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Abstract

We provide a family of tests for the IID hypothesis based on generalized runs, powerful against
unspecified alternatives, providing a useful complement to tests designed for specific alternatives, such
as serial correlation, GARCH, or structural breaks. Our tests have appealing computational simplicity
in that they do not require kernel density estimation, with the associated challenge of bandwidth selec-
tion. Simulations show levels close to nominal asymptotic levels. Our tests have power against both
dependent and heterogeneous alternatives, as both theory and simulations demonstrate.
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1 Introduction

The assumption that data are independent and identically distributed (IID) plays a central role in the analy-

sis of economic data. In cross-section settings, the IID assumption holds under pure random sampling. As

Heckman (2001) notes, violation of the IID property, therefore random sampling, can indicate the presence

of sample selection bias. The IID assumption is also important in time-series settings, as processes driving

time series of interest are often assumed to be IID. Moreover, transformations of certain time series can be

shown to be IID under specific null hypotheses. For example Diebold, Gunther, and Tay (1998) show that
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to test density forecast optimality, one can test whether the series of probability integral transforms of the

forecast errors are IID uniform (U[0,1]).

There is a large number of tests designed to test the IID assumption against specific alternatives, such as

structural breaks, serial correlation, or autoregressive conditional heteroskedasticity. Such special purpose

tests may lack power in other directions, however, so it is useful to have available broader diagnostics that

may alert researchers to otherwise unsuspected properties of their data. Thus, as a complement to special

purpose tests, we consider tests for the IID hypothesis that are sensitive to general alternatives. Here we

exploit runs statistics to obtain necessary and sufficient conditions for data to be IID. In particular, we

show that if the underlying data are IID, then suitably defined runs are IID with the geometric distribution.

By testing whether the runs have the requisite geometric distribution, we obtain a new family of tests,

the generalized runs tests, suitable for testing the IID property. An appealing aspect of our tests is their

computational convenience relative to other tests sensitive to general alternatives to IID. For example,

Hong and White’s (2005) entropy-based IID tests require kernel density estimation, with its associated

challenge of bandwidth selection. Our tests do not require kernel estimation and, as we show, have power

against dependent alternatives. Our tests also have power against structural break alternatives, without

exhibiting the non-monotonicities apparent in certain tests based on kernel estimators (Crainiceanu and

Vogelsang, 2007; Deng and Perron, 2008).

Runs have formed an effective means for understanding data properties since the early 1940’s. Wald

and Wolfowitz (1940), Mood (1940), Dodd (1942), and Goodman (1958) first studied runs to test for

randomness of data with a fixed percentile p used in defining the runs. Granger (1963) and Dufour (1981)

propose using runs as a nonparametric diagnostic for serial correlation, noting that the choice of p is

important for the power of the test. Fama (1965) extensively exploits a runs test to examine stylized facts

of asset returns in US industries, with a particular focus on testing for serial correlation of asset returns.

Heckman (2001) observes that runs tests can be exploited to detect sample selection bias in cross-sectional

data; such biases can be understood to arise from a form of structural break in the underlying distributions.

Earlier runs tests compared the mean or other moments of the runs to those of the geometric distribution

for fixed p, say 0.5 (in which case the associated runs can be computed alternatively using the median

instead of the mean). Here we develop runs tests based on the probability generating function (PGF) of

the geometric distribution. Previously, Kocherlakota and Kocherlakota (KK, 1986) have used the PGF to

devise tests for discrete random variables having a given distribution under the null hypothesis. Using

fixed values of the PGF parameter s, KK develop tests for the Poisson, Pascal-Poisson, bivariate Poisson,

or bivariate Neyman type A distributions. More recently, Rueda, Pérez-Abreu, and O’Reilly (1991) study

PGF-based tests for the Poisson null hypothesis, constructing test statistics as functionals of stochastic
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processes indexed by the PGF parameter s. Here we develop PGF-based tests for the geometric distribution

with parameter p, applied to the runs for a sample of continuously distributed random variables.

We construct our test statistics as functionals of stochastic processes indexed by both the runs percentile

p and the PGF parameter s. By not restricting ourselves to fixed values for p and/or s, we create the

opportunity to construct tests with superior power. Further, we obtain weak limits for our statistics in

situations where the distribution of the raw data from which the runs are constructed may or may not

be known and where there may or may not be estimated parameters. As pointed out by Darling (1955),

Sukhatme (1972), Durbin (1973), and Henze (1996), among others, goodness-of-fit (GOF) based statistics

such as ours may have limiting distributions affected by parameter estimation. As we show, however,

our test statistics have asymptotic null distributions that are not affected by parameter estimation under

mild conditions. We also provide straightforward simulation methods to consistently estimate asymptotic

critical values for our test statistics.

We analyze the asymptotic local power of our tests, and we conduct Monte Carlo experiments to

explore the properties of our tests in settings relevant for economic applications. In studying power, we

give particular attention to dependent alternatives and to alternatives containing an unknown number of

structural breaks. To analyze the asymptotic local power of our tests against dependent alternatives, we

assume a first-order Markov process converging to an IID process in probability at the rate n−1/2, where n

is the sample size, and we find that our tests have nontrivial local power. We work with first-order Markov

processes for conciseness. Our results generalize to higher-order Markov processes, but that analysis is

sufficiently involved that we leave it for subsequent work.

Our Monte Carlo experiments corroborate our theoretical results and also show that our tests exhibit

useful finite sample behavior. For dependent alternatives, we compare our generalized runs tests to the

entropy-based tests of Robinson (1991), Skaug and Tjøstheim (1996), and Hong and White (2005). Our

tests perform respectably, showing good level behavior and useful, and in some cases superior, power

against dependent alternatives. For structural break alternatives, we compare our generalized runs tests to

Feller’s (1951) and Kuan and Hornik’s (1995) RR test, Brown, Durbin and Evans’s (1975) RE-CUSUM

test, Sen’s (1980) and Ploberger, Krämer and Kontrus’s (1989) RE test, Ploberger and Krämer’s (1992)

OLS-CUSUM test, Andrews’s (1993) Sup-W test, Andrews and Ploberger’s (1994) Exp-W and Avg-W

tests, and Bai’s (1996) M-test. These prior tests are all designed to detect a finite number of structural

breaks at unknown locations. We find good level behavior for our tests and superior power against multiple

breaks. An innovation is that we consider alternatives where the number of breaks grows with sample size.

Our new tests perform well against such structural break alternatives, whereas the prior tests do not.

This paper is organized as follows. In Section 2, we introduce our new family of generalized runs
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statistics and derive their asymptotic null distributions. These involve Gaussian stochastic processes. Sec-

tion 3 provides methods for consistently estimating critical values for the test statistics of Section 2. This

permits us to compute valid asymptotic critical values even when the associated Gaussian processes are

transformed by continuous mappings designed to yield particular test statistics of interest. We achieve

this using other easily simulated Gaussian processes whose distributions are identical to those of Section

2. Section 4 studies aspects of local power for our tests. Section 5 contains Monte Carlo simulations;

this also illustrates use of the simulation methods developed for obtaining the asymptotic critical values in

Section 2. Section 6 contains concluding remarks. All mathematical proofs are collected in the Appendix.

Before proceeding, we introduce mathematical notation used throughout. We let 1{ · } stand for the

indicator function such that 1{A} = 1 if the event A is true, and 0 otherwise. ⇒ and→ denote ‘converge(s)

weakly’ and ‘converge(s) to’, respectively, and d
= denotes equality in distribution. Further, ‖ · ‖ and ‖ · ‖∞

denote the Euclidean and uniform metrics respectively. We let C(A) andD(A) be the spaces of continuous

and cadlag mappings from a set A to R respectively, and we endow these spaces with Billingsley’s (1968,

1999) or Bickel and Wichura’s (1971) metric. We denote the unit interval as I := [0, 1].

2 Testing the IID Hypothesis

2.1 Maintained Assumptions

We begin by collecting together assumptions maintained throughout and proceed with our discussion based

on these. We first specify the data generating process (DGP) and a parameterized function whose behavior

is of interest.

A1 (DGP): Let (Ω,F ,P) be a complete probability space. For m ∈ N, {Xt : Ω 7→ Rm, t = 1, 2, ...} is a

stochastic process on (Ω,F ,P).

A2 (PARAMETERIZATION): For d ∈ N, let Θ be a non-empty convex compact subset of Rd. Let h :

Rm ×Θ 7→ R be a function such that (i) for each θ ∈ Θ, h(Xt( · ),θ) is measurable; and (ii) for each

ω ∈ Ω, h(Xt(ω), · ) is such that for each θ,θ′ ∈ Θ, |h(Xt(ω),θ) − h(Xt(ω),θ′)| ≤ Mt(ω)‖θ − θ′‖,

where Mt is measurable and is OP(1), uniformly in t.

Assumption A2 specifies that Xt is transformed via h. The Lipschitz condition of A2(ii) is mild and typ-

ically holds in applications involving estimation. Our next assumption restricts attention to continuously

distributed random variables.

A3 (CONTINUOUS RANDOM VARIABLES): For given θ∗ ∈ Θ, the random variables Yt := h(Xt,θ∗)

have continuous cumulative distribution functions (CDFs) Ft : R 7→ I, t = 1, 2, ....
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Our main interest attaches to distinguishing the following hypotheses:

H0 : {Yt : t = 1, 2, ...} is an IID sequence; vs. H1 : {Yt : t = 1, 2, ...} is not an IID sequence.

Under H0, Ft ≡ F (say), t = 1, 2, ... . We separately treat the cases in which F is known or unknown. In

the latter case, we estimate F using the empirical distribution function.

We also separately consider cases in which θ∗ is known or unknown. In the latter case, we assume θ∗

is consistently estimated by θ̂n. Formally, we impose

A4 (ESTIMATOR): There exists a sequence of measurable functions {θ̂n : Ω 7→ Θ} such that
√
n(θ̂n −

θ∗) = OP(1).

Thus, the sequence of transformed observations {Yt : t = 1, 2, ...} need not be observable. Instead, it will

suffice that these can be estimated, as occurs when regression errors are of interest. In this case, h(Xt,θ∗)

can be regarded as a representation of regression errors X1t−E[X1t|X2t, ..., Xmt], say. Estimated residu-

als then have the representation h(Xt, θ̂n).We pay particular attention to the effect of parameter estimation

on the asymptotic null distribution of our test statistics.

2.2 Generalized Runs (GR) Tests

Our first result justifies popular uses of runs in the literature. For this, we provide a characterization of the

runs distribution, new to the best of our knowledge, that can be exploited to yield a variety of runs-based

tests consistent against departures from the IID null hypothesis.

We begin by analyzing the case in which θ∗ and F are known. We define runs in the following two

steps: first, for each p ∈ I, we let Tn(p) := {t ∈ {1, ..., n} : F (Yt) < p}, n = 1, 2, ... . This set

contains those indices whose percentiles F (Yt) are less than the given number p. That is, we first employ

the probability integral transform of Rosenblatt (1952). Next, let Mn(p) denote the (random) number of

elements of Tn(p), let tn,i(p) denote the ith smallest element of Tn(p), i = 1, ...,Mn(p), and define the

p-runs Rn,i(p) as

Rn,i(p) :=

 tn,i(p), i = 1;

tn,i(p)− tn,i−1(p), i = 2, ...,Mn(p).

Thus, a p-run Rn,i(p) is a number of observations separating data values whose percentiles are less than

the given value p.

This is the conventional definition of runs found in the literature, except that F is assumed known

for the moment. Thus, if the population median is known, then the conventional runs given by Wald-

Wolfowitz (1940) are identical to ours with p = 0.5. The only difference is that we apply the probability

integral transform; this enables us to later accommodate the influence of parameter estimation error on the
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asymptotic distribution. In Section 2.3 we relax the assumption that F is known and examine how this

affects the results obtained in this section. Note that Mn(p)/n = p+ oP(1).

Conventional runs are known to embody the IID hypothesis nonparametrically; this feature is exploited

in the literature to test for the IID hypothesis. For example, the Wald-Wolfowitz (1940) runs test considers

the standardized number of runs, whose distribution differs asymptotically from the standard normal if the

data are not IID, giving the test its power.

It is important to note that for a given n and p, n need not be an element of Tn(p). That is, there may

be an ”incomplete” or ”censored” run at the end of the data that arises because F (Yn) ≥ p. We omit this

censored run from consideration to ensure that all the runs we analyze have an identical distribution.

To see why this is important, consider the first run, Rn,1(p), and, for the moment, suppose that we

admit censored runs (i.e., we include the last run, even if F (Yn) ≥ p). When a run is censored, we denote

its length by k = ∅. When the original data {Yt} are IID, the marginal distribution of Rn,1(p) is then

P(Rn,1(p) = k) =

 (1− p)pk, if k ≤ n;

pn, if k = ∅,
.

Thus, when censored runs are admitted, the unconditional distribution of Rn,1(p) is a mixture distribution.

The same is true for runs other than the first, but the mixture distributions differ due to the censoring. On the

other hand, the uncensored run Rn,1(p) is distributed as Gp, the geometric distribution with parameter p.

The same is also true for uncensored runs other than the first. That is, {Rn,i(p), i = 1, 2, ...,Mn(p)} is the

set of runs with identical distribution Gp, as every run indexed by i = 1, 2, . . . ,Mn(p) is uncensored. (The

censored run, when it exists, is indexed by i = Mn(p) + 1. When the first run is censored, Mn(p) = 0.)

Moreover, as we show, the uncensored runs are independent when {Yt} is IID. Thus, in what follows,

we consider only the uncensored runs, as formally defined above. Further, we construct and analyze our

statistics in such a way that values of p for which Mn(p) = 0 have no adverse impact on our results.

We now formally state our characterization result. For this, we let Kn,i stand as a shorthand notation

for Kn,i(p, p
′), with p′ ≤ p, satisfying Kn,0(p, p

′) = 0, and
∑Kn,i(p,p

′)
j=Kn,i−1(p,p′)+1Rn,j(p) = Rn,i(p

′). The

desired characterization is as follows.

LEMMA 1: Suppose Assumptions A1, A2(i), and A3 hold. (a) Then for each n = 1, 2, ..., {Yt, t = 1, ..., n}

is IID only if the following regularity conditions (R) hold:

1. for every p ∈ I such that Mn(p) > 0, {Rn,i(p), i = 1, ...,Mn(p)} is IID with distribution Gp, the

geometric distribution with parameter p; and

2. for every p, p′ ∈ I with p′ ≤ p such that Mn(p′) > 0,

(i) Rn,j(p) is independent of Rn,i(p′) if j /∈ {Kn,i−1 + 1,Kn,i−1 + 2, ...,Kn,i};
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(ii) otherwise, for w = 1, ...,Mn(p′), m = 1, ..., w, and ` = m, ..., w,

P(

m+Kn,i−1∑
j=1+Kn,i−1

Rn,j(p) = `, Rn,i(p
′) = w|Kn,i−1,Kn,i)

=

 ( `−1m−1)(1− p)`−m(p− p′)m(1− p′)w−(`+1)p′, if ` = m, · · · , w − 1;

( `−1m−1)(1− p)`−m(p− p′)m−1p′, if ` = w,

(b) IfR holds, then Yt is identically distributed and pairwise independent.

Conditions (1) and (2) of Lemma 1(a) enable us to detect violations of IID {Yt} in directions that differ

from the conventional parametric approaches. Specifically, by Lemma 1, alternatives to IID {Yt} may

manifest as p-runs with the following alternative (A) properties:

A(i) : the p-runs have distribution Gq, q 6= p;

A(ii) : the p-runs have non-geometric distribution;

A(iii) : the p-runs have heterogeneous distributions;

A(iv): the p-runs and p′-runs have dependence between Rn,i(p) and Rn,j(p′) (i 6= j, p′ ≤ p);

A(v) : any combination of (i)− (iv).

Popularly assumed alternatives to IID data can be related to the alternatives in A. For example, stationary

autoregressive processes yield runs with geometric distribution, but for a given p, {Rn,i(p)} has a geo-

metric distribution different from Gp and may exhibit serial correlation. Thus stationary autoregressive

processes exhibit A(i) or A(iv). Alternatively, if the original data are independent but heterogeneously

distributed, then for some p, {Rn,i(p)} is non-geometric or has heterogeneous distributions. This case thus

belongs to A(ii) or A(iii).

To keep our analysis manageable, we focus on detecting A(i) − A(iii) by testing the p-runs for dis-

tribution Gp. That is, the hypotheses considered here are as follows: H′0 : {Rn,i(p), i = 1, ...,Mn(p)} is

IID with distribution Gp for each p ∈ I such that Mn(p) > 0; vs. H′1 : {Rn,i(p), i = 1, ...,Mn(p)} mani-

fests A(i),A(ii), or A(iii) for some p ∈ I such that Mn(p) > 0. Stated more primitively, the alternative

DGPs aimed at here include serially correlated and/or heterogeneous alternatives. Alternatives that violate

A(iv) without violating A(i) − A(iii) will generally not be detectable. Thus, our goal is different from

the rank-based white noise test of Hallin, Ingenbleek, and Puri (1985) and the distribution-function based

serial independence test of Delgado (1996).

Certainly, it is of interest to devise statistics specifically directed at A(iv) in order to test H0 fully

against the alternatives of H1. Such statistics are not as simple to compute and require analysis different

than those motivated by H′1; moreover, the Monte Carlo simulations in Section 5 show that even with
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attention restricted to H′1, we obtain well-behaved tests with power against both commonly assumed de-

pendent and heterogeneous alternatives to IID. We thus leave consideration of tests designed specifically

to detect A(iv) to other work.

Lemma 1(b) is a partial converse of Lemma 1(a). It appears possible to extend this to a full converse

(establishing {Yt} is IID) using results of Jogdeo (1968), but we leave this aside here for brevity.

There are numerous ways to construct statistics for detecting A(i)−A(iii). For example, as for con-

ventional runs statistics, we can compare the first two runs moments with those implied by the geometric

distribution. Nevertheless, this approach may fail to detect differences in higher moments. To avoid dif-

ficulties of this sort, we exploit a GOF statistic based on the PGF to test the Gp hypothesis. For this, let

−1 < s < 0 < s̄ < 1; for each s ∈ S := [s, s̄], define

Gn(p, s) :=
1√
n

Mn(p)∑
i=1

(
sRn,i(p) − sp

{1− s(1− p)}

)
, (1)

if p ∈ (pmin,n, 1), and Gn(p, s) := 0 otherwise, where pmin,n := min[F (Y1), F (Y2), . . . , F (Yn)]. This is

a scaled difference between the p-runs sample PGF and the Gp PGF.

Two types of GOF statistics are popular in the literature: those exploiting the empirical distribution

function (e.g., Darling, 1955; Sukhatme, 1972; Durbin, 1973; and Henze, 1996) and those comparing

empirical characteristic or moment generating functions (MGFs) with their sample estimates (e.g., Bierens,

1990; Brett and Pinkse, 1997; Stinchcombe and White 1998; Hong, 1999; and Pinkse, 1998). The statistic

in (1) belongs to the latter type, as the PGF for discrete random variables plays the same role as the MGF,

as noted by Karlin and Taylor (1975). The PGF is especially convenient because it is a rational polynomial

in s, enabling us to easily handle the weak limit of the process Gn. Specifically, the rational polynomial

structure permits us to represent this weak limit as an infinite sum of independent Gaussian processes,

enabling us to straightforwardly estimate critical values by simulation, as examined in detail in Section

3. GOF tests using (1) are diagnostic, as are standard MGF-based GOF tests; thus, tests based on (1) do

not tell us in which direction the null is violated. Also, like standard MGF-based GOF tests, they are not

consistent against all departures from the IID hypothesis. Section 4 examines local alternatives to the null;

we provide further discussion there.

Our use of Gn builds on work of Kocherlakota and Kocherlakota (KK, 1986), who consider tests for

a number of discrete null distributions, based on a comparison of sample and theoretical PGFs for a given

finite set of s’s. To test their null distributions, KK recommend choosing s’s close to zero. Subsequently,

Rueda, Pérez-Abreu, and O’Reilly (1991) examined the weak limit of an analog of Gn( p, · ) to test the

IID Poisson null hypothesis. Here we show that if {Rn,i(p)} is a sequence of IID p-runs distributed as

Gp then Gn( p, · ) obeys the functional central limit theorem; test statistics can be constructed accordingly.
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Specifically, for each p, Gn( p, · ) ⇒ G(p, · ), where G(p, · ) is a Gaussian process such that for each

s, s′ ∈ S, E[G(p, s)] = 0, and

E
[
G(p, s)G(p, s′)

]
=

ss′p2(1− s)(1− s′)(1− p)
{1− s(1− p)}{1− s′(1− p)}{1− ss′(1− p)}

. (2)

This mainly follows by showing that {Gn(p, · ) : n = 1, 2, ...} is tight (see Billingsley, 1999); the given

covariance structure (2) is derived from E [Gn(p, s)Gn(p, s′)] under the null. Let f : C(S) 7→ R be a con-

tinuous mapping. Then by the continuous mapping theorem, under the null any test statistic f [Gn(p, · )]

obeys f [Gn(p, · )]⇒ f [G(p, · )].

As Granger (1963) and Dufour (1981) emphasize, the power of runs tests may depend critically on the

specific choice of p. For example, if the original data set is a sequence of independent normal variables

with population mean zero and variance dependent upon index t, then selecting p = 0.5 yields no power,

as the runs for p = 0.5 follow G0.5 despite the heterogeneity. Nevertheless, useful power can be delivered

by selecting p different from 0.5. This also suggests that better powered runs tests may be obtained by

considering numerous p’s at the same time.

To fully exploit Gn, we consider Gn as a random function of both p and s, and not just Gn(p, · ) for

given p. Specifically, under the null, a functional central limit theorem ensures that

Gn ⇒ G (3)

on J × S, where J := [p, 1] with p > 0, and G is a Gaussian process such that for each (p, s) and (p′, s′)

with p′ ≤ p, E [G(p, s)] = 0, and

E
[
G(p, s)G(p′, s′)

]
=

ss′p′2(1− s)(1− s′)(1− p){1− s′(1− p)}
{1− s(1− p)}{1− s′(1− p′)}2{1− ss′(1− p)}

. (4)

When p = p′ then the covariance structure is as in (2). Note also that the covariance structure in (4) is

symmetric in both s and p, as we specify that p′ ≤ p. Without this latter restriction, the symmetry is easily

seen, as the covariance then has the form

ss′min[p, p′]2(1− s)(1− s′)(1−max[p, p′]){1− s′(1−max[p, p′])}
{1− s(1−max[p, p′])}{1− s′(1−min[p, p′])}2{1− ss′(1−max[p, p′])}

.

To obtain (3) and (4), we exploit the joint probability distribution of runs associated with different

percentiles p and p′. Although our statistic Gn is not devised to test for dependence between Rn,j(p) and

Rn,j(p
′), verifying eq.(4) nevertheless makes particular use of the dependence structure implied byA(iv).

