q is absolutely continuous

with respect to µ, implying that Q(F) = 0.

(ii) The desired result is directly implied by Lemma 2.2(i). �

Proof of Lemma 2.3: (i) We partition our proof into three parts. First, for each j = 1,2, . . . , k + 1, we

derive the weak limit of the first k + 1 elements of Zn(·), n−1/2 ∑n
t=1 UtX̃t,j . We note that E[X̃t,jUt] =

E[X̃t,jE[Ut |X̃t]] = 0. Given this, Bradley’s (Bradley 1985) CLT can be applied, which is traced from

Ibragimov. By Assumption 2.5, it trivially follows that E[|UtX̃t,j |2+η] ≤ E[|M2
t |2+η] ≤ E[M

4+2η
t ] < ∞.

We also note that for each τ , 2ατ ≤ βτ , where ατ is the strong-mixing coefficient. Thus, Assumption 2.1

implies that 2
∑∞
τ=1 τ

2ρ/(ρ−1)ατ <∞. This inequality also implies that for large τ , there are γ > 0 and ε > 0

such that ατ ≤ γτ (−3ρ+1)/(ρ−1)−ε, implying further that

∞∑
τ=1

α
η

2+η
τ ≤ κ

∞∑
τ=1

τ
6−εη− 2η

ρ−1
2+η −3,

where κ := γη/(2+η). Furthermore, η ≥ 2(ρ − 1) by Assumption 2.5, and using this shows that {6 −

εη − 2η/(ρ − 1)}/{2 + η} − 3 < −1, so that
∑∞
τ=1α

η
2+η
τ < ∞. It now follows that for each j = 1, . . . , k + 1,

n−1/2 ∑n
t=1UtX̃t,j

A∼N (0,avar(n−1/2 ∑n
t=1UtX̃t,j )) by Bradley’s (Bradley 1985) theorem 0.

We next derive the weak limit of n−1/2 ∑n
t=1Ψ (X′t(·))Ut . Indeed, we can apply the proof of lemma 2 in

Cho and White’s (ChoWhite 2011). As Ψ (·) is an analytic function, we can apply the Lipschitz’s condition,
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so that

|UtΨ (X̃′tτ)−UtΨ (X̃′tτ̃)| ≤ |Ut |Mt‖τ − τ̃‖ ≤M2
t ‖τ − τ̃‖

by Assumption 2.5, and this implies that

E

 sup
‖τ−τ̃‖<ν

|UtΨ (X̃′tτ)−UtΨ (X̃′tτ̃)|2+η


1

2+η

≤ E[M
4+2η
t ]

1
2+η ν.

This inequality and theorem 1 of Doukhan, Massrt, and Rio (Doukhan 1995) now show that Ossiander’s

L2+η entropy is finite, and
√
nn−1/2 ∑n

t=1Ψ (X̃′t(·))Ut is tight from the beta-mixing condition in Assumption

2.1:
∑∞
τ=1 τ

1/(ρ−1)βt <∞. Thus, it now follows that {
√
nn−1/2 ∑n

t=1Ψ (X̃′t(·))Ut} is tight.

Finally, we note that the positive-definite covariance matrix condition in Assumption 2.5 imposes that

for each τ and τ̃, the asymptotic covariance matrix ofZ(τ) andZ(̃τ) is positive definite. Therefore, for any

` ∈N, the finite dimensional multivariate CLT holds for n−1/2 ∑n
t=1[UtX̃′ ,UtΨ (X̃′tτ1), UtΨ (X̃′tτ2), . . . ,Ut

Ψ (X̃′tτ`)]
′ by the Cramèr-Wold device. The multivariate FCLT for this process follows from this fact and

the two facts proved above.

(ii) By Assumption 2.3, P and Q are independent, so that the desired result follows from this and the

result in (i).

