Generalized Runs Tests for the IID Hypothesis*

JIN SEO CHO HALBERT WHITE
School of Economics Department of Economics
Yonsei University University of California, San Diego
Email: jinseocho@yonsei.ac.kr Email: hwhite @weber.ucsd.edu

First version: March, 2004. This version: July, 2010.

Abstract

We provide a family of tests for the IID hypothesis based on generalized runs, powerful against
unspecified alternatives, providing a useful complement to tests designed for specific alternatives, such
as serial correlation, GARCH, or structural breaks. Our tests have appealing computational simplicity
in that they do not require kernel density estimation, with the associated challenge of bandwidth selec-
tion. Simulations show levels close to nominal asymptotic levels. Our tests have power against both

dependent and heterogeneous alternatives, as both theory and simulations demonstrate.
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1 Introduction

The assumption that data are independent and identically distributed (IID) plays a central role in the analy-
sis of economic data. In cross-section settings, the IID assumption holds under pure random sampling. As
Heckman (2001) notes, violation of the IID property, therefore random sampling, can indicate the presence
of sample selection bias. The IID assumption is also important in time-series settings, as processes driving
time series of interest are often assumed to be IID. Moreover, transformations of certain time series can be

shown to be IID under specific null hypotheses. For example Diebold, Gunther, and Tay (1998) show that
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to test density forecast optimality, one can test whether the series of probability integral transforms of the
forecast errors are IID uniform (U[0,1]).

There is a large number of tests designed to test the IID assumption against specific alternatives, such as
structural breaks, serial correlation, or autoregressive conditional heteroskedasticity. Such special purpose
tests may lack power in other directions, however, so it is useful to have available broader diagnostics that
may alert researchers to otherwise unsuspected properties of their data. Thus, as a complement to special
purpose tests, we consider tests for the IID hypothesis that are sensitive to general alternatives. Here we
exploit runs statistics to obtain necessary and sufficient conditions for data to be IID. In particular, we
show that if the underlying data are IID, then suitably defined runs are IID with the geometric distribution.
By testing whether the runs have the requisite geometric distribution, we obtain a new family of tests,
the generalized runs tests, suitable for testing the IID property. An appealing aspect of our tests is their
computational convenience relative to other tests sensitive to general alternatives to IID. For example,
Hong and White’s (2005) entropy-based IID tests require kernel density estimation, with its associated
challenge of bandwidth selection. Our tests do not require kernel estimation and, as we show, have power
against dependent alternatives. Our tests also have power against structural break alternatives, without
exhibiting the non-monotonicities apparent in certain tests based on kernel estimators (Crainiceanu and
Vogelsang, 2007; Deng and Perron, 2008).

Runs have formed an effective means for understanding data properties since the early 1940’s. Wald
and Wolfowitz (1940), Mood (1940), Dodd (1942), and Goodman (1958) first studied runs to test for
randomness of data with a fixed percentile p used in defining the runs. Granger (1963) and Dufour (1981)
propose using runs as a nonparametric diagnostic for serial correlation, noting that the choice of p is
important for the power of the test. Fama (1965) extensively exploits a runs test to examine stylized facts
of asset returns in US industries, with a particular focus on testing for serial correlation of asset returns.
Heckman (2001) observes that runs tests can be exploited to detect sample selection bias in cross-sectional
data; such biases can be understood to arise from a form of structural break in the underlying distributions.

Earlier runs tests compared the mean or other moments of the runs to those of the geometric distribution
for fixed p, say 0.5 (in which case the associated runs can be computed alternatively using the median
instead of the mean). Here we develop runs tests based on the probability generating function (PGF) of
the geometric distribution. Previously, Kocherlakota and Kocherlakota (KK, 1986) have used the PGF to
devise tests for discrete random variables having a given distribution under the null hypothesis. Using
fixed values of the PGF parameter s, KK develop tests for the Poisson, Pascal-Poisson, bivariate Poisson,
or bivariate Neyman type A distributions. More recently, Rueda, Pérez-Abreu, and O’Reilly (1991) study

PGF-based tests for the Poisson null hypothesis, constructing test statistics as functionals of stochastic



processes indexed by the PGF parameter s. Here we develop PGF-based tests for the geometric distribution
with parameter p, applied to the runs for a sample of continuously distributed random variables.

We construct our test statistics as functionals of stochastic processes indexed by both the runs percentile
p and the PGF parameter s. By not restricting ourselves to fixed values for p and/or s, we create the
opportunity to construct tests with superior power. Further, we obtain weak limits for our statistics in
situations where the distribution of the raw data from which the runs are constructed may or may not
be known and where there may or may not be estimated parameters. As pointed out by Darling (1955),
Sukhatme (1972), Durbin (1973), and Henze (1996), among others, goodness-of-fit (GOF) based statistics
such as ours may have limiting distributions affected by parameter estimation. As we show, however,
our test statistics have asymptotic null distributions that are not affected by parameter estimation under
mild conditions. We also provide straightforward simulation methods to consistently estimate asymptotic
critical values for our test statistics.

We analyze the asymptotic local power of our tests, and we conduct Monte Carlo experiments to
explore the properties of our tests in settings relevant for economic applications. In studying power, we
give particular attention to dependent alternatives and to alternatives containing an unknown number of
structural breaks. To analyze the asymptotic local power of our tests against dependent alternatives, we

_1/2, where n

assume a first-order Markov process converging to an IID process in probability at the rate n
is the sample size, and we find that our tests have nontrivial local power. We work with first-order Markov
processes for conciseness. Our results generalize to higher-order Markov processes, but that analysis is
sufficiently involved that we leave it for subsequent work.

Our Monte Carlo experiments corroborate our theoretical results and also show that our tests exhibit
useful finite sample behavior. For dependent alternatives, we compare our generalized runs tests to the
entropy-based tests of Robinson (1991), Skaug and Tj@stheim (1996), and Hong and White (2005). Our
tests perform respectably, showing good level behavior and useful, and in some cases superior, power
against dependent alternatives. For structural break alternatives, we compare our generalized runs tests to
Feller’s (1951) and Kuan and Hornik’s (1995) RR test, Brown, Durbin and Evans’s (1975) RE-CUSUM
test, Sen’s (1980) and Ploberger, Krimer and Kontrus’s (1989) RE test, Ploberger and Kriamer’s (1992)
OLS-CUSUM test, Andrews’s (1993) Sup-W test, Andrews and Ploberger’s (1994) Exp-W and Avg-W
tests, and Bai’s (1996) M-test. These prior tests are all designed to detect a finite number of structural
breaks at unknown locations. We find good level behavior for our tests and superior power against multiple
breaks. An innovation is that we consider alternatives where the number of breaks grows with sample size.

Our new tests perform well against such structural break alternatives, whereas the prior tests do not.

This paper is organized as follows. In Section 2, we introduce our new family of generalized runs



statistics and derive their asymptotic null distributions. These involve Gaussian stochastic processes. Sec-
tion 3 provides methods for consistently estimating critical values for the test statistics of Section 2. This
permits us to compute valid asymptotic critical values even when the associated Gaussian processes are
transformed by continuous mappings designed to yield particular test statistics of interest. We achieve
this using other easily simulated Gaussian processes whose distributions are identical to those of Section
2. Section 4 studies aspects of local power for our tests. Section 5 contains Monte Carlo simulations;
this also illustrates use of the simulation methods developed for obtaining the asymptotic critical values in
Section 2. Section 6 contains concluding remarks. All mathematical proofs are collected in the Appendix.

Before proceeding, we introduce mathematical notation used throughout. We let 1.y stand for the

indicator function such that 1; 4 = 1 if the event A is true, and 0 otherwise. = and — denote ‘converge(s)

: d o
weakly’ and ‘converge(s) to’, respectively, and = denotes equality in distribution. Further, || - || and || - ||

denote the Euclidean and uniform metrics respectively. We let C(A) and D(A) be the spaces of continuous
and cadlag mappings from a set A to R respectively, and we endow these spaces with Billingsley’s (1968,

1999) or Bickel and Wichura’s (1971) metric. We denote the unit interval as I := [0, 1].

2 Testing the IID Hypothesis

2.1 Maintained Assumptions

We begin by collecting together assumptions maintained throughout and proceed with our discussion based
on these. We first specify the data generating process (DGP) and a parameterized function whose behavior

is of interest.

Al (DGP): Let (2, F,P) be a complete probability space. For m € N, {X; : Q— R™ t=1,2,...} isa

stochastic process on (0, F,P).

A2 (PARAMETERIZATION): For d € N, let ©® be a non-empty convex compact subset of R%. Let h :
R™ x © — R be a function such that (i) for each 8 € ©, h(Xy(-),0) is measurable; and (ii) for each
w € Q, h(Xy(w), +) is such that for each 0,0" € O, |h(X;(w),0) — h(Xi(w), )| < My(w)||0 — 0|,

where My is measurable and is Op(1), uniformly in t.

Assumption A2 specifies that X is transformed via h. The Lipschitz condition of A2(i%) is mild and typ-
ically holds in applications involving estimation. Our next assumption restricts attention to continuously

distributed random variables.

A3 (CONTINUOUS RANDOM VARIABLES): For given 0, € ©, the random variables Y; := h(X4y, 0..)

have continuous cumulative distribution functions (CDFs) F; : R — 1.t =1,2,....



Our main interest attaches to distinguishing the following hypotheses:
Hy: {Y;:t=1,2,..} isan [ID sequence; vs. Hj: {Y;:t=1,2,...} is not an IID sequence.

Under Hy, F; = F' (say), t = 1,2, ... . We separately treat the cases in which F' is known or unknown. In
the latter case, we estimate F' using the empirical distribution function.
We also separately consider cases in which 8, is known or unknown. In the latter case, we assume 6,

is consistently estimated by 0.,. Formally, we impose

A4 (ESTIMATOR): There exists a sequence of measurable functions {9n : Q — O} such that \/ﬁ(én —
0.) = Op(1).

Thus, the sequence of transformed observations {Y; : ¢ = 1,2, ...} need not be observable. Instead, it will
suffice that these can be estimated, as occurs when regression errors are of interest. In this case, h(X¢, 6,)
can be regarded as a representation of regression errors X1, — E[X14| Xot, ..., Ximt|, say. Estimated residu-

als then have the representation i (X, 6,,). We pay particular attention to the effect of parameter estimation

on the asymptotic null distribution of our test statistics.

2.2 Generalized Runs (GR) Tests

Our first result justifies popular uses of runs in the literature. For this, we provide a characterization of the
runs distribution, new to the best of our knowledge, that can be exploited to yield a variety of runs-based
tests consistent against departures from the IID null hypothesis.

We begin by analyzing the case in which 8, and F' are known. We define runs in the following two
steps: first, for each p € I, we let T,,(p) := {t € {1,..,n} : F(Y2) < p}, n = 1,2,.... This set
contains those indices whose percentiles F'(Y;) are less than the given number p. That is, we first employ
the probability integral transform of Rosenblatt (1952). Next, let M,,(p) denote the (random) number of
elements of T;,(p), let ¢, ;(p) denote the ith smallest element of T}, (p), ¢ = 1, ..., M, (p), and define the
p-runs Ry, ;(p) as

tn,i(p), i =1
tni(p) = tni-1(p), ©=2,..., Mn(p).

Thus, a p-run R, ;(p) is a number of observations separating data values whose percentiles are less than

Rn,i(p) =

the given value p.

This is the conventional definition of runs found in the literature, except that F' is assumed known
for the moment. Thus, if the population median is known, then the conventional runs given by Wald-
Wolfowitz (1940) are identical to ours with p = 0.5. The only difference is that we apply the probability

integral transform; this enables us to later accommodate the influence of parameter estimation error on the



asymptotic distribution. In Section 2.3 we relax the assumption that F' is known and examine how this
affects the results obtained in this section. Note that M, (p)/n = p + op(1).

Conventional runs are known to embody the IID hypothesis nonparametrically; this feature is exploited
in the literature to test for the IID hypothesis. For example, the Wald-Wolfowitz (1940) runs test considers
the standardized number of runs, whose distribution differs asymptotically from the standard normal if the
data are not IID, giving the test its power.

It is important to note that for a given n and p, n need not be an element of 7,,(p). That is, there may
be an “incomplete” or “censored” run at the end of the data that arises because F'(Y;,) > p. We omit this
censored run from consideration to ensure that all the runs we analyze have an identical distribution.

To see why this is important, consider the first run, R, 1(p), and, for the moment, suppose that we
admit censored runs (i.e., we include the last run, even if F(Y;,) > p). When a run is censored, we denote

its length by k& = (). When the original data {Y;} are IID, the marginal distribution of R,, ;(p) is then

Bl =y = { (PP RS
P, ifk =0,
Thus, when censored runs are admitted, the unconditional distribution of R, 1 (p) is a mixture distribution.
The same is true for runs other than the first, but the mixture distributions differ due to the censoring. On the
other hand, the uncensored run R, 1(p) is distributed as G, the geometric distribution with parameter p.
The same is also true for uncensored runs other than the first. Thatis, {R,, ;(p), ¢ = 1,2, ..., M, (p)} is the
set of runs with identical distribution G, as every run indexed by i = 1,2, ..., M,,(p) is uncensored. (The
censored run, when it exists, is indexed by i« = M,,(p) + 1. When the first run is censored, M, (p) = 0.)
Moreover, as we show, the uncensored runs are independent when {Y;} is IID. Thus, in what follows,
we consider only the uncensored runs, as formally defined above. Further, we construct and analyze our
statistics in such a way that values of p for which M, (p) = 0 have no adverse impact on our results.
We now formally state our characterization result. For this, we let K, ; stand as a shorthand notation
for K, i(p, p'), with p’ < p, satisfying K, o(p,p’) = 0, and Zﬁ}’ég?fill)(p,p')ﬂ R, j(p) = Ry,i(p'). The
desired characterization is as follows.