This structure also makes it straightforward to devise statistics specifically directed atA(iv); we leave this

aside here to maintain a focused presentation.

For each s, Gn( · , s) is cadlag, so the tightness of {Gn} must be proved differently from that of

{Gn(p, · )}. Further, although G is continuous in p, it is not differentiable almost surely. This is because
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Rn,i is a discrete random function of p. As n increases, the discreteness of Gn disappears, but its limit is

not smooth enough to deliver differentiability in p.

The weak convergence given in (3) is proved by applying the convergence criterion of Bickel and

Wichura (1971, theorem 3). We verify this by showing that the modulus of continuity based on the fourth-

order moment is uniformly bounded on J × S. By taking p > 0, we are not sacrificing much, as Mn(p)

decreases as p tends to zero, so that Gn(p, · ) converges to zero uniformly on S. For practical purposes,

we can thus let p be quite small. We examine the behavior of the relevant test statistics in our Monte Carlo

experiments of Section 5 by examining what happens when p is zero.

As before, the continuous mapping theorem ensures that, given a continuous mapping f : D(J× S) 7→

R, under the null the test statistic f [Gn] obeys f [Gn]⇒ f [G].

Another approach uses the processGn(· , s) on J. Under the null, we haveGn( · , s)⇒ G( · , s), where

G( · , s) is a Gaussian process such that for each p and p′ in J with p′ ≤ p, E [G( · , s)] = 0, and

E
[
G(p, s)G(p′, s)

]
=

s2p′2(1− s)2(1− p){1− s(1− p)}
{1− s(1− p)}{1− s(1− p′)}2{1− s2(1− p)}

. (5)

Given a continuous mapping f : D(J) 7→ R, under the null we have f [Gn( · , s)]⇒ f [G( · , s)].

We call tests based on f [Gn(p, · )], f [Gn(· , s)], or f [Gn] generalized runs tests (GR tests) to empha-

size their lack of dependence on specific values of p and/or s. We summarize our discussion as

THEOREM 1: Given conditions A1, A2(i), A3, and H0,

(i) for each p ∈ I, Gn( p, · ) ⇒ G(p, · ), and if f : C(S) 7→ R is continuous, then f [Gn(p, · )] ⇒

f [G(p, · )];

(ii) for each s ∈ S, Gn( · , s) ⇒ G( · , s), and if f : D(J) 7→ R is continuous, then f [Gn( · , s)] ⇒

f [G( · , s)];

(iii) Gn ⇒ G, and if f : D(J× S) 7→ R is continuous, then f [Gn]⇒ f [G].

The proofs of Theorem 1(i, ii, and iii) are given in the Appendix. Although Theorem 1(i and ii) follow

as corollaries of Theorem 1(iii), we prove Theorem 1(i and ii) first and use these properties as lemmas in

proving Theorem 1(iii). Note that Theorem 1(i) holds even when p = 0, because Gn( 0, · ) ≡ 0, and for

every s, G(0, s) ∼ N(0, 0) = 0. We cannot allow p = 0 in Theorem 1(iii), however, because however

large n is, there is always some p close to 0 for which the asymptotics break down. This necessitates our

consideration of J instead of I in (iii).

We remark that we do not specify f in order to allow researchers to form their own statistics based

upon their particular interests. There are a number of popular mappings and justifications for these in

the literature, especially those motivated by Bayesian interpretations. For example, Davies (1977) con-

siders the mapping that selects the maximum of the random functions generated by nuisance parameters
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present only under the alternative. The motivation for this is analogous to that for the Kolmogorov (K)

goodness-of-fit statistic, namely, to test non-spurious peaks of the random functions. Bierens (1990) also

proposes this choice for his consistent conditional moment statistic. Andrews and Ploberger (1994) study

this mapping together with others, and propose a mapping that is optimal in a well defined sense. Al-

ternatively, Bierens (1982) and Bierens and Ploberger (1997) consider integrating the associated random

functions with respect to the nuisance parameters, similar to the Smirnov (S) statistic. This is motivated

by the desire to test for a zero constant mean function of the associated random functions. Below, we

examine K- and S-type mappings for our Monte Carlo simulations. A main motivation for this is that the

goodness-of-fit aspects of the transformed data tested via the PGF have interpretations parallel to those for

the mappings used in Kolmogorov’s and Smirnov’s goodness-of-fit statistics.

2.3 Empirical Generalized Runs (EGR) Tests

We now consider the case in which θ∗ is known, but the null CDF of Yt is unknown. This is a common

situation when interest attaches to the behavior of raw data. As the null CDF is unknown, Gn cannot

be computed. Nevertheless, we can proceed by replacing the unknown F with a suitable estimator. The

empirical distribution function is especially convenient here. Specifically, for each y ∈ R, we define

F̃n(y) := 1
n

∑n
t=1 1{Yt≤y}. This estimation requires modifying our prior definition of p-runs as follows:

First, for each p ∈ I, let T̃n(p) := {t ∈ N : F̃n(Yt) < p}, let M̃n(p) denote the (random) number of

elements of T̃n(p), and let t̃n,i(p) denote the ith smallest element of T̃n(p), i = 1, ..., M̃n(p). (Note that

bM̃n(p)/nc = p.) We define the empirical p-runs as

R̃n,i(p) :=

 t̃n,i(p), i = 1;

t̃n,i(p)− t̃n,i−1(p), i = 2, ..., M̃n(p).

For each s ∈ S, define

G̃n(p, s) :=
1√
n

M̃n(p)∑
i=1

(
sR̃n,i(p) − sp

{1− s(1− p)}

)
(6)

if p ∈ ( 1
n , 1), and G̃n(p, s) := 0 otherwise.

The presence of F̃n leads to an asymptotic null distribution for G̃n different from that for Gn. We

now examine this in detail. For convenience, for each p ∈ I, let q̃n(p) := inf{x ∈ R : F̃n(x) ≥ p},

let p̃n(p) := F (q̃n(p)), and abbreviate p̃n(p) as p̃n. Then (6) can be decomposed into two pieces as

G̃n = Wn +Hn, where for each (p, s), Wn(p, s) := n−1/2
∑M̃n(p)

i=1 (sR̃n,i(p)− sp̃n/{1− s(1− p̃n)}), and

Hn(p, s) := n−1/2M̃n(p)(sp̃n/{1− s(1− p̃n)} − sp/{1− s(1− p)}). Our next result relates Wn to the

random function Gn, revealing Hn to be the contribution of the CDF estimation error.
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LEMMA 2: Given conditions A1, A2(i), A3, and H0,

(i) sup(p,s) ∈ J×S |Wn(p, s)−Gn(p, s)| = oP(1);

(ii) Hn ⇒ H, where H is a Gaussian process on J× S such that for each (p, s) and (p′, s′) with

p′ ≤ p, E[H(p, s)] = 0, and

E
[
H(p, s)H(p′, s′)

]
=

ss′pp′2(1− s)(1− s′)(1− p)
{1− s(1− p)}2{1− s′(1− p′)}2

. (7)

(iii) (Wn, Hn)⇒ (G,H), and for each (p, s) and (p′, s′),E[G(p, s)H(p′, s′)] = −E[H(p, s)H(p′, s′)].

Lemma 2 relates the results of Theorem 1 to the unknown distribution function case. As Wn is asymptot-

ically equivalent to Gn (as defined in the known F case), Hn must be the additional component incurred

by estimating the empirical distribution function.

To state our result for the asymptotic distribution of G̃n, we let G̃ be a Gaussian process on J× S such

that for each (p, s) and (p′, s′) with p′ ≤ p, E[G̃(p, s)] = 0, and

E[G̃(p, s)G̃(p′, s′)] =
ss′p′2(1− s)2(1− s′)2(1− p)2

{1− s(1− p)}2{1− s′(1− p′)}2{1− ss′(1− p)}
. (8)

The analog of Theorem 1 can now be given as follows.

THEOREM 2: Given conditions A1, A2(i), A3, and H0,

(i) for each p ∈ I, G̃n(p, · ) ⇒ G̃(p, · ), and if f : C(S) 7→ R is continuous, then f [G̃n(p, · )] ⇒

f [G̃(p, · )];

(ii) for each s ∈ S, G̃n( · , s) ⇒ G̃( · , s), and if f : D(J) 7→ R is continuous, then f [G̃n( · , s)] ⇒

f [G̃( · , s)];

(iii) G̃n ⇒ G̃, and if f: D(J× S) 7→ R is continuous, then f [G̃n]⇒ f [G̃].

We call tests based on f [G̃n(p, · )], f [G̃n( · , s)], or f [G̃n] empirical generalized runs tests (EGR tests) to

highlight their use of the empirical distribution function. We emphasize that the distributions of the GR

and EGR tests differ, as the CDF estimation error survives in the limit, a consequence of the presence of

the component Hn.

2.4 EGR Tests with Nuisance Parameter Estimation

Now we consider the consequences of estimating θ∗ by θ̂n satisfying A4. As noted by Darling (1955),

Sukhatme (1972), Durbin (1973), and Henze (1996), estimation can affect the asymptotic null distribution

of GOF-based test statistics. Nevertheless, as we now show in detail, this turns out not to be the case here.

We elaborate our notation to handle parameter estimation. Let Ŷn,t := h(Xt, θ̂n) and let F̂n(y) :=

1
n

∑n
t 1{Ŷn,t≤y}, so that F̂n is the empirical CDF of Ŷn,t. Note that we replace θ∗ with its estimate θ̂n to
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accommodate the fact that θ∗ is unknown in this case. Thus, F̂n contains two sorts of estimation errors:

that arising from the empirical distribution and the estimation error for θ∗.

Next, we define the associated runs using the estimates Ŷn,t and F̂n. For each p in I, we now let

T̂n(p) := {t ∈ N : F̂n(Ŷn,t) < p}, let M̂n(p) denote the (random) number of elements of T̂n(p), and let

t̂n,i(p) denote the ith smallest element of T̂n(p), i = 1, ..., M̂n(p). (Note that bM̂n(p)/nc = p.) We define

the parametric empirical p-runs as

R̂n,i(p) :=

 t̂n,i(p), i = 1;

t̂n,i(p)− t̂n,i−1(p), i = 2, ..., M̂n(p).

For each s ∈ S, define Ĝn(p, s) := n−1/2
∑M̂n(p)

i=1 (sR̂n,i(p) − sp/{1 − s(1 − p)}) if p ∈ ( 1
n , 1), and

Ĝn(p, s) := 0 otherwise. Note that these definitions are parallel to those previously given. The only

difference is that we are using {Ŷn,t : t = 1, 2, ..., n} instead of {Yt : t = 1, 2, ..., n}.

To see why estimating θ∗ has no asymptotic impact, we begin by decomposing Ĝn as Ĝn = G̈n+ Ḧn,

where, letting q̃n(p) := inf{y ∈ R : F̃n(y) ≥ p} and p̃n := F (q̃n(p)) as above, we define G̈n(p, s) :=

n−1/2
∑M̂n(p)

j=1 (sR̂n,i(p) − sp̃n/{1− s(1− p̃n)}), and Ḧn(p, s) := n−1/2M̂n(p)(sp̃n/{1− s(1− p̃n)} −

sp/{1 − s(1 − p)}). Note that this decomposition is also parallel to the previous decomposition, G̃n =

Wn +Hn. Our next result extends Lemma 2.

LEMMA 3: Given conditions A1− A4 and H0,

(i) sup(p,s) ∈ J×S |G̈n(p, s)−Gn(p, s)| = oP(1);

(ii) sup(p,s) ∈ I×S |Ḧn(p, s)−Hn(p, s)| = oP(1).

Given Lemma 2(i), it becomes evident that Ĝn = Wn + Hn + oP(1) = G̃n + oP(1), so the asymptotic

distribution of Ĝn coincides with that of G̃n, implying that the asymptotic runs distribution is primarily

determined by the estimation error associated with the empirical distribution F̂n and not by the estimation

of θ∗.

The intuition behind this result is straightforward. As Darling (1955), Sukhatme (1972), Durbin

(1973), and Henze (1996) note, the asymptotic distribution of an empirical process, say p 7→ Ẑn(p) :=

n1/2{F (q̂n(p)) − p}, p ∈ I, where q̂n(p) := inf{y ∈ R : F̂n(y) ≥ p}, is affected by parameter estima-

tion error primarily because the empirical process Ẑn is constructed using the Ŷn,t := h(Xt, θ̂n) and the

differentiable function F . Because h contains not θ∗ but θ̂n, the parameter estimation error embodied in

θ̂n is transmitted to the asymptotic distribution of Ẑn through q̂n and F. Thus, if we were to define runs as

T̈n(p) := {t ∈ N : F (Ŷn,t) < p}, then their asymptotic distribution would be affected by the parameter es-

timation error. Instead, however, our runs {R̂n,i} are constructed using T̂n(p) := {t ∈ N : F̂n(Ŷn,t) < p},

which replaces F with F̂n, a step function. Variation in θ̂n is less important in this case, whereas the
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estimation of F plays the primary role in determining the asymptotic runs distribution. This also implies

that when θ̂n is estimated and F is known, it may be computationally convenient to construct the runs

using F̂n instead of F .

The analog of Theorems 1 and 2 is:

THEOREM 3: Given conditions A1− A4 and H0,

(i) for each p ∈ I, Ĝn(p, · ) ⇒ G̃(p, · ), and if f : C(S) 7→ R is continuous, then f [Ĝn(p, · )] ⇒

f [G̃(p, · )];

(ii) for each s ∈ S, Ĝn( · , s) ⇒ G̃( · , s), and if f : D(J) 7→ R is continuous, then f [Ĝn( · , s)] ⇒

f [G̃( · , s)];

(iii) Ĝn ⇒ G̃, and if f: D(J× S) 7→ R is continuous, then f [Ĝn]⇒ f [G̃].

We call tests based on f [Ĝn( p, · )], f [Ĝn(·, s)], or f [Ĝn] parametric empirical generalized runs tests

(PEGR tests) to highlight their use of estimated parameters. By Theorem 3, the asymptotic null distribution

of f [Ĝn] is identical to that of f [G̃n], which takes θ∗ as known. We remark that I appears in Lemma

3(ii) and Theorem 3(i) rather than J, as Ḧn and Hn only involve the empirical distribution and not the

distribution of runs. This is parallel to results of Chen and Fan (2006) and Chan, Chen, Chen, Fan, and

Peng (2009). They study semiparametric copula-based multivariate dynamic models and show that their

pseudo-likelihood ratio statistic has an asymptotic distribution that depends on estimating the empirical

distribution but not other nuisance parameters. The asymptotically surviving Ḧn in Lemma 3 reflects the

asymptotic influence of estimating the empirical distribution, whereas estimating the nuisance parameters

has no asymptotic impact, as seen in Theorem 3.

3 Simulating Asymptotic Critical Values

Obtaining critical values for test statistics constructed as functions of Gaussian processes can be challeng-

ing. Nevertheless, the rational polynomial structure of our statistics permits us to construct representations

of G and G̃ as infinite sums of independent Gaussian random functions. Straightforward simulations then

deliver the desired critical values. Given that Theorems 1, 2, and 3 do not specify the continuous mapping

f , it is of interest to have methods yielding the asymptotic distributions of G and G̃ rather than f [G] and

f [G̃] for a particular mapping f , as the latter distributions are easily obtained from the methods provided

here once f is specified.

To represent G and G̃, we use the Karhunen-Loève (K-L) representation (Loève, 1978, ch.11) of a

stochastic process. This represents Brownian motion as an infinite sum of sine functions multiplied by

independent Gaussian random coefficients. Grenander (1981) describes this representation as a complete
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orthogonal system (CONS) and provides many examples. For example, Krivyakov, Matynov, and Tyurin

(1977) obtain the asymptotic critical values of von Mises’s ω2 statistic in the multi-dimensional case by ap-

plying this method. In econometrics, Phillips (1998) has used the K-L representation to obtain asymptotic

critical values for testing cointegration. Andrews’s (2001) analysis of test statistics for a GARCH(1,1)

model with nuisance parameter not identified under the null also exploits a CONS representation. By

theorem 2 of Jain and Kallianpur (1970), Gaussian processes with almost surely continuous paths have a

CONS representation and can be approximated uniformly. We apply this result to our GR and (P)EGR test

statistics; this straightforwardly delivers reliable asymptotic critical values.

3.1 Generalized Runs Tests

A fundamental property of Gaussian processes is that two Gaussian processes have identical distributions

if their covariance structures are the same. We use this fact to represent G(p, · ), G( · , s), and G as infinite

sums of independent Gaussian processes that can be straightforwardly simulated.

To obtain critical values for GR tests, we can use the Gaussian process Z∗ defined by

Z∗(p, s) :=
sp(1− s)B00(p)

{1− s(1− p)}2
+

(1− s)2

{1− s(1− p)}2
∞∑
j=1

sjBsj
(
p2, (1− p)1+j

)
, (9)

where B00 is a Brownian bridge, and {Bsj : j = 1, 2, ...} is a sequence of independent Brownian sheets,

whose covariance structure is given by E[Bsj (p, q)Bsi (p′, q′)] = 1{i=j}min[p, p′] · min[q, q′]. The argu-

ments of Bsj lie only in the unit interval, and it is readily verified that E[Z∗(p, s)Z∗(p′, s′)] is identical to

(4), so Z has the same distribution as G.

An inconvenient computational aspect of Z∗ is that the terms Bsj require evaluation on a two dimen-

sional square, which is computationally demanding. More convenient in this regard is the Gaussian process

Z defined by

Z(p, s) :=
sp(1− s)B00(p)

{1− s(1− p)}2
+

(1− s)2

{1− s(1− p)}2
∞∑
j=1

sj(1− p)1+jBj
(

p2

(1− p)1+j

)
, (10)

where {Bj : j = 1, 2, ...} is a sequence of independent standard Brownian motions independent of the

Brownian bridge B00 . It is straightforward to compute E[Z(p, s)Z(p′, s′)]. Specifically, if p′ ≤ p then

E[Z(p, s)Z(p′, s′)] =
ss′p′2(1− s)(1− s′)(1− p){1− s′(1− p)}

{1− s(1− p)}{1− s′(1− p′)}2{1− ss′(1− p)}
.

This covariance structure is also identical to (4), so Z has the same distribution as G. The processes B00
and {Bj} are readily simulated as a consequence of Donsker’s (1951) theorem or the K-L representation

(Loève, 1978, ch.11), ensuring that critical values for any statistic f [Gn] can be straightforwardly found

by Monte Carlo methods.
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Although one can obtain asymptotic critical values for p-runs test statistics f [Gn(p, · )] by fixing p in

(9) or (10), there is a much simpler representation for G(p, · ). Specifically, consider the processZp defined

by Zp(s) := sp(1−s)(1−p)1/2
{1−s(1−p)}

∑∞
j=0 s

j(1− p)j/2Zj , where {Zj} is a sequence of IID standard normals. It

is readily verified that for each p, E[Zp(s)Zp( s′)] is identical to (2). Because Zp does not involve the

Brownian bridge, Brownian motions, or Brownian sheets, it is more efficient to simulate than Z(p, · ).

This convenient representation arises from the symmetry of equation (4) in s and s′ when p = p′. The fact

that equation (4) is asymmetric in p and p′ when s = s′ implies that a similar convenient representation

for G(· , s) is not available. Instead, we obtain asymptotic critical values for test statistics f [Gn( · , s)], by

fixing s in (9) or (10).

We summarize these results as follows.

THEOREM 4: (i) For each p ∈ I, G(p, · ) d
= Zp, and if f: C(S) 7→ R is continuous, then f [G(p, · )] d

=

f [Zp];

(ii) G d
= Z∗ d

= Z , and if f: D(J× S) 7→ R is continuous, then f [G]
d
= f [Z∗] d

= f [Z].

As deriving the covariance structures of the relevant processes is straightforward, we omit the proof of

Theorem 4 from the Appendix.

3.2 (P)EGR Tests

For the EGR statistics, we can similarly provide a Gaussian process whose covariance structure is the same

as (8) and that can be straightforwardly simulated. By Theorem 3, this Gaussian process also yields critical

values for PEGR test statistics.

We begin with a representation for H. Specifically, consider the Gaussian process X defined by

X (p, s) := − sp(1−s)
{1−s(1−p)}2B

0
0(p), where B00 is a Brownian bridge as before. It is straightforward to show

that when p′ ≤ p, E[X (p, s)X (p′, s′)] is the same as (7), implying that this captures the asymptotic dis-

tribution of the empirical distribution estimation error Hn, which survives to the limit. The representation

Z for G in Theorem 4(ii) and the covariance structure for G and H required by Lemma 2(iii) together

suggest representing G̃ as Z̃∗ or Z̃ defined by

Z̃∗(p, s) :=
(1− s)2

{1− s(1− p)}2
∞∑
j=1

sjBsj
(
p2, (1− p)1+j

)
(11)

and

Z̃(p, s) :=
(1− s)2

{1− s(1− p)}2
∞∑
j=1

sj(1− p)1+jBj
(

p2

(1− p)1+j

)
(12)

respectively, so that Z̃∗ (resp. Z̃) is the sum of Z∗ (resp. Z) and X with the identical B00 in each. As is

readily verified, (8) is the same as E[Z̃∗(p′, s′)Z̃∗(p, s)] and E[Z̃(p′, s′)Z̃(p, s)]. Thus, simulating (11)
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or (12) can deliver the asymptotic null distribution of G̃n and Ĝn.

Similar to the previous case, the following representation is convenient when p is fixed:

Z̃p(s) :=
sp(1− s)(1− p)1/2

{1− s(1− p)}

∞∑
j=0

{
sj(1− s)− p(1− sj+1)

{1− s(1− p)}

}
(1− p)j/2Zj .

For fixed s, we use the representation provided by Z̃(·, s) or Z̃∗(·, s).

We summarize these results as follows.

THEOREM 5 (i)H d
= X ;

(ii) For each p ∈ I, G̃(p, · ) d
= Z̃p, and if f : C(S) 7→ R is continuous, then f [G̃(p, · )] d

= f [Z̃p];

(iii) G̃ d
= Z̃∗ d

= Z̃ , and if f : D(J× S) 7→ R is continuous, then f [G̃]
d
= f [Z̃∗] d

= f [Z̃].

As deriving the covariance structures of the relevant processes is straightforward, we omit the proof of

Theorem 5 from the Appendix.