(iii) This holds by the continuous mapping theorem given the result in (ii). �

Proof of Lemma 2.4: We first prove the consistence of Ân(δ). We note that n−1 ∑n
t=1 X̃tX̃

′
t
P→ E[X̃tX̃′t] by the

ergodic theorem. In addition, Lemma 5.2(i) implies that for each i = 1,2, . . . , k + 1, supδj∈T |n
−1 ∑n

t=1 X̃t,j

Ht(δj ) − E[X̃t,jHt(δj )]|
P→ 0, so that supδj∈T |n

−1 ∑n
t=1 X̃

′
tHt(δj ) − E[X̃′tHt(δj )]|

P→ 0. Finally, Lemma

5.2(ii) implies that sup(δj ,δi )∈T×T |n
−1 ∑n

t=1Ht(δj )Ht(δi) − E[Ht(δj )Ht(δi)]|
P→ 0, so that Ân(·) obeys the

ULLN. Given this, as δ is drawn from Q independent of P, we can consider A(δ) to be the limit of Ân(δ).

Thus, for any ε > 0, there are F ∈ D with Q(F) = 1 and n0 such that if n > n0, P ·Q(‖Ân(δ) −A(δ)‖∞ >
ε|F) < ε.

Next, we prove the consistence of B̂n(δ). We show this by verifying the sufficient conditions for theorem

6.8 in Gallant and White (Gallant 1988): DG, OP′, MX′, SM, DM′′, NE′′′, ID′, TL, and WT. Then, the

desired result follows by their theorem 6.8.

First, DG trivially holds by Assumption 2.1.

Second, given the definition of Qt(·), if we let x and Qt(·) be gn(x) and qt(·) of Gallant and White

(Gallant 1988), respectively, then the OP′ also holds.

Third, Assumption 2.1 implies that for large τ , there are π and ε such that βτ ≤ πτ (−3ρ+1)/(ρ−1)−ε.

Therefore,

βττ
2r
r−2 +ε ≤ πτ−1+ε−ε
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by letting r = 2ρ. Therefore, if we let ε be a number between 0 and 1 + ε,

βτ =O(τ−
2r
r−2−ε).

We also note that 2ατ ≤ βτ for every τ , so that

ατ =O(τ−
2r
r−2−ε).

In other words, for r = 2ρ and ρ > 1, {Yt ,Xt} is an α-mixing sequence of size −2r/(r−2). This now satisfies

the MX′ of Gallant and White (Gallant 1988).

Fourth, we note that Qt(·), ∇(θ,λ)Qt(·), ∇2
(θ,λ)Qt(·) are Lipschitz-L1 on Θ ×Λ×∆ by Assumptions 2.4

and 2.5. More specifically, we note that

Qt(θ,λ,δ) = (Yt − X̃′tθ −Ht(δ)′λ)2,

∇(θ,λ)Qt(θ,λ,δ) = −2

 (Yt − X̃′tθ −Ht(δ)′λ)X̃t

(Yt − X̃′tθ −Ht(δ)′λ)H̃t(δ)

 ,
and

∇2
(θ,λ)Qt(θ,λ,δ) = 2

 X̃tX̃′t X̃tHt(δ)′

Ht(δ)X̃′t Ht(δ)Ht(δ)′

 .
As we show below, the modulus of each element of ∇(θ,λ)Qt(·) and ∇2

(θ,λ) Qt(·) is dominated by cM2
t

for some finite c > 0. Therefore, Assumption 2.5(i) implies that Qt(·) and each element of ∇2
(θ,λ)Qt(·) is

Lipschitz-L1 on Θ ×Λ×∆.