LEMMA 1: Suppose Assumptions Al, A2(i), and A3 hold. (a) Then for eachn = 1,2,....{Y;,t =1,...,n}
is IID only if the following regularity conditions (R ) hold:

1. for every p € I such that M,,(p) > 0, {R,,i(p), i = 1,..., My, (p)} is IID with distribution G, the

geometric distribution with parameter p; and

2. for every p,p’ € T with p’ < p such that M,,(p") > 0,

(i) Rp,j(p) is independent of Ry, ;(p') if § ¢ {Kni—1+1,Kni—1+2,...,Ky};



(1) otherwise, forw =1, ..., M,(p'),m =1,...,w,and £ = m, ..., w,

m+Ky i1
P( > Ruj(p) =0 Rni(p) = w|Kpni-1, Kp)
J=14+Kp i1
DA —p)mp - p)m (1 = )Y =m0 — 1
(Ha—p)lmp - )ty if (= w,

(b) If R holds, then Y} is identically distributed and pairwise independent.

Conditions (1) and (2) of Lemma 1(a) enable us to detect violations of IID {Y;} in directions that differ
from the conventional parametric approaches. Specifically, by Lemma 1, alternatives to IID {Y;} may

manifest as p-runs with the following alternative (A) properties:

A(%) : the p-runs have distribution G, ¢ # p;
A(ii) : the p-runs have non-geometric distribution;

A

(
(
A(i7) : the p-runs have heterogeneous distributions;
(tv): the p-runs and p'-runs have dependence between R,, ;(p) and R,, ;(p') (i # j,p’ < p);
(

A(v) : any combination of (i) — (iv).

Popularly assumed alternatives to IID data can be related to the alternatives in .A. For example, stationary
autoregressive processes yield runs with geometric distribution, but for a given p, { R, ;(p)} has a geo-
metric distribution different from G, and may exhibit serial correlation. Thus stationary autoregressive
processes exhibit A(7) or A(iv). Alternatively, if the original data are independent but heterogeneously
distributed, then for some p, { R, ;(p) } is non-geometric or has heterogeneous distributions. This case thus
belongs to A(ii) or A(iit).

To keep our analysis manageable, we focus on detecting A(7) — A(iii) by testing the p-runs for dis-
tribution G,,. That is, the hypotheses considered here are as follows: Hf, : {R,, ;(p). i = 1,..., M, (p)} is
IID with distribution G, for each p € I such that M, (p) > 0; vs. H} : {R,,;(p), i =1, ..., My (p)} mani-
fests A(i),.A(ii), or A(7ii) for some p € I such that M, (p) > 0. Stated more primitively, the alternative
DGPs aimed at here include serially correlated and/or heterogeneous alternatives. Alternatives that violate
A(iv) without violating .A(7) — A(ii7) will generally not be detectable. Thus, our goal is different from
the rank-based white noise test of Hallin, Ingenbleek, and Puri (1985) and the distribution-function based
serial independence test of Delgado (1996).

Certainly, it is of interest to devise statistics specifically directed at .A(iv) in order to test Hy fully
against the alternatives of H;. Such statistics are not as simple to compute and require analysis different

than those motivated by H; moreover, the Monte Carlo simulations in Section 5 show that even with



attention restricted to H, we obtain well-behaved tests with power against both commonly assumed de-
pendent and heterogeneous alternatives to IID. We thus leave consideration of tests designed specifically
to detect A(iv) to other work.

Lemma 1(b) is a partial converse of Lemma 1(a). It appears possible to extend this to a full converse
(establishing {Y;} is IID) using results of Jogdeo (1968), but we leave this aside here for brevity.

There are numerous ways to construct statistics for detecting .A(¢) — A(i7). For example, as for con-
ventional runs statistics, we can compare the first two runs moments with those implied by the geometric
distribution. Nevertheless, this approach may fail to detect differences in higher moments. To avoid dif-
ficulties of this sort, we exploit a GOF statistic based on the PGF to test the G, hypothesis. For this, let

—1<s<0<s<l1;foreachs €S :=s, 5|, define

Ry i(p) _ L
(S T h —s(l—p>}>’ M

if p € (Pminn, 1), and G, (p, s) := 0 otherwise, where pmin » := min[F (Y1), F(Y2), ..., F(Y,)]. This is

M (p)

Gr(p, s) = \/15 3
i=1

a scaled difference between the p-runs sample PGF and the G, PGF.

Two types of GOF statistics are popular in the literature: those exploiting the empirical distribution
function (e.g., Darling, 1955; Sukhatme, 1972; Durbin, 1973; and Henze, 1996) and those comparing
empirical characteristic or moment generating functions (MGFs) with their sample estimates (e.g., Bierens,
1990; Brett and Pinkse, 1997; Stinchcombe and White 1998; Hong, 1999; and Pinkse, 1998). The statistic
in (1) belongs to the latter type, as the PGF for discrete random variables plays the same role as the MGF,
as noted by Karlin and Taylor (1975). The PGF is especially convenient because it is a rational polynomial
in s, enabling us to easily handle the weak limit of the process G,,. Specifically, the rational polynomial
structure permits us to represent this weak limit as an infinite sum of independent Gaussian processes,
enabling us to straightforwardly estimate critical values by simulation, as examined in detail in Section
3. GOF tests using (1) are diagnostic, as are standard MGF-based GOF tests; thus, tests based on (1) do
not tell us in which direction the null is violated. Also, like standard MGF-based GOF tests, they are not
consistent against all departures from the IID hypothesis. Section 4 examines local alternatives to the null;
we provide further discussion there.

Our use of GG, builds on work of Kocherlakota and Kocherlakota (KK, 1986), who consider tests for
a number of discrete null distributions, based on a comparison of sample and theoretical PGFs for a given
finite set of s’s. To test their null distributions, KK recommend choosing s’s close to zero. Subsequently,
Rueda, Pérez-Abreu, and O’Reilly (1991) examined the weak limit of an analog of G, (p,-) to test the
IID Poisson null hypothesis. Here we show that if {R,, ;(p)} is a sequence of IID p-runs distributed as

G, then G, ( p, - ) obeys the functional central limit theorem; test statistics can be constructed accordingly.



Specifically, for each p, G (p, -) = G(p, - ), where G(p, -) is a Gaussian process such that for each
s,8 €8S, E[G(p,s)] =0, and

_ ss'p’(1—s)(1 = s")(1 = p)
{1-s(1-pHl-5s(1-p)H{l-ss'(1-p)}

This mainly follows by showing that {G,,(p, - ) : n = 1,2, ...} is tight (see Billingsley, 1999); the given

E[G(p,s)G(p,s")] )

covariance structure (2) is derived from E [G,,(p, $)Gy(p, s')] under the null. Let f : C(S) — R be a con-
tinuous mapping. Then by the continuous mapping theorem, under the null any test statistic f[G,(p, - )]
obeys f[Gyn(p, - )] = fIG(p, -)].

As Granger (1963) and Dufour (1981) emphasize, the power of runs tests may depend critically on the
specific choice of p. For example, if the original data set is a sequence of independent normal variables
with population mean zero and variance dependent upon index ¢, then selecting p = 0.5 yields no power,
as the runs for p = 0.5 follow Gg 5 despite the heterogeneity. Nevertheless, useful power can be delivered
by selecting p different from 0.5. This also suggests that better powered runs tests may be obtained by
considering numerous p’s at the same time.

To fully exploit G},, we consider G, as a random function of both p and s, and not just G, (p, - ) for

given p. Specifically, under the null, a functional central limit theorem ensures that

Gn =6 3)
on J x S, where J := [p, 1] with p > 0, and G is a Gaussian process such that for each (p, s) and (p/, s)
with p’ < p, E[G(p, s)] = 0, and

o s 91— (1 - p){1 - L1 p))
El60- 990 )] = 50 i =50 —p) i —se (- )} @

When p = p’ then the covariance structure is as in (2). Note also that the covariance structure in (4) is

symmetric in both s and p, as we specify that p’ < p. Without this latter restriction, the symmetry is easily

seen, as the covariance then has the form

ss' min[p, p'1?(1 — s)(1 — 8')(1 — max[p, p']){1 — s'(1 — max[p, p'])}
{1 = s(1 = max[p, p']) H{1 — &'(1 — min[p, p']) }?{1 — s5'(1 — max[p, p'])}

To obtain (3) and (4), we exploit the joint probability distribution of runs associated with different

percentiles p and p’. Although our statistic G, is not devised to test for dependence between R,, j(p) and
R, j(p'), verifying eq.(4) nevertheless makes particular use of the dependence structure implied by A(iv).
This structure also makes it straightforward to devise statistics specifically directed at A(iv); we leave this
aside here to maintain a focused presentation.

For each s, G, (-, s) is cadlag, so the tightness of {G,} must be proved differently from that of

{Gy(p, -)}. Further, although G is continuous in p, it is not differentiable almost surely. This is because



R, ; is a discrete random function of p. As n increases, the discreteness of G, disappears, but its limit is
not smooth enough to deliver differentiability in p.

The weak convergence given in (3) is proved by applying the convergence criterion of Bickel and
Wichura (1971, theorem 3). We verify this by showing that the modulus of continuity based on the fourth-
order moment is uniformly bounded on J x S. By taking p > 0, we are not sacrificing much, as M, (p)
decreases as p tends to zero, so that G, (p, - ) converges to zero uniformly on S. For practical purposes,
we can thus let p be quite small. We examine the behavior of the relevant test statistics in our Monte Carlo
experiments of Section 5 by examining what happens when p is zero.

As before, the continuous mapping theorem ensures that, given a continuous mapping f : D(J x S) —
R, under the null the test statistic f[Gy,] obeys f[G,] = f[G].

Another approach uses the process Gy, (-, s) on J. Under the null, we have G, (-, s) = G( -, s), where

G(-,s) is a Gaussian process such that for each p and p’ in J with p’ < p, E[G(-,s)] = 0, and

R $*p(1 = 5)*(1 —p){1 - s(1 —p)}
L0609l = s - )P - 20—} ®

Given a continuous mapping f : D(J) — R, under the null we have f[G,(-,s)] = f[G(-,s)].

We call tests based on f[G,(p, )], fIGn(-,$)], or f[G] generalized runs tests (GR tests) to empha-

size their lack of dependence on specific values of p and/or s. We summarize our discussion as

THEOREM 1: Given conditions Al, A2(?), A3, and Hp,

(1) for each p € I, Gn(p,-) = G(p, ), and if f : C(S) — R is continuous, then f|G,(p, )] =
f1G(. )k

(i7) for each s € S, Gp(-,s) = G(-,s),and if f: D) — R is continuous, then f|G,(-,s)] =
f16(-,9);

(1i1) G, = G, and if f:D(J x S) — R is continuous, then f[G,| = f[G].

The proofs of Theorem 1(z, 7, and ¢:¢) are given in the Appendix. Although Theorem 1(¢ and ¢z) follow
as corollaries of Theorem 1(7¢¢), we prove Theorem 1(z and ¢) first and use these properties as lemmas in
proving Theorem 1(i77). Note that Theorem 1(7) holds even when p = 0, because G, (0,-) = 0, and for
every s, G(0,s) ~ N(0,0) = 0. We cannot allow p = 0 in Theorem 1(4i7), however, because however
large n is, there is always some p close to O for which the asymptotics break down. This necessitates our
consideration of J instead of I in (47).

We remark that we do not specify f in order to allow researchers to form their own statistics based
upon their particular interests. There are a number of popular mappings and justifications for these in
the literature, especially those motivated by Bayesian interpretations. For example, Davies (1977) con-

siders the mapping that selects the maximum of the random functions generated by nuisance parameters
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present only under the alternative. The motivation for this is analogous to that for the Kolmogorov (K)
goodness-of-fit statistic, namely, to test non-spurious peaks of the random functions. Bierens (1990) also
proposes this choice for his consistent conditional moment statistic. Andrews and Ploberger (1994) study
this mapping together with others, and propose a mapping that is optimal in a well defined sense. Al-
ternatively, Bierens (1982) and Bierens and Ploberger (1997) consider integrating the associated random
functions with respect to the nuisance parameters, similar to the Smirnov (S) statistic. This is motivated
by the desire to test for a zero constant mean function of the associated random functions. Below, we
examine K- and S-type mappings for our Monte Carlo simulations. A main motivation for this is that the
goodness-of-fit aspects of the transformed data tested via the PGF have interpretations parallel to those for

the mappings used in Kolmogorov’s and Smirnov’s goodness-of-fit statistics.

2.3 Empirical Generalized Runs (EGR) Tests

We now consider the case in which 8, is known, but the null CDF of Y; is unknown. This is a common
situation when interest attaches to the behavior of raw data. As the null CDF is unknown, G,, cannot
be computed. Nevertheless, we can proceed by replacing the unknown F' with a suitable estimator. The
empirical distribution function is especially convenient here. Specifically, for each y € R, we define
ﬁn (y) :== % iy 1(y;<y}- This estimation requires modifying our prior definition of p-runs as follows:
First, for each p € I, let Tp,(p) := {t € N : F,(Y;) < p}, let M, (p) denote the (random) number of
elements of T, (p), and let tn.i(p) denote the ith smallest element of Tu(p),i =1, ..., M, (p). (Note that

LMn (p)/n| = p.) We define the empirical p-runs as

i (p) i= %Vn,i(p)a =1
, %vn,z(P) - ?n,i—l(p)) 1= PR Mn(p)

For each s € S, define

Mn(p)

~ s .:L Sén,i(p)_ P
Gnl2r)i= I 2 ( {1—3(1—p>}) ©

ifpe (L, 1),and Go(p, s) := 0 otherwise.