4 Asymptotic Local Power

Generalized runs tests target serially correlated autoregressive processes and/or independent heterogeneous

processes violatingA(i)−A(iii), as stated in Section 3. Nevertheless, runs tests are not always consistent

against these processes, because just as for MGF-based GOF tests, PGF-based GOF tests cannot handle

certain measure zero alternatives. We therefore examine whether the given (P)EGR test statistics have

nontrivial power under specific local alternatives. To study this, we consider a first-order Markov process

under which (P)EGR test statistics have nontrivial power when the convergence rate of the local alternative

to the null is n−1/2. Another motivation for considering this local alternative is to show that (P)EGR test

statistics can have local power directly comparable to that of standard parametric methods. We consider

first-order Markov processes for conciseness. The test can also be shown to have local power against

higher-order Markov processes. Our results for first-order processes provide heuristic support for this

claim, as higher-order Markov processes will generally exhibit first order dependence. A test capable of

detecting true first-order Markov structure will generally be able to detect apparent first-order structure, as

well. The situation is analogous to the case of autoregression, where tests for AR(1) structure are generally

also sensitive to AR(p) structures, p > 1. We provide some additional discussion below in the simulation

section.

To keep our presentation succinct, we focus on EGR test statistics in this section. We saw above

that the distribution theory for EGR statistics applies to PEGR statistics. This also holds for local power

analysis. For brevity, we omit a formal demonstration of this fact here.
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We consider a double array of processes {Yn,t}, and we let Fn,t denote the smallest σ-algebra gener-

ated by {Yn,t, Yn,t−1, ..., }.We suppose that for each n, {Yn,1, Yn,2, ..., Yn,n} is a strictly stationary and ge-

ometric ergodic first-order Markov process having transition probability distributions P(Yn,t+1 ≤ y|Fn,t)

with the following Lebesgue-Stieltjes differential:

H`
1 : dFn(y|Fn,t) = dF (y) + n−1/2dD(y, Yn,t) (13)

under the local alternative, where we construct the remainder term to be oP(n−1/2) uniformly in y. For this,

we suppose thatD(·, Yn,t) is a signed measure with properties specified in A5, and that for a suitable signed

measure Q with Lebesgue-Stieltjes differential dQ, Yn,t has marginal Lebesgue-Stieltjes differential

dFn(y) = dF (y) + n−1/2{dQ(y) + o(1)}. (14)

We impose the following formal condition.

A5 (LOCAL ALTERNATIVE): (i) For each n = 1, 2, ..., {Yn,1, Yn,2, ..., Yn,n} is a strictly stationary and

geometric ergodic first-order Markov process with transition probability distributions given by eq. (13)

and marginal distributions given by eq. (14), where (ii) D : R × R 7→ R is a continuous function

such that D(·, z) defines a signed measure for each z ∈ R; (iii) supx |D(x, Yn,t)| ≤ Mn,t such that

E[Mn,t] ≤ ∆ <∞ uniformly in t and n, and limy→±∞D(y, Yn,t) = 0 a.s.−P uniformly in t and n; (iv)

supy
∫∞
−∞ |D(y, x)|dF (x) ≤ ∆ and supy |

∫∞
y D(y, x)dD(x, Yn,t)| ≤Mn,t for all t and n.

Thus, as n tends to infinity, {Yn,1, Yn,2, ...} converges in distribution to an IID sequence of random vari-

ables with marginal distribution F . Note that the marginal distribution given in eq. (14) is obtained by

substituting the conditional distribution of Yn,t−j+1|Fn,t−j (j = 1, 2, ...) into (13) and integrating with re-

spect to the random variables other than Yn,t. For example,
∫∞
−∞D(y, z)dF (z) = Q(y). This implies that

the properties of Q are determined by those of D. For example, limy→∞Q(y) = 0 and supy |Q(y)| ≤ ∆.

Our motivations for condition A5 are as follows. We impose the first-order Markov condition for

conciseness. Higher-order Markov processes can be handled similarly. Assumption A5(i) also implies

that {Yn,t} is an ergodic β–mixing process by theorem 1 of Davydov (1973). Next, assumptions A5(ii,

iii) ensure that Fn( · |Fn,t) is a proper distribution for all n almost surely, corresponding to A3. Finally,

assumptions A5(iii, iv) asymptotically control certain remainder terms of probabilities relevant to runs.

Specifically, applying an induction argument yields that for each k = 1, 2, ...,

P(Yn,t+1 ≥ y, ..., Yn,t+k−1 ≥ y, Yn,t+k < y|Fn,t) = p(1− p)k−1 +
1√
n
hk(p, Yn,t) + rk(p, Yn,t), (15)

where p is a short-hand notation for F (y); for each p, h1(p, Yn,t) := C(p, Yn,t) := D(F−1(p), Yn,t);

h2(p, Yn,t) := w(p) − pC(p, Yn,t); and for k = 3, 4, ..., hk(p, Yn,t) := w(p)(1 − p)k−3(1 − (k −
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1)p) − p(1 − p)k−2C(p, Yn,t), where w(p) := α(F−1(p)) :=
∫∞
y D(y, x)dF (x). Here, the remainder

term rk(p, Yn,t) is sequentially computed using previous remainder terms and hk(p, Yn,t). For example,

for given p, r1(p, Yn,t) = 0, r2(p, Yn,t) := n−1
∫∞
F−1(p)D(F−1(p), x)dD(x, Yn,t), and so forth. These

remainder terms turn out to be OP(n−1), mainly due to assumptions A5(iii, iv).

Runs distributions can also be derived from (15), with asymptotic behavior controlled by assumptions

A5(iii, iv). That is, if Yn,t < y, then the distribution of a run starting from Yn,t+1, say Rn,i(p), can be

obtained from (15) as

P(Rn,i(p) = k) = P(Yn,t+1 ≥ y, Yn,t+2 ≥ y, ..., Yn,t+k < y|Yn,t < y)

= p(1− p)k−1 + n−1/2Fn(F−1(p))−1hn,k(p) + Fn(F−1(p))−1rn,k(p), (16)

where, as n tends to infinity, for each k, hn,k(p) :=
∫ F−1(p)
−∞ hk(p, x)dFn(x)→ hk(p) :=

∫ F−1(p)
−∞ hk(p, x)

dF (x) and rn,k(p) :=
∫ F−1(p)
−∞ rk(p, x)dFn(x) → rk(p) :=

∫ F−1(p)
−∞ rk(p, x)dF (x); and for each p,

Fn(F−1(p))→ p from assumptions A5(iii, iv). Further, the remainder term rk(p) is OP(n−1), uniformly

in p.

The local power of EGR test statistics stems from the difference between the distribution of runs given

in eq. (16) and that obtained under the null. Specifically, the second component on the right-hand side

(RHS) of (16) makes the population mean of Gn different from zero, so that the limiting distribution of

Gn corresponding to that obtained under the null can be derived when its population mean is appropriately

adjusted. This non-zero population mean yields local power for n−1/2 local alternatives for the EGR test

statistics as follows.

THEOREM 6: Given conditions A1, A2(i), A3, A5, and H`
1, G̃n − µ ⇒ G̃, where for each (p, s) ∈ J× S,

µ(p, s) := ps(1− s){sw(p)−Q(F−1(p))}/{1− s(1− p)}2 + s(1−s)
{1−s(1−p)}

∫ F−1(p)
−∞ C(p, z)dF (z).

It is not difficult to specify DGPs satisfying the condition A5. For example, an AR(1) process can be

constructed so as to belong to this case. That is, if for each t, Yn,t := n−1/2Yn,t−1 + εt and εt ∼

IID N(0, 1), then we can let C(p, Yn,t) = −ξ(p)Yn,t + oP(1) and w(p) = −ξ(p)2, where ξ(p) :=

φ[Φ−1(p)], and φ( · ) and Φ( · ) are the probability density function (PDF) and CDF of a standard normal

random variable. This gives µ(p, s) = {ξ(p)2s(1 − s)2}/{1− s(1− p)}2, with Q ≡ 0. Because we

have convergence rate n−1/2, the associated EGR test statistics have the same convergence rate as the

parametric local alternative.

We point out several implications of Theorem 6. First, if the convergence rate in (13) is lower than

1/2, the EGR test may not have useful power; EGR tests are not powerful against every alternative to

H′0. For EGR tests to be consistent against first-order Markov processes, the rate must be at least 1/2.

Second, the statement for first-order Markov process can be extended to further higher-order Markov
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processes, although we do not pursue this here for brevity. Theorem 6 therefore should be understood

as a starting point for identifying Markov processes as a class of n−1/2-alternatives. Finally, the result

of Theorem 6 does not hold for every local alternative specification. Our examination of a variety of

other local alternative specifications reveals cases in which EGR tests have nontrivial power at the rate

n−1/4. For example, certain independent and non-identically distributed (INID) DGPs can yield EGR test

statistics exhibiting n−1/4 rates. This rate arises because analysis of these cases requires an expansion of

the conditional distribution of runs of order higher than that considered in Theorem 6. For brevity, we do

not examine this further here.

5 Monte Carlo Simulations

In this section, we use Monte Carlo simulation to obtain critical values for test statistics constructed with f

delivering the L1 (S-type) and uniform (K-type) norms of its argument. We also examine level and power

properties of tests based on these critical values.

5.1 Critical Values

We consider the following statistics: T p1,n(S1) :=
∫
S1 |Gn(p, s)|ds, T p∞,n(S1) := sups∈S1 |Gn(p, s)|,

T̃ p1,n(S1) :=
∫
S1 |G̃n(p, s)|ds, T̃ p∞,n(S1) := sups∈S1 |G̃n(p, s)|, where S1 := [−0.99, 0.99], and p ∈

{0.1, 0.3, 0.5, 0.7, 0.9}; T s1,n :=
∫
I |Gn(p, s)|dp, T s

∞,n := supp∈I |Gn(p, s)|, T̃ s1,n :=
∫
I |G̃n(p, s)|dp,

T̃ s∞,n := supp∈I |G̃n(p, s)|, where s ∈ {−0.5,−0.3,−0.1, 0.1, 0.3, 0.5}; and T1,n(S) :=
∫
I
∫
S |Gn(p, s)|

dsdp, T∞,n(S) := sup(p,s)∈I×S |Gn(p, s)|, T̃1,n(S) :=
∫
I
∫
S |G̃n(p, s)| dsdp, T̃∞,n(S) := sup(p,s)∈I×S |G̃n

(p, s)|, where we consider S1 := [−0.99, 0.99] and S2 := [−0.50, 0.50] for S. As discussed above, these S-

and K-type statistics are relevant for researchers interested in testing for non-zero constant mean function

and non-spurious peaks of Gn on I× S in terms of T1,n(S) and T∞,n(S) respectively.

Note that these test statistics are constructed using I instead of J. There are two reasons for doing this.

First, we want to examine the sensitivity of these test statistics to p. We have chosen the extreme case

to examine the levels of the test statistics. Second, as pointed out by Granger (1963) and Dufour (1981),

more alternatives can be handled by specifying a larger space for p.

Theorems 4 and 5 ensure that the asymptotic null distributions of these statistics can be generated by

simulating Zp, Z (or Z∗), Z̃p, and Z̃ (or Z̃∗), as suitably transformed. We approximate these using

Wp(s) :=
sp(1− s)(1− p)1/2

{1− s(1− p)}

50∑
j=0

sj(1− p)j/2Zj ,
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W(p, s) :=
sp(1− s)

{1− s(1− p)}2
B̃00(p) +

(1− s)2

{1− s(1− p)}2
40∑
j=1

sj(1− p)1+jB̃j
(

p2

(1− p)1+j

)
,

W̃p(s) :=
sp(1− s)(1− p)1/2

{1− s(1− p)}

50∑
j=0

{
sj − p

{1− s(1− p)}

}
(1− p)j/2Zj , and

W̃(p, s) :=
(1− s)2

{1− s(1− p)}2
40∑
j=1

sj(1− p)1+jB̃j
(

p2

(1− p)1+j

)
,

respectively, where B̃00(p) := W0(p) − pW0(1), B̃j(x + p) := Wx+1(p) +
∑x

k=1Wk(1) (with x ∈ N,

and p ∈ I), and {Wk : k = 0, 1, 2, ...} is a set of independent processes approximating Brownian motion

using the K-L representation, defined asWk(p) :=
√

2
∑100

`=1{sin[(`−1/2)πp]}Z(k)
` /{(`−1/2)π}, where

Z
(j)
` ∼ IID N(0, 1) with respect to ` and j. We evaluate these functions for I, S1, and S2 on the grids

{0.01, 0.02, ..., 1.00}, {−0.99,−0.98, ..., 0.98, 0.99}, and {−0.50,−0.49, ..., 0.49, 0.50}, respectively.

Concerning these approximations, several comments are in order. First, the domains for p and s are ap-

proximated using a relatively fine grid. Second, we truncate the sum of the independent Brownian motions

at 40 terms. The jth term contributes a random component with a standard deviation of sjp(1− p)(1+j)/2,

which vanishes quickly as j tends to infinity. Third, we approximate B̃j on the positive Euclidean line by

the Brownian motion on [0, 10, 000]. Preliminary experiments showed the impact of these approximations

to be small when S is appropriately chosen; we briefly discuss certain aspects of these experiments below.

Table I contains the critical values generated by 10,000 replications of these processes.

5.2 Level and Power of the Test Statistics

In this section, we compare the level and power of generalized runs tests with other tests in the literature.

We conduct two sets of experiments. The first examines power against dependent alternatives. The second

examines power against structural break alternatives.

To examine power against dependent alternatives, we follow Hong and White (2005) and consider the

following DGPs:

• DGP 1.1: Xt := εt;

• DGP 1.2: Xt := 0.3Xt−1 + εt;

• DGP 1.3: Xt := h
1/2
t εt, and ht = 1 + 0.8X2

t−1;

• DGP 1.4: Xt := h
1/2
t εt, and ht = 0.25 + 0.6ht−1 + 0.5X2

t−11{εt−1<0} + 0.2X2
t−11{εt−1≥0};

• DGP 1.5: Xt := 0.8Xt−1εt−1 + εt;

• DGP 1.6: Xt := 0.8ε2t−1 + εt;

• DGP 1.7: Xt := 0.4Xt−11{Xt−1>1} − 0.5Xt−11{Xt−1≤1} + εt;

• DGP 1.8: Xt := 0.8|Xt−1|0.5 + εt;
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• DGP 1.9: Xt := sgn(Xt−1) + 0.43εt;

where εt ∼ IIDN(0, 1). Note that DGP 1.1 satisfies the null hypothesis, whereas the other DGPs represent

interesting dependent alternatives. As there is no parameter estimation, we apply our EGR statistics and

compare these to the entropy-based nonparametric statistics of Robinson (1991), Skaug and Tjøstheim

(1996), and Hong and White (2005), denoted as Rn, STn, and HWn, respectively.

We present the results in Tables II to IV. To summarize, the EGR test statistics generally show approx-

imately correct levels, even using I instead of J. We notice, however, that T̃ s1,n exhibits level distortion

when s gets close to one. This is mainly because the number of Brownian motions in the approximation

is finite, and these are defined on the finite Euclidean positive real line, [0, 10,000]. If s and p are close

to one and zero respectively, then the approximation can be coarse. Specifically, the given finite number

of Brownian motions may not enough to adequately approximate the desired infinite sum of Brownian

motions, and the given finite domain [0, 10,000] may be too small to adequately approximate the positive

Euclidean real line. For the other tests, we do not observe similar level distortions.

For the DGPs generating alternatives to H0, the EGR tests generally gain power as n increases. As

noted by Granger (1963) and Dufour (1981), a particular selection of p or, more generally, the choice of

mapping f can yield tests with better or worse power. Generally, we see that the T̃ p1,n(S1) (resp. T̃ s1,n)-based

tests outperform the T̃ p∞,n(S1) (resp. T̃ s∞,n)-based tests. Similarly, the T̃1,n(S)-based tests outperform the

T̃∞,n(S)-based tests for both S1 and S2. Among the T̃ p1,n(S1)-based tests, more extreme choices for p

often yield better power. Also, in general, the power performances of the T̃1,n(S2)-based tests are midway

between those of the best and worst cases for the T̃ s1,n-based tests. Apart from these observations, there

is no clear-cut relation between the T̃ p1,n(S1)-based tests and the T̃1,n(S1)-based tests. The more powerful

T̃ p1,n(S1)-based tests dominate the T̃1,n(S1)-based tests for DGPs 1.3-1.5, but the T̃1,n(S1)-based tests

dominate for DGPs 1.2, and 1.6-1.9.

Comparing EGR tests to the entropy-based tests, we observe three notable features. First, T̃1,n(S)-

based tests or T̃ s1,n(S2)-based tests generally dominate entropy-based tests for DGP 1.2 and 1.8. Second,

for DGPs 1.3, 1.6, and 1.7, entropy-based tests are more powerful than the EGR tests. Finally, for the other

DGPs, the best powered EGR tests exhibit power roughly similar to that of the best powered entropy-based

tests.

Such mixed results are common in the model specification testing literature, especially in non-parametric

contexts where there is no generally optimal test. For example, Fan and Li (2000) compare the power prop-

erties of specification tests using kernel-based nonparametric statistics with Bierens and Ploberger’s (1997)

integrated conditional moment (ICM) tests. They find that these tests are complementary, with differing

power depending on the type of local alternative. Similarly, the entropy-based and EGR tests can also be
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used as complements.

In addition, we conducted Monte Carlo simulations for higher-order Markov processes. As the results

are quite similar to those in Tables III and IV, we omit them for brevity.

For structural break alternatives, we compare our PEGR tests to a variety of well-known tests. These

include Feller’s (1951) and Kuan and Hornik’s (1995) RR test, Brown, Durbin, and Evans’s (1975) RE-

CUSUM test, Sen’s (1980) and Ploberger, Krämer and Kontrus’s (1989) RE test, Ploberger and Krämer’s

(1992) OLS-CUSUM test, Andrews’s (1993) Sup-W test, Andrews and Ploberger’s (1994) Exp-W and

Avg-W tests, and Bai’s (1996) M-test.1 As these are all designed to test for a single structural break at an

unknown point, they may not perform well when there are multiple breaks. In contrast, our PEGR statistics

are designed to detect general alternatives to IID, so we expect these may perform well in such situations.

We consider the following DGPs for our Monte Carlo simulations. These have been chosen to provide

a test bed in which the behaviors of the various tests can be clearly contrasted.

• DGP 2.1: Yt := Zt + εt;

• DGP 2.2: Yt := exp(Zt) + εt;

• DGP 2.3: Yt := 1{t>b0.5·nc} + εt;

• DGP 2.4: Yt := Zt1{t≤b0.5·nc} − Zt1{t>b0.5·nc} + εt;

• DGP 2.5: Yt := Zt1{t≤b0.3nc} − Zt1{t>b0.3nc} + εt;

• DGP 2.6: Yt := Zt1{t≤b0.1nc} − Zt1{t>b0.1nc} + εt;

• DGP 2.7: Yt := exp(Zt)1{t≤b0.5·nc} + exp(−Zt)1{t>b0.5·nc} + εt;

• DGP 2.8: Yt := Zt1{t∈Kn(0.02)} − Zt1{t/∈Kn(0.02)} + εt;

• DGP 2.9: Yt := Zt1{t∈Kn(0.05)} − Zt1{t/∈Kn(0.05)} + εt;

• DGP 2.10: Yt := Zt1{t∈Kn(0.1)} − Zt1{t/∈Kn(0.1)} + εt;

• DGP 2.11: Yt := Zt1{t=odd} − Zt1{t=even} + εt;

• DGP 2.12: Yt := exp(0.1 · Zt)1{t=odd} + exp(Zt)1{t=even} + εt,

where Zt = 0.5Zt−1 + ut; (εt, ut)
′ ∼ IID N(0, I2); and Kn(r) := {t = 1, ..., n : (k − 1)/r + 1 ≤ t ≤

k/r, k = 1, 3, 5, ...}.

For DGPs 2.1, 2.4–2.6, and 2.8–2.11, we use ordinary least squares (OLS) to estimate the parameters

of a linear model Yt = α + βZt + vt, and we apply our PEGR statistics to the prediction errors v̂t :=

Yt − α̂− β̂Zt. For DGP 2.3, we specify the model Yt = α+ vt, and we apply our PEGR statistic to Yt −

n−1
∑n

t=1 Yt. The linear model is correctly specified for DGP 2.1, but is misspecified for DGPs 2.3–2.6

1We also examined Chu, Hornik, and Kuan’s (1995a) ME test and Chu, Hornik, and Kuan’s (1995b) RE-MOSUM and OLS-

MOSUM tests. Their performance is comparable to that of the other prior tests, so for brevity we do not report those results

here.
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and 2.8–2.11. Thus, when DGP 2.1 is considered the null hypothesis holds, permitting an examination of

the level of the tests. As the model is misspecified for DGPs 2.3–2.6 and 2.8–2.11, the alternative holds for

v̂t, permitting an examination of power. DGPs 2.3–2.6 exhibit a single structural break at different break

points, permitting us to see how the PEGR tests compare to standard structural break tests specifically

designed to detect such alternatives. DGPs 2.8 through 2.11 are deterministic mixtures in which the true

coefficient of Zt depends on whether or not t belongs to a particular structural regime. The number of

structural breaks increases as the sample size increases, but the proportion of breaks to the sample size

is constant. Also, the break points are equally spaced. Thus, for example, there are four break points in

DGP 2.8 when the sample size is 100 and and nine break points when the sample size is 200. The extreme

case is DGP 2.11, in which the proportion of breaks is equal to one, and the coefficient of Zt depends on

whether or not t is even. Given the regular pattern of these breaks, this may be hard to distinguish from a

DGP without a structural break.

For DGPs 2.2, 2.7, and 2.12, we use nonlinear least squares (NLS) to estimate the parameters of

a nonlinear model Yt = exp(βZt) + vt, and we apply our PEGR statistics to the prediction errors

v̂t := Yt − exp(β̂Zt). The situation is analogous to that for the linear model, in that the null holds for

DGP 2.2, whereas the alternative holds for 2.7 and 2.12. Examining these alternatives permits an inter-

esting comparison of the PEGR tests, designed for general use, to the RR, RE, M, OLS-CUSUM and

RE-CUSUM statistics, which are expressly designed for use with linear models.

Our simulation results are presented in Tables V to VII. To summarize, the levels of the PEGR tests

are approximately correct for both linear and nonlinear cases and generally improve as the sample size

increases. On the other hand, there are evident level distortions for some of the other statistics, especially,

as expected, for the linear model statistics with nonlinear DGP 2.2. The PEGR statistics also have re-

spectable power. They appear consistent against our structural break alternatives, although the PEGR tests

are not as powerful as the other (properly sized) break tests when there is a single structural break. This is

as expected, as the other tests are specifically designed to detect a single break, whereas the PEGR test is

not. As one might also expect, the power of the PEGR tests diminishes notably as the break moves away

from the center of the sample. Nevertheless, the relative performance of the tests reverses when there are

multiple breaks. All test statistics lose power as the proportion of breaks increases, but the loss of power

for the non-PEGR tests is much faster than for the PEGR tests. For the extreme alternative DGP 2.11, the

PEGR tests appear to be the only consistent tests.

We also note that, as for the dependent alternatives, the integral norm-based tests outperform the

supremum norm-based tests.