In addition, we verify that each element of ∇2
(θ,λ)Qt(·) is Lipschitz-L1 on Θ ×Λ×∆. (i) We examine a

representative element of X̃tX̃′t: X̃t,jX̃t,i , where X̃t,j and X̃t,i are the j-th and i-th element of X̃tX̃′t , respec-

tively. We note that this is not a function of (θ,λ,δ), so that it is trivially Lipschitz-L1 on Θ ×Λ ×∆. (ii)

We next examine a representative element of X̃tHt(δ)′: X̃t,jΨ (X̃′δh), where h ∈ {1,2, . . . ,m}. Here, we note

that

|X̃t,jΨ (X̃′δh)− X̃t,jΨ (X̃′δ̄h)| ≤ |X̃t,j |
k+1∑
i=1

sup
τ∈T

∣∣∣∣∣ ∂∂τiΨ (X̃′tτ)
∣∣∣∣∣‖δ − δ̄‖ ≤ (k + 1)M2

t ‖δ − δ̄‖

by Assumption 2.5(v). Assumption 2.5(i) also implies that E[M2
t ] <∞, so that X̃t,jΨ (X̃′δh) as a function

of (θ,λ,δ) is Lipschitz-L1 on Θ ×Λ×∆. (iii) We finally examine a representative element of Ht(δ)Ht(δ)′:
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Ψ (X̃′δh)Ψ (X̃′δ`), where h,` ∈ {1,2, . . . ,m}. We note that

|Ψ (X̃′δh)Ψ (X̃′δ`)−Ψ (X̃′δ̄h)Ψ (X̃′δ̄`)| ≤
k+1∑
i=1

sup
τ∈T

∣∣∣∣∣ ∂∂τiΨ (X̃′tτ)
∣∣∣∣∣sup
τ∈T

∣∣∣Ψ (X̃′tτ)
∣∣∣ (‖δi − δ̄i‖+ ‖δh − δ̄h‖)

which is bounded by (k + 1)M2
t (‖δi − δ̄i‖+ ‖δh − δ̄h‖) according to Assumption 2.5(iv and v). Assumption

2.5(i) also implies that E[M2
t ] < ∞, so that Ψ (X̃′δi)Ψ (X̃′δh) as a function of (θ,λ,δ) is Lipschitz-L1 on

Θ ×Λ ×∆. From these verifications, we can conclude that each element of ∇2
(θ,λ)Qt(·) is Lipschitz-L1 on

Θ ×Λ×∆. This verifies the SM of Gallant and White (Gallant 1988).

Fifth, we examine each element of Qt(·), ∇(θ,λ)Qt(·), and ∇2
(θ,λ)Qt(·) to show the DM′′ of Gallant and

White (Gallant 1988). (i) We now note that the null hypothesis implies that |Yt | = |X̃tθ∗+Ut | ≤ |X̃tθ∗|+ |Ut |,
so that for some c1, |Yt | ≤ c1Mt by Assumption 2.5(ii and iii). Furthermore,

(Yt −
k+1∑
i=1

θiX̃t,i −
m∑
i=1

λiΨ (X̃′tδi))
2 ≤ (|Yt |+

k+1∑
i=1

|θi ||X̃t,i |+
m∑
i=1

|λi ||Ψ (X̃′tδi)|)2

uniformly on Θ ×Λ×∆, where X̃t,i is the i-th element of X̃t . We also note that

(|Yt |+
k+1∑
i=1

|θi ||X̃t,i |+
m∑
i=1

|λi ||Ψ (X̃′tδi)|)2 ≤ sup
θ,λ,δ

(c1 +
k+1∑
i=1

|θi |+
m∑
i=1

|λi |)M2
t .

We note that for some c2 > 0, the RHS is bounded by c2M
2
t from the fact that Θ ×Λ × ∆ is a compact

parameter space. Thus, Qt(·) is 2r-dominated on Θ ×Λ ×∆ for some r > 1 by Assumption 2.5(i). (ii) We

first examine a representative element of the first-row block of ∇(θ,λ)Qt(θ,λ,δ): (Yt − X̃′tθ −Ht(δ)′λ)X̃t,j ,