The presence of F,, leads to an asymptotic null distribution for G, different from that for G,,. We
now examine this in detail. For convenience, for each p € I, let ,(p) := inf{z € R : F,(z) > p},
let p,(p) := F(qn(p)), and abbreviate p,(p) as p,. Then (6) can be decomposed into two pieces as
G = Wiy + Hy, where for each (p, s), W (p, s) := n=1/2 M0 ®) ((Fui®) — 5 /(1 — 5(1—5,)}), and
Hy(p, s) :=n=Y2M,(p)(spn/{1 — s(1 — pn)} — sp/{1 — s(1 — p)}). Our next result relates W,, to the

random function G, revealing H,, to be the contribution of the CDF estimation error.
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LEMMA 2: Given conditions Al, A2(1), A3, and Hy,

(@) Sup(p,s) € JxS ‘Wn<p> 3) - Gn(p, S)’ = O]p(l);
(i1) H, = H, where H is a Gaussian process on J x S such that for each (p,s) and (p', s") with
p' <p, E[H(p,s)] =0, and

1o 12 — s _ o
E [H(p, S)H(p/,sl)] _ S8pp (1 )(1 )(1 —p) (7

C{1-s(-p) {1 -5 -p)}*
(i11) (Wh, Hy,) = (G, H), and for each (p, s) and (p', s'), E[G(p, s)H(p',s")] = —E[H(p, s)H(p', s')].

Lemma 2 relates the results of Theorem 1 to the unknown distribution function case. As W, is asymptot-
ically equivalent to GG, (as defined in the known F' case), H,, must be the additional component incurred
by estimating the empirical distribution function.

To state our result for the asymptotic distribution of én, we let G be a Gaussian process on J x S such

that for each (p, s) and (p/, s’) with p’ < p, E[G(p, s)] = 0, and

S \Glof 5] — s5p”(1 = 5)°(1 = 5/)*(1 = p)*
R ) S () S (e () v

The analog of Theorem 1 can now be given as follows.

THEOREM 2: Given conditions Al, A2(3), A3, and Hy,
(2) for each p € 1, én(p, 2) = g(p, ), and if f : C(S) — R is continuous, then f[én(p, ] =

f6(, )l;

(ii) for each s € S, Gp(+,3) = G(-,s), and if f : D(J) — R is continuous, then f[Gp(-,s)] =
F1G(-9));

(iii) Gn, = G, and if f: D(J x S) — R is continuous, then f[Gy,] = f[G].
We call tests based on f[Gy(p, - )], f[Gn(-,5)], or f[Gn] empirical generalized runs tests (EGR tests) to
highlight their use of the empirical distribution function. We emphasize that the distributions of the GR
and EGR tests differ, as the CDF estimation error survives in the limit, a consequence of the presence of

the component H,,.

2.4 EGR Tests with Nuisance Parameter Estimation

~

Now we consider the consequences of estimating 6. by 6, satisfying A4. As noted by Darling (1955),
Sukhatme (1972), Durbin (1973), and Henze (1996), estimation can affect the asymptotic null distribution
of GOF-based test statistics. Nevertheless, as we now show in detail, this turns out not to be the case here.

We elaborate our notation to handle parameter estimation. Let Yn,t = h(Xy, én) and let Fn(y) =

% Z? 1 (Fni<y}> 5O that Fn is the empirical CDF of ?m. Note that we replace 6, with its estimate 9n to
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accommodate the fact that 6, is unknown in this case. Thus, Fn contains two sorts of estimation errors:
that arising from the empirical distribution and the estimation error for 6..

Next, we define the associated runs using the estimates ffn,t and Fn. For each p in I, we now let
Tn(p) == {t € N: F,(Ys) < p}, let M, (p) denote the (random) number of elements of 7T, (p), and let
t,.4(p) denote the ith smallest element of Ty, (p), i = 1, ..., My, (p). (Note that | M,,(p)/n| = p.) We define

the parametric empirical p-runs as

Roip) = tni(D), i=1;
’ tAn,Z(p) - fn,i—l(p), 1= 27 ceey Mn(p)

For each s € S, define G, (p, s) := n~'/2 Zg’i(p)(sénﬂi(p) —sp/{1 —s(1—p)})ifp € (£, 1), and
Gn (p,s) := 0 otherwise. Note that these definitions are parallel to those previously given. The only
difference is that we are using {ffn,t :t=1,2,..,n}instead of {Y; : t = 1,2, ....,n}.

To see why estimating 8, has no asymptotic impact, we begin by decomposing Gnas G, = Gn+H,,
where, letting g,,(p) := inf{y € R : F,(y) > p} and p,, := F(g.(p)) as above, we define G, (p, s) :=
020 (Rs) — s /11— 5(1 = Pa) ), and o (p, 5) = Y2 WL (p) (35 /{1 = 5(1 = P)} —
sp/{1 — s(1 — p)}). Note that this decomposition is also parallel to the previous decomposition, G,, =

W, + H,,. Our next result extends Lemma 2.

LEMMA 3: Given conditions Al1— A4 and Hy,
(@) SUP(p,s) € IxS |Gn(p» s) — Gu(p, s)| = op(1);
(i6) SUPy, o)  1xs | Hn (D, s) — Hu(p, )| = op(1).

Given Lemma 2(i), it becomes evident that G,, = W,, + H,, + op(1l) = G + op(1), so the asymptotic
distribution of G,, coincides with that of G,,, implying that the asymptotic runs distribution is primarily
determined by the estimation error associated with the empirical distribution F}, and not by the estimation
of 0,.

The intuition behind this result is straightforward. As Darling (1955), Sukhatme (1972), Durbin
(1973), and Henze (1996) note, the asymptotic distribution of an empirical process, say p — Zn (p) ==
nY2{F(Gn(p)) — p}, p € I, where G,,(p) := inf{y € R : EF,,(y) > p}, is affected by parameter estima-
tion error primarily because the empirical process Z, is constructed using the }Afn,t = h(Xy, én) and the
differentiable function F'. Because h contains not @, but én, the parameter estimation error embodied in

N

0., is transmitted to the asymptotic distribution of Zn through ¢,, and F'. Thus, if we were to define runs as
Tn(p) := {t € N: F(Y,;) < p}, then their asymptotic distribution would be affected by the parameter es-
timation error. Instead, however, our runs {Rm} are constructed using T}, (p) := {t e N : F}, (Ynt) < p},

which replaces F with F},, a step function. Variation in 0., is less important in this case, whereas the
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estimation of F' plays the primary role in determining the asymptotic runs distribution. This also implies
that when 0, is estimated and F is known, it may be computationally convenient to construct the runs
using Fn instead of F'.

The analog of Theorems 1 and 2 is:

THEOREM 3: Given conditions Al1— A4 and Hy,

(i) for each p € I, Gu(p, -) = G(p, -), and if f : C(S) — R is continuous, then f|Gn(p, -)] =
60, )

(ii) for each s € S, Gn(-,s) = G(-,s), and if f : D(J) — R is continuous, then f[Gn(-,s)] =
FIG(-,9)];

(iii) Gn = G, and if £ D(J x S) — R is continuous, then f[Gn] = f[G.

We call tests based on  f[Gp(p,-)], f[Gn(-,5)], or f[Gy] parametric empirical generalized runs tests
(PEGR tests) to highlight their use of estimated parameters. By Theorem 3, the asymptotic null distribution
of f[Gy] is identical to that of f[G,], which takes 6, as known. We remark that I appears in Lemma
3(#2) and Theorem 3(¢) rather than J, as ﬁn and H,, only involve the empirical distribution and not the
distribution of runs. This is parallel to results of Chen and Fan (2006) and Chan, Chen, Chen, Fan, and
Peng (2009). They study semiparametric copula-based multivariate dynamic models and show that their
pseudo-likelihood ratio statistic has an asymptotic distribution that depends on estimating the empirical
distribution but not other nuisance parameters. The asymptotically surviving H,, in Lemma 3 reflects the
asymptotic influence of estimating the empirical distribution, whereas estimating the nuisance parameters

has no asymptotic impact, as seen in Theorem 3.

3 Simulating Asymptotic Critical Values

Obtaining critical values for test statistics constructed as functions of Gaussian processes can be challeng-
ing. Nevertheless, the rational polynomial structure of our statistics permits us to construct representations
of G and G as infinite sums of independent Gaussian random functions. Straightforward simulations then
deliver the desired critical values. Given that Theorems 1, 2, and 3 do not specify the continuous mapping
f, it is of interest to have methods yielding the asymptotic distributions of G and G rather than fIgG] and
f [QV] for a particular mapping f, as the latter distributions are easily obtained from the methods provided
here once f is specified.

To represent G and 5, we use the Karhunen-Loeve (K-L) representation (Loeve, 1978, ch.11) of a

stochastic process. This represents Brownian motion as an infinite sum of sine functions multiplied by

independent Gaussian random coefficients. Grenander (1981) describes this representation as a complete
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orthogonal system (CONS) and provides many examples. For example, Krivyakov, Matynov, and Tyurin
(1977) obtain the asymptotic critical values of von Mises’s w? statistic in the multi-dimensional case by ap-
plying this method. In econometrics, Phillips (1998) has used the K-L representation to obtain asymptotic
critical values for testing cointegration. Andrews’s (2001) analysis of test statistics for a GARCH(1,1)
model with nuisance parameter not identified under the null also exploits a CONS representation. By
theorem 2 of Jain and Kallianpur (1970), Gaussian processes with almost surely continuous paths have a
CONS representation and can be approximated uniformly. We apply this result to our GR and (P)EGR test

statistics; this straightforwardly delivers reliable asymptotic critical values.

3.1 Generalized Runs Tests

A fundamental property of Gaussian processes is that two Gaussian processes have identical distributions
if their covariance structures are the same. We use this fact to represent G(p, - ), G( -, s), and G as infinite
sums of independent Gaussian processes that can be straightforwardly simulated.

To obtain critical values for GR tests, we can use the Gaussian process Z* defined by

S —s)BY -5 ;
Zle= {f(_ls(l)—lg?og})+{1—151— }QZS’BS =", ©

where B is a Brownian bridge, and {BJS : J = 1,2,...} is a sequence of independent Brownian sheets,
whose covariance structure is given by E[B5(p, ¢)B; (p', ¢')] = 1{—;) min[p, p'] - min[g, ¢']. The argu-
ments of 35 lie only in the unit interval, and it is readily verified that E[Z*(p, s)Z*(p', s')] is identical to
(4), so Z has the same distribution as G.

An inconvenient computational aspect of Z* is that the terms Bj- require evaluation on a two dimen-
sional square, which is computationally demanding. More convenient in this regard is the Gaussian process
Z defined by

sp(1 — s)BY 1—s)? > ; 2
20 = e L 0 () o

where {B; : j = 1,2,...} is a sequence of independent standard Brownian motions independent of the

Brownian bridge ). It is straightforward to compute E[Z(p, s)Z(p/, s')]. Specifically, if p’ < p then
ss'p?(1—5)(1 - &) (1 = p){1 —5'(1 - p)}

A—sA—pHI—5(1—p)P{I—ss(1—p)}

This covariance structure is also identical to (4), so Z has the same distribution as G. The processes 88

E[Z(p,s)Z(p',s")] =

and {B;} are readily simulated as a consequence of Donsker’s (1951) theorem or the K-L representation
(Loeve, 1978, ch.11), ensuring that critical values for any statistic f[G,,] can be straightforwardly found

by Monte Carlo methods.
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Although one can obtain asymptotic critical values for p-runs test statistics f[Gy,(p, - )] by fixing p in
(9) or (10), there is a much simpler representation for G(p, - ). Specifically, consider the process Z), defined
by Z,(s) == % Z;io s7(1 — p)/2Z;, where {Z;} is a sequence of IID standard normals. It
is readily verified that for each p, E[Z,(s)Z,( s')] is identical to (2). Because Z, does not involve the
Brownian bridge, Brownian motions, or Brownian sheets, it is more efficient to simulate than Z(p, - ).
This convenient representation arises from the symmetry of equation (4) in s and s’ when p = p’. The fact
that equation (4) is asymmetric in p and p’ when s = s’ implies that a similar convenient representation
for G(-, s) is not available. Instead, we obtain asymptotic critical values for test statistics f[G,( -, s)], by
fixing s in (9) or (10).

We summarize these results as follows.

THEOREM 4: (i) For each p € 1, G(p, -) 4 Zy,, and if f: C(S) — R is continuous, then f[G(p, -)] 4
f12pl:
(1) G Lz 2L 2 and if £ DI xS)— Ris continuous, then f[G] 4 fl1Z2¥] < fIZ].

As deriving the covariance structures of the relevant processes is straightforward, we omit the proof of

Theorem 4 from the Appendix.

3.2 (P)EGR Tests

For the EGR statistics, we can similarly provide a Gaussian process whose covariance structure is the same
as (8) and that can be straightforwardly simulated. By Theorem 3, this Gaussian process also yields critical
values for PEGR test statistics.

We begin with a representation for H. Specifically, consider the Gaussian process X defined by
X(p,s) == —%BS (p), where B is a Brownian bridge as before. It is straightforward to show
that when p’ < p, E[X(p,s)X (p', s')] is the same as (7), implying that this captures the asymptotic dis-
tribution of the empirical distribution estimation error H,,, which survives to the limit. The representation

Z for G in Theorem 4(i7) and the covariance structure for G and H required by Lemma 2(ii7) together

suggest representing G as Z* or Z defined by

Z*(p,s) = . 1 — ) }2 ZSJBS —p)'t) (11)

and

- ) p?
Z(p,s) = a _(1 }2253 (1—p)'B; (( p)1+J> (12)

respectively, so that Z* (resp. g) is the sum of Z* (resp. Z) and X with the identical 88 in each. As is
readily verified, (8) is the same as E[Z*(p/,s')Z*(p, s)] and E[Z(p/,s')Z(p, s)]. Thus, simulating (11)
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or (12) can deliver the asymptotic null distribution of én and Gn
Similar to the previous case, the following representation is convenient when p is fixed:

s (91— p) V& (51— ) p(1 — )
AL i) jo{ s

bz,

For fixed s, we use the representation provided by Z (+,s) or Z*(, s).