Finally, we briefly summarize the results of other interesting experiments omitted from our tabulations
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for the sake of brevity. To further examine level properties, we applied our EGR tests (i) with Yt ∼

IID C(0, 1), where C(`, s) denotes the Cauchy distribution with location and scale parameters ` and s

respectively, and (ii) with Yt = (ut + 1)1{εt≥0} + (ut − 1)1{εt<0}, where (εt, ut) ∼ IID N(0, I2). We

consider the Cauchy process to examine whether the absence of moments in the raw data matters, and

we consider the normal random mixture to compare the results with the deterministic mixture, DGP 2.10.

Our experiments yielded results very similar to those reported for DGP 1.1. This affirms the claims for

the asymptotic null distributions of the (P)EGR test statistics in the previous sections. To further examine

the power of our (P)EGR tests, we also considered the mean shift processes analyzed by Crainiceanu

and Vogelsang (2007), based on DGP 2.3. Our main motivation for this arises from the caveat in the

literature that CUSUM and CUSQ tests may exhibit power functions non-monotonic in α. (See Deng and

Perron (2008) for further details.) In contrast, we find that the (P)EGR test statistics do not exhibit this

non-monotonicity.

6 Conclusion

The IID assumption plays a central role in economics and econometrics. Here we provide a family of

tests based on generalized runs that are powerful against unspecified alternatives, providing a useful com-

plement to tests designed to have power against specific alternatives, such as serial correlation, GARCH,

or structural breaks. Relative to other tests of this sort, for example the entropy-based tests of Hong and

White (2005), our tests have an appealing computational simplicity, in that they do not require kernel

density estimation, with the associated challenge of bandwidth selection.

Our simulation studies show that our tests have empirical levels close to their nominal asymptotic

levels. They also have encouraging power against a variety of important alternatives. In particular, they

have power against dependent alternatives and heterogeneous alternatives, including those involving a

number of structural breaks increasing with the sample size.

7 Appendix

7.1 Proofs

To prove our main results, we first state some preliminary lemmas. Recall that J := [p, 1], p > 0, and for

notational simplicity for every p, p′ ∈ I with p′ ≤ p and Mn(p′) > 0, we let Kn,i denote Kn,i(p, p
′) such

that Kn,0(p, p
′) = 0 and

∑Kn,i(p,p
′)

j=Kn,i−1(p,p′)+1Rn,j(p) = Rn,i(p
′).

LEMMA A1: Given A1, A2(i), A3, and H0, if s ∈ S, p′, p ∈ I, and p′ ≤ p such that Mn(p′) > 0, then
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E[
∑Kn,1

i=1 sRn,i(p)] = E[sRn,1(p)] · E[Kn,1].

Proof of Lemma A1: For each s, ` ∈ N, P(Rn,i(p) = s|Kn,1 = `) = P(Kn,1 = `|Rn,i(p) = s)P(Rn,i(p)

= s)/P(Kn,1 = `) = P(Kn,1 = `)P(Rn,i(p) = s)/P(Kn,1 = `) = P(Rn,i(p) = s), where the second

equality holds because the event {Kn,1 = `} is independent of {Rn,i(p) = s} under H0. Therefore,

E[
∑Kn,1

i=1 sRn,i(p)] =
∑∞

`=1E[
∑Kn,1

i=1 sRn,i(p)|Kn,1 = `]P(Kn,1 = `) = E[sRn,1(p)]
∑∞

`=1 ` P(Kn,1 =

`) = E[sRn,1(p)] · E[Kn,1], where the second equality follows because H0 implies that {Rn,i(p)} is IID.

�

LEMMA A2: Given A1, A2(i), A3, and H0, if s ∈ S, p′, p ∈ J and p′ ≤ p such that Mn(p′) > 0, then

E[Kn,1s
Rn,1(p′)] =

sp′{1− s(1− p)}
{1− s(1− p′)}2

. (17)

Proof of Lemma A2: We treat three distinct cases: (a) p′ = p = 1; (b) p′ < p = 1; and (c) p′ ≤ p <

1. (a) Let p′ = p = 1. Then Rn,1(p′) = 1 and Kn,1 = 1, so that E[Kn,1s
Rn,1(p′)] = s. Plugging

p′ = p = 1 into the RHS of (17) also gives s, verifying the result. (b) Next, suppose p′ < p = 1. Then

Kn,1 = Rn,1(p
′), implying that E[Kn,1s

Rn,1(p′)] = E[Rn,1(p
′)sRn,1(p′)] = sp′/{1 − s(1 − p′)}2, as

can be verified by direct computation. This coincides with the RHS of ( 17) with p = 1. (c) Finally, let

p′ ≤ p < 1. First, E[Kn,1s
Rn,1(p′)] = E[sRn,1(p′)E[Kn,1|Rn,1(p′)]], and P(Kn,1 = `|Rn,1 (p′) = r′1) =

P(Kn,1 = `, Rn,1(p
′) = r′1)/P(Rn,1(p

′) = r′1) = (
r′1−1
`−1 )(p− p′)`−1(1− p)r′1−`/ (1− p′)r′1−1, where

the last equality follows from the fact that P(Rn,1(p
′) = r′1) = p′(1−p′)r′1−1 and P(Kn,1 = `, Rn,1(p

′) =

r′1) = (
r′1−1
`−1 )(p − p′)`−1(1 − p)r′1−`. Thus, E[Kn,1|Rn,1(p′) = r′1] =

∑∞
`=1 ` · P(Kn,1 = `|Rn,1(p′) =

r′1) = 1+(r′1−1)(p−p′)/(1−p′), implying thatE[Kn,1s
Rn,1(p′)] = E[sRn,1(p′)]+E[sRn,1(p′)(Rn,1(p

′)−

1)](p − p′)/(1 − p′). Second, we note that E[sRn,1(p′)(Rn,1(p
′) − 1)] = s2(d/ds)E[sRn,1(p′)−1] =

s2p′(1− p′)/{1− s(1− p′)}2. Therefore, E[Kn,1s
Rn,1(p′)] = sp′/{1− s(1− p′)} + [{p − p′}/{1 −

p′}]s2p′(1− p′)/{1− s(1− p′)}2 = sp′{1− s(1− p)}/{1− s(1− p′)}2. This completes the proof. �

In the special case in which p = p′, we have Kn,1 = 1 and E(sRn,1(p)) = sp/(1− s(1− p)).

LEMMA A3: Given A1, A2(i), A3, and H0, if s ∈ S, p′, p ∈ J, and p′ ≤ p such that Mn(p′) > 0, then

E[
∑Kn,1

i=1 sRn,i(p)+Rn,1(p′)] = s2p′/{1− s2(1− p)} · [{1− s(1− p)}/{1− s(1− p′)}]2.

Proof of Lemma A3: First, we note thatE[
∑Kn,1

i=1 sRn,i(p)+Rn,1(p′)] = E[
∑Kn,1

i=1 E[sRn,i(p)+Rn,1(p′)|Kn,1]]

by Lemma A8 given below, andE[sRn,i(p)+Rn,1(p′)|Kn,1] = E[sRn,i(p)+
∑Kn,1

j=1 Rn,j(p)|Kn,1] = E[s2Rn,i(p)

|Kn,1]
∏Kn,1

j=1,j 6=iE[sRn,j(p)|Kn,1] = [ s2p
{1−s2(1−p)} ][

sp
{1−s(1−p)} ]

Kn,1−1 by Lemma A.2, so that E[
∑Kn,1

i=1

sRn,i(p)+Rn,1(p′)] = E[Kn,1[
sp

{1−s(1−p)} ]
Kn,1−1][ s2p

{1−s2(1−p)} ]. Next, P(Kn,1 = k) = (p/p′) [(p−p′)/p]k−1
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by Lemma A4 below. From this, E[Kn,1[sp/{1− s(1− p)}]Kn,1−1] = p′p−1
∑∞

k=1 k[s(p− p′)/{1 −

s(1− p)}]k−1 = p′p−1[{1− s(1− p)}/{1− s(1− p′)}]2. The desired result follows by substituting this

into E[
∑Kn,1

i=1 sRn,i(p)+Rn,1(p′)]. �

LEMMA A4: Given A1, A2(i), A3, and H0, if p′, p ∈ J and p′ ≤ p such that Mn(p′) > 0, then P(Kn,1 =

k) = (p/p′)[(p− p′)/p]k−1 and E[Kn,1] = p/p′.

Proof of Lemma A4: First, P(Kn,1 = 1) = P(Rn,1(p
′) = Rn,1(p)) =

∑∞
`=1 P(Rn,1(p

′) = Rn,1(p) =

`) = P(F (X1) < p′) +
∑∞

`=2 P(F (X1) ≥ p, ..., F (X`−1) ≥ p, F (X`) < p′) =
∑∞

`=1 p
′(1 − p)`−1 =

p′p−1. Next, P(Kn,1 = 2) = P(Rn,1(p
′) + Rn,2(p

′) = Rn,1(p)) =
∑∞

`1=1

∑∞
`2=1 P(Rn,1(p

′) =

`1, Rn,2(p
′) = `2, and Rn,1(p) = `1 + `2) =

∑∞
`1=1

∑∞
`2=1(1 − p)`1−1(p − p′)(1 − p)`2−1p′ =

p′(p− p′)p−2. Similarly, we obtain for an arbitrarily chosen number, say k, that P(Kn,1 = k) =

P(
∑k

j=1Rn,j(p
′) = Rn,1(p)) =

∑∞
`1=1 ...

∑∞
`k=1 P(Rn,1(p

′) = `1, Rn,2(p
′) = `2, ..., Rn,k(p

′) = `k, and

Rn,1(p) =
∑k

j=1 `j) =
∏k−1
j=1{

∑∞
`j=1(1−p)`j−1(p′−p)} ·

∑∞
`k=1(1−p)`k−1p′ = (p/p′)[(p−p′)/p]k−1.

From these, it follows directly that E[Kn,1] = p/p′. This completes the proof. �

LEMMA A5: Let p ∈ I such that Mn(p) > 0. If {Rn,i(p)}Mn(p)
i=1 is IID with distribution Gp then, for

m = 1, 2, ..., and ` = m,m+ 1,m+ 2, ..., P(
∑m

i=1Rn,i(p) = `) = ( `−1m−1)(1− p)`−mpm.

Proof of Lemma A5: We prove this by induction. If m = 1, then P(
∑m

i=1Rn,i(p) = `) = (1 − p)`−1p,

which is the distribution of Gp. Next, suppose that the given result holds for an arbitrary m and consider

the case m + 1. Then P(
∑m+1

i=1 Rn,i(p) = `) =
∑`−m−1

j=1 P(
∑m

i=1Rn,i(p) = ` − j)P(Rn,m+1(p) =

j) =
∑`−m−1

j=1 (`−j−1m−1 )(1−p)`−j−mpm(1−p)j−1p = (`−1m )(1−p)`−m−1pm+1, where the first and second

equalities follow by independence and the result form, respectively. The final equality is the desired result.

�

LEMMA A6: Let p, p′ ∈ I such that Mn(p′) > 0. Given conditionR of Lemma 1, then for i, k = 1, 2, ...,

(i) if ` = i, i+ 1, ..., i+ k − 1, P(
⋃i+k+1−`
m=2 {

∑m
j=2Rn,j(p

′) = i+ k − `}) = p′;

(ii) when p > p′,

P(
i⋃

m=1

{
m∑
j=1

Rn,j(p) = i}, Rn,1(p′) = `) =

 p′(1− p′)i−1, if ` = i;

p′(p− p′)(1− p′)`−2, if ` = i+ 1, · · · , i+ k.

Proof of Lemma A6: (i) From the given condition R, P(
⋃i+k+1−`
m=2

∑m
j=2Rn,j(p

′) = i + k − `) =∑i+k−`
m=1 P(

∑m
j=1Rn,j(p

′) = i + k − `) =
∑i+k−`

m=1 (i+k−`−1m−1 )(1 − p′)i+k−`−mp′m = p′, where the

first equality follows from the IID condition for {Rn,j(p′)} given in R, and the second equality holds

by Lemma A5.
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(ii) First, consider the case ` = i. Then, P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i}, Rn,1(p′) = i) =

∑i
m=1(

i−1
m−1)

(1− p)i−m(p− p′)m−1p′ = p′(1− p′)i−1, where the first equality holds by the second condition inR.

Next, we let ` = i+1, ..., i+k. Then, P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i}, Rn,1(p′) = `) =

∑i
m=1(

i−1
m−1)(1−

p)i−m(p − p′)m(1 − p′)`−(i+1)p′ = p′2(p − p′)(1 − p′)`−2, where the first equality holds by the second

condition inR. This completes the proof. �

LEMMA A7: Let p, p′ ∈ I such that Mn(p′) > 0. Given condition R of Lemma 1 and p > p′, then

for i, k = 1, 2, ...,
∑i+k−1

`=i P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i}, Rn,1(p′) = `,

⋃i+k+1−`
m=2 {

∑m
j=2Rn,j(p

′) =

i+ k − `}) + P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i}, Rn,1(p′) = i+ k) = pp′(1− p′)i−1.

Proof of Lemma A7: First, for each ` = i, i + 1, ..., i + k − 1, we let C1,` := P(
⋃i
m=1{

∑m
j=1Rn,j(p) =

i}, Rn,1(p′) = `,
⋃i+k+1−`
m=2 {

∑m
j=2Rn,j(p

′) = i + k − `}). Then, the second condition in R implies

that C1,` = P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i}, Rn,1(p′) = `)P(

⋃i+k+1−`
m=2 {

∑m
j=2Rn,j(p

′) = i + k − `}).

Given this, by applying the results in Lemma A6, we obtain that C1 :=
∑i+k−1

`=i C1,` = p′2(1− p′)i−1 +∑i+k−1
`=i+1 p

′2(p − p′)(1 − p′)`−2 = pp′(1 − p′)i−1 − p′(p − p′)(1 − p′)i+k−2. Next, we have C2 :=

P(
⋃i
m=1{

∑i
j=1Rn,j(p) = i}, Rn,1(p′) = i + k) =

∑i
m=1 P(

∑i
j=1Rn,j(p) = i, Rn,1(p

′) = i + k) =∑i
m=1(1−p)i−m(p−p′)m(1−p′)k−1p′ = p′(p−p′)(1−p′)i+k−2. Therefore, C1 +C2 = pp′(1−p′)i−1.

This is the desired result. �

LEMMA A8: Let K be a random positive integer, and let {Xt} be a sequence of random variables such

that for each i = 1, 2, ..., E(Xi) <∞. Then E(
∑K

i=1Xi) = E(
∑K

i=1E(Xi|K)).

We omit proving Lemma A.8, as it is elementary.

Before proving Lemma 1, we define several relevant notions. First, for p ∈ I with Mn(p) > 0, we

define the building time to i by Bn,i(p) := i −
∑Un,i(p)

j=1 Rn,j(p), where Un,i(p) is the maximum number

of runs such that
∑w

j=1Rn,j(p) < i; i.e., Un,i(p) := max{w ∈ N :
∑w

j=1Rn,j(p) < i}. Now Bn,i(p) ∈

{1, 2, ..., i − 1, i}; and if Bn,i(p) = i then Rn,1(p) ≥ i. For p, p′ ∈ I, p′ < p, with Mn(p′) > 0, we also

let Wn,i(p, p
′) be the number of runs {Rn,i(p′)} such that

∑Un,i(p)
j=1 Rn,j(p) =

∑Wn,i(p,p
′)

j=1 Rn,j(p
′).

Proof of Lemma 1: As part (A) is easy, we prove only part (B). We first show that R implies that the

original data {Yt} are independent. For this, we show that for any pair of two variables, (Yi, Yi+k)

(i, k ≥ 1), say, P(Fi(Yi) ≤ p, Fi+k(Yi+k) ≤ p′) = pp′. We partition our consideration into three cases:

(a) p = p′; (b) p < p′; and (c) p > p′ and obtain the given equality for each case. (a) Let p = p′. We

have P(Fi(Yi) ≤ p, Fi+k(Yi+k) ≤ p′) = P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i},

⋃k+m
h=m+1{

∑h
j=m+1Rn,j(p) =

k}) =
∑i

m=1 P( {
∑m

j=1Rn,j(p) = i})P(
⋃k
h=1{

∑h
j=1Rn,j(p) = k}) =

∑i
m=1 P({

∑m
j=1Rn,j(p) =
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i})
∑k

h=1 P(
∑h

j=1Rn,j( p) = k) = p · p = p2, where the second and third equalities follow from the

conditionR and Lemma A5 respectively. (b) Next, suppose p < p′. We have P(Fi(Yi) ≤ p, Fi+k(Yi+k) ≤

p′) =
∑i

h=1 P(
⋃i
m=1{

∑m
j=1Rn,j (p) = i},

∑h
j=1Rn,j(p

′) = i,
⋃k+h
m=h+1{

∑m
j=h+1Rn,j(p

′) = k}) =∑i
h=1 P(

⋃i
m=1{

∑m
j=1Rn,j(p) = i},

∑h
j=1 Rn,j(p

′) = i)
∑k

m=1 P(
∑m

j=1Rn,j(p
′) = k), where the

second equality follows from R. Further, Lemma A5 implies that
∑i

h=1 P(
⋃i
m=1{

∑m
j=1Rn,j(p) =

i},
∑h

j=1Rn,j(p
′) = i) = P(

⋃i
h=1{

∑h
j=1Rn,j(p

′) = i},
⋃i
m=1

∑m
j=1Rn,j(p) = i) =

∑i
m=1 P(

∑m
j=1

Rn,j(p) = i) = p, and
∑k

m=1 P(
∑m

j=1Rn,j(p
′) = k) = p′. Thus, P(Fi(Yi) ≤ p, Fi+k(Yi+k) ≤

p′) = pp′. (c) Finally, let p′ < p. We have P(Fi(Yi) < p, Fi+k(Yi+k) < p′) =
∑i

b=1 P(Fi(Yi) <

p, Fi+k(Yi+k) < p′, Bn,i(p) = b) and derive each term constituting this sum separately. We first examine

the case b = i. Then P(Fi(Yi) < p, Fi+k(Yi+k) < p′, Bn,i(p) = i) =
∑i+k−1

`=i P(
⋃i
m=1{

∑m
j=1Rn,j(p) =

i}, Rn,1(p′) = `,
⋃i+k+1−`
m=2 {

∑m
j=2Rn,j(p

′) = i + k − `}) + P(
⋃i
m=1{

∑m
j=1Rn,j(p) = i}, Rn,1(p′) =

i + k) = pp′(1 − p′)i−1, where the last equality follows from Lemma A7. Next, we consider the

cases b = 1, 2, ..., i − 1. Then it follows that P(Fi(Yi) < p, Fi+k(Yi+k) < p′, Bn,i(p) = b) =

[
∑b+k−1

`=b P(
⋃b+w
m=1+w{

∑m
j=1+w Rn,j(p) = b}, Rn,u+1(p

′) = `,
⋃b+k+u+1−`
m=u+2 {

∑m
j=u+2Rn,j(p

′) = b+k−

`}) + P(
⋃b+w
m=1+w{

∑m
j=1+w Rn,j(p) = b}, Rn,u+1(p

′) = b + k)] × P(
⋃i−b
m=1{

∑m
j=1Rn,j(p

′) = i − b}),

where w and u are short-hand notations for Wn,i(p, p
′) and Un,i(p). Given this, we further note that

P(
⋃i−b
m=1{

∑m
j=1Rn,j(p

′) = i−b}) =
∑i−b

m=1 P(
∑m

j=1Rn,j(p
′) = i−b) = p′ by Lemma A5; the condition

R implies that P(
⋃b+w
m=1+w{

∑m
j=1+w Rn,j(p) = b}, Rn,u+1(p

′) = b + k) = P(
⋃b
m=1{

∑m
j=1Rn,j(p) =

b}, Rn,u+1(p
′) = b+k) and for ` = b, b+1, ..., b+k−1, P(

⋃b+w
m=1+w{

∑m
j=1+w Rn,j (p) = b}, Rn,u+1(p

′)

= `,
⋃b+k+u+1−`
m=u+2 {

∑m
j=u+2Rn,j(p

′) = b + k − `}) = P(
⋃b
m=1{

∑m
j=1Rn,j(p) = b}, Rn,1(p′) =

`,
⋃b+k+1−`
m=2 {

∑m
j=2Rn,j(p

′) = b + k − `}), so that P(Fi(Yi) < p, Fi+k(Yi+k) < p′, Bn,i(p) = b) =

P(Fb(Yi) < p, Fb+k(Yb+k) < p′, Bn,b(p) = b)p′ = pp′2(1− p′)b−1. Hence, P(Fi(Yi) < p, Fi+k(Yi+k) <

p′) =
∑i

b=1 P(Fi(Yi) < p, Fi+k(Yi+k) < p′, Bn,i(p) = b) =
∑i−1

b=1 pp
′2(1−p′)b−1+pp′(1−p′)i−1 = pp′.

Thus, Yi and Yi+k are independent.