where X̃t,j is the j-th element of X̃t . We note that

sup
θ,λ,δ
|(Yt − X̃′tθ −Ht(δ)′λ)X̃t,j | ≤ |YtX̃t,j |+ sup

θ

k+1∑
i=1

|θiX̃t,iX̃t,j |+ sup
λ

m∑
i=1

|λiΨ (X̃′tδi)X̃t,j |

≤ c1M
2
t + sup

θ

k+1∑
i=1

|θi |M2
t + sup

λ

m∑
i=1

|λi |sup
τ∈T
|Ψ (X̃′tτ)X̃t,j |

≤ (c1 + sup
θ

k+1∑
i=1

|θi |+ sup
λ

m∑
i=1

|λi |)M2
t ,

where the last inequality holds by Assumption 2.5. We further note that Θ and Λ are compact parameter

spaces, so that for some c3 > 0, |(Yt−X̃′tθ−Ht(δ)′λ)X̃t,j | ≤ c3M
2
t uniformly onΘ×Λ×∆, implying that (Yt−

X̃′tθ −Ht(δ)′λ)X̃t,j is 2r-dominated on Θ ×Λ×∆ for some r > 1 by Assumption 2.5(i). Next, we examine

a representative element of the second-row block of ∇(θ,λ)Qt(θ,λ,δ): (Yt − X̃′tθ−Ht(δ)′λ)Ψ (X̃′tδi), where
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Ψ (X̃′tδh) is the h-th element of Ht(δ). We note that

sup
θ,λ,δ
|(Yt − X̃′tθ −Ht(δ)′λ)Ψ (X̃′tδh)|

≤ sup
θ,λ,δ

|YtΨ (X̃′tδh)|+
k+1∑
i=1

|θiX̃t,iΨ (X̃′tδh)|+
m∑
i=1

|λiΨ (X̃′tδi)Ψ (X̃′tδh)|


≤ sup

τ∈T
|YtΨ (X̃′tτ)|+ sup

θ

k+1∑
i=1

|θiX̃t,i |sup
τ∈T
|Ψ (X̃′tτ)|+ sup

λ

m∑
i=1

|λi |{sup
τ∈T
|Ψ (X̃′tδi)|}2,

which is also bounded by (c1 +
∑k+1
i=1 |θi | +

∑m
i=1 |λi |)M

2
t . This implies that for some r > 1, (Yt − X̃′tθ −

Ht(δ)′λ)X̃t,j is 2r-dominated on Θ ×Λ × ∆. Therefore, for some r > 1, each element of ∇(θ,λ)Qt(·) is

2r-dominated onΘ×Λ×∆. (iii) We first examine a representative element of the first-row and first-column

block of∇2
(θ,λ)Qt(θ,λ,δ): X̃t,jX̃t,i . We note that |X̃t,jX̃t,i | ≤M2

t , so that Assumption 2.5(iii) implies that for

some r > 1, X̃t,jX̃t,i is 2r-dominated onΘ×Λ×∆. Next, we consider a presentative element of the first-row

and second-column block of ∇2
(θ,λ)Qt(θ,λ,δ): X̃t,jΨ (X̃′tδh). We note that supτ∈T |X̃t,jΨ (X̃′tτ)| ≤M2

t , so

that Assumption 2.5(iv) implies that for some r > 1, X̃t,jΨ (X̃′tδh) as a function of (θ,λ,δ) is 2r-dominated

on Θ ×Λ × ∆, where h ∈ {1,2, . . . ,m}. Similarly, for some r > 1, the representative element of the the

second-row and first-column block of ∇2
(θ,λ)Qt(θ,λ,δ) is 2r-dominated on Θ ×Λ ×∆ from the symmetry

of a Hessian matrix. Finally, for some r > 1, the second-row and second-column block of ∇2
(θ,λ)Qt(θ,λ,δ)

is 2r-dominated onΘ×Λ×∆ because {supτ∈T |Ψ (X̃′tτ)|}2 ≤M2
t , where h,` ∈ {1,2, . . . ,m}. This shows that

for some r > 1, ∇2
(θ,λ)Qt(·) is a matrix of elements that are 2r-dominated on Θ ×Λ×∆. This shows that for

some r > 1, each element of Qt(·), ∇(θ,λ)Qt(·), and ∇2
(θ,λ)Qt(·) is 2r-dominated on Θ ×Λ×∆ and verifies

the DM′′ of Gallant and White (Gallant 1988).