We summarize these results as follows.

THEOREM 5 (1) ‘H 4 X;
(it) For each p € 1, g(p, -) 4 gp, and if f :C(S) — R is continuous, then f[g(p, ]

(vi1) Gz 2Lz and if f: D(J x S) > R is continuous, then f[G] 4 fIZ2*] < fIZ].

4

f[‘%p];

As deriving the covariance structures of the relevant processes is straightforward, we omit the proof of

Theorem 5 from the Appendix.

4 Asymptotic Local Power

Generalized runs tests target serially correlated autoregressive processes and/or independent heterogeneous
processes violating .A(7) — A(i41), as stated in Section 3. Nevertheless, runs tests are not always consistent
against these processes, because just as for MGF-based GOF tests, PGF-based GOF tests cannot handle
certain measure zero alternatives. We therefore examine whether the given (P)EGR test statistics have
nontrivial power under specific local alternatives. To study this, we consider a first-order Markov process
under which (P)EGR test statistics have nontrivial power when the convergence rate of the local alternative

to the null is n—1/2

. Another motivation for considering this local alternative is to show that (P)EGR test
statistics can have local power directly comparable to that of standard parametric methods. We consider
first-order Markov processes for conciseness. The test can also be shown to have local power against
higher-order Markov processes. Our results for first-order processes provide heuristic support for this
claim, as higher-order Markov processes will generally exhibit first order dependence. A test capable of
detecting true first-order Markov structure will generally be able to detect apparent first-order structure, as
well. The situation is analogous to the case of autoregression, where tests for AR(1) structure are generally
also sensitive to AR(p) structures, p > 1. We provide some additional discussion below in the simulation
section.

To keep our presentation succinct, we focus on EGR test statistics in this section. We saw above

that the distribution theory for EGR statistics applies to PEGR statistics. This also holds for local power

analysis. For brevity, we omit a formal demonstration of this fact here.
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We consider a double array of processes {Y}, ;}, and we let F,, ; denote the smallest o-algebra gener-
ated by {Yy, +, Yy, +—1, ..., }. We suppose that for each n, {Y,, 1, Yy, 2, ..., Yy, n } is a strictly stationary and ge-
ometric ergodic first-order Markov process having transition probability distributions P(Y}, ;11 < y|Fn¢)

with the following Lebesgue-Stieltjes differential:
H{ : dFu(y|Fas) = dF(y) + 0~ 2dD(y, Yoy) (13)

under the local alternative, where we construct the remainder term to be op (n_l/ 2) uniformly in y. For this,
we suppose that D(-, Y,, ;) is a signed measure with properties specified in A5, and that for a suitable signed

measure () with Lebesgue-Stieltjes differential d(), Y, ; has marginal Lebesgue-Stieltjes differential

dFu(y) = dF(y) +n"2{dQ(y) + o(1)}. (14)

We impose the following formal condition.

A5 (LOCAL ALTERNATIVE): (i) For eachn = 1,2, ..., {Y 1, Y2, ..., Yo n} is a strictly stationary and
geometric ergodic first-order Markov process with transition probability distributions given by eq. (13)
and marginal distributions given by eq. (14), where (it) D : R x R — R is a continuous function
such that D(-, z) defines a signed measure for each z € R; (iii) sup,, |D(z, Yy )| < My such that
E[M, ] < A < oo uniformly in t and n, and limy_, 1o D(y, Yy, +) = 0 a.s.—P uniformly in t and n; (iv)
sup, [ [D(y,z)|dF (x) < A and sup,, | fyoo D(y,z)dD(z, Y1) < My for all t and n.

Thus, as n tends to infinity, {Y}, 1, Y, 2, ...} converges in distribution to an IID sequence of random vari-
ables with marginal distribution F'. Note that the marginal distribution given in eq. (14) is obtained by
substituting the conditional distribution of Y}, ;—j+1|Fn+—; (j = 1,2, ...) into (13) and integrating with re-
spect to the random variables other than Y}, ;. For example, [ D(y,z)dF(z) = Q(y). This implies that
the properties of ) are determined by those of D. For example, lim,,~ Q(y) = 0 and sup, [Q(y)| < A.

Our motivations for condition A5 are as follows. We impose the first-order Markov condition for
conciseness. Higher-order Markov processes can be handled similarly. Assumption A5(z) also implies
that {Y},;} is an ergodic S—mixing process by theorem 1 of Davydov (1973). Next, assumptions A5(ii,
i4i) ensure that F},( - | F,, ) is a proper distribution for all n almost surely, corresponding to A3. Finally,
assumptions A5(¢44, tv) asymptotically control certain remainder terms of probabilities relevant to runs.

Specifically, applying an induction argument yields that foreach k = 1,2, ...,

)k—l 1

P(Yn,t-f-l Z Yy .n Yn,t-i—k—l Z Yy, Yn,t—i—k < y|fn,t) - p(l — P + %h’k(pv Yn,t) + Tk(pu Yn,t)> (15)

where p is a short-hand notation for F(y); for each p, hi(p,Yn:) = C(p,Yny) = D(F~Y(p), Yar);
ha(p, Ynzt) == w(p) — pC(p, Yoe); and for k = 3,4,..., hy(p,Yny) = w(p)(1 — p)* (1 — (k —
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1)p) — p(1 — p)k=2C(p, Yn1), where w(p) := a(F~L(p)) := fyoo D(y,x)dF (x). Here, the remainder
term r(p, Y, +) is sequentially computed using previous remainder terms and hy(p, Yy, ;). For example,
for given p, r1(p, Ynt) = 0, r2(p, Yne) :=n"1 [ pot(py DF~H(p), 2)dD(x, Yo ), and so forth. These
remainder terms turn out to be Op(n_l), mainly due to assumptions A5(iiz, iv).

Runs distributions can also be derived from (15), with asymptotic behavior controlled by assumptions
AS5(iii, iv). That is, if Y,,; < y, then the distribution of a run starting from Y,, 411, say Ry, ;(p), can be

obtained from (15) as

P(Rni(p) = k) =P(Yni41 >y, Yoi42 > Y, oo, Yok < y|Ynt <y)

=p(1—p) " 4 0 V2E(F () hus(p) + Fn(F~Y(p)) e s(p), (16)

where, as n tends to infinity, for each k, hy, 1 (p) := f_Fo;l(p) hi(p, ©)dF, (z) — hi(p) := f_F; () hi(p, )
dF (z) and 7, (p) = ff;l(p) ri(p,x)dFy(z) — 7i(p) = ff;l(p) ri(p, x)dF (x); and for each p,
F,(F~Y(p)) — p from assumptions A5(iii, iv). Further, the remainder term 7 (p) is Op(n~1), uniformly
in p.

The local power of EGR test statistics stems from the difference between the distribution of runs given
in eq. (16) and that obtained under the null. Specifically, the second component on the right-hand side
(RHS) of (16) makes the population mean of G,, different from zero, so that the limiting distribution of
G, corresponding to that obtained under the null can be derived when its population mean is appropriately
adjusted. This non-zero population mean yields local power for n~1/2 Jocal alternatives for the EGR test

statistics as follows.

THEOREM 6: Given conditions Al, A2(1), A3, A5, and H{, C~¥ — u = ,C’7 wherefor each (p,s) € J xS,
u(p.s) = ps(1 — s){sw(p) — QU (PN} — s(L )P + T 071 1717 C(p. )P (2).
It is not difficult to specify DGPs satisfying the condition AS. For example, an AR(1) process can be
constructed so as to belong to this case. That is, if for each ¢, Y, ; = n~Y/ 2Yn,t,1 + &; and g4 ~
IID N(0,1), then we can let C(p,Ynt) = —&(p)Ynt + op(1) and w(p) = —&(p)?, where £(p) =
#[®1(p)], and ¢(-) and ®( - ) are the probability density function (PDF) and CDF of a standard normal
random variable. This gives u(p,s) = {£(p)?s(1 — 5)?}/{1 — s(1 — p)}?, with Q = 0. Because we
have convergence rate n~Y2, the associated EGR test statistics have the same convergence rate as the
parametric local alternative.

We point out several implications of Theorem 6. First, if the convergence rate in (13) is lower than
1/2, the EGR test may not have useful power; EGR tests are not powerful against every alternative to
H,. For EGR tests to be consistent against first-order Markov processes, the rate must be at least 1/2.

Second, the statement for first-order Markov process can be extended to further higher-order Markov
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processes, although we do not pursue this here for brevity. Theorem 6 therefore should be understood

as a starting point for identifying Markov processes as a class of n~1/2

-alternatives. Finally, the result
of Theorem 6 does not hold for every local alternative specification. Our examination of a variety of
other local alternative specifications reveals cases in which EGR tests have nontrivial power at the rate
n~1/4. For example, certain independent and non-identically distributed (INID) DGPs can yield EGR test

statistics exhibiting n~1/4

rates. This rate arises because analysis of these cases requires an expansion of
the conditional distribution of runs of order higher than that considered in Theorem 6. For brevity, we do

not examine this further here.

5 Monte Carlo Simulations

In this section, we use Monte Carlo simulation to obtain critical values for test statistics constructed with f
delivering the L (S-type) and uniform (K-type) norms of its argument. We also examine level and power

properties of tests based on these critical values.

5.1 Critical Values

We consider the following statistics: 77, (S1) := fSl |Gn(p, s)|ds, T n(S1) := sup,es, |Gn(p, )|,
TE.(S1) == [, |Gn(p, 5)lds, TZn(S1) = supes, |Gn(p, )|, where Sy := [~0.99,0.99], and p €

{0.1,0.3,0.5,0.7, 0.9%; T, = [;|Gn(p,s)ldp, T3, = suppeH|Gn(p, s)|, ﬁsn = fﬂén (p, s)|dp,
Toom = subper [Gn(p, 5)], = Ji Js |G, 5

dsdp, Too n(S) := sup(, g)cixs |Gn (P, $)], Tin(S fﬂfs\G P, s Idsdp, Too,n(S) = Sup<p,s)euxs\Gn
(p, s)|, where we consider Sy := [—0.99,0.99] and S, := [—0.50, 0.50] for S. As discussed above, these S-

and K-type statistics are relevant for researchers interested in testing for non-zero constant mean function
and non-spurious peaks of G, on I x S in terms of 77 ,,(S) and 75, ,,(S) respectively.

Note that these test statistics are constructed using I instead of J. There are two reasons for doing this.
First, we want to examine the sensitivity of these test statistics to p. We have chosen the extreme case
to examine the levels of the test statistics. Second, as pointed out by Granger (1963) and Dufour (1981),
more alternatives can be handled by specifying a larger space for p.

Theorems 4 and 5 ensure that the asymptotic null distributions of these statistics can be generated by

simulating Z,, Z (or Z¥), gp, and Z (or Z *), as suitably transformed. We approximate these using

50
L Sp(l - S ( p 1/2 7 ]/2
Wy(s) = s —p) Zs (1 Zj,
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sp(l —s ~ 1—3s)2 40 e 2
W) = 1 )+ 2 (=B, ()
T (o) . sp(1 —s)(1 —p)'/? = i p _N\i/27 n
O [ ) 2{ Tt P and

—~ 2
W9 = }223] P8 ()

respectively, where BY(p) := Wo(p) — pWo(1), Bj(x + p) := Wayi1(p) + Sor_, Wi(1) (with z € N,
and p € ), and {W), : £ = 0,1,2,...} is a set of independent processes approximating Brownian motion
using the K-L representation, defined as Wy (p) := \[2100 {sin[(¢— 1/2)7Tp]}Z(k /{(—1/2)7}, where
Zéj )~ IID N(0, 1) with respect to ¢ and j. We evaluate these functions for I, S;, and Sy on the grids
{0.01,0.02, ...,1.00}, {—0.99, —0.98, ...,0.98,0.99}, and {—0.50, —0.49, ..., 0.49, 0.50}, respectively.
Concerning these approximations, several comments are in order. First, the domains for p and s are ap-
proximated using a relatively fine grid. Second, we truncate the sum of the independent Brownian motions
at 40 terms. The jth term contributes a random component with a standard deviation of s/p(1 — p)(1+7)/2,
which vanishes quickly as j tends to infinity. Third, we approximate B~j on the positive Euclidean line by
the Brownian motion on [0, 10, 000]. Preliminary experiments showed the impact of these approximations
to be small when S is appropriately chosen; we briefly discuss certain aspects of these experiments below.

Table I contains the critical values generated by 10,000 replications of these processes.

5.2 Level and Power of the Test Statistics

In this section, we compare the level and power of generalized runs tests with other tests in the literature.
We conduct two sets of experiments. The first examines power against dependent alternatives. The second
examines power against structural break alternatives.

To examine power against dependent alternatives, we follow Hong and White (2005) and consider the

following DGPs:

e DGP 1.1: X; := &y

e DGP 1.2: X; :=0.3X;_1 + &4;

e DGP 1.3: X, := h,/%¢, and hy = 1 + 0.8X2 ;

¢ DGP 1.4: X, := h{/*ey, and hy = 0.25 + 0.6h,—1 + 0.5X2 11, <oy + 0.2X72 10, 150)
e DGP 1.5: X; :=0.8X;_ 1641 + €43

e DGP 1.6: Xy := 0.8¢7 | +¢&y;

e DGP 1.7: X; := 04X, 11(x, 51} — 05X 11(x, <1} + &

e DGP 1.8: X, := 0.8/ X;_1[% 4+ &4;
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¢ DGP 1.9: X :=sgn(X;_1) + 0.43¢y;

where e; ~ IID N (0, 1). Note that DGP 1.1 satisfies the null hypothesis, whereas the other DGPs represent
interesting dependent alternatives. As there is no parameter estimation, we apply our EGR statistics and
compare these to the entropy-based nonparametric statistics of Robinson (1991), Skaug and Tjgstheim
(1996), and Hong and White (2005), denoted as R,,, ST}, and HW,,, respectively.