Next, suppose that {Yt} is not identically distributed. Then there is a pair, say (Yi, Yj), such that for

some y ∈ R, pi := Fi(y) 6= pj := Fj(y). Further, for the same y, P(Rn,(j)(pj) = 1) = P(Fj(Yj) ≤

Fj(y)|Fj−1(Yj−1) ≤ Fj−1(y)) = P(Fj(Yj) ≤ Fj(y)) = pj , where the subscript (j) denotes the (j)-

th run of {Rn,i(pj)} corresponding to Fj(y), and the second equality follows from the independence

property just shown. Similarly, P(Rn,(i)(pj) = 1) = P(Fj(Yi) ≤ Fj(y)) = P(Yi ≤ y) = pi. That is,

P(Rn,(j)(pj) = 1) 6= P(Rn,(i)(pj) = 1). This contradicts the assumption that {Rn,i(p)} is identically

distributed for all p ∈ I. Hence, {Yt} must be identically distributed. This completes the proof. �

Proof of Theorem 1: (i) We separate the proof into three parts. In (a), we prove weak convergence of

Gn(p, · ). In (b), we show E [G(p, s)] = 0 for each s ∈ S. Finally, (c) derives E [G(p, s)G(p, s′)].
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(a) First, we show that for some ∆̄1 > 0, E[{Gn(p, s)−Gn(p, s′)}4] ≤ ∆̄1|s−s′|4. Note that for each

p,E[{Gn(p, s)−Gn(p, s′)}4] = (1−n−1)E[{G(p, s)−G(p, s′)}4]+n−2E[
∑Mn(p)

i=1 {sRn,i(p)−s′Rn,i(p)+

sp
{1−s(1−p)} −

s′p
{1−s′(1−p)}}

4] ≤ 2E[{G(p, s) − G(p, s′)}4] + n−1E[{sRn,i(p) − s′Rn,i(p) + sp
{1−s(1−p)} −

s′p
{1−s′(1−p)}}

4], a consequence of finite dimensional weak convergence, which follows from Lindeberg-

Levy’s central limit theorem (CLT) and the Cramér-Wold device. We examine each piece on the RHS

separately. It is independently shown in Theorem 4(i) that G(p, · ) d
= Zp. Thus,E[{G(p, s)−G(p, s′)}4] =

E[{Zp(s)−Zp(s′)}4] uniformly in p. If we let mp(s) := sp(1− s)(1− p)1/2{1− s(1

−p)}−1 and Bj(p) := (1 − p)j/2Zj for notational simplicity, then Zp(s) = mp(s)
∑∞

j=0 s
jBj(p), and it

follows that {Zp(s) − Zp(s′)}4 = {Ap(s)[mp(s)−mp(s
′)] +mp(s

′)Bp(s)(s− s′)}4, where Ap(s) :=∑∞
j=0 s

jBj(p) and Bp(s) :=
∑∞

j=0

∑j
k=0 s

′j−kskBj(p). We can also use the mean-value theorem to

obtain that for some s′′ between s and s′, mp(s)−mp(s
′) = m′p(s

′′)(s− s′). Therefore, if we let ∆1 :=

(1− s)2(1− s̃)−2 with s̃ := max[|s|, s̄],E[{Zp(s)−Zp(s′)}4] = E[{Ap(s)m′p(s′′)+mp(s
′)Bp(s)}4]|s−

s′|4 ≤ ∆4
1{|E[Ap(s)4]|+4|E[Ap(s)3Bp(s)]|+6|E[Ap(s)2Bp(s)2]|+4|E[Ap(s)Bp(s)2]|+|E[Bp(s)4]|}|s−

s′|4, because supp,s |m′p(s)| ≤ ∆1 and supp,s |mp(s)| ≤ ∆1. Some tedious algebra shows that sup(p,s)∈I×S

E[Ap(s)4] ≤ ∆2 := 6
(1−s̃4)2 , and sup(p,s)∈I×SE[Bp(s)4] ≤ ∆3 := 72

(1−s̃4)5 , so that E[{Zp(s) −

Zp(s′)}4] ≤ 16∆4
1∆3|s − s′|4. Using Hölder’s inequality, we obtain |E[Ap(s)3Bp(s)]| ≤ |E[Ap(s)4]3/4

E[Bp(s)4]1/4 ≤ ∆
3/4
2 ∆

1/4
3 ≤ ∆3, |E[Ap(s)2Bp(s)2]| ≤ |E[Ap(s)4]2/4E[Bp(s)4]2/4 ≤ ∆

2/4
2 ∆

2/4
3 ≤ ∆3,

and |E[Ap(s)Bp(s)3]| ≤ |E[Ap(s)4]3/4E[Bp(s)4]1/4 ≤ ∆
3/4
2 ∆

1/4
3 ≤ ∆3, where the final inequalities

follow from the fact that ∆2 ≤ ∆3. Next, we note that |sRn,i(p) − s′Rn,i(p)| ≤ Rn,i(p)s̃
Rn,i(p)|s− s′| and

|sp/{1− s(1− p)} − s′p/{1− s′(1− p)}| ≤ 1
(1−s̃)2 |s − s

′| with E[Rn,i(p)
4s̃4Rn,i(p)] ≤ 24(1 − s̃4)−5.

Thus, when we let Qn,i := Rn,i(p)s̃
Rn,i(p) + (1− s̃)−2, it follows that E[Q4

n,i] ≤ ∆̃1 := 384 × (1 −

s̃4)−5(1− s̃)−8, and E[{sRn,i(p)− s′Rn,i(p) + sp/{1− s(1− p)}− s′p/{1− s′(1− p)}}4] ≤ ∆̃1|s− s′|4.

Given this, if ∆̄1 is defined by ∆̄1 := (32∆4
1∆3 + ∆̃1) then E[|Gn(p, s)−Gn(p, s′)|4] ≤ ∆̄1|s− s′|4.

Second, therefore, if we let s′′ ≤ s′ ≤ s, E[|Gn(p, s) − Gn(p, s′)|2|Gn(p, s′) − Gn(p, s′′)|2] ≤

E[|Gn(p, s) −Gn(p, s′)|4]1/2E[|Gn(p, s′) − Gn(p, s′′)|4]1/2 ≤ ∆̄1|s − s′′|4, where the first inequality

follows from Cauchy-Schwarz’s inequality. This verifies condition (13.14) of Billingsley (1999). The

desired result follows from these, theorem 13.5 of Billingsley (1999) and the finite dimensional weak

convergence, which obtains by applying the Cramér-Wold device.

(b) Under the given conditions and the null, E[
∑Mn(p)

i=1 sRn,i(p) − sp/{1 − s(1 − p)}] = E[
∑Mn(p)

i=1

E[sRn,i(p) −sp/{1− s(1− p)}|Mn(p)]] = E[
∑Mn(p)

i=1 sp/{1− s(1− p)} − sp/{1 − s(1 − p)}] = 0,

where the first equality follows from Lemma A.8, and the second equality follows from the fact that given

Mn(p), Rn,i(p) is IID under the null.

(c) Under the given the conditions and the null, E[Gn(p, s)Gn(p, s′)] = n−1E[
∑Mn(p)

i=1 E[[sRn,i(p) −
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sp/{1 − s(1 − p)}][s′Rn,i(p) − s′p/{1 − s′(1 − p)}]|Mn(p)]] = n−1E[Mn(p)[ss′p/{1 − ss′(1 − p)} −

ss′p2/{1 − s(1 − p)}{1 − s′(1 − p)}]] = ss′p2(1 − s)(1 − s′)(1 − p)/[{1 − ss′(1 − p)}{1 − s(1 −

p)}{1 − s′(1 − p)}], where the first equality follows from Lemma A.8, and the last equality follows

because n−1E[Mn(p)] = p. Finally, it follows from the continuous mapping theorem that f [Gn(p, · )]⇒

f [G(p, · )]. This is the desired result.

Remark 1: (a) In addition to weak convergence, it also follows that for any ε > 0, there is a δ > 0

such that lim supn→∞ P(w′′′Gn(p, · )(δ) > ε) = 0, where w′′′Gn(p, · )(δ) := sups,s′∈S sups′′∈{|s−s′|<δ}min

[supp |Gn(p, s′′)−Gn(p, s′)|, supp |Gn(p, s′′)−Gn(p, s)|]. This follows from the proof of theorem 3 in

Bickel and Wichura (1971).

(ii) This can be proved in numerous ways. We verify the conditions of theorem 13.5 of Billingsley

(1999). Our proof is separated into three parts: (a), (b), and (c). In (a), we show the weak conver-

gence of Gn( · , s). In (b), we prove that for each p, E [G(p, s)] = 0. Finally, in (c), we show that

E [G(p, s)G(p′, s)] = s2p′2(1− s)2(1− p)/{1− s(1− p′)}2{1− s2(1− p)}.

(a) First, for each s, we have G(1, s) ≡ 0 as Gn(1, s) ≡ 0, and for any δ > 0, limp→1 P(|G(p, s)| >

δ) ≤ limp→1E(|G(p, s)|2)/δ2 = limp→1 s
2p2(1− s)2(1− p)/δ2{1− s(1− p)}2{1− s2(1− p)} =

0 uniformly on S, where the inequality and equality follow from Markov’s inequality and the result

in (c) respectively. Thus, for each s, G(p, s) − G(1, s) ⇒ 0 as p → 1. Second, it’s not hard to

show that E[{Gn(p, s)−Gn(p′, s)}4] = E[{G(p, s)− G(p′, s)}4]− n−1p′−1E[{G(p, s)− G(p′, s)}4] +

n−1p′E[{
∑Kn,1

i=1 (sRi − E[sRi ]) − (sR
′
1 − E[sR

′
1 ])}4] using the finite dimensional weak convergence

result. We examine each piece on the RHS separately. From some tedious algebra, it follows that

E[{G(p, s) − G(p′, s)}4] = 3s4(1 − s)4{ks(p)ms(p) − 2ks(p
′)ms(p) + ks(p

′)ms(p
′)}2 ≤ 3{|{ks(p) −

ks(p
′)}ms(p)| + |ks(p′){ms(p

′) − ms(p)}|}2, where for each p, ks(p) := p2

{1−s(1−p)}2 , and ms(p) :=

1−p
{1−s2(1−p)} . Note that |ks|, |ms|, |k′s| and |m′s| are bounded by ∆4 := max[∆1,∆2,∆3] uniformly in

(p, s). This implies that there exists ∆̃2 > 0 such that if n is sufficiently large enough, then E[{G(p, s)−

G(p′, s)}4] ≤ ∆̃2|p − p′|2. Some algebra implemented using Mathematicar shows that for some

∆5 > 0, p′E[{
∑Kn,1

i=1 (sRi−E[sRi ])−(sR
′
1−E[sR

′
1 ])}4] ≤ ∆5p

′−1|p−p′|, so that given that p′ ≥ p > 0,

if n−1 is less than |p− p′| then E[{Gn(p, s)−Gn(p′, s)}4] ≤ ∆̄2|p− p′|2 for sufficiently large n, where

∆̄2 := ∆̃2(1 + p−1) + ∆5p
−1. Finally, for each p′′ ≤ p′ ≤ p, E[{Gn(p, s) − Gn(p′, s)}2{Gn(p′, s) −

Gn(p′′, s)}2] ≤ E[|Gn(p, s)−Gn(p′, s)|4]1/2E[|Gn(p′, s)−Gn(p′′, s)|4]1/2 ≤ ∆̄2|p−p′′|2 by the Cauchy-

Schwarz inequality. The weak convergence of {Gn( · , s)} holds by theorem 13.5 of Billingsley (1999) and

finite dimensional weak convergence, which can be obtained by the Cramér-Wold device.

(b) For each p, E[G(p, · )] = 0 follows from the proof of Theorem 1(i, b).

(c) First, for convenience, for each p and p′, we let M and M ′ denote Mn(p) and Mn(p′) respectively,
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and letRi andR′i stand forRn,i(p) andRn,i(p′). Then from the definition ofKn,j ,E[Gn(p, s)Gn(p′, s)] =

n−1E[M ′E[
∑Kn,1

i=1 (sRi −E[sRi ])(sR
′
1 −E[sR

′
1 ])|M,M ′]] = n−1E[M ′]E[

∑Kn,1

i=1 (sRi −E[sRi ])(sR
′
1 −

E[sR
′
1 ])] = p′E[

∑Kn,1

i=1 sRi+R
′
1 −

∑Kn,1

i=1 sRiE[sR
′
1 ] −Kn,1s

R′1E[sRi ] + Kn,1E[sRi ]E[sR
′
1 ]], where the

first equality follows from Lemma A8 since {Kn,j} is IID under the null and R′j is independent of R`,

if ` ≤ Kn,j−1 or ` ≥ Kn,j + 1. The second equality follows, as {M,M ′} is independent of {Ri, R1 :

i = 1, 2, ...,Kn,1}. Further, E[
∑Knm1

i=1 sRi ] = E[sRi ] · E[Kn,1], E[Kn,1s
R′1 ] = sp′/{1− s(1− p′)} ·

{1− s(1− p)}/{1− s(1− p′)}, and E[
∑Kn,1

i=1 sRi+R
′
1 ] = s2p′/{1− s2(1− p)} · [{1− s(1− p)}/{1−

s(1− p′)}]2 by Lemmas A1 to A4. Substituting these into the above equation yields the desired result.

Remark 2: (a) In the proof of Theorem 1(ii-a), ∆̄2 is given by {∆̃2(1 + p−1) + ∆5p
−1}, which involves

p. Unless p is bounded away from zero, {∆̃2(1 + p−1) + ∆5p
−1} is not bounded uniformly in p.

(b) The proof of Theorem 1(ii) also implies that for any ε > 0, there is a δ > 0 such that lim supn→∞

P(w′′Gn( · ,s)(δ) > ε) = 0, where w′′Gn( · ,s)(δ) := supp,p′∈J supp′′∈{|p−p′|<δ}min[|Gn(p′′, s) − Gn(p′, s)|,

|Gn(p′′, s) − Gn(p, s)|], implying that {Gn( · , s)} is tight. A proof is given in Billingsley (1999, pp.

141–143).

(iii) We separate the proof into two parts, (a) and (b). In (a), we prove the weak convergence of Gn,

and in (b) we derive its covariance structure.

(a) In order to show the weak convergence of Gn, we exploit the moment condition in theorem 3

of Bickel and Wichura (1971, p. 1665). For this, we first let B and C be neighbors in J × S such

that B := (p1, p2] × (s1, s2] and C := (p1, p2] × (s2, s3]. Without loss of generality, we suppose that

|s2−s1| ≤ |s3−s2|. Second, we define |Gn(B)| := |Gn(p1, s1)−Gn(p1, s2)−Gn(p2, s1)+Gn(p2, s2)|,

then |Gn(B)| ≤ |Gn(p1, s1)−Gn(p1, s2)|+|Gn(p2, s2)−Gn(p2, s1)|, so thatE[|Gn(B)|4] = E[|A1|4]+

4E[|A1|3|A2|] + 6E[|A1|2|A2|2] + 4E[|A1||A2|3] + E[|A2|4] ≤ E[|A1|4] + 4E[|A1|4]3/4E[|A2|4]1/4 +

6E[|A1|4]2/4E[|A2|4]2/4 + 4E[|A1|4]1/4E[|A2|4]3/4 + E[|A2|4] using Hölder’s inequality, where we let

A1 := |Gn(p1, s1) − Gn(p1, s2)| and A2 := |Gn(p2, s2) − Gn(p2, s1)| for notational simplicity. We

already saw thatE[|A1|4] ≤ ∆̄1|s1−s2|4 andE[|A2|4] ≤ ∆̄1|s1−s2|4 in the proof of Theorem 1(i). Thus,

E[|Gn(B)|4] ≤ 16∆̄1|s1 − s2|4. Third, we define |Gn(C)| := |Gn(p2, s2)−Gn(p2, s3)−Gn(p3, s2) +

Gn(p3, s3)|; then |Gn(C)| ≤ |Gn(p2, s2) − Gn(p3, s2)| + |Gn(p3, s3) − Gn(p2, s3)|. Using the same

logic as above, Hölder’s inequality, and the result in the proof of Theorem 1(ii), we obtain E[|Gn(C)|4] ≤

16∆̄2|p2 − p1|2 for sufficiently large n. Fourth, therefore, using Hölder’s inequality, we obtain that for all

sufficiently large n, E[|B|4/3|C|8/3] ≤ E[|B|4]1/3E[|C|4]2/3 ≤ ∆̄{|s2− s1|2 · |p2− p1|2}2/3 ≤ ∆̄{|s2−

s1| · |p2 − p1|}2/3{|s3 − s2| · |p2 − p1|}2/3 = {∆̄3/4λ(B)}2/3{∆̄3/4λ(C)}2/3, where ∆̄ := 16∆̄
1/3
1 ∆̄

2/3
2 ,

and λ( · ) denotes the Lebesgue measure of the given argument. This verifies the moment condition (3) in

theorem 3 of Bickel and Wichura (1971, p. 1665). Fifth, it trivially holds from the definition of Gn that
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G = 0 on {(p, s) ∈ J × S : s = 0}. Finally, the continuity of G on the edge of J × S was verified in the

proof of Theorem 1(ii). Therefore, the weak convergence of {Gn} follows from the corollary in Bickel

and Wichura (1971, p. 1664) and the finite dimensional weak convergence obtained by Lindeberg-Levy’s

CLT and the Cramér-Wold device.

(b) As before, for convenience, for each p and p′, we let M and M ′ denote Mn(p) and Mn(p′) re-

spectively, and we let Ri and R′i be short-hand notations for Rn,i(p) and Rn,i(p′). Also, we let Kn,j be as

previously defined. Then, under the given conditions and the null,

E[Gn(p, s)Gn(p′, s′)] = n−1E[
M ′∑
j=1

M∑
i=1

(sRi − E[sRi ])(s′
R′j − E[s′

R′j ])] (18)

= p′E[

Kn,1∑
i=1

sRis′
R′1 −

Kn,1∑
i=1

E[s′
R′1 ]sRi −Kn,1s

′R′1E[sRi ] +Kn,1E[sRi ]E[s′
R′1 ]],

where the first equality follows from the definition ofGn, and the second equality holds for the same reason

as in the proof of Theorem 1(ii). From Lemmas A1 to A4, we have thatE[
∑Kn,1

i=1 sRi ] = E[sRi ] ·E[Kn,1],

and E[Kn,1s
′R′1 ] = s′p′/{1− s′(1− p′)} · {1 − s′(1 − p)}/{1− s′(1− p′)}, and E[

∑Kn,1

i=1 sRis′R
′
1 ] =

{s s′p′}/{1− ss′(1− p)} · [{1− s′(1− p)}/{1− s′(1− p′)}]2. Thus, substituting these into (18) gives

E[Gn(p, s)Gn(p′, s′)] = ss′p′2(1− s)(1− s′)(1− p){1− s′(1− p)}/[{1−s(1−p)}{1−s′(1−p′)}2{1−

ss′(1− p)}]. Finally, it follows from the continuous mapping theorem that f [Gn]⇒ f [G]. �

Proof of Lemma 2: (i) First, supp∈I |p̃n(p)−p| → 0 almost surely by Glivenko-Cantelli. Second, Gn ⇒ G

by Theorem 1(ii). Third, (D(J×S)×D(J)) is a separable space. Thus, (Gn, p̃n( · ))⇒ (G, · ) by theorem

3.9 of Billingsley(1999). Fourth, |G(p, s) − G(p′, s′)| ≤ |G(p, s) − G(p′, s)| + |G(p′, s) − G(p′, s′)|, and

each term of the RHS can be made as small as desired by letting |p − p′| and |s − s′| tend to zero, as

G ∈ C(J × S) a.s. Finally, note that for each (p, s), Wn(p, s) = Gn(p̃n(p), s). Therefore, Wn − Gn =

Gn(p̃n( · ), · )−Gn( · , · )⇒ G − G = 0 by a lemma of Billingsley (1999, p. 151) and the four facts just

shown. This implies that sup(p,s)∈J×S |Wn(p, s)−Gn(p, s)| → 0 in probability, as desired.

(ii) We write p̃n(p) as p̃n for convenience. By the mean value theorem, for some p∗n(p) (in I) between

p ∈ J and p̃n, |[{sp̃n}/{1− s(1− p̃n)}− sp/{1− s(1− p)}]−{s(1− s)(p̃n− p)}/{1− s(1− p)}2| =

2s2(1− s)(p̃n − p)2/{1− s(1− p∗n(p))}3, where supp∈J |p∗n(p)− p| → 0 a.s. by Glivenko-Cantelli.

Also,

sup
p,s

M̃n(p)s2(1− s)(p̃n − p)2√
n{1− s(1− p∗n(p))}3

≤ 1√
n

∣∣∣∣∣sup
p

M̃n(p)

n

∣∣∣∣∣
∣∣∣∣sup
p,s

s2(1− s)
{1− s(1− p∗n(p))}3

∣∣∣∣ ∣∣∣∣sup
p
n(p̃n − p)2

∣∣∣∣ ,
where n−1M̃n(p) and s2(1− s){1− s(1− p∗n(p))}−3 are uniformly bounded by 1 and 1/(1− s̃)3 respec-

tively, with s̃ := max[|s|, s̄]; and n(p̃n − p)2 = OP(1) uniformly in p. Thus,

sup
p,s

M̃n(p)√
n

∣∣∣∣[ sp̃n
{1− s(1− p̃n)}

− sp

{1− s(1− p)}

]
− s(1− s) (p̃n − p)
{1− s(1− p)}2

∣∣∣∣ = oP(1).
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Given these, the weak convergence of Hn follows immediately, as supp |n−1M̃n(p)− p| = oP(1), and the

function of p defined by
√
n(p̃n− p) weakly converges to a Brownian bridge, permitting application of the

lemma of Billingsley (1999, p. 151). These facts also suffice for the tightness of Hn.

Next, the covariance structure of H follows from the fact that for each (p, s) and (p′, s′) with p′ ≤ p,

E[{M̃n(p)s(1− s)(p̃n − p)}/
√
n{1− s(1− p)}2] = 0, and

E

[
M̃n(p)s(1− s) (p̃n − p)√

n{1− s(1− p)}2
M̃n(p′)s′(1− s′)(p̃′n − p′)√

n{1− s′(1− p′)}2

]
=

ss′pp′2(1− s)(1− s′)(1− p)
{1− s(1− p)}2{1− s′(1− p′)}2

,

which is identical to E[H(p, s)H(p′, s′)].

(iii) To show the given claim, we first derive the given covariance structure. For each (p, s) and

(p′, s′), E[Wn(p, s)Hn(p′, s′)] = E[E[Wn(p, s)|X1, ..., Xn]Hn(p′, s′)], where the equality follows be-

cause Hn is measurable with respect to the smallest σ–algebra generated by {X1, ..., Xn}. Given this,

we have E[Wn(p, s)|X1, ..., Xn] = n−1/2
∑M̃n(p)

i=1 [E[sR̃n,i(p)|X1, ..., Xn] − sp̃n/{1 − s(1 − p̃n)}] =

n−1/2
∑M̃n(p)

i=1 [sp/ {1− s(1− p)} − sp̃n/{1− s(1− p̃n)}] = −Hn(p, s). Thus, E[E[Wn(p, s)|X1, ...,

Xn]Hn(p′, s′)] = − E[Hn(p, s)Hn(p′, s′)]. Next, we have that E[G(p, s)H(p′, s′)] = limn→∞E[Wn(p,

s)Hn(p′, s′)] by Lemma 2(i). Further, E[H(p, s)H(p′, s′)] = limn→∞E[Hn(p, s)Hn(p′, s′)]. It follows

that E[G(p, s)H(p′, s′)] = −E[H(p, s)H(p′, s′)].

Next, we consider (G̃n, Hn)′ and apply example 1.4.6 of van der Vaart and Wellner (1996, p. 31) to

show weak convergence. Note that G̃n = Wn+Hn = Gn+Hn+oP(1), and thatGn andHn are each tight,

so G̃n is tight, too. Further, Gn and Hn have continuous limits by Theorem 1(ii) and Lemma 2(ii). Thus,

if the finite-dimensional distributions of Gn + Hn have weak limits, then G̃n must weakly converge to

the Gaussian process G̃ with the covariance structure (8). We may apply the Lindeberg-Levy CLT to show

this unless Gn + Hn ≡ 0 almost surely. That is, for each (p, s) with s 6= 0, E[Gn(p, s) + Hn(p, s)] =

0, and E[{Gn(p, s) + Hn(p, s)}2] = E[Gn(p, s)2] − E[Hn(p, s)2] + o(1) ≤ E[Gn(p, s)2] + o(1) =

s2p2(1− s)2(1− p)/ {1− s2(1− p)}{1− s(1− p)}2 + o(1), which is uniformly bounded, so that for

each (p, s) with s 6= 0, the sufficiency conditions for the Lindeberg-Levy CLT hold. The first equality

above follows by applying Lemma 2(ii). If s = 0, then Gn( ·, 0) + Hn( · , 0) ≡ 0, so that the probability

limit of Gn( ·, 0) + Hn( · , 0) is zero. Given these, the finite-dimensional weak convergence of G̃n now

follows from the Cramér-Wold device.