Sixth, Assumption 2.7(i and ii) also imposes that {Qt(·)} and {∇(θ,λ)Qt(·)} are near epoch processes of

size −(2ρ−1)/(ρ−1). As we have let ρ = r/2 above, this implies that they are near epoch processes of size

−2(r − 1)/(r − 1). This verifies the NE′′′ of Gallant and White (Gallant 1988).

Seventh, for each δ,
∑n
t=1Qt(·,δ) is a sum of quadratic functions, so that E[Qt(·,δ)] has a unique

minimizer from the ergodic theorem and Assumptions 2.1 and 2.4. This satisfies the ID′ of Gallant and

White (Gallant 1988).

Finally, the TL and WT of Gallant and White (Gallant 1988) are directly imposed by Assumption 2.7(iii).

Thus, applying theorem 6.8 of Gallant and White (Gallant 1988) implies that B̂n(·) is a consistent esti-

mator for B(·) uniformly on ∆. Given this, as δ is drawn from Q independent of P, for any ε > 0, there are

F ∈ D with Q(F) = 1 and n0 such that if n > n0, P ·Q(‖B̂n(δ) −B(δ)‖∞ > ε|F) < ε. This completes the

proof. �

Proof of Theorem 2.1: Given that Ân(δ) and B̂n(δ) are consistent for A(δ) and B(δ), respectively, by Lemma

2.4, the results for T̂n|δ follow from Eq. (4).
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Furthermore, the result for Ṫn|δ also trivially follows if σ̂2
n
P→ σ2

∗ underH0. We note that

σ̂2
n =

1
n

n∑
t=1

U2
t −

1
n

n∑
t=1

UtX̃
′
t


1
n

n∑
t=1

X̃tX̃
′
t

−1 1
n

n∑
t=1

UtX̃t

 .
We now apply the ergodic theorem and obtain

σ̂2
n
P→ E[U2

t ]− 0′E[X̃tX̃
′
t]0 = E[U2

t ] = σ2
∗ ,

where necessary moment conditions for the ergodic theorem are satisfied by Assumption 2.4. �
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DEMSĂR, J. “Statistical Comparisons of Classifiers over Multiple Data Sets,” Journal of Machine Learning

Research, 7, 1–30.

DOUKHAN, P., MASSART, P., AND RIO, E. (1995): “Invariance Principles for Absolutely Regular Empiri-

cal Processes,” Annales de l’Institut Henri Poincaré, Probabilites et Statistiques, 31 393–427.
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Table 1: EMPIRICAL REJECTION RATES OF Ṫn UNDER H0 (IN PERCENT). Number of Replications:
10,000. DGP: Yt = εt and εt ∼ IID N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut .

m Dist. of δj Nominal Level \ n 50 100 200 500 1,000
1.00 % 0.75 0.97 0.96 1.05 1.08