We present the results in Tables II to IV. To summarize, the EGR test statistics generally show approx-
imately correct levels, even using I instead of J. We notice, however, that 7~‘1$n exhibits level distortion
when s gets close to one. This is mainly because the number of Brownian motions in the approximation
is finite, and these are defined on the finite Euclidean positive real line, [0, 10,000]. If s and p are close
to one and zero respectively, then the approximation can be coarse. Specifically, the given finite number
of Brownian motions may not enough to adequately approximate the desired infinite sum of Brownian
motions, and the given finite domain [0, 10,000] may be too small to adequately approximate the positive
Euclidean real line. For the other tests, we do not observe similar level distortions.

For the DGPs generating alternatives to H, the EGR tests generally gain power as n increases. As
noted by Granger (1963) and Dufour (1981), a particular selection of p or, more generally, the choice of
mapping f can yield tests with better or worse power. Generally, we see that the 7~'1pn (Sy1) (resp. ﬁfn)—based
tests outperform the ’7;%” (S1) (resp. '7'027n)—based tests. Similarly, the 7~'1’n(S)—based tests outperform the
ﬁom(S)-based tests for both S; and So. Among the ﬁn(Sl)—based tests, more extreme choices for p
often yield better power. Also, in general, the power performances of the ﬁ,n(SQ)—based tests are midway
between those of the best and worst cases for the ’7~'1fn—based tests. Apart from these observations, there
is no clear-cut relation between the 7'17’ ,,(S1)-based tests and the ﬁ,n(Sl)—based tests. The more powerful
7~fn (S1)-based tests dominate the ﬁ,n(Sl)—based tests for DGPs 1.3-1.5, but the 7~‘17n(81)—based tests
dominate for DGPs 1.2, and 1.6-1.9.

Comparing EGR tests to the entropy-based tests, we observe three notable features. First, 7~'17n(S)-
based tests or 7~'13n (S2)-based tests generally dominate entropy-based tests for DGP 1.2 and 1.8. Second,
for DGPs 1.3, 1.6, and 1.7, entropy-based tests are more powerful than the EGR tests. Finally, for the other
DGPs, the best powered EGR tests exhibit power roughly similar to that of the best powered entropy-based
tests.

Such mixed results are common in the model specification testing literature, especially in non-parametric
contexts where there is no generally optimal test. For example, Fan and Li (2000) compare the power prop-
erties of specification tests using kernel-based nonparametric statistics with Bierens and Ploberger’s (1997)
integrated conditional moment (ICM) tests. They find that these tests are complementary, with differing

power depending on the type of local alternative. Similarly, the entropy-based and EGR tests can also be

22



used as complements.

In addition, we conducted Monte Carlo simulations for higher-order Markov processes. As the results
are quite similar to those in Tables III and IV, we omit them for brevity.

For structural break alternatives, we compare our PEGR tests to a variety of well-known tests. These
include Feller’s (1951) and Kuan and Hornik’s (1995) RR test, Brown, Durbin, and Evans’s (1975) RE-
CUSUM test, Sen’s (1980) and Ploberger, Krimer and Kontrus’s (1989) RE test, Ploberger and Kridmer’s
(1992) OLS-CUSUM test, Andrews’s (1993) Sup-W test, Andrews and Ploberger’s (1994) Exp-W and
Avg-W tests, and Bai’s (1996) M-test.! As these are all designed to test for a single structural break at an
unknown point, they may not perform well when there are multiple breaks. In contrast, our PEGR statistics
are designed to detect general alternatives to IID, so we expect these may perform well in such situations.

We consider the following DGPs for our Monte Carlo simulations. These have been chosen to provide

a test bed in which the behaviors of the various tests can be clearly contrasted.

e DGP 2.1: Y, := Z; + ¢4;

e DGP 2.2: Y, := exp(Z;) + &4

¢ DGP 2.3: Y; i= Lyps g5} + €65

¢ DGP2.4: Y, := Z11y<|0.5.n)) — Ztl{t> 1050} T €t

¢ DGP 2.5: Y, := Z11(4<|0.3n)) — Zt1{1>]0.3n)) T €83

e DGP 2.6: Y} := Zilyi<|0.1n)) — Zt1{i>(0.1n)} T €85

e DGP 2.7: Y} := exp(Z;)1{4<|0.5n]} + XD(—Z1) Lt (0.5n]} + €t
* DGP 2.8: Y} := Zil {1k, (0.02)} — Ztl{tgk, (0.02)} + €t

® DGP 2.9: Y := Zil ek, (0.05)) — Ztl{t¢K, (0.05)) T €t

e DGP 2.10: Y := Zi1 (e, (0.1)) — Ztl{t¢ i, (0.1)} T Et5

e DGP 2.11: Yy := Zi14—oaay — ZtL{i=cven} T &t

¢ DGP 2.12: ¥; := exp(0.1 - Z6)L1—oaay + €XD(Z0) 1 1—even) + £t

where Z, = 0.5Z;_1 + wg; (eg,ur) ~ 1D N(0,Iz); and K, (r) :={t =1,...,n: (k—=1)/r+1 <t <
k/rik=1,3,5,...}.

For DGPs 2.1, 2.4-2.6, and 2.8-2.11, we use ordinary least squares (OLS) to estimate the parameters
of a linear model Y; = « + SZ; + v, and we apply our PEGR statistics to the prediction errors v; :=
Y, — & — 5 Zy. For DGP 2.3, we specify the model Y; = a + v, and we apply our PEGR statistic to Y; —
n~t > 11 Y;. The linear model is correctly specified for DGP 2.1, but is misspecified for DGPs 2.3-2.6

"We also examined Chu, Hornik, and Kuan’s (1995a) ME test and Chu, Hornik, and Kuan’s (1995b) RE-MOSUM and OLS-
MOSUM tests. Their performance is comparable to that of the other prior tests, so for brevity we do not report those results

here.
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and 2.8-2.11. Thus, when DGP 2.1 is considered the null hypothesis holds, permitting an examination of
the level of the tests. As the model is misspecified for DGPs 2.3-2.6 and 2.8-2.11, the alternative holds for
Uy, permitting an examination of power. DGPs 2.3-2.6 exhibit a single structural break at different break
points, permitting us to see how the PEGR tests compare to standard structural break tests specifically
designed to detect such alternatives. DGPs 2.8 through 2.11 are deterministic mixtures in which the true
coefficient of Z; depends on whether or not ¢ belongs to a particular structural regime. The number of
structural breaks increases as the sample size increases, but the proportion of breaks to the sample size
is constant. Also, the break points are equally spaced. Thus, for example, there are four break points in
DGP 2.8 when the sample size is 100 and and nine break points when the sample size is 200. The extreme
case is DGP 2.11, in which the proportion of breaks is equal to one, and the coefficient of Z; depends on
whether or not ¢ is even. Given the regular pattern of these breaks, this may be hard to distinguish from a
DGP without a structural break.

For DGPs 2.2, 2.7, and 2.12, we use nonlinear least squares (NLS) to estimate the parameters of
a nonlinear model Y; = exp(SZ;) + v, and we apply our PEGR statistics to the prediction errors
v =Y — exp(BZt). The situation is analogous to that for the linear model, in that the null holds for
DGP 2.2, whereas the alternative holds for 2.7 and 2.12. Examining these alternatives permits an inter-
esting comparison of the PEGR tests, designed for general use, to the RR, RE, M, OLS-CUSUM and
RE-CUSUM statistics, which are expressly designed for use with linear models.

Our simulation results are presented in Tables V to VII. To summarize, the levels of the PEGR tests
are approximately correct for both linear and nonlinear cases and generally improve as the sample size
increases. On the other hand, there are evident level distortions for some of the other statistics, especially,
as expected, for the linear model statistics with nonlinear DGP 2.2. The PEGR statistics also have re-
spectable power. They appear consistent against our structural break alternatives, although the PEGR tests
are not as powerful as the other (properly sized) break tests when there is a single structural break. This is
as expected, as the other tests are specifically designed to detect a single break, whereas the PEGR test is
not. As one might also expect, the power of the PEGR tests diminishes notably as the break moves away
from the center of the sample. Nevertheless, the relative performance of the tests reverses when there are
multiple breaks. All test statistics lose power as the proportion of breaks increases, but the loss of power
for the non-PEGR tests is much faster than for the PEGR tests. For the extreme alternative DGP 2.11, the
PEGR tests appear to be the only consistent tests.

We also note that, as for the dependent alternatives, the integral norm-based tests outperform the
supremum norm-based tests.

Finally, we briefly summarize the results of other interesting experiments omitted from our tabulations
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for the sake of brevity. To further examine level properties, we applied our EGR tests (i) with Y; ~
IID C(0,1), where C(¢, s) denotes the Cauchy distribution with location and scale parameters ¢ and s
respectively, and (i7) with Y; = (uz + 1)1(.,>0) + (usr — 1)1, <0y, Where (g, us) ~ 1ID N(0,Iz). We
consider the Cauchy process to examine whether the absence of moments in the raw data matters, and
we consider the normal random mixture to compare the results with the deterministic mixture, DGP 2.10.
Our experiments yielded results very similar to those reported for DGP 1.1. This affirms the claims for
the asymptotic null distributions of the (P)EGR test statistics in the previous sections. To further examine
the power of our (P)EGR tests, we also considered the mean shift processes analyzed by Crainiceanu
and Vogelsang (2007), based on DGP 2.3. Our main motivation for this arises from the caveat in the
literature that CUSUM and CUSQ tests may exhibit power functions non-monotonic in a. (See Deng and
Perron (2008) for further details.) In contrast, we find that the (P)EGR test statistics do not exhibit this

non-monotonicity.

6 Conclusion

The IID assumption plays a central role in economics and econometrics. Here we provide a family of
tests based on generalized runs that are powerful against unspecified alternatives, providing a useful com-
plement to tests designed to have power against specific alternatives, such as serial correlation, GARCH,
or structural breaks. Relative to other tests of this sort, for example the entropy-based tests of Hong and
White (2005), our tests have an appealing computational simplicity, in that they do not require kernel
density estimation, with the associated challenge of bandwidth selection.

Our simulation studies show that our tests have empirical levels close to their nominal asymptotic
levels. They also have encouraging power against a variety of important alternatives. In particular, they
have power against dependent alternatives and heterogeneous alternatives, including those involving a

number of structural breaks increasing with the sample size.

7 Appendix

7.1 Proofs

To prove our main results, we first state some preliminary lemmas. Recall that J := [p, 1], p > 0, and for
notational simplicity for every p, p’ € I with p’ < p and M, (p") > 0, we let K, ; denote K, ;(p,p’) such

Kni ) /
that K o(p,p') = 0 and Y7750 Rus(p) = Rua(p)).

LEMMA Al: Given Al, A2(i), A3, and Hy, if s € S, p',p € I, and p’ < p such that M, (p') > 0, then
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B[Sy s @) = B[sfna )] BK, ).

)

Proof of Lemma Al: For each s, € N, P(R,, ;(p) = s|Kp1 ={) = P(K,1 = {|Ryi(p) = s)P(Ryi(p)
= s)/P(Kp1 =10) = P(K,1 =0P(Ryi(p) =s)/P(K,1 =¢) = P(Rni(p) = s), where the second
equality holds because the event {K,; = ¢} is independent of {R, ;(p) = s} under Hy. Therefore,
B[St shai)] = 360 B0t shus®)| Ky = OP(Kyy = £) = Elsta®)] 52, £ P(K,y =
) = E[s"1()] . E[K,, 1], where the second equality follows because H implies that {R,, ;(p)} is IID.

[ ]

LEMMA A2: Given Al, A2(i), A3, and Hy, if s € S, p',p € J and p’ < p such that M, (p’) > 0, then

sp'{1 —s(1 —p)}
{1-s(1—p)}*

E[K,, 1571 P)] = (17)
Proof of Lemma A2: We treat three distinct cases: (a)p’ = p=1;b)p <p=1,and (c)p < p <
1. @ Letp’ = p = 1. Then R,1(p) = 1 and K,,; = 1, so that E[K,, 151 )] = 5. Plugging
p’ = p = 1 into the RHS of (17) also gives s, verifying the result. (b) Next, suppose p’ < p = 1. Then
Kn1 = Ru1(p)), implying that B[K,, 1571 )] = B[R, 1(p')s%1 )] = sp/ /{1 — s(1 — p/)}2, as
can be verified by direct computation. This coincides with the RHS of ( 17) with p = 1. (c¢) Finally, let
P < p < 1. First, B[K,, 151 0)] = B[ E[K, 1|R, 1 (p)]), and P(K,, 1 = £|Rn1 () = 1) =
P(Kn1 = £ Rua(t') = 11)/B(Run(0) = 1) = (30— p)1(1 = p)'a=t/ (1= p/)'sY, where
the last equality follows from the fact that P(R,, 1 (p) =) = p'(1 —p’)Tll_1 and P(K,1 =0, Rn1(p/) =
) = (@ = )1 (1= 9t Thus, BlKpa By (o) = 1] = 5352, £+ B(Ky = fRan(0)) =
ri) =1+ (r} = 1)(p—p)/(1—p'), implying that B[, 151 P)] = E[s/ 1( P+ BB ) (R, 1 (p') —
D](p — p')/(1 — p/). Second, we note that E[s"1 ) (R, (p/) — 1)] = s*(d/ds)E[sFn1®P)-1] =

s2p' (1 —p') /{1 — s(1 — p')}2. Therefore, E[K, 1551 ®)] = sp/ /{1 — s(1 —p)} + [{p — p'}/{1 —
p'Hs?p' (1 —p') /{1 —s(1 —p')}2 = sp'{1 — s(1 —p)}/{1 — s(1 — p')}2. This completes the proof. W

In the special case in which p = p/, we have K,,; = 1 and E(s%1P)) = sp/(1 — (1 — p)).