Next, note that G̃n is asymptotically independent ofHn because E[G̃n(p, s)Hn(p′, s′)] = E[Wn(p, s)

Hn(p′, s′)]+E[Hn(p, s)Hn(p′, s′)] = 0 by the covariance structure given above. It follows that (G̃n, Hn)′

⇒ (G̃,H)′ by example 1.4.6 of van der Vaart and Wellner (1996, p. 31). To complete the proof, take

(G̃n −Hn, Hn)′ = (Wn, Hn)′, and apply the continuous mapping theorem. �

Remark 3: Durbin (1973) shows that empirical distributions with parameter estimation error are not
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distribution-free using a proof similar to that of Lemma 2(i). We further exploit his proof to show that

here Wn is asymptotically equivalent to Gn.

Proof of Theorem 2: (i, ii, and iii) The proof of Lemma 2(iii) establishes that G̃n ⇒ G̃. This and the

continuous mapping theorem imply the given claims. �

Proof of Lemma 3: (i) First, as shown in the proof of Lemma 3(ii) below, F̂n(y( · )) converges to F (y( · ))

in probability uniformly on I, where for each p, y(p) := inf{x ∈ R : F (x) ≥ p}. Second, Gn ⇒ G by

Theorem 1(ii). Third, (D(J×S)×D(J)) is a separable space. Therefore, it follows that (Gn, F̂n(y( · )))⇒

(G, F (y( · ))) by theorem 3.9 of Billingsley (1999). Fourth, G ∈ C(J× S). Finally, G̈n( · , · ) = Gn(F̂n(y

( · )), · ), so that G̈n( · , · ) − Gn( · , · ) = Gn(F̂n(y( · )), · ) − Gn( · , · ) ⇒ G − G = 0, where the weak

convergence follows from the lemma of Billingsley (1999, p. 151). Thus, sup(p,s) |G̈n(p, s)−Gn(p, s)| =

oP(1).

(ii) First, the definition of Ḧn(p, s) permits the representation Ḧn(p, s) = {M̂n(p)/n}{
√
n[sp̃n/{1−

s(1−p̃n)}−sp/{1− s(1− p)}]}. Second, it follows that
√
n[sp̃n/{1− s(1− p̃n)}−sp/{1− s(1− p)}]

⇒ −s(1− s)B00(p)/{1− s(1− p)}2 by Lemma 2(ii) and Theorem 5(i) below. Third, if F̂n( · ) converges

to F ( · ) in probability, then n−1M̂n(p) converges to p in probability uniformly in p, because for each p,

M̂n(p) is defined as
∑n

t=1 1{F̂n(Ŷt)<p}. Finally, these facts imply that sup(p,s) |Ḧn(p, s) − Hn(p, s)| =

oP(1) by the lemma of Billingsley (1999, p. 151); this completes the proof.

Therefore, we only have to show that F̂n( · ) converges to F ( · ) in probability; for this we exploit

Glivenko-Cantelli. That is, if for each p, F̂n(y(p)) converges to F (y(p)) in probability, then the uni-

form convergence follows from the properties of empirical distribution: boundedness, monotonicity, and

right continuity. Thus, the pointwise convergence of F̂n(p) completes the proof. We proceed as fol-

lows. First, letting y = y(p) for notational simplicity, for each y and for any ε1 > 0, we have {ω ∈

Ω : ht(θ̂n) < y} ⊂ {ω ∈ Ω : ht(θ∗) < y + |ht(θ̂n) − ht(θ∗)|} = {ω ∈ Ω : ht(θ∗) < y +

|ht(θ̂n) − ht(θ∗)|, |ht(θ̂n) − ht(θ∗)| < ε1} ∪ {ω ∈ Ω : ht(θ∗) < y + |ht(θ̂n) − ht(θ∗)|, |ht(θ̂n) −

ht(θ∗)| ≥ ε1} ⊂ {ω ∈ Ω : ht(θ∗) < y + ε1} ∪ {|ht(θ̂n) − ht(θ∗)| ≥ ε1}. Second, for the

same y and ε1, {ω ∈ Ω : ht(θ̂n) < y} ⊃ {ω ∈ Ω : ht(θ∗) < y − ε1} \ {ω ∈ Ω : |ht(θ∗) −

ht(θ̂n)| > ε1}. These two facts imply that n−1
∑n

t=1 1{ht(θ∗)<y−ε1}−n−1
∑n

t=1 1{|ht(θ̂n)−ht(θ∗)|≥ε1} ≤

n−1
∑n

t=1 1{ht(θ̂n)<y} ≤ n−1
∑n

t=1 1{ht(θ∗)<y+ε1} + n−1
∑n

t=1 1{|ht(θ̂n)−ht(θ∗)|≥ε1}. Thus, it follows

that n−1
∑n

t=1 1{ht(θ∗)<y−ε1} and n−1
∑n

t=1 1{ht(θ∗)<y+ε1} converge to F (y− ε1) and F (y+ ε1) a.s. by

the SLLN and the null hypothesis. Further, for any δ > 0 and ε2 > 0, there is an n∗ such that if n > n∗,

P(n−1
∑n

t=1 1{|ht(θ∗)−ht(θ̂n)|>ε1} ≥ δ) ≤ ε2. This follows because P(n−1
∑n

t=1 1{|ht(θ∗)−ht(θ̂n)|>ε1} ≤

δ) ≤ (nδ)−1
∑n

t=1E(1{|ht(θ∗)−ht(θ̂n)|>ε1}) = (δn)−1
∑n

t=1 P(|ht(θ∗) − ht(θ̂n)| > ε1) ≤ ε2, where
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the first inequality follows from Markov’s inequality, and the last inequality follows from the fact that

|ht(θ∗) − ht(θ̂n)| ≤ Mt‖θ̂n − θ∗‖ = oP(1) uniformly in t by A2 and A3(ii). It follows that for any

ε1 > 0, F (y − ε1) + oP(1) ≤ F̂n(y) ≤ F (y + ε1) + oP(1). As ε1 may be chosen arbitrarily small, it

follows that F̂n(y) converges to F (y) in probability as desired. �

Proof of Theorem 3: (i, ii, and iii) Ĝn = G̈n + Ḧn = Gn + Hn + oP(1) by Lemmas 3(i) and 3(ii).

Further, Gn + Hn = G̃n ⇒ G̃ by Theorem 2(ii). Thus, Ĝn ⇒ G̃, which, together with the continuous

mapping theorem, implies the desired result. �

The following Lemmas collect together further supplementary claims needed to prove the weak con-

vergence of the EGR test statistics under the local alternative. As before, we use the notation p = F (y) for

brevity and suppose that Rn,i(p) is defined by observations starting from Yn,t+1, unless otherwise noted.

LEMMA B1: Given conditions A1, A2(i), A3, A5, and H`
1,

(i) for each y and k = 2, 3, ..., E[1{Yn,t+k<y}|Fn,t] = F (y) +
∑k−1

j=1 n
− j

2Qj(y) + n−k/2Gk(y, Yn,t),

where for each j = 1, 2, ...,Qj(y) :=
∫ ∫

...
∫
D(y, x1)dD(x1, x2)...dD(xj−1, x)dF (x), andGk(y, Yn,t)

:=
∫ ∫

...
∫
D(y, x1)dD(x1, x2)...dD(xk−2, xk−1)dD(xk−1, Yn,t);

(ii) for each y, Fn(y) = F (y) +
∑∞

j=1 n
−j/2Qj(y) and Q1(y) = Q(y);

(iii) for each y and k = 1, 2, ..., E[J̃n,t+k(y)J̃n,t(y)] = O(n−k/2), where J̃n,t(y) := 1{Yn,t<y} −

Fn(y);

(iv) for each y, E[Jn,t+1(y)Jn,t(y)] = O(n−1/2), E[Jn,t+2(y)Jn,t(y)] = O(n−1), and for k =

3, 4, ..., E[Jn,t+k(y)Jn,t(y)] = O(n−3/2), where Jn,t(y) := 1{Yn,t<y} − F (y)− n−1/2Q(y).

Proof of Lemma B1: (i) This follows by applying the law of iterated expectations sequentially. First,

note that E[E[1{Yn,t+2<y}|Yn,t+1]|Yn,t] =
∫
F (y) + n−1/2D(y, x)dFn(x|Yn,t) = F (y) + n−1/2Q1(y) +

n−1
∫
D(y, x)dD(x, Yn,t), where the second equality follows by (13). Now consider the general case k−

1; from the given hypothesis,E[1{Yn,t+k−1<y}|Fn,t] = F (y)+
∑k−2

j=1 n
− j

2Qj(y)+n−(k−1)/2Gk−1(y, Yn,t).

Then, by the stationarity of {Yn,t}, E[1{Yn,t+k<y}|Fn,t+1] = F (y) +
∑k−2

j=1 n
− j

2Qj(y) + n−(k−1)/2Gk−1

(y, Yn,t+1). Thus, E[1{Yn,t+k<y}|Fn,t] = F (y)+
∑k−2

j=1 n
− j

2Qj(y)+n−(k−1)/2
∫
Gk−1(y, z)dFn(z|Yn,t)

= F (y) +
∑k−1

j=1 n
− j

2Qj(y) + n−k/2
∫
Gk−1(y, z)dD(z, Yn,t), using (13). Note that

∫
Gk−1(y, z)dD(z,

Yn,t) = Gk(y, Yn,t), yielding the desired result.

(ii) By the geometric ergodicity and strict stationarity assumptions, {Yn,t} is an aperiodic Harris re-

current Markov process, so that limk→∞ ‖E[1{Yn,t+k<·}|Fn,t]−Fn( · )‖TV = 0 by theorem 6.8 of Durrett

(1996, p. 332), where ‖ · ‖TV denotes the total variation. Given the continuity assumption of F andD, this

implies that for each y, limk→∞E[1{Yn,t+k<y}|Fn,t]−Fn(y) = 0. Further, limk→∞E[1{Yn,t+k<y}|Fn,t] =
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F (y) +
∑∞

j=1 n
−j/2Qj(y) by B1(i), so that Fn(y) = F (y) +

∑∞
j=1 n

−j/2Qj(y). Finally, the coefficient

for the term of order n−1/2 is
∫
D(y, x)dF (x), which therefore must be Q(y).

(iii) By the definition of J̃n,t(y) and Lemmas B1(i and ii), E[J̃n,t+k(y)|Fn,t] = n−k/2{Gk(y, Yn,t)−

Qk(y)}+ oP(n−k/2). Therefore, E[J̃n,t+k(y)J̃n,t(y)] = E[E[J̃n,t+k(y)|Fn,t]J̃n,t(y)] = n−k/2E[{Gk(y,

Yn,t)−Qk(y)}J̃n,t(y)] + o(n−k/2) = O(n−k/2).

(iv) From Lemma B1(i), it follows that E[Jn,t+1(y)Jn,t(y)] = E[E[Jn,t+1(y)|Fn,t]Jn,t(y)] = n−1/2

E[{D(y, Yn,t) − Q(y)}Jn,t(y)] = O(n−1/2); E[Jn,t+2(y)Jn,t(y)] = E[E[Jn,t+2(y)|Fn,t] Jn,t(y)] =

n−1E[
∫
D(y, x1)dD(x1, Yn,t)Jn,t(y)] = O(n−1); and for k = 3, 4, ..., E[Jn,t+k(y)|Fn,t] = OP(n−3/2),

so that E[Jn,t+k(y)Jn,t(y)] = E[E[Jn,t+k(y)|Fn,t]Jn,t(y)] = O(n−3/2). This is the desired result. �

Remark 4: (a) When the range of integration is not explicitly specified in the proof of above, it should be

understood that the range is from −∞ to∞.

(b) The strictly stationary and geometric ergodic Markov process assumption has a number of impli-

cations important for us. They can be summarized as follows:

1. Nummelin and Tweedie (1978) show that there is a positively valued measurable function K such

that ‖Fn( · |Fn,t−k) − Fn( · )‖TV ≤ n−k/2K(Yn,t−k), where for each y, Fn(y|Fn,t−k) denotes

P(Yn,t ≤ y|Fn,t−k), and || · ||TV .

2. Nummelin and Touminen (1982) elaborate this further and show that K(Yn,t) is integrable. This

implies that the β-mixing coefficient of {Yn,t} converges to zero geometrically. That is, βn,k ≤

n−k/2
∫
K(y)dFn(y).

LEMMA B2: Given conditions A1, A2(i), A3, A5, and H`
1, for each y, n1/2{F̃n(y)−F (y)} A∼ N(Q(y), F (y)

{1− F (y)}).

Proof of Lemma B2: To show the given claim, we show that n−1/2
∑n

t=1 J̃n,t(y)
A∼ N(0, F (y){1 −

F (y)}). This is equivalent to proving Lemma B2 because Jn,t(y) − J̃n,t(y) = OP(n−1), from which

it follows that n−1/2
∑n

t=1 Jn,t(y) = n−1/2
∑n

t=1 J̃n,t(y) + oP(1). The asymptotic normality can be

proved by theorem 5.3 of Ango Nze and Doukhan (2004). First, E[J̃n,t(y)] = 0 from the definition

of J̃n,t(y). Second, the asymptotic variance of n−1/2
∑n

t=1 J̃n,t(y) is obtained by Lemma B1. That is,

σ̄2n := var{n−1/2
∑n

t=1 J̃n,t(y)} = E[J̃n,t(y)2] + n−1
∑∑n

t6=τ E[J̃n,t(y)J̃n,τ (y)], where E[J̃n,t(y)2] =

F (y){1−F (y)}+o(1) by the definition of J̃n,t(y) and n−1
∑∑n

t6=τ E[J̃n,t(y)J̃n,τ (y)] = 2n−1
∑n−1

k=1(n−

k)E[J̃n,t(y)J̃n,t+k(y)] = o(1) by Lemma B1(iii). Therefore, σ̄2n = F (y){1 − F (y)} + o(1). Finally,∑∞
k=1 βn,k <∞ by Remark 4(b−2). Given this, theorem 5.3 of Ango Nze and Doukhan (2004) completes

the proof. �
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Remark 5: Even if Q is identical to zero, the EGR test statistics can still have local power, arising from

the estimation of the empirical distribution function. The example given below Theorem 6 belongs to this

case.

In what follows, we assume that p ∈ J, unless otherwise noted.

LEMMA B3: Given conditions A1, A2(i), A3, A5, and H`
1,

(i) supy |α(y)| ≤ ∆, where α(y) :=
∫∞
y D(y, x)dF (x);

(ii) for each p and k = 1, 2, ..., (15) holds, and rk(p, Yn,t) = OP(n−1) uniformly in p;

(iii) for each p and k = 1, 2, ..., (16) holds, and rn,k(p) = O(n−1) uniformly in p;

(iv) for each k = 1, 2, ..., hn,k(p)→ hk(p) and rn,k(p)→ rk(p) uniformly in p a.s. −P,

(v) for each p ∈ I such that p > 1
n , if we let p̃n := F (q̃n(p));

P(R̃n,i(p) = k|p̃n) = (1− p̃n)k−1p̃n + n−1/2
hn,k(p̃n)

Fn(F−1(p̃n))
+

rn,k(p̃n)

Fn(F−1(p̃n))
; (19)

(vi) for each (p, s) ∈ I× S such that p > 1
n ,

√
n

(
E[sR̃n,i(p)|p̃n]− sp̃n

1− s(1− p̃n)

)
=

ν(p̃n, s)

Fn(F−1(p̃n))
+ oP(1), (20)

where ν(p, s) := ps2(1−s)w(p)
{1−s(1−p)}2 + s(1−s)

{1−s(1−p)}
∫ F−1(p)
−∞ C(p, y)dF (y).

Proof of Lemma B3: (i) We note that |α(y)| ≤
∫∞
y |D(y, x)|dF (x) ≤

∫∞
−∞ |D(y, x)|dF (x) ≤ ∆ by

A5(iv).

(ii) First, from the local alternative (13), P(Yn,t+1 < y|Fn,t) =
∫ y
−∞ dFn(x|Yn,t) = p + n−1/2C(p,

Yn,t) = p + n−1/2h1(p, Yn,t), where p denotes F (y). Second, P(Yn,t+1 ≥ y, Yn,t+2 < y|Fn,t) =∫∞
y {p+n−1/2C(p, x)}dFn(x|Yn,t−1) = p(1−p)+n−1/2{w(p)−pC(p, Yn,t)}+r2(p, Yn,t) = p(1−p)+

n−1/2h2(p, Yn,t) + r2(p, Yn,t), where r2(p, Yn,t) := n−1R(F−1(p), Yn,t) and R(y, Yn,t) :=
∫∞
y D(y, x)

dD(x, Yn,t), which is OP(n−1) by A5(iv). Third, P(Yn,t+1 ≥ y, Yn,t+2 ≥ y, Yn,t+3 < y|Fn,t) =∫∞
y {p(1−p)+n−1/2{w(p)−pC(p, x)}}dFn(x|Yn,t−1)+r3(p, Yn,t) = p(1−p)2+n−1/2{w(p)(1−2p)−

p(1−p)C(p, Yn,t)}+r3(p, Yn,t) = p(1−p)2+n−1/2h3(p, Yn,t)+r3(p, Yn,t), where r3(p, Yn,t) is defined

to be n−1
∫∞
y R(F−1(p), z){dF (z) + n−1/2dD(z, Yn,t)} − n−1{w(p)C(p, Yn,t) − pR(F−1(p), Yn,t)},

which is also OP(n−1) uniformly in p because (i) |w( · )| is bounded by ∆ by Lemma B3(i), and (ii) both

|C( · , Yn,t)| and |R(F−1( · ), Yn,t)| are bounded byMn,t by A5(iii and iv), and
∫∞
y |R(F−1(p), z)|{dF (z)

+n−1/2dD(z, Yn,t)} ≤ Mn,t uniformly in p. Thus, applying Markov’s inequality ensures that r3(p, Yn,t)

is OP(n−1) uniformly in p.

Given this, we apply the induction method to obtain the desired result. Suppose that P(Yn,t+1 ≥

y, Yn,t+2 ≥ y, ..., Yn,t+k < y|Fn,t) = p(1 − p)k−1 + n−1/2hk(p, Yn,t) + rk(p, Yn,t), and rk(p, Yn,t) =
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OP(n−1) uniformly in p. Then P(Yn,t+1 ≥ y, Yn,t+2 ≥ y, ...Yn,t+k+1 < y|Fn,t) =
∫∞
y {p(1 − p)

k−1 +

n−1/2hk(p, yn,t+1)+rk(p, yn,t+1)}dFn(yn,t+1|Fn,t) = p(1−p)k+n−1/2{w(p)(1−kp)(1−p)k−2−p(1−

p)k−1C(p, Yn,t)}+rk+1(p, Yn,t) = p(1−p)k+n−1/2hk+1(p, Yn,t)+rk+1(p, Yn,t), where k = 3, 4, ..., and

rk+1(p, Yn,t) :=
∫∞
y rk(p, z){dF (z)+n−1/2dD(z, Yn,t)}−n−1{(1−p)k−3(1−(k−1)p)w(p)C(p, Yn,t)+

p(1 − p)k−2R(F−1(p), Yn,t)}. Note that the first component in the RHS is also OP(n−1) uniformly in

p as Fn is a proper distribution function and because rk(p, Yn,t) is OP(n−1) uniformly in p. Also, given

that |w( · )C( · , Yn,t)| < ∆ ·Mn,t and |R(F−1( · ), Yn,t)| ≤Mn,t, the remainders are OP(n−1) uniformly

in p because |(1 − p)k−3(1 − (k − 1)p)| < 3 and |p(1 − p)k−2| < 1 uniformly in p and k = 3, 4, ....

Thus, rk+1(p, Yn,t) is OP(n−1) uniformly in p, and (15) follows from the definition of hk+1. These are

the desired results.

(iii) By Lemma B3(ii), for each k = 1, 2, ..., P(Rn,i(p) = k) = E[P(Yn,t+1 ≥ y, Yn,t+2 ≥

y, ...Yn,t+k < y|Fn,t)|Yn,t < y] = p(1 − p)k−1 + n−1/2E[hk(p, Yn,t)|Yn,t < y] + E[rk(p, Yn,t)|Yn,t <

y]. Further, using the definitions of hn,k(p) and rn,k(p), we can substitute Fn(F−1(p))−1hn,k(p) and

Fn(F−1(p))−1rn,k(p) into E[hk(p, Yn,t)|Yn,t < y] and E[rk(p, Yn,t)|Yn,t < y] respectively, yielding

(16). In addition, given that rk(p, Yn,t) = OP(n−1) uniformly in p, it trivially follows from the definition

of rn,k(p) that rn,k(p) = O(n−1) uniformly in p.

(iv) Given the definition of hk( · , Yn,t), we have that hk( · , Yn,t) is uniformly bounded by 3∆ +Mn,t

as |h1(p, Yn,t)| = |C(p, Yn,t)| ≤ Mn,t; |h2(p, Yn,t)| ≤ |w(p)| + |pC(p, Yn,t)| ≤ ∆ + Mn,t; and for k =

3, 4, ..., |hk(p, Yn,t)| ≤ |w(p)(1−p)k−3(1−(k−1)p)|+p(1−p)k−2|C(p, Yn,t)| ≤ 3∆+Mn,t. Therefore,∫
|hk(p, x)|dFn(x) ≤ 3∆ +E[Mn,t] ≤ 4∆ <∞ uniformly in n, so that

∫ y
−∞ hk(p, x)dFn(x) ≤ 4∆ uni-

formly in p and n. Also, A5(iv) implies that for every k,
∫
|hk(p, x)|dF (x) ≤ 3∆+

∫
|D(F (y), x)|dF (x)

≤ 4∆, implying that
∫ y
−∞ hk(p, x)dF (x) ≤ 4∆ uniformly in p, and |

∫ y
−∞ hk(p, x)dFn(x)−

∫ y
−∞ hk(p, x)

dF (x)| = n−1/2|
∫ y
−∞

∫∞
−∞ hk(p, x)dD(x, z)dF (z) + oP(1)| < 4∆ uniformly in p. Thus, |hn,k(p) −

hk(p)| → 0 uniformly in p as n tends to infinity.

As shown in the proof for Lemma B3(ii), rk(p, Yn,t) = OP(n−1), and |rk(p, Yn,t)| is bounded uni-

formly in p by an integrable positive random variable. Given this, the same argument proving hn,k(p) →

hk(p) uniformly in p applies to show rn,k(p)→ rk(p) uniformly in p.

(v) We can replace p in (16) with p̃n to obtain the given result.