1 U [−0.5,0.5] 5.00 % 4.73 5.02 5.07 4.80 5.30
10.0 % 9.93 9.94 10.50 9.95 10.51
1.00 % 0.78 0.92 1.03 1.13 0.94

1 U [−1.0,1.0] 5.00 % 4.43 4.74 5.19 4.97 4.77
10.0 % 9.68 9.63 10.16 10.38 9.82
1.00 % 0.85 0.92 1.11 0.81 1.08

1 U [−10,10] 5.00 % 5.19 4.61 4.86 4.50 5.20
10.0 % 10.26 9.78 10.19 9.80 10.20
1.00 % 0.53 0.84 0.83 0.80 0.94

2 U [−0.5,0.5] 5.00 % 4.15 4.69 4.59 4.86 4.65
10.0 % 9.19 9.61 9.02 10.00 9.96
1.00 % 0.69 0.90 0.86 0.89 0.89

2 U [−1.0,1.0] 5.00 % 4.51 4.91 4.48 4.55 4.95
10.0 % 9.57 10.02 9.51 9.42 9.73
1.00 % 0.75 0.74 0.94 1.00 0.99

2 U [−10,10] 5.00 % 4.34 4.66 4.63 4.79 4.97
10.0 % 9.27 10.00 9.76 10.12 9.75
1.00 % 0.76 0.88 0.80 0.93 0.98

3 U [−0.5,0.5] 5.00 % 4.34 4.57 4.78 4.64 4.61
10.0 % 9.27 9.25 9.59 9.43 9.64
1.00 % 0.53 0.84 0.85 0.93 0.94

3 U [−1.0,1.0] 5.00 % 4.78 4.44 4.61 4.84 4.71
10.0 % 9.70 9.47 9.40 9.59 9.71
1.00 % 0.59 0.86 1.01 0.98 1.18

3 U [−10,10] 5.00 % 4.42 4.77 5.05 5.08 3.97
10.0 % 9.87 10.09 10.02 10.12 8.63

Table 2: EMPIRICAL REJECTION RATES OF Ṫn UNDER H1 (IN PERCENT): LEVEL OF SIGNIFICANCE

= 5%. Number of Replications: 2,000. DGP: Yt = cos(Yt−1) + εt and εt ∼ IID N (0,1). Null Model:
Yt = α∗ + β∗Yt−1 +Ut .

m Dist. of δj \ n 50 100 200 400 600 800 1,000
U [−0.5,0.5] 61.55 79.55 87.50 91.20 93.10 93.96 94.90

1 U [−1.0,1.0] 61.70 81.10 88.45 93.00 93.45 94.55 95.55
U [−10,10] 55.65 75.95 86.25 91.75 92.85 94.90 95.25
U [−0.5,0.5] 75.65 96.15 99.55 99.90 99.90 99.80 99.90

2 U [−1.0,1.0] 72.90 95.65 99.75 99.90 99.90 99.80 99.95
U [−10,10] 65.90 90.85 98.35 99.80 99.95 99.95 99.80
U [−0.5,0.5] 69.85 95.20 99.85 99.95 99.95 99.90 99.95

3 U [−1.0,1.0] 70.20 96.20 99.95 99.95 100.0 100.0 100.0
U [−10,10] 66.4 92.35 99.75 100.0 100.0 100.0 100.0
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Table 3: EMPIRICAL REJECTION RATES OF T̂n UNDER H0 (IN PERCENT). Number of Replications:
10,000. DGP: Yt = 0.75Yt−1 − 0.25Yt−2 + εt and εt ∼ IID N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut .

m Dist. of δj Nominal Level \ n 50 100 200 500 1,000
1.00 % 4.25 3.32 2.84 1.72 1.49