LEMMA A3: Given Al, A2(i), A3, and Hy, if s € S, p',p € I, and p' < p such that M,,(p’) > 0, then
Ky,
B[yt st Rna(0] = 2p' /{1 — *(1 = p)} - [{1 = s(1 = p)}/{1 = s(1 = )}

Proof of Lemma A3: First, we note that E[Zfi"l*l sBn i)+ Rn1(0)] = E[Zfi"ll E[sfini@)+Rnn )| |, 4]
K,
by Lemma A8 given below, and E[s(P)+En1 ()| [, 1] = E[SRW(p)JrEJ‘:l1 Fn,5(p) 1K, 1] = E[s%niP)

Ky 52 s - Ky
K T2 s B0 PN Kn] = [yl [ty " by Lemma A2, so that B[,
. / s _ 52 _
slina @] = Bl 1 [ty =ity Next. P(Kng = k) = (0/9') [(0—2) /p]* !
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by Lemma A4 below. From this, E[K,, 1[sp/{1 — s(1 — p) K1) = pipt S his(p — ) /{1 —
s(1—p)Ft =p'p {1 —s(1 —p)}/{1 — s(1 — p/)}]*. The desired result follows by substituting this
into E[> ;" Ko, 1 gln,i(P)+Rn 1 (pf )] .

LEMMA A4: Given Al, A2(i), A3, and Hy, if p',p € J and p' < p such that M, (p") > 0, then P(K,,1 =

k)= (p/p)[(p—p)/p)*" and E[K,1] = p/p'.

Proof of Lemma A4: First, P(K,1 = 1) = P(Ry1(p)) = Ru1(p)) = Do P(Ru1(P)) = Rua(p) =
0) = P(F(X1) < p) + X0 P(F(X1) 2 pyes F(Xpm1) 2 p, F(Xe) < p) = X2, 0/(1-p) " =
ppt Next, P(Kny = 2) = P(Rna(p) + Ru2(p)) = Rua(p)) = 30 25— P(Rua(t) =
(1, Rno(p)) = Lo, and Rp1(p) = b+ o) = Y0 S (1 —p)=Hp —p)(1 —p)elp =
p'(p—p')p~2. Similarly, we obtain for an arbitrarily chosen number, say k, that P(K,,; = k) =
P3Ny Rnj () = Rua(0)) = Y200y o Y00y P(Ri 1 (p) = €1, Ruo(p') = Lo, ooy Ry i(p) = i, and
Ron(p) = 3521 45) = [2H{E 0 (=) 0 =)} 200, (L =p) Y = (o/0)[(p— 1) /o).

From these, it follows directly that E[K, 1] = p/p’. This completes the proof. [

LEMMA AS5: Let p € 1 such that M, (p) > 0. If {Rm(p)}M”(p) is IID with distribution G,, then, for
m=1,2,.,and { =m,m+1,m+2,.., P, Rui(p) =€) = (51 —p)—p™.

Proof of Lemma A5: We prove this by induction. If m = 1, then P(}-" | R,,:(p) = £) = (1 — p)*~1p,
which is the distribution of G,. Next, suppose that the given result holds for an arbitrary m and consider
the case m + 1. Then P(Y71! Ryi(p) = £) = Y027 ' P(C2 Rui(p) = € — )P(Rpmia(p) =
§) = S I (1= p) iy (1 p)i=lp = (1)1 —p)© 1™+, where the first and second
equalities follow by independence and the result for m, respectively. The final equality is the desired result.

LEMMA A6: Let p,p’ € I such that M, (p") > 0. Given condition R of Lemma 1, then for i,k = 1,2, ...,
@if b=ii4 1, i+ k= LR Ry (o) =i+ k=) = p/
(1) whenp > p/,

i om /(1 — )it .
P(U{ZRM(P)=i},Rn71(p’):g): pP(1—p)

mot1 =1 Pp—p)1—p)2 ifl=i+1,--,i+k.

k41—£ .
Proof of Lemma A6: (i) From the given condition R, P(|J- ¥ 1~ Yo Rui(0) =itk —t) =
S E P Ruy(P) = i+ k=) = SRR (1 = pl)ittemp™ =/, where the
first equality follows from the IID condition for {R,, ;(p')} given in R, and the second equality holds
by Lemma AS.
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(74) First, consider the case ¢ = 4. Then, P(Uin:l{zgn:l R, i(p) =i}, Rua(p) =4) =3 _ (1)
(1 —p)=™(p—p )™ 1p' = p/(1 — p')*~L, where the first equality holds by the second condition in R.

Next, welet¢ = i+1,...,7+k. Then, P(Um {200 1R ) =i}, Rua(p)) =40) = Zm (-
p) " (p —p)"(1 — p’)g_(“rl)p’ = p%(p— p')(1 — p')*~2, where the first equality holds by the second

condition in R. This completes the proof. |

LEMMA A7: Let p,p’ € 1 such that M, (p’) > 0. Given condition R of Lemma 1 and p > p', then
Jor i,k = 1,2,. ZH’C 1]P)(Um 1{23 1 Bnj(p) = i}, Rua(p) = ¢, Ul+k+l K{ZT:Q Ry ;(p') =
i+k—L})+ IED(Um 1{23 1 R J( )= ’5}7Rn,1(P/) =i+k)=p(1—p )Zfl-

Proof of Lemma A7: First, for each £ = i,i + 1,....i + k — 1, we let Oy ¢ := P(UJ', _ {220 Bi(p) =
i}, Roa(p)) = €, JFY Z{Z;”_Q R, j(p') = i+ k — £}). Then, the second condition in R implies
that 1o = P(Ub {57 By (p) = i} Bt () = OPULE 30y Rus@) = i+ k — 0})
Given this, by applying the results in Lemma A6, we obtain that C; := ZHk ! Cio=1p 2(1—p)t +
Z’f]fﬂlpﬂ(p — )1 —p)2 = pp'(1 — Pt — p'(p — p')(1 — p')*F=2. Next, we have Cy :=
P A5y R () = i Rt () = i+ ) = Sy PSSy Rag(p) = i, R (o) = i + ) =
St (L=p) ™ (p—p)™(1—p)F1p' = p'(p—p/) (1 — p/)"++=2. Therefore, Cy + Co = pp/(1—p/)'~ 1.
This is the desired result. |

LEMMA AS8: Let K be a random positive integer, and let { X} be a sequence of random variables such

that for each i = 1,2, ..., E(X;) < oo. Then E(Y K| X;) = E(XK | E(Xi|K)).
We omit proving Lemma A.8, as it is elementary.

Before proving Lemma 1, we define several relevant notions. First, for p € I with M, (p) > 0, we
define the building time to i by B,, ;(p) =i — ZJU;f ®) Ry, j(p), where U, ;(p) is the maximum number
of runs such that 3%, Ry, j(p) < i i.e., Upi(p) := max{w € N: 3727 | Ry, ;(p) < i}. Now By ;(p) €
{1,2,...,i— 1,i}; and if By, ;(p) = i then Ry, 1(p) > 4. Forp,p’ € I, p’ < p, with M,,(p’) > 0, we also

let W, i(p, p’) be the number of runs {12, ;(p)} such that 3" Un ’(p R, j(p) = Zjvi"f(p’p/) R, ;(p').

Proof of Lemma 1: As part (A) is easy, we prove only part (B). We first show that R implies that the
original data {Y;} are independent. For this, we show that for any pair of two variables, (Y;,Y;1x)
(i,k > 1), say, P(F;(Y;) < p, Fi1x(Yisr) < p') = pp/. We partition our consideration into three cases:
(@ p =p;(b)p < p;and (c) p > p’ and obtain the given equality for each case. (a) Let p = p/. We
have P(F;(Y;) < p, Fipr(Yien) < 0) = P(Upct {270 Bu(p) = i} Un D A s B (0) =
kY = Yot BO{ZT Bay(0) = iDPUn {1 Ray(p) = k}) = 30, PUSTL Ray(p) =
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i}) 22:1 IP’(Z?ZI Rnj(p) = k) = p-p = p? where the second and third equalities follow from the
condition R and Lemma A5 respectively. (b) Next, suppose p < p’. We have P(F;(Y;) < p, Fiix(Yier) <
P) = et BUnct 275 Ruy () = %, 200 R () = .Uy {27 Ry () = k) =
Yot P(Upct 2751 R (0) = 1,5y Rug(@) = ) Xy P(CTL) Ruyi(p) = k), where the
second equality follows from R. Further, Lemma A5 implies that 22:1 P(Ufn:l{zg’il R, ;i(p) =
i} 01 Rai(0) = 8) = PUp A2t Rni(P) = i}, Urmy Xy Bug(p) = ) = Sre P,
Roj(p) = i) = p,and 35\ P(CTL, Rei(0) = k) = pl. Thus, P(F(Y;) < p, Fyr(Yigs) <
p') = pp'. (c) Finally, let p’ < p. We have P(F;(Y;) < p, Fisx(Yier) < 7)) = Sb_ P(Fi(Y;) <
P, Fik(Yitr) <, By,i(p) = b) and derive each term constituting this sum separately. We first examine
the case b = i. Then P(F;(Y;) < p, Fi1 1 (Yisx) <P, Bn,i(p) = 1) = ZHk (g {2000 Raj(p) =
i} R (0) = U3 T Ry () = i+ k= £3) + P(Uyuo {220 Baj(p) = i}, Rua (o) =
i+ k) = pp/(1 — p')"~1, where the last equality follows from Lemma A7. Next, we consider the
cases b = 1,2,....,s — 1. Then it follows that P(F;(Y;) < p, Fiix(Yitr) < P, Bni(p) = b) =
Sy P At B () = b}, Rt () = 6 U 5 o R (0) = bt ko=
)+ P AT B () = B} Rt (0) = b+ B)] x P(UL 2 {072 Ras(0) = i = b)),
where w and u are short-hand notations for W, ;(p,p’) and U, ;(p). Given this, we further note that
]P’(Ui;il{zz-n:l R, ;(p) =i-b}) = Zij P71, Ry j(p) = i—b) = p’ by Lemma AS; the condition
R implies that P(Up ™, {3721 B g (0) = b} Bn () = b+ k) = P(Upioy {521 B (0) =
b}, Rps1(p) = b+k) and for € = b,b+1, ..., b+k—1, PN {7y By (P) = b}, B (1)
= LU T Ry () = b+ k= 0}) = P {7 Ruy(p) = b}, Run(p) =
UL ST R (P) = b+ k — £}), so that P(F,(Y;) < p, Firr(Yigx) < ', Bui(p) = b) =
P(Fy(Y;) < p, Fyrr(Yorr) < ' Bop(p) = b)p' = pp/*(1 — p)*~%. Hence, P(Fi(Y;) < p, Fiyn(Yig) <

V) =Yy P(Fi(Y2) < p, Figr(Yigr) <9/, Bui(p) = b) = Sopm) pp/*(1=p)P " 4pp/ (1—p) = pp.
Thus, Y; and Y, are independent.

Next, suppose that {Y;} is not identically distributed. Then there is a pair, say (Y3, Y;), such that for
some y € R, p; := Fi(y) # p; := Fj(y). Further, for the same y, P(R,, (;(p;) = 1) = P(F;(Y;) <
F;(y)|Fj—1(Yj—1) < Fj_i(y)) = P(F;(Y;) < Fj(y)) = pj, where the subscript (j) denotes the (j)-
th run of {R,, ;(p;)} corresponding to F}(y), and the second equality follows from the independence
property just shown. Similarly, P(R,, ;)(p;) = 1) = P(F;(Y;) < Fj(y)) = P(Y; < y) = pi. Thatis,
P(R, j(pj) = 1) # P(R,;(pj) = 1). This contradicts the assumption that { Ry, ;(p)} is identically

distributed for all p € I. Hence, {Y;} must be identically distributed. This completes the proof. |

Proof of Theorem 1: (i) We separate the proof into three parts. In (a), we prove weak convergence of

Gn(p, ). In (b), we show E [G(p, s)] = 0 for each s € S. Finally, (c) derives E [G(p, s)G(p, s')].
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(a) First, we show that for some A1 > 0, E[{G,,(p, s) — Gn(p, s')}*] < A1|s—s'|%. Note that for each
p’ E[{Gn(p7 5) - GTL (p7 8/)}4] - (1 _nil)E[{gO?: 3) _g(p7 8/>}4] +n72E[Zi:q(p){sRn7i(p) _San’i(p) +
{1—5?1)—1;)} _ {1_;;11)_1))}}4] < 2E[{G(p,s) — G(p, s')}] + n~ E[{sFniP) — g fni(0) {1—5?]13—;9)} —

{I—;E%p)}}él]’ a consequence of finite dimensional weak convergence, which follows from Lindeberg-

Levy’s central limit theorem (CLT) and the Cramér-Wold device. We examine each piece on the RHS
separately. It is independently shown in Theorem 4(7) that G(p, ) 4 Z,. Thus, E[{G(p, s)—G(p,s")}}] =
E[{Z,(s) — Z,(s")}"] uniformly in p. If we let my(s) := sp(1 — s)(1 — p)*/2{1 — s(1

—p)} ' and B;(p) := (1 — p)?/2Z; for notational simplicity, then Z,(s) = m,(s) >0 s’ Bj(p), and it
follows that {Z,(s) — Z,(s)}* = {Ay(s)[mp(s) — my(s")] + myp(s')By(s)(s — s')}*, where A, (s) :=
>0 s'Bj(p) and Bp(s) = >0 Zi:o s’j_kskBj (p). We can also use the mean-value theorem to
obtain that for some s” between s and s', my,(s) — my(s") = my,(s”)(s — ). Therefore, if we let Ay :=
(1= £)2(1 = 32 with 5 1= max(Js], 5}, E[{Z,(5)~ Z,(s) 1] = E[{Ay(s)mb (") +my (') By ()} )]s~
[ < AHIE[A(5) )| +4| ELA()° B, ()]|+6| ELA, ()2, (5)2] | +4 E [y (5) By ()21 |+ E[By (5)1] }s—
s'|*, because sup, , [m/,(s)| < Ay andsup, , [m,(s)] < Aj. Some tedious algebra shows that SUDP(p,s)clixS
E[Ay(s)Y] < Ay = ﬁ, and sup(, o)cixs E[B,(s)Y] < Az := ﬁ so that E[{Z,(s) —
Z,(s")}1] < 16A{A3|s — s'|*. Using Holder’s inequality, we obtain |E[A,(s)3B,(s)]| < |E[A,(s)*]?/*
E[By(s)')/* < AY'AY" < Mg |BIA(5)2By(5)?)| < |E[Ay ()1 BB, ()14 < A A < As,
and |E[A,(s)B,(s)%]| < |E[Ap(s)4 /4 E[By(s)4]1/4 < AY*AY* < A, where the final inequalities
follow from the fact that Ay < Asz. Next, we note that |si(P) — s’R“*i(p)| < Ryi(p)sTniP)|s — /| and
lsp/{1 —=s(1—=p)} —s'p/{l1-5(1-p)} < ﬁb — | with B[Ry, ;(p)*5Fni(P)] < 24(1 — 3)75.
Thus, when we let Q,,; := Ryi(p)s7P) + (1 —3)72, it follows that F| il] < Ap =384 x (1—
)7 (1= 3)7 and B[ @) — 0 sp {1 - s(1-p)} = o'p/ {1 =5 (1= )] < Aafs —#/)"
Given this, if A} is defined by Ay := (32A%A5 + A)) then E[|G,(p, s) — Gn(p, 8')[*] < Ayls — &/|*.