(vi) Using the definition of hn,k(p̃n), Lemmas B3(iii and v), and the fact that

∞∑
k=1

skhn,k(p̃n) =
Fn(q̃n)

p̃n

[
ν(p̃n, s) +

s(1− s)(p̃n − Fn(q̃n))

Fn(q̃n){1− s(1− p̃n)}

∫ F−1(p̃n)

−∞
C(p̃n, x)dFn(x)

]

= ν(p̃n, s) + oP(1),

we obtain that n1/2(E[sR̃n,i(p)|p̃n] − p̃ns/{1− s(1− p̃n)}) = ν(p̃n, s)/Fn(F−1(p̃n)) + oP(1). This
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completes the proof. �

LEMMA B4: Given conditions A1, A2(i), A3, A5, and H`
1, if Rn,i(p) is defined by observations starting

from Yn,t+1 and p > 1
n , then

(i) for each p and k = 1, 2, ...,

P(Rn,i(p) = k|Fn,t) = p(1− p)k−1 +n−1/2p−1hk(p) + p−1rk(p) +n−1bk(p, Yn,t−1) + oP(n−1), (21)

where bk(p, Yn,t−1) := p−1
∫ y
−∞ hk(p, x)dD(x, Yn,t−1)− p−2hk(p)D(y, Yn,t−1);

(ii) for each p and k = 1, 2, ..., P(Rn,i(p) = k) = p(1 − p)k−1 + n−1/2p−1hk(p) + p−1rk(p) +

n−1bk(p) + o(n−1), where bk(p) :=
∫
bk(p, z)dF (z).

Proof of Lemma B4: (i) Assuming that Rn,i(p) is defined by observations starting from Yn,t+1, we have

P(Rn,i(p) = k|Fn,t) = P(Yn,t+1 ≥ y, ..., Yn,t+k−1 ≥ y, Yn,t+k < y|F̄n,t−1), where F̄n,t−1 := σ(Yn,t <

y, Yn,t−1, Yn,t−2, ...). Given this, we can use (15) to obtain

P(Rn,i(p) = k|Fn,t) = p(1− p)k−1 + n−1/2Fn(y|Yn,t−1)−1
∫ y

−∞
hk(p, x)dFn(x|Yn,t−1)

+ Fn(y|Yn,t−1)−1
∫ y

−∞
rk(p, x)dFn(x|Yn,t−1) (22)

using the facts that E[hk(p, Yn,t)|F̄n,t−1] = Fn(y|Yn,t−1)−1
∫ y
−∞ hk(p, x)dFn(x|Yn,t−1) and E[rk (p,

Yn,t)|F̄n,t−1] = Fn(y|Yn,t−1)−1
∫ y
−∞ rk(p, x)dFn(x|Yn,t−1). Using a Taylor expansion yieldsFn(y|Yn,t−1

)−1 = 1/F (y) − n−1/2D(y, Yn,t−1)/F (y)2 + oP(n−1/2), and substituting (13) and this into (22) yields

the desired result.

(ii) We note the fact that P(Rn,i(p) = k) = E[P(Rn,i(p) = k|Fn,t)]. Thus, P(Rn,i(p) = k) = p(1−

p)k−1+n−1/2p−1hk(p)+p−1rk(p)+n−1
∫
bk(p, z)dFn(z)+o(n−1) = p(1−p)k−1+n−1/2p−1hk(p)+

p−1rk(p) + n−1
∫
bk(p, z)dF (z) + o(n−1) by Lemma B1(ii). �

LEMMA B5: Given conditions A1, A2(i), A3, A5, and H`
1, if Rn,i(p) is defined by observations starting

from Yn,t+1 and p > 1
n , then

(i) for each p and k,m = 1, 2, ..., P(Rn,i(p) = k|Fn,t−m)−P(Rn,i(p) = k) = n−
m+1

2 Bk,m(p, Yn,t−m

) + oP(n−
m+1

2 ), where Bk,1(p, Yn,t−1) := bk(p, Yn,t−1)− bk(p), and for m = 2, 3, ..., Bk,m(p, Yt−m) :=∫
...
∫
bk (p, z)dD(z, x1)...dD(xm−2, Yn,t−m)− n−

m+1
2

∫
...
∫
bk(p, z)dD(z, x1)...dD(xm−2, x)dF (x);

(ii) for each p and k, `,m = 1, 2, ..., P(Rn,i(p) = k|Rn,i−m(p) = `) = P(Rn,i(p) = k) +

OP(n−(m+1)/2);

(iii) for each p and k, `,m = 1, 2, ..., P(Rn,i(p) = k,Rn,i−m(p) = `) = P(Rn,i(p) = k)P(Rn,i−m(p)

= `) +O(n−(m+1)/2).

40



Proof of Lemma B5: (i) For m = 1, the given result trivially follows from Lemmas B4(i and ii). To

show the claim for m > 1, we let ck(p, Yn,t−1) := bk(p, Yn,t−1) + oP(1) for notational simplicity, where

the oP(1) term is the last piece multiplied by n in the RHS of (21). Then P(Rn,i(p) = k|Fn,t−m) =

p(1− p)k−1 + n−1/2p−1hk(p) + p−1rk(p) + n−1E[ck(p, Yn,t−1)|Fn,t−m] and P(Rn,i(p) = k) = p(1−

p)k−1+n−1/2p−1hk(p)+p−1rk(p)+n−1E[ck(p, Yn,t−1)]. Thus, P(Rn,i(p) = k|Fn,t−m)−P(Rn,i(p) =

k) = n−1{E[ck(p, Yn,t−1)|Fn,t−m] − E[ck(p, Yn,t−1)]}. Given this, applying Lemma B1(i) and the fact

that ck(p, Yn,t−1) = bk(p, Yn,t−1) + oP(1) yields that P(Rn,i(p) = k|Fn,t−m) − P(Rn,i(p) = k) =

n−
m+1

2

∫
...
∫
bk(p, z)dD(z, x1)...dD(xm−2, Yn,t−m) − n−

m+1
2

∫
...
∫
bk(p, z)dD(z, x1)...dD(xm−2, x)

dF (x) + oP(n−
m+1

2 ) = n−
m+1

2 Bk,m(p, Yt−m) + oP (n−
m+1

2 ). This is the desired result.

(ii) Given that Rn,i(p) is defined by the observations starting from Yn,t+1, it follows that Yn,t < y.

Given this, we first consider m = 1. Then, {Rn,i−1(p) = `} = {Yn,t < y, Yn,t−1 ≥ y, ..., Yn,t−`−1 ≥

y, Yn,t−` < y} ⊂ F̄n,t−1 := σ(Yn,t < y, Yn,t−1, Yn,t−2, ...). Next, we suppose that m > 1. Then, the

latest observation to define Rn,i−m(p) is Yn,t−m, which is obtained when Rn,i−1 = ... = Rn,i−m+1 =

1. Therefore, {Rn,i−m(p) = `} ⊂ F̄n,t−m := σ(Yn,t < y, Yn,t−m, Yn,t−m, ...). Thus, for any m,

{Rn,i−m(p) = `} ⊂ F̄n,t−m. Finally, we apply Lemma B5(i) to obtain the desired result.

(iii) This trivially follows from Lemma B5(ii) and the fact that P(Rn,i(p) = k,Rn,i−m(p) = `) =

P(Rn,i(p) = k|Rn,i−m(p) = `)P(Rn,i−m(p) = `). �

LEMMA B6: Given conditions A1, A2(i), A3, A5, and H`
1, for each (p, s),

(i) E[Wn(p, s)|p̃n] = ν(p, s) + oP(1);

(ii) E[Hn(p, s)|p̃n] = −ps(1− s)Q(F−1(p))/{1− s(1− p)}2 + oP(1);

(iii) E[Wn(p, s)2|p̃n] = p2s2(1− p)(1− s)2/{1− s(1− p)}2{1− s2(1− p)}+ ν(p, s)2 + oP(1);

(iv) E[Hn(p, s)2|p̃n] = p3s2(1− p)(1− s)2/{1− s(1− p)}4 + p2s2(1− s)2Q(F−1(p))2/ {1 −

s(1− p)}4 + oP(1).

Proof of Lemma B6: (i) Lemma B3(vi) implies thatE[Wn(p, s)|p̃n] = p{Fn(q̃n(p))−1ν(p̃n, s)}+oP(1) =

ν(p, s) + oP(1), where the first equality follows because M̃n(p)/n = bpnc/n, q̃n(p) → F−1(p) a.s.−P,

as the ergodic theorem implies that p̃n → p a.s.−P.

(ii) For some p̄n between p̃n and p,

Hn(p, s) =
s(1− s)M̃n(p)

{1− s(1− p̄n)}2
{p̃n − p}√

n
= −ps(1− s)

√
n[F̃n(q̃n(p))− F (q̃n(p))]

{1− s(1− p̄n)}2
+ oP(1) (23)

by the mean-value theorem. This implies that applying Lemma B2 and the ergodic theorem yieldsE[Hn(p,

s)|p̃n] = −ps(1− s)Q(F−1(p))/{1− s(1− p)}2 + oP(1), which ensures that q̃n(p)→ F−1(p) a.s.−P.

(iii) We decomposeWn(p, s)2 intoWn(p, s)2 ≡ K̃n(p, s)+L̃
(1)
n (p, s)+L̃

(2)
n (p, s), where K̃n(p, s) :=

n−1
∑M̃n(p)

i=1 (sR̃n,i(p)− sp̃n/{1− s(1− p̃n)})2, L̃(1)
n (p, s) = n−1

∑∑M̃n(p)
|i−j|=1(s

R̃n,i(p)− sp̃n/{1− s(1−
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p̃n)})(sR̃n,j(p) − sp̃n/{1 − s(1 − p̃n)}), and L̃(2)
n (p, s) = n−1

∑∑M̃n(p)
|i−j|>1(s

R̃n,i(p) − sp̃n/{1 − s(1 −

p̃n)})(sR̃n,j(p)−sp̃n/{1−s(1−p̃n)}), and examine the asymptotic behavior of each component. Note that

E[K̃n(p, s)|p̃n] = n−1
∑M̃n(p)

i=1 E[(sR̃n,i(p) − sp̃n/{1− s(1− p̃n)})2|p̃n] and n−1M̃n(p) = p̃n + oP(1).

From this and (16), we obtain E[K̃n(p, s)|p̃n] = p̃2ns
2(1− p̃n)(1− s)2/[{1 − s(1 − p̃n)}2{1 − s2(1−

p̃n)}]+oP(1). Next,E[L̃
(1)
n (p, s)|p̃n] = 2n−1 (M̃n(p)− 1)E[(sR̃n,i(p)−sp̃n/{1−s(1−p̃n)})(sR̃n,i+1(p)−

sp̃n/{1−s(1− p̃n)})|p̃n]. We use Lemma B5(iii) to obtainE[L̃
(1)
n (p, s)|p̃n] = 2p̃nE[sR̃n,i(p)−sp̃n/{1−

s(1−p̃n)}|p̃n]2+OP(n−1) = 2n−1p̃nFn(q̃n(p))−2ν(p̃n, s)
2+OP(n−1) = oP(1). Finally,E[L̃

(2)
n (p, s)|p̃n]

= n−1
∑∑M̃n(p)

|i−j|>1 E[(sR̃n,i(p) − sp̃n/{1 − s(1 − p̃n)})(sR̃n,i+1(p) − sp̃n/{1 − s(1 − p̃n)})|p̃n]; using

Lemma B5(iii) then impliesE[L̃
(2)
n (p, s)|p̃n] = n−1(M̃n(p)−1)(M̃n(p)−2){E[sR̃n,i(p)−sp̃n/{1−s(1−

p̃n)}|p̃n]2+oP(n−1)}, so thatE[L̃
(2)
n (p, s)|p̃n] = p̃2nFn(q̃n(p))−2ν(p̃n, s)

2+oP(1). Thus, adding together

E[K̃n(p, s)|p̃n],E[L̃
(1)
n (p, s)|p̃n], andE[L̃

(2)
n (p, s)|p̃n] and using p̃n → p a.s.−P (by the ergodic theorem),

we have E[Wn(p, s)2|p̃n] = p2s2(1− p)(1− s)2/[{1− s(1− p)}2{1− s2(1− p)}] + ν(p, s)2 + oP(1).

(iv) This directly follows from Lemma B2 and (23) and by letting p = F (y). �

LEMMA B7: Given conditions A1, A2(i), A3, A5, and H`
1, for each (p, s),

(i)Wn(p, s)−W̃n(p, s) = ν(p, s)+oP(1), where W̃n(p, s) := n−1/2
∑M̃n(p)

i=1 (sR̃n,i(p)−E[sR̃n,i(p)|p̃n]);

(ii) E[Sn,i(p, s)|Fn,t−m] = OP(n−
m+1

2 ), where Sn,i(p, s) := sRn,i(p) − E[sRn,i(p)], and Rn,i(p) is

the run defined by observations starting from Yn,t+1.

Proof of Lemma B7: (i) We exploit Lemma B3(vi) to show the given result. Note that Wn(p, s) −

W̃n(p, s) = n−1/2M̃n(p)(E[sR̃n,i(p)|p̃n] − p̃ns/{1 − s(1 − p̃n)}), and n−1/2M̃n(p) = pn1/2 + oP(1).

Therefore, (20) implies that Wn(p, s)− W̃n(p, s) = pν(p̃n, s)/Fn(F−1(p̃n)) + oP(1) = ν(p, s) + oP(1),

where the last equality follows because F−1(p̃n) = F−1(p) + oP(1) = y + oP(1) by the ergodic theorem

and the fact that Fn(y) = F (y) + o(1) = p+ o(1) when y is such that p = F (y).

(ii) By the definition of E[Sn,i(p, s)|Fn,t−m], E[Sn,i(p, s)|Fn,t−m] =
∑∞

k=1 s
k{P(Rn,i(p) = k|

Fn,t−m) − P(Rn,i(p) = k)}. We note that |s| < 1, and P(Rn,i(p) = k|Fn,t−m) − P(Rn,i(p) = k) =

n−
m+1

2 Bk,m(p, Yn,t−m) + oP(n−
m+1

2 ) by Lemma B5(i). This completes the proof. �

LEMMA B8: Given conditions A1, A2(i), A3, A5, and H`
1, for each (p, s), G̃n(p, s)

A∼ N(µ(p, s), s2p2(1−

s)4(1− p)2/[{1− s(1− p)}4{1− s2(1− p)}]).

Proof of Lemma B8: To show the given claim, we partition our proof into three pieces. First, we obtain the

asymptotic population mean of G̃n(p, s). Second, we derive the asymptotic variance of G̃n(p, s). Finally,

we derive the asymptotic distribution.
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First, we note that E[G̃n(p, s)|p̃n] = E[Wn(p, s)|p̃n]+E[Hn(p, s)|p̃n]. Given this, Lemmas B6(i and

ii) ensure that E[G̃n(p, s)|p̃n] = ν(p, s) − ps(1− s)Q(F−1(p))/{1− s(1− p)}2 + oP(1) = µ(p, s) +

oP(1). Thus, the asymptotic population mean of G̃n(p, s) must be µ(p, s).

Second, we apply Lemmas B6(i and iii) to show that the asymptotic variance of Wn(p, s) satisfies

E[Wn(p, s)2|p̃n]− E[Wn(p, s)|p̃n]2 =
p2s2(1− p)(1− s)2

{1− s(1− p)}2{1− s2(1− p)}
+ oP(1). (24)

Lemmas B6(ii and iv) imply that

E[Hn(p, s)2|p̃n]− E[Hn(p, s)|p̃n]2 =
p3s2(1− p)(1− s)2

{1− s(1− p)}4
+ oP(1). (25)

Further, we haveE[Wn(p, s)|Fn,n] = −Hn(p, s)+µ(p, s), so thatE[Wn(p, s)Hn(p, s)|p̃n] = −E[Hn(p,

s)2|p̃n] + µ(p, s)E[Hn(p, s)|p̃n] + oP(1). Thus,

2{E[Wn(p, s)Hn(p, s)|p̃n]− E[Wn(p, s)|p̃n]E[Hn(p, s)|p̃n]}

= −2{E[Hn(p, s)2|p̃n]− E[Hn(p, s)|p̃n]2}+ oP(1). (26)

Given these, and adding together (24), (25) and (26), we obtain E[G̃n(p, s)2|p̃n] − E[G̃n(p, s)|p̃n]2 =

s2p2(1− s)4(1− p)2/{1− s(1− p)}4{1− s2(1− p)}+oP(1), which is the desired asymptotic variance.

Third, the asymptotic normality of Hn(p, s) follows from Lemma B2 and (23); the asymptotic covari-

ance between Hn(p, s) and Wn(p, s) is given in (26). Thus, if the asymptotic normality of Wn(p, s) is

proved, then the asymptotic normality of G̃n(p, s) is obtained. For this, we consider W̃n(p, s), which is

Wn(p, s) − ν(p, s) + oP(1) by Lemma B7(i), so that these have the same limiting distribution. This can

be shown by corollary 2 of Herrndorf (1984). First, from the definition of Sn,i(p, s), E[Sn,i(p, s)] = 0,

and E[Sn,i(p, s)
2] <∞ because |s| < 1. Therefore, {Sn,i(p, s)} satisfies the condition (1.1) of Herrndorf

(1984). Second, Lemmas B6(i and iii) show thatE[W̃n(p, s)2] = E[Wn(p, s)2]−E[Wn(p, s)]2+oP(1) =

p2s2(1− p)(1− s)2/[{1− s(1− p)}2 {1− s2(1− p)}] + oP(1), which is greater than zero. Thus, (1.2)

of Herrndorf (1984) holds. Third, (1.3) of Herrndorf (1984) trivially holds by the stationarity condition.

Finally, the size of α-mixing coefficient is bounded by β-mixing coefficient because 2αn,k ≤ βn,k, and

βn,k ≤ n−k/2
∫
K(y)dFn(y) by Remark 4(a − 2). Thus, αn,k = O(n−k/2). Further, |s| < 1, so that

for any κ > 2, E[Sκn,i] < ∞, implying that (1.3) of Herrndorf (1984) holds. Therefore, the asymptotic

normality of W̃n(p, s) follows by corollary 2 of Herrndorf (1984). �

Remark 6: (a) The given weak convergence in Lemma B8 can be also proved using the CLT, exploiting

the β-mixing coefficients.

(b) The given weak convergence in Lemma 8 can be further extended to weak convergence involving

multivariate random variables on multiple elements in J× S by the Cramér-Wold device. We do not show

this for brevity.
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LEMMA B9: Given conditions A1, A2(i), A3, A5, and H`
1,

(i) Wn − ν ⇒ G; and

(ii) Hn − (µ− ν)⇒ H.

Proof of Lemma B9: (i) We can use theorem 3 of Bickel and Wichura (1973) as before to establish this.

Computing the modulus of continuity based on the fourth moment is straightforward, but a tedious task.

We omit this for brevity because it is almost identical to the proof of Theorem 1 (i, ii, and iii).

(ii) Note that for each (p, s), µ(p, s)− ν(p, s) = −ps(1− s)Q(F−1(p))/{1− s(1− p)}2 and Hn(p,

s) = −ps(1− s)
√
n{F̃n(q̃n(p)) − F (q̃n(p))}/{1− s(1− p̄n)}2 + oP(1) by (23). Thus, if we can show

that
√
n{F̃n − F} is tight, then the desired result follows by Lemma B2. We complete the proof by

applying theorem 5.3 of Ango Nze and Doukhan (2004), which says that if βn,k = O(k−1(log k)−a) for

some a > 2, then the tightness of
√
n{F̃n − F} follows. If we let a = 3 then βn,k = o(k−1(log k)−a) for

any n > 1 by Remark 4(b-2). �

Remark 7: (a) For brevity, we omit deriving the asymptotic covariance structure of Wn and Hn under H`
1

as this can be obtained in a manner similar to that obtaining the asymptotic variance of G̃n(p, s).

(b) Given the fact that G andH are in C(J× S), they are tight, so that lemma 1.3.8(ii) of van der Vaart

and Wellner (1996, p. 21) implies that Wn and Hn are tight.

Proof of Theorem 6: Given the weak convergence in Lemma B8, the desired result follows by the tightness

implied by Lemma B9(i) (see Remark 6(b)) and the fact that (Wn, Hn)′ is tight by lemma 1.4.3 of van der

Vaart and Wellner (1996, p. 30). �

7.2 Other Test Statistics

In this section, we provide formulae for the other test statistics used in our Monte Carlo experiments.

The following statistics are used for DGPs 2.1, 2.4–2.6, and 2.8–2.11:

REn := maxk
k
σ̂nn

max[α̃k, β̃k];

RRn := maxk
k
σ̂nn

max[α̃k, β̃k]−mink
k
σ̂nn

max[α̃k, β̃k];

RECUSUMn := maxk
1

σ̃n
√
n−1 |

∑k
t=2 vt|;

OLSCUSUMn := maxk
1

σ̂n
√
n
|
∑k

t=1 et|;

Mn := maxk supz | kn(1− k
n)
√
n(k−1

∑k
t=1 1{et≤z} − (n− k)−1

∑n
t=k+1 1{et≤z})|;

SupWn := supk1≤k≤k2 Wn(k);

ExpWn := ln{ 1
k2−k1+1

∑k2
k=k1

exp[0.5Wn(k)]};

AvgWn := 1
k2−k1+1

∑k2
k=k1

Wn(k),
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where

[α̃k, β̃k]
′ = M

1/2
n [α̂1,k − α̂1,n, β̂1,k − β̂1,n]′; Mn := Z′Z;

Z is the n× 2 matrix of the regressors;

(α̂1,k, β̂1,k) is the OLS estimator using the first k observations;

(α̂2,k, β̂2,k) is the OLS estimator using the (k + 1)-th to n-th observations;

et := Yt − α̂1,n − β̂1,nZt; σ̂2n := (n− 2)−1
∑n

t=1 e
2
t ;

vt := Yt − α̂1,t−1 − β̂1,t−1Zt; σ̃2n := (n− 2)−1
∑n

t=3 v
2
t ;

Wn(k) := {(n− 2)σ̂2n − (n− 3)σ̈2n(k)}/σ̈2n(k); k1 = b0.15nc; k2 = b0.85nc;

ŵ1,t(k) := Yt − α̂1,k − β̂1,kZt; ŵ2,t(k) := Yt − α̂2,k − β̂2,kZt; and

σ̈2n(k) := (n− 3)−1{
∑k

t=1 ŵ1,t(k)2 +
∑n

t=k+1 ŵ2,t(k)2}.