1 U [−0.5,0.5] 5.00 % 10.77 9.71 8.49 6.47 6.14
10.0 % 17.34 15.74 14.44 12.11 11.21
1.00 % 3.58 3.06 2.21 1.54 1.26

1 U [−1.0,1.0] 5.00 % 10.17 8.81 7.64 6.16 5.74
10.0 % 16.45 14.71 13.62 11.23 10.66
1.00 % 4.17 2.93 2.44 1.65 1.40

1 U [−10,10] 5.00 % 10.70 8.66 7.44 6.24 6.13
10.0 % 16.81 14.53 12.41 10.91 10.86
1.00 % 8.25 6.08 4.61 2.85 2.22

2 U [−0.5,0.5] 5.00 % 17.48 14.82 12.28 8.77 7.55
10.0 % 25.28 22.15 19.07 15.01 12.90
1.00 % 7.96 5.51 4.11 2.39 2.02

2 U [−1.0,1.0] 5.00 % 16.60 14.20 10.76 8.20 6.91
10.0 % 24.43 21.41 17.28 14.31 12.63
1.00 % 8.11 5.84 3.82 2.42 1.77

2 U [−10,10] 5.00 % 17.17 13.80 11.04 8.10 6.68
10.0 % 24.65 20.93 17.14 13.37 11.74
1.00 % 18.97 14.53 11.83 7.77 5.90

3 U [−0.5,0.5] 5.00 % 30.01 25.57 22.09 15.82 12.65
10.0 % 37.58 32.89 29.76 23.08 19.83
1.00 % 18.05 13.00 9.62 5.90 3.91

3 U [−1.0,1.0] 5.00 % 29.91 23.59 19.60 14.07 10.54
10.0 % 37.65 31.39 27.12 20.97 16.88
1.00 % 15.71 9.28 5.86 3.58 2.60

3 U [−10,10] 5.00 % 27.02 18.49 13.31 8.86 8.23
10.0 % 34.81 25.85 19.92 14.78 13.64

Table 4: EMPIRICAL REJECTION RATES OF T̂n UNDER H1 (IN PERCENT): LEVEL OF SIGNIFICANCE

= 5%. Number of Replications: 2,000. DGP: Yt = cos(Yt−1) + εt and εt ∼ IID N (0,1). Null Model:
Yt = α∗ + β∗Yt−1 +Ut .

m Dist. of δj \ n 50 100 200 400 600 800 1,000
U [−0.5,0.5] 68.95 79.60 86.65 90.10 91.80 92.55 93.75

1 U [−1.0,1.0] 71.65 80.55 87.60 90.35 93.15 93.30 93.80
U [−10,10] 63.85 78.55 86.65 90.35 91.65 94.05 93.15
U [−0.5,0.5] 88.90 97.60 99.50 99.70 99.85 99.85 99.85

2 U [−1.0,1.0] 87.55 97.75 99.85 99.60 99.95 99.95 99.90
U [−10,10] 80.60 93.65 98.45 99.60 99.50 99.70 99.65
U [−0.5,0.5] 87.25 94.95 98.35 97.95 98.30 98.15 98.65

3 U [−1.0,1.0] 91.20 98.00 99.70 99.60 99.80 99.40 99.75
U [−10,10] 86.50 96.45 99.80 99.95 99.95 100.0 100.0
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Figure 1: EMPIRICAL P-P PLOTS OF Ṫn. Number of Replications: 10,000. DGP: Yt = εt and εt ∼ IID
N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut . m = 1.

Figure 2: EMPIRICAL P-P PLOTS OF Ṫn. Number of Replications: 10,000. DGP: Yt = εt and εt ∼ IID
N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut . m = 2.
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Figure 3: EMPIRICAL P-P PLOTS OF Ṫn. Number of Replications: 10,000. DGP: Yt = εt and εt ∼ IID
N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut . m = 3.

Figure 4: EMPIRICAL P-P PLOTS OF T̂n. Number of Replications: 10,000. DGP: Yt = 0.75Yt−1 −
0.25Yt−2 + εt and εt ∼ IID N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut . δj ∼U [−1,1]. m = 1.
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Figure 5: EMPIRICAL P-P PLOTS OF T̂n. Number of Replications: 10,000. DGP: Yt = 0.75Yt−1 −
0.25Yt−2 + εt and εt ∼ IID N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut . δj ∼U [−1,1]. m = 2.

Figure 6: EMPIRICAL P-P PLOTS OF T̂n. Number of Replications: 10,000. DGP: Yt = 0.75Yt−1 −
0.25Yt−2 + εt and εt ∼ IID N (0,1). Null Model: Yt = α∗ + β∗Yt−1 +Ut . δj ∼U [−1,1]. m = 3.
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