Second, therefore, if we let s < 5" < s, E[|Gn(p,s) — Gu(p,s)?|Gn(p,s") — Gu(p,s")|?] <
E[|Gn(p,s) —Gn(p, s)|*Y2E[|Gn(p, s') — Gn(p,s")|*]/? < Aq|s — s”|*, where the first inequality
follows from Cauchy-Schwarz’s inequality. This verifies condition (13.14) of Billingsley (1999). The
desired result follows from these, theorem 13.5 of Billingsley (1999) and the finite dimensional weak
convergence, which obtains by applying the Cramér-Wold device.

(b) Under the given conditions and the null, E[Z?ﬁ"l(p) shtni®) — sp/{1 — s(1 —p)}] = E[Zi]\i’i(p)
Blstni @) —sp/{1 - s(1 = p)}Ma(p)]] = BISI5P sp/{1— s p)} — sp/{L = s(1 = p)}] = 0.
where the first equality follows from Lemma A.8, and the second equality follows from the fact that given
My (p), Ryi(p) is IID under the null.

(c) Under the given the conditions and the null, E[Gy,(p, s)Gn(p, s')] = n_lE[Zi:’i(p) E|[sfn:(P) —
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sp/{1 = s(1 = p)}][s"™7) = s'p/{1 = ' (1 = PY]|Mu(p)]] = 0~ B[M,(p)[s5'p/{1 — s5'(1 — p)} —
ss'p? /{1 = s(1 = p)H{1 = s'(1 = p)}]] = ss'p*(1 = s)(1 — s')(1 — p)/{1 — s5'(1 — p)H{1 — s(1 -
p)H1 — §'(1 — p)}], where the first equality follows from Lemma A.8, and the last equality follows
because n ! E[M,,(p)] = p. Finally, it follows from the continuous mapping theorem that f[G,,(p, - )] =
flG(p, -)]. This is the desired result.

Remark I: (a) In addition to weak convergence, it also follows that for any € > 0, thereisa § > 0
such that lim sup,,_, . P(wg; > 4(0) > ¢€) = 0, where w’é’n(p,.)(é) 1= SUP, s SUDgre{|s—s/|<5) TN
[sup, |Gn(p, 8") — Gn(p,s')|, sup, |Gn(p,s”) — Gn(p, s)|]. This follows from the proof of theorem 3 in
Bickel and Wichura (1971).

(7¢) This can be proved in numerous ways. We verify the conditions of theorem 13.5 of Billingsley
(1999). Our proof is separated into three parts: (a), (b), and (c). In (a), we show the weak conver-
gence of Gy (-,s). In (b), we prove that for each p, E[G(p,s)] = 0. Finally, in (c), we show that
E[G(p, 5)9(,5)] = p(1 — £)2(1 — p) /{1 — s(1 — p)}2{1 — *(1 - p)}.

(a) First, for each s, we have G(1,s) = 0 as G,(1,s) = 0, and for any 6 > 0, lim,—,1 P(|G(p, s)| >
8) < limyot B(G(p,)?)/6% = Timy 1 s%3(1 — )2(1 — p)/63{1 — s(1 — p) {1 — 82(1 — p)} —
0 uniformly on S, where the inequality and equality follow from Markov’s inequality and the result
in (c) respectively. Thus, for each s, G(p,s) — G(1,s) = 0 as p — 1. Second, it’s not hard to
show that E[{Gn(p,5) — Gu(#/,)}'] = E[{G(p, 5) — G/, )] — ' EH{G(p, 5) — G, $)}] +
n_lp’E[{ZK” Y(sBi — E[s™]) — (s™ — E[s™])}*] using the finite dimensional weak convergence
result. We examine each piece on the RHS separately. From some tedious algebra, it follows that
E[{G(p,s) — G0, 5)}"] = 351 (1 — 5) {ks(p)ms(p) — 2ks (0 )ms(p) + ks (0 )ms(0)} < 3{|{ks(p) —
ko(p ) ks (0)] + o (0 ){mi(p') — mi(p)} [}, where for each p, kq(p) == r=sfi—py> and ms(p) =
U_;{ﬁ. Note that |ks|, |ms|, |k%] and |m/| are bounded by Ay := max[A1, Ag, As] uniformly in
(p, s). This implies that there exists Ay > 0 such that if n is sufficiently large enough, then E[{G(p, s) —
G(p',s) 1] < Aglp — p’|2 Some algebra implemented using Mathematica® shows that for some
As >0,p'E [{ZK" (st — B[sBi]) — (s — E[s1])}4] < Asp’ ! |p—p/], so that given that p/ > p>0,
if n=1 is less than |p — p/| then E[{G',(p, s) — Gy (¢, s)}*] < As|p — p'|? for sufficiently large n, where
Ay = 32(1 + B_l) + A5Q_1. Finally, for each p” < p' < p, E[{G.(p,s) — Gn(p', 8)}?{Gn(p, s) —
Gn(0",$)}?] < E[|Gn(p, 8)—Gn(p', $)| |V 2E[|Gn (P, s)—Gn(p", s)|*]1/? < Ag|p—p"|? by the Cauchy-
Schwarz inequality. The weak convergence of {G,,( -, s)} holds by theorem 13.5 of Billingsley (1999) and
finite dimensional weak convergence, which can be obtained by the Cramér-Wold device.

(b) For each p, E[G(p, - )] = 0 follows from the proof of Theorem 1(7, b).

(c) First, for convenience, for each p and p’, we let M and M’ denote M,,(p) and M, (p') respectively,
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and let R; and R; stand for R,, ;(p) and R,, ;(p’). Then from the definition of K, ;, E[G,,(p, s)Gn(p', s)] =
BB (s — Bls™) (7 — Bl )M, M) = 0~ B B[S (57— Bs7]) (7 —
E[sf1))] = p B[Ryt sRitR _ st sRip[sR) — K, sPAE[sRi) + K, E[sRi)E[s%1]], where the
first equality follows from Lemma A8 since { K, j} is IID under the null and R; is independent of Ry,
if ¢ < K, j_10r{ > K,;+ 1. The second equality follows, as {M, M’} is independent of {R;, R; :
i =1,2,...,K,1}. Further, B[, Knmt s8] = B[sf] . E[K, 1], E[Kn15™] = sp/ /{1 —s(1—p')} -
{1 = (L= p)}/{1 — s(1 — )} and B[S sheHR) = 2/ /{1 = s2(1 — p)} - [{L = s(1 = p)}/{1—

5(1 —p’)}]? by Lemmas A1 to A4. Substituting these into the above equation yields the desired result.

Remark 2: (a) In the proof of Theorem 1(ii-a), Ay is given by {32(1 + Q_l) + A5B_1}v which involves
p. Unless p is bounded away from zero, {&2(1 +p~1) + Asp~1} is not bounded uniformly in p.

(b) The proof of Theorem 1(z%) also implies that for any € > 0, there is a d > 0 such that lim sup,, , .,
P(wgn(.ﬁ)(&) > ¢) = 0, where wgn(_ys) (6) 1= Supy, ey SUPpre(|p—pr| <oy MIn[|Gn(p”, 5) — Gn(p', )],
|Gn(p”,s) — Gn(p,s)|], implying that {G,,(-,s)} is tight. A proof is given in Billingsley (1999, pp.
141-143).

(#i1) We separate the proof into two parts, (a) and (b). In (a), we prove the weak convergence of G,,,
and in (b) we derive its covariance structure.

(a) In order to show the weak convergence of G, we exploit the moment condition in theorem 3
of Bickel and Wichura (1971, p. 1665). For this, we first let B and C be neighbors in J x S such
that B := (p1,p2] X (s1,s2] and C' := (p1,p2] x (s2,s3]. Without loss of generality, we suppose that
|sa —s1| < |s3—s2|. Second, we define |G, (B)| := |Gn(p1, 51) — Gn(p1, s2) — Gn(p2, s1) + Gn(p2, s2)|,
then |Gy (B)| < |Gr(p1, 1) —Gn(p1, 52)|+|Gn(p2, 52) — Gn(p2, 51)|, so that E[|G,,(B)[Y] = E[| 41"+
AE[|A1]P|Aa]] + 6E[| A1|?| A2[?] + 4E[| Av][ A2’ + E[|Ao|*] < B[JA|"] + 4B [| A [P/ E[| A2|*V* +
6E[| A1 |22 E[| A2 )>/* 4 4E[| A1 ||V E[| A2|>/* 4 E[|A2|*] using Holder’s inequality, where we let

Ay = |Gp(p1,s1) — Gn(p1,s2)| and Ay = |G, (p2, s2) — Gn(p2, s1)| for notational simplicity. We
already saw that F[|A1|*] < Aq|s;—sa|* and E[|A2|*] < Aq|s; —s2|* in the proof of Theorem 1(7). Thus,
E[|Gn(B)|}] < 16A1]s1 — s2|*. Third, we define |G, (C)| := |G (p2, s2) — Gn(p2, 53) — Gn(ps, s2) +

Gr(ps3,s3)|; then |G, (C)| < |Gpn(p2, s2) — Gn(ps, s2)| + |Gn(ps, s3) — Gn(p2, s3)|. Using the same
logic as above, Holder’s inequality, and the result in the proof of Theorem 1(i4), we obtain E[|G,,(C)[4] <
16A4 |p2 — p1 |2 for sufficiently large n. Fourth, therefore, using Holder’s inequality, we obtain that for all
sufficiently large n, E[|B|*/3|C|8/%] < E[|B[*]'3E[|C|%? < A{|sa — 51| - |pa — p1|?}?/? < A{|sy —
sl [ — 1|}/ {|s3 — sal - [p2 — p1|}2/3 = {AYAN(B)/B{AYAN(C)}/3, where A := 16A1/°AY/*,

and \( - ) denotes the Lebesgue measure of the given argument. This verifies the moment condition (3) in

theorem 3 of Bickel and Wichura (1971, p. 1665). Fifth, it trivially holds from the definition of G,, that
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G =0on{(p,s) € J xS :s=0}. Finally, the continuity of G on the edge of J x S was verified in the
proof of Theorem 1(i¢). Therefore, the weak convergence of {G),} follows from the corollary in Bickel
and Wichura (1971, p. 1664) and the finite dimensional weak convergence obtained by Lindeberg-Levy’s
CLT and the Cramér-Wold device.

(b) As before, for convenience, for each p and p/, we let M and M’ denote M,,(p) and M, (p’) re-
spectively, and we let R; and R be short-hand notations for R,, ;(p) and Ry, ;(p’). Also, we let K, ; be as

previously defined. Then, under the given conditions and the null,

E[Gn(p, )G (D, 5') Z Z Ra))(s™ — B[s9)) (18)
7j=11i=1
Kn1 Kn,1

=p' B[} Mg N B[]t - K, BT 1 K Bl Bl ),

where the first equality follows from the definition of GG,, and the second equality holds for the same reason
as in the proof of Theorem 1(ii). From Lemmas A1 to A4, we have that E[> _; ”11 st = E[s%]. E[K, 1),
and B[] = o/p' /{1 — /(1= p)} - {1 = /(1 = p)} {1 — /(1 — p')}, and E[SK7" sRis ]
{ss'p'}/{l —ss'(1 —p)} - [{1 —s'(1 — p)}/{1 — s'(1 — p)}]?. Thus, substituting these into (18) gives
E[Gn(p,s)Gu(p,8")] = ss'p*(1 = 5)(1 = s") (1 = p){1 = &'(1 = p)}/[{1—s(1—p) }{1—5'(1—p")}*{1~
s'(1 — p)}|. Finally, it follows from the continuous mapping theorem that f[G,,] = f[G]. [

Proof of Lemma 2: (i) First, sup,cr |pn(p) —p| — 0 almost surely by Glivenko-Cantelli. Second, G, = G
by Theorem 1(ii). Third, (D(J x S) x D(J)) is a separable space. Thus, (G, pn(-)) = (G, -) by theorem
3.9 of Billingsley(1999). Fourth, [G(p, s) — G(p',s')| < |G(p,s) — G(P',8)| + |G(P', ) — G(p', s')|, and
each term of the RHS can be made as small as desired by letting |[p — p/| and |s — §'| tend to zero, as
G € C(J x S) a.s. Finally, note that for each (p, s), W,,(p,s) = Gn(pn(p), s). Therefore, W,, — G,, =
Gn(pn(-),-) —Gup(+-, ) = G — G = 0 by alemma of Billingsley (1999, p. 151) and the four facts just
shown. This implies that sup,, \cjxs [Wn(p, s) — Gn(p, s)| — 0 in probability, as desired.