The following statistics are used for DGPs 2.2, 2.7, and 2.12:

REn := maxk
k

σ̂n
√
n
|β̃k|;

RRn := maxk
k

σ̂n
√
n
|β̃k| −mink

k
σ̂n
√
n
|β̃k|;

RECUSUMn := maxk
1

σ̃n
√
n−1 |

∑k
t=2 vt|;

NLSCUSUMn := maxk
1

σ̂n
√
n
|
∑k

t=1 et|;

Mn := maxk supz | kn(1− k
n)
√
n(k−1

∑k
t=1 1{et≤z} − (n− k)−1

∑n
t=k+1 1{et≤z})|;

SupWn := supk1≤k≤k2 Wn(k);

ExpWn := ln{ 1
k2−k1+1

∑k2
k=k1

exp[0.5Wn(k)]};

AvgWn := 1
k2−k1+1

∑k2
k=k1

Wn(k),

where

β̃k = M̃
1/2
n [β̂1,k − β̂1,n]; M̃n :=

∑n
t=1 exp(2Ztβ̂1,n)Z2

t ;

β̂1,k is the NLS estimator using the first k observations;

β̂2,k is the NLS estimators using the (k + 1)-th to n-th observations;

et := Yt − exp(β̂1,nZt); σ̂2n := (n− 1)−1
∑n

t=1 e
2
t ;

vt := Yt − exp(β̂1,t−1Zt); σ̃2n := (n− 1)−1
∑n

t=2 v
2
t ;

Wn(k) := n{β̂1,k − β̂2,k}{nV̂1,k/k + nV̂2,k/(n− k)}−1{β̂1,k − β̂2,k}; and

V̂1,k and V̂2,k are the variance estimators of β̂1,k and β̂2,k respectively.
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Table I: ASYMPTOTIC CRITICAL VALUES OF THE TEST STATISTICS

Statistics \ Level 1% 5% 10% Statistics \ Level 1% 5% 10%

T p
1,n(S1) p = 0.1 0.2474 0.1914 0.1639 T̃ p

1,n(S1) p = 0.1 0.2230 0.1727 0.1420

0.3 0.5892 0.4512 0.3828 0.3 0.5004 0.3842 0.3225

0.5 0.8124 0.6207 0.5239 0.5 0.6413 0.4886 0.4092

0.7 0.9007 0.6841 0.5763 0.7 0.6065 0.4632 0.3889

0.9 0.7052 0.5329 0.4478 0.9 0.3066 0.2356 0.1973

T p
∞,n(S1) p =0.1 0.7483 0.5683 0.4750 T̃ p

∞,n(S1) p =0.1 0.7454 0.5677 0.4750

0.3 1.3517 1.0237 0.8582 0.3 1.3239 1.0069 0.8441

0.5 1.6846 1.2818 1.0728 0.5 1.5909 1.1990 1.0091

0.7 1.7834 1.3590 1.4000 0.7 1.5019 1.1360 0.9617

0.9 1.3791 1.0486 0.8839 0.9 0.7912 0.6028 0.5060

T s
1,n s = -0.5 0.3114 0.2439 0.2152 T̃ s

1,n s = -0.5 0.2197 0.1785 0.1587

-0.3 0.1698 0.1330 0.1164 -0.3 0.1124 0.0905 0.0803

-0.1 0.0514 0.0402 0.0351 -0.1 0.0313 0.0254 0.0225

0.1 0.0466 0.0361 0.0315 0.1 0.0262 0.0210 0.0187

0.3 0.1246 0.0957 0.0836 0.3 0.0631 0.0504 0.0446

0.5 0.1769 0.1356 0.1183 0.5 0.0780 0.0625 0.0552

T s
∞,n s = -0.5 0.8091 0.6885 0.6160 T̃ s

∞,n s = -0.5 0.6229 0.5319 0.4799

-0.3 0.4349 0.3650 0.3267 -0.3 0.3107 0.2668 0.2412

-0.1 0.1282 0.1072 0.0960 -0.1 0.0864 0.0734 0.0670

0.1 0.1124 0.0939 0.0840 0.1 0.0714 0.0604 0.0547

0.3 0.2898 0.2416 0.2154 0.3 0.1718 0.1454 0.1306

0.5 0.3962 0.3304 0.2948 0.5 0.2175 0.1869 0.1684

T1,n(S1) 0.4571 0.3547 0.3124 T̃1,n(S1) 0.3080 0.2440 0.2187

T∞,n(S1) 2.2956 1.9130 1.7331 T̃∞,n(S1) 2.0411 1.7101 1.5615

T1,n(S2) 0.1219 0.0955 0.0836 T̃1,n(S2) 0.0725 0.0590 0.0523

T∞,n(S2) 0.8091 0.6885 0.6160 T̃∞,n(S2) 0.6229 0.5319 0.4799
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Table II: LEVEL SIMULATION AT 5% LEVEL (IN PERCENT, 10,000 ITERATIONS)
DGP 1.1

Statistics \ n 100 300 500

T̃ p
1,n(S1) p = 0.1 4.05 4.71 5.09

0.3 5.02 4.95 4.61

0.5 5.22 4.74 4.87

0.7 5.34 4.90 5.31

0.9 4.35 6.63 6.07

T̃ p
∞,n(S1) p = 0.1 3.86 4.44 4.49

0.3 3.54 4.65 4.59

0.5 5.42 4.40 5.05

0.7 7.00 5.03 5.08

0.9 4.21 6.27 4.71

T̃ s
1,n s = -0.5 4.36 4.72 4.26

-0.3 4.32 4.77 4.08

-0.1 4.23 4.71 3.83

0.1 4.19 4.64 3.68

0.3 4.01 4.08 3.25

0.5 3.85 3.63 2.55

T̃ s
∞,n s = -0.5 4.90 6.07 5.95

-0.3 4.92 6.11 5.86

-0.1 5.15 6.29 6.13

0.1 4.89 6.22 5.94

0.3 5.11 5.76 6.06

0.5 5.05 5.18 5.57

T̃1,n(S1) 3.71 4.21 3.60

T̃∞,n(S1) 4.91 6.40 6.65

T̃1,n(S2) 4.06 4.65 4.12

T̃∞,n(S2) 4.77 5.94 5.74

Rn
a 4.7

STn
a 5.1

HWn
a 6.5

aThese results are those given in Hong and White (2005). Their number of replications is 1,000.
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Table III: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)
DGP 1.2 DGP 1.3 DGP 1.4 DGP 1.5

Statistics \ n 100 200 100 200 100 200 100 200

T̃ p
1,n(S1) p = 0.1 20.67 33.17 29.50 45.00 27.53 47.47 5.80 9.27

0.3 33.27 59.37 8.43 10.57 8.77 12.07 9.77 15.40
0.5 36.60 65.17 5.33 5.47 5.20 5.80 18.77 32.93
0.7 34.13 60.30 9.33 11.37 5.37 6.10 76.17 97.33
0.9 23.77 38.07 30.30 51.57 15.40 23.97 75.37 97.10

T̃ p
∞,n(S1) p = 0.1 6.60 6.67 7.10 6.33 5.03 5.37 3.63 4.73

0.3 10.57 23.97 3.60 5.40 3.70 5.40 5.70 11.00
0.5 24.07 42.87 5.77 6.13 4.90 6.33 16.43 26.70
0.7 29.53 41.67 9.80 6.87 6.93 4.20 72.97 92.77
0.9 22.47 22.63 27.30 32.67 14.43 13.30 72.30 89.87

T̃ s
1,n s = -0.5 62.56 99.83 13.53 90.90 8.40 11.63 81.73 99.30

-0.3 67.70 99.86 14.66 92.06 9.33 12.96 80.30 99.33
-0.1 70.06 99.73 15.66 92.73 10.53 15.30 76.86 98.90
0.1 71.30 99.70 16.46 93.40 11.86 18.10 69.66 97.73
0.3 70.30 99.60 17.30 93.46 13.93 23.50 58.50 94.00
0.5 67.36 99.46 19.93 93.33 18.63 32.80 44.90 82.73

T̃ s
∞,n s = -0.5 43.80 79.50 7.83 13.46 5.70 6.10 74.46 98.73

-0.3 49.66 83.96 8.50 13.66 6.60 6.76 71.40 98.03
-0.1 55.63 87.80 9.83 15.33 8.03 9.16 66.43 96.53
0.1 59.70 89.06 11.20 17.66 10.10 14.43 55.06 91.33
0.3 61.40 88.30 14.33 24.86 15.46 25.60 40.76 79.13
0.5 58.40 84.83 22.36 37.23 23.60 46.33 22.43 50.30

T̃1,n(S1) 59.73 90.93 11.96 23.13 9.40 13.73 14.60 27.33
T̃∞,n(S1) 27.30 61.56 5.83 10.70 4.70 6.46 18.13 34.33

T̃1,n(S2) 97.03 99.86 16.36 26.36 75.60 86.06 82.30 92.40
T̃∞,n(S2) 44.03 80.50 7.20 13.60 5.56 7.26 13.76 18.56

Rn
a 13.8 25.4 26.4 52.2 15.0 7.2 59.8 75.4

STn
a 12.4 22.0 61.2 90.0 27.8 52.0 81.6 98.4

HWn
a 14.0 27.0 37.6 67.6 20.6 35.2 69.6 95.6

aThese results are those given in Hong and White (2005). Their number of replications is 500.
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Table IV: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)
DGP 1.6 DGP 1.7 DGP 1.8 DGP 1.9

Statistics \ n 100 200 100 200 100 200 100 200

T̃ p
1,n(S1) p = 0.1 1.30 6.83 1.00 5.33 2.77 3.73 27.83 47.70

0.3 9.93 16.33 18.90 33.67 17.73 32.57 39.47 64.23

0.5 8.33 10.87 9.27 11.37 31.77 59.80 43.13 68.00

0.7 30.87 57.17 18.07 28.73 33.60 58.43 39.97 62.13

0.9 26.43 41.27 24.00 39.03 22.37 34.63 26.30 37.50

T̃ p
∞,n(S1) p = 0.1 3.73 5.73 4.33 4.30 3.77 3.67 9.50 14.53

0.3 6.00 10.47 8.93 16.23 5.83 12.80 22.23 44.33

0.5 8.47 9.90 8.10 9.83 20.47 36.93 34.60 59.23

0.7 33.63 47.20 16.67 18.17 30.03 39.93 37.83 54.90

0.9 25.80 29.60 22.53 22.70 20.63 19.97 24.83 29.80

T̃ s
1,n s = -0.5 25.13 60.93 21.96 51.46 50.13 83.03 56.36 80.73

-0.3 25.13 60.10 24.13 55.93 54.26 86.16 57.43 81.10

-0.1 22.40 56.20 25.16 58.93 55.93 87.53 57.80 81.46

0.1 20.13 52.10 25.10 59.96 56.20 87.26 58.46 81.96

0.3 16.90 43.73 23.10 56.46 53.33 84.90 59.13 82.13

0.5 12.36 32.30 17.53 47.60 48.93 80.23 59.50 82.20

T̃ s
∞,n s = -0.5 23.13 54.23 20.80 43.36 40.46 75.83 55.70 80.06

-0.3 22.03 50.46 21.50 46.80 45.56 79.86 57.20 80.83

-0.1 20.50 45.50 23.03 49.93 49.60 82.36 57.83 81.53

0.1 17.43 38.26 21.96 48.36 51.20 82.73 58.56 82.00

0.3 14.16 30.10 20.50 45.70 49.70 80.60 59.33 82.40

0.5 9.83 21.40 14.90 38.26 43.86 71.43 59.53 82.56

T̃1,n(S1) 25.90 59.36 19.43 46.10 47.96 81.50 56.33 79.96

T̃∞,n(S1) 22.36 50.56 14.50 29.10 26.36 55.80 50.26 75.60

T̃1,n(S2) 22.80 56.40 23.63 57.23 54.90 86.40 58.70 81.40

T̃∞,n(S2) 22.80 53.70 19.66 41.50 39.63 76.36 54.60 79.73

Rn
a 31.8 65.2 24.6 80.8 14.2 34.6 60.2 84.0

STn
a 34.8 72.8 25.8 86.8 13.4 23.8 55.8 79.8

HWn
a 34.0 74.0 25.6 85.4 17.0 26.2 60.8 84.6

aThese results are those given in Hong and White (2005). Their number of replications is 500.
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Table V: LEVEL SIMULATION AT 5% LEVEL (IN PERCENT, 10,000 ITERATIONS)
DGP 2.1 DGP 2.2

Statistics \ n 100 300 500 100 300 500
T̃ p
1,n(S1) p = 0.1 4.12 4.88 5.02 4.25 5.01 5.02

0.3 5.12 5.22 5.07 5.20 5.12 5.23
0.5 4.76 5.51 5.33 5.02 5.04 5.38
0.7 5.81 5.63 5.19 5.14 4.51 5.32
0.9 3.71 6.63 5.92 4.35 6.87 6.02

T̃ p
∞,n(S1) p = 0.1 3.86 6.38 6.04 4.33 6.44 6.32

0.3 5.56 4.56 6.10 5.68 4.82 6.38
0.5 5.17 5.34 5.60 5.60 5.06 5.77
0.7 7.44 5.70 4.88 6.89 4.54 5.15
0.9 3.58 6.25 7.43 4.14 6.47 7.49

T̃ s
1,n s = -0.5 4.37 4.66 4.32 4.18 4.71 4.21

-0.3 4.27 4.82 4.40 4.29 4.75 4.13
-0.1 3.98 4.57 4.06 4.18 4.47 3.97
0.1 3.90 4.46 3.78 4.02 4.29 3.67
0.3 3.46 3.95 3.30 3.86 3.96 3.04
0.5 3.34 3.31 2.72 3.50 3.52 2.57

T̃ s
∞,n s = -0.5 4.42 5.96 6.13 4.63 6.16 6.12

-0.3 4.49 5.73 6.12 4.64 6.07 6.06
-0.1 4.64 5.87 6.27 4.62 5.94 6.19
0.1 4.41 5.66 6.28 4.53 5.65 6.04
0.3 4.47 5.53 5.84 4.79 5.27 5.77
0.5 4.78 4.95 5.21 4.78 4.95 5.22

T̃1,n(S1) 3.69 4.34 3.50 3.62 3.90 3.46
T̃∞,n(S1) 5.22 6.65 6.50 5.00 5.98 6.97
T̃1,n(S2) 3.94 4.33 3.98 3.71 4.41 4.09
T̃∞,n(S2) 4.87 5.53 6.02 4.89 5.62 6.25
Mn 2.89 4.43 4.75 3.98 5.33 5.62
REn 7.89 4.14 3.11 71.90 70.70 31.01
RRn 9.28 4.30 2.74 64.39 60.78 66.15

SupWn 4.77 4.41 4.57 2.93 0.94 1.31
AvgWn 5.81 5.29 5.10 2.60 1.69 2.22
ExpWn 5.34 5.35 5.04 1.78 2.35 3.13

RECUSUMn 1.65 3.07 3.68 3.41 3.86 3.64
O(N)LSCUSUMn 2.68 4.20 4.01 28.91 30.22 55.50
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Table VI: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)
DGP 2.3 DGP 2.4 DGP 2.5 DGP 2.6 DGP 2.7

Statistics \ n 100 200 100 200 100 200 100 200 100 200

T̃ p
1,n(S1) p = 0.1 14.20 22.73 18.13 29.60 22.20 39.93 16.70 24.70 35.67 59.00

0.3 19.06 31.86 27.47 48.43 20.53 37.60 7.80 10.37 22.87 39.23
0.5 21.00 37.70 29.03 55.43 21.83 37.77 5.80 7.77 19.43 35.07
0.7 19.23 31.03 29.03 51.70 22.33 38.20 7.67 10.17 27.37 48.37
0.9 10.70 14.66 19.37 32.77 22.63 39.23 17.30 24.07 43.27 71.47

T̃ p
∞,n(S1) p = 0.1 4.10 4.30 5.90 5.53 5.50 6.80 6.07 5.03 7.57 9.47

0.3 4.43 8.70 7.70 21.80 6.87 16.43 4.77 8.40 7.20 18.10
0.5 11.36 17.56 18.23 33.47 13.80 20.50 5.93 6.50 12.63 20.10
0.7 15.56 16.53 25.27 44.40 18.83 32.30 7.30 9.83 22.47 41.37
0.9 10.23 8.10 17.37 39.73 20.33 44.47 15.27 25.77 40.10 74.80

T̃ s
1,n s = -0.5 28.76 51.46 47.36 83.30 37.53 67.60 9.20 17.23 47.83 76.43

-0.3 33.46 59.10 53.60 86.73 42.40 73.60 10.60 19.63 51.56 81.03
-0.1 39.40 66.50 57.76 89.13 46.46 77.33 11.96 21.56 54.83 82.93
0.1 46.20 73.23 60.73 90.73 48.80 80.13 13.36 23.63 57.36 84.66
0.3 50.73 79.46 61.06 91.00 49.83 81.00 14.53 24.16 58.26 85.16
0.5 58.43 85.13 60.23 90.00 50.03 80.10 15.66 26.00 59.20 84.03

T̃ s
∞,n s = -0.5 22.60 43.50 33.90 68.30 22.96 49.46 6.10 10.56 31.66 59.56

-0.3 28.70 53.10 41.16 75.53 28.20 56.63 7.06 12.56 36.50 64.93
-0.1 37.13 62.40 47.10 80.76 33.66 63.53 8.93 14.90 40.60 69.56
0.1 44.30 70.36 51.76 83.30 37.33 67.33 9.96 15.90 43.76 71.96
0.3 51.06 77.03 55.50 84.86 41.23 70.16 11.73 18.43 47.63 72.53
0.5 59.70 83.50 54.63 83.56 43.00 69.96 13.60 22.43 49.13 73.06

T̃1,n(S1) 32.73 56.70 46.53 80.13 36.06 66.73 9.46 14.96 45.93 46.86
T̃∞,n(S1) 12.76 24.50 22.13 46.10 15.63 30.06 5.50 7.70 19.06 38.26

T̃1,n(S2) 42.90 67.73 58.76 89.06 45.83 76.33 12.26 19.83 54.86 84.70
T̃∞,n(S2) 23.93 44.30 35.00 69.13 23.63 49.40 6.03 9.60 29.43 60.00

Mn 97.13 100.0 100.0 100.0 12.93 23.03 1.97 2.70 35.96 61.43
REn 99.16 100.0 100.0 100.0 100.0 100.0 94.96 100.0 79.50 89.13
RRn 93.33 100.0 99.97 100.0 99.96 100.0 87.90 99.93 69.43 81.73

SupWn 98.26 100.0 100.0 100.0 100.0 100.0 85.63 97.86 94.89 99.03
AvgWn 98.26 99.96 100.0 100.0 100.0 100.0 73.76 92.60 94.87 99.02
ExpWn 98.76 100.0 100.0 100.0 100.0 100.0 85.73 97.70 90.19 98.14

RECUSUMn 87.13 99.40 6.77 9.92 9.30 11.43 14.73 19.10 15.60 20.20
O(N)LSCUSUMn 99.16 100.0 19.67 24.29 22.43 26.60 15.50 22.03 83.03 92.40
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Table VII: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)

DGP 2.8 DGP 2.9 DGP 2.10 DGP 2.11 DGP 2.12

Statistics \ n 100 200 100 200 100 200 100 200 100 200

T̃ p
1,n(S1) p = 0.1 18.13 29.13 18.13 27.06 14.86 23.66 4.10 12.33 24.03 45.53

0.3 27.47 49.87 25.50 43.26 20.06 37.43 37.83 63.23 20.53 34.53
0.5 29.03 55.77 26.33 47.90 21.56 41.06 46.40 74.57 18.93 29.27
0.7 29.03 50.97 25.46 45.06 22.70 39.90 35.87 63.67 15.20 24.10
0.9 19.37 32.33 21.10 27.73 16.06 26.13 0.43 0.03 0.93 0.20

T̃ p
∞,n(S1) p = 0.1 5.90 5.27 5.43 4.93 5.10 4.23 4.23 7.13 24.27 46.60

0.3 7.70 20.83 7.86 15.83 6.43 14.50 31.27 43.87 23.07 30.87
0.5 18.23 32.73 16.40 28.16 13.10 23.96 37.17 65.13 16.87 26.87
0.7 25.27 44.43 22.43 28.73 19.76 25.56 38.13 56.77 17.60 20.17
0.9 17.37 39.57 19.90 15.06 14.80 14.23 0.40 0.07 0.90 0.53

T̃ s
1,n s = -0.5 46.63 80.86 42.33 75.43 37.63 67.90 64.23 90.10 27.63 47.73

-0.3 53.33 85.20 46.93 80.03 42.76 73.26 64.20 90.30 25.16 44.40
-0.1 57.06 87.26 50.73 83.43 45.43 75.76 61.46 89.30 22.10 40.00
0.1 59.73 88.63 53.53 85.30 47.36 77.46 55.23 86.33 17.76 33.00
0.3 60.66 89.20 54.50 85.40 47.53 77.53 44.73 79.60 11.93 23.70
0.5 60.13 88.20 53.70 83.86 46.26 75.40 31.13 64.43 7.06 13.96

T̃ s
∞,n s = -0.5 34.30 66.83 29.60 62.03 26.00 52.93 55.86 84.30 22.80 36.33

-0.3 40.60 73.86 34.66 69.00 31.70 60.06 55.60 84.50 21.10 35.70
-0.1 46.56 80.56 40.30 74.23 37.00 65.90 54.46 83.53 19.46 33.33
0.1 50.96 83.23 45.03 77.23 39.66 69.10 46.73 79.30 15.00 28.23
0.3 53.66 84.20 47.76 78.23 42.50 70.40 37.33 70.43 10.70 21.10
0.5 52.36 81.86 47.96 76.26 41.66 67.43 19.46 47.96 5.80 10.36

T̃1,n(S1) 46.26 81.20 40.16 75.83 35.63 66.20 58.73 88.66 26.10 47.30
T̃∞,n(S1) 21.13 47.66 17.56 41.93 16.06 35.43 47.30 77.06 21.93 39.50

T̃1,n(S2) 57.43 87.66 50.60 84.80 46.83 75.46 59.86 89.90 21.66 39.76
T̃∞,n(S2) 33.00 66.73 28.73 62.60 25.46 53.83 56.13 85.46 22.53 37.47

Mn 100.0 13.67 9.80 12.20 8.10 9.40 0.66 0.86 2.36 2.73
REn 100.0 100.0 78.06 60.00 36.23 3.12 7.77 4.91 80.70 89.16
RRn 99.97 99.96 77.86 59.73 34.33 30.93 8.85 5.24 71.16 79.93

SupWn 100.0 100.0 98.16 63.26 41.86 46.06 3.73 3.46 3.82 3.64
AvgWn 100.0 100.0 92.80 50.16 34.16 32.63 4.35 3.63 3.34 3.15
ExpWn 100.0 100.0 98.86 62.66 43.50 42.40 3.56 3.19 1.76 1.87

RECUSUMn 6.77 9.20 7.03 9.50 5.46 8.50 0.23 0.39 1.26 3.10
OLSCUSUMn 19.67 23.36 17.80 20.40 13.63 15.70 0.43 0.39 28.43 35.13
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