(1) We write p,(p) as p,, for convenience. By the mean value theorem, for some p, (p) (in ) between
p € Jand pn, [[{sPn}/{1 = s(1 = pn)} — sp/{1 = s(1 = p)}] = {s(1 = 5)(Bn — )} /{1 = s(1 = p)}*| =
25*(1 — 5)(pn — p)?/{1 — s(1 — p};(p)) }*, where sup,c; |p;(p) —p| — 0 as. by Glivenko-Cantelli.
Also,

Sll

My (p)s*(1 = 5)(Bn — 1) _ p - S1=9)
Vil =s(L=p@)}* ~ v ps (L= s(L— PP

where n_lj\\fn (p) and s%(1 — s){1 — s(1 — p(p))}~? are uniformly bounded by 1 and 1/(1 — 3)3 respec-

M,
sup n(p)
p n

sup n(p,, — p)*
p

)

tively, with 3 := max][|s|, 5]; and n(p,, — p)? = Op(1) uniformly in p. Thus,

Supz%(p)H SPn - sp ]_su—s)(ﬁn—p)
e Vi |{I=s(=pa)}  {1—-s(-p}] {1-s1-p}

= op(1).
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Given these, the weak convergence of H,, follows immediately, as sup,, ]n‘lﬁn (p) — p| = op(1), and the
function of p defined by\/n(p,, — p) weakly converges to a Brownian bridge, permitting application of the
lemma of Billingsley (1999, p. 151). These facts also suffice for the tightness of H,,.

Next, the covariance structure of 7 follows from the fact that for each (p, s) and (p/, s") with p’ < p,
E[{M(p)s(1 = )(Pn — p)}/v/n{l — s(1 - p)}*] = 0, and

M@@wu—sﬂ@fﬂ»Eﬂ@%ﬂ1—§ﬂﬁfwﬂ s (1 9)(1 - &)(1 - p)
Vil —s(l-p))2  Vall-s(1-p)2 |~ {(1-s(-p)H1l- 51— p))2

which is identical to E[H(p, s)H(p', s')]-

E

(731) To show the given claim, we first derive the given covariance structure. For each (p, s) and
(0, s"), E[Wn(p,s)Hn(p',s")] = E[E[Wn(p,s)|X1,.... Xn|Hn(p', s')], where the equality follows be-
cause H,, is measurable with respect to the smallest o—algebra generated by { X7, ..., X,,}. Given this,
we have E[Wa(p, $)|X1, s Xn] = 02 M@ [ B[6Rni®)| X, . Xo] — sPu/{1 — s(1 — Pu)}] =

w12 MO ) (1= (1= p)} — spu/{1 — 5(1 = u)}] = —Hu(p, s). Thus, E[E[Wo(p, )| X1, ..,
X, H,y(p',s")] = — E[Hp(p, s)Hn(p', s")]. Next, we have that E[G(p, s)H(p', s')] = limy,—,00 E[W,(p,
s)Hy(p, s")] by Lemma 2(i). Further, E[H(p, s)H(p',s")] = limy,—00 E[Hy(p, 8)Hy(p', 8')]. Tt follows
that E[G(p, s)H(p', s")] = —E[H(p, s)H({', s)].

Next, we consider (én, H,,)" and apply example 1.4.6 of van der Vaart and Wellner (1996, p. 31) to
show weak convergence. Note that én = W,+H, = G,+H,+op(1), and that G,, and H,, are each tight,
SO én is tight, too. Further, G, and H,, have continuous limits by Theorem 1(i¢) and Lemma 2(¢%). Thus,
if the finite-dimensional distributions of (,, + H,, have weak limits, then én must weakly converge to
the Gaussian process G with the covariance structure (8). We may apply the Lindeberg-Levy CLT to show
this unless G,, + H,, = 0 almost surely. That is, for each (p, s) with s # 0, E[G(p, s) + Hy,(p, s)] =
0, and E[{Ga(p.s) + Ha(p,)}?] = ElGu(p,s)2] — E[Ha(p.5)?] + (1) < E[Gu(p,s)?] + o(1) =
s2p(1 —8)2(1 —p)/ {1 — s%(1 — p)}{1 — s(1 — p)}? + o(1), which is uniformly bounded, so that for
each (p, s) with s # 0, the sufficiency conditions for the Lindeberg-Levy CLT hold. The first equality
above follows by applying Lemma 2(i3). If s = 0, then G,,(-,0) + Hy,(-,0) = 0, so that the probability
limit of G,,(-,0) + Hy,(-,0) is zero. Given these, the finite-dimensional weak convergence of Gy, now
follows from the Cramér-Wold device.

Next, note that G, is asymptotically independent of H,, because E[G.,(p, s)H, (¢, s')] = E[Wy(p, s)
Hy,(p, ")+ E[Hy(p, s)H,(p', s')] = 0 by the covariance structure given above. It follows that (G,,, H,,)’
= (§ ,H)’ by example 1.4.6 of van der Vaart and Wellner (1996, p. 31). To complete the proof, take
(Gn — Hy, Hy)' = (W,,, Hy)', and apply the continuous mapping theorem. [

Remark 3: Durbin (1973) shows that empirical distributions with parameter estimation error are not
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distribution-free using a proof similar to that of Lemma 2(z). We further exploit his proof to show that

here W, is asymptotically equivalent to G,,.

Proof of Theorem 2: (1, i1, and 1i7) The proof of Lemma 2(727) establishes that én = 5 . This and the

continuous mapping theorem imply the given claims. |

Proof of Lemma 3: (i) First, as shown in the proof of Lemma 3(ii) below, F},(y( - )) converges to F(y( - ))
in probability uniformly on I, where for each p, y(p) := inf{x € R : F(z) > p}. Second, G,, = G by
Theorem 1(i4). Third, (D(JxS)xD(J)) is a separable space. Therefore, it follows that (G, Fy, (y( - ))) =
(G, F(y(-))) by theorem 3.9 of Billingsley (1999). Fourth, G € C(J x S). Finally, Gn (-, -) = Gn(F)(y
(), -)ssothat Gp( -, =) — Gu(-, ) = Gu(Fu(y(-)), ) — Gu(-, -) = G — G = 0, where the weak
convergence follows from the lemma of Billingsley (1999, p. 151). Thus, sup,, |Gn(p, s) = Grn(p, s)| =
op(1).

(i4) First, the definition of H,,(p, s) permits the representation H,, (p, s) = {M,(p)/n}{v/n[spn/{1—
s(1—pn)}—sp/{1 — s(1 — p)}]}. Second, it follows that \/n[sp, /{1 — s(1 — p) } —sp/{1 — s(1 — p)}]
= —s(1 — s)BY(p)/{1 — s(1 — p)}? by Lemma 2(ii) and Theorem 5(i) below. Third, if F},( - ) converges
to F(-) in probability, then n ' M, (p) converges to p in probability uniformly in p, because for each p,
M, (p) is defined as 37", Lif, (v,)<py- Finally, these facts imply that sup, ) |H,(p,s) — Hp(p,s)| =
op(1) by the lemma of Billingsley (1999, p. 151); this completes the proof.

Therefore, we only have to show that F},(-) converges to F(-) in probability; for this we exploit
Glivenko-Cantelli. That is, if for each p, F},(y(p)) converges to F(y(p)) in probability, then the uni-
form convergence follows from the properties of empirical distribution: boundedness, monotonicity, and
right continuity. Thus, the pointwise convergence of E, (p) completes the proof. We proceed as fol-
lows. First, letting y = y(p) for notational simplicity, for each y and for any e; > 0, we have {w €
Q: h(6,) <y} C {w e Q: h(6) < y+ |hi(6n) — hi(0.)]} = {w € Q: (0, < y +
174(0n) — hi(82)], [hie(Bn) — he(0.)] < 1} U{w € Q= hu(0s) < y + |hi(Bn) — he(0.)], [he(B,) —
h(0.)] > e1} € {w € Q : h(8) < y+ e} U{|h(6,) — hi(6.)] > e1}. Second, for the
same y and e1, {w € Q : h(0,) < y} D {w € Q: h(8,) < y—ei1} \{w e Q: |h(0) —
hi(8,)| > 1}. These two facts imply that n =1 327" L, 0. )<y—e} =7 2ty L (@) e (0)] 361} =
n~tyR L)<y < Y L) <yterr Dy L3y (0)—hy(6.)| 1)+ Thus, it follows
thatn =1 >0 | 1(h,(0.)<y—ei} and 0™ IS 1{p,(0.)<y+e,} converge to F'(y —e1) and F'(y +¢1) a.s. by
the SLLN and the null hypothesis. Further, for any § > 0 and €5 > 0, there is an n* such that if n > n*,

P(n=t3>0 1 (1he(82) (@) [>e1) = §) < e2. This follows because P(n~' Y7 | 1 (he(0)—he(Bn)|>e1} <
8) < (nd)~' Y, EQ1 (he(0)—he (B)|>e1}) = (6n) 1 327y P(|he(6.) — he(Bn)| > 1) < &3, where
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the first inequality follows from Markov’s inequality, and the last inequality follows from the fact that
|he(0,) — he(6,)] < M;||6,, — 0. = op(1) uniformly in ¢ by A2 and A3(ii). It follows that for any
e1 >0, F(y —e1) +op(1) < Fu(y) < F(y + £1) 4 op(1). As e; may be chosen arbitrarily small, it
follows that F},(y) converges to F(y) in probability as desired. [

Proof of Theorem 3: (i, ii, and iii) Gy, = G, + H, = G, + H,, + op(1) by Lemmas 3(i) and 3(i).
Further, G,, + H,, = én = GV by Theorem 2(i%). Thus, Gn = 5, which, together with the continuous

mapping theorem, implies the desired result. |

The following Lemmas collect together further supplementary claims needed to prove the weak con-
vergence of the EGR test statistics under the local alternative. As before, we use the notation p = F'(y) for

brevity and suppose that R,, ;(p) is defined by observations starting from Y}, ;1 1, unless otherwise noted.

LEMMA B1: Given conditions Al, A2(z), A3, AS, and HE,

(i for cach y and k = 2,3, .. Eum el Fudl = F) + S5 n5Q; () + 142Gy, Yo,
where foreachj = 1,2, .. = [ [...[ D(y,x1)dD(z1,22)...dD(xj_1,z)dF(z), and G(y, Yn+)
= ff...fD(y,xl)dD(ml,xg)...dD(xk_2,$k_1) D(xp—1,Yn1)s

(i1) for each y, Fn(y) = F(y) + 352, n92Q;(y) and Q1(y) = Q(y):
(1) for each y and k = 1,2, ..., E[Jn7t+k( nt(y)] O(n=*/2), where jn,t(y) = ey, <y} —
Fo(y);

(iv) for each y, E|Jy +1(y)JInt(y)] = O(n_l/Q), ElJni42)Ini(y)] = O(n™Y), and for k =
37 47 EEE) E[Jn,tJrk(y)Jn,t(y)] - O<n73/2)’ where Jn,t(y) = 1{Yn,t<y} - F<y) - n71/2Q(y>'

Proof of Lemma B1: (i) This follows by applying the law of iterated expectations sequentially. First,
note that E[E[1y, , <yt Y s1]|Yoil = [ F(y) + n~2D(y, x)dF,(x|Yn:) = F(y) +n~2Q1(y) +
n~! [ D(y,x)dD(z,Y,t), where the second equality follows by (13). Now consider the general case k —
1; from the given hypothesis, E[1yy, , . <y} [Fnt] = F(y )+Z] 1 n_EQ]( )+~ D26 (y, Vo).
Then, by the stationarity of {Yy,+}, E[1y, , <y} [Fni+1] = F(y) + Zj;l n*EQj(y) +n~E=D2G,
(¥ Ynas1) Thus, E[Lyy, ooy Fodl = F(y) + 3527 n"3Qi(y) +n~ 02 [ Gy (y, 2)dF(2[Yoy)
=F(y) + Zf;ll n_%Qj(y) +n k2 [ Gy_1(y, 2)dD(z, Yn4), using (13). Note that [ Gy_1(y, 2)dD(z,
Y1) = Gi(y, Yn,), yielding the desired result.

(i7) By the geometric ergodicity and strict stationarity assumptions, {Y}, ;} is an aperiodic Harris re-
current Markov process, so that limy o0 | E[1(y,, . <.}[Fnt] — Fu(-)[l7v = 0 by theorem 6.8 of Durrett
(1996, p. 332), where || - |7y denotes the total variation. Given the continuity assumption of F" and D, this

implies that for each y, limy_, o E[l{Yn,t+k<y} | Frnt]—Frn(y) = 0. Further, limy_, o E[l{Yn,t+k<y} | Frt] =
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Fy) + 3272, n=9/2Q;(y) by B1(i), so that F,,(y) = F(y) + PO n~9/2Q;(y). Finally, the coefficient
for the term of order n /2 is [ D(y, x)dF (), which therefore must be Q(y).

(7i7) By the definition of jm(y) and Lemmas B1(: and 7), E[:]Vn7t+k; ()| Fntl = n—k/z{Gk (y, Ynt) —
Qi(y)} + op(n~"/2). Therefore, B[y 1+k(y) Jnt(y)] = ELE[Jnik(y)| Fadl Jni(y)] = n=*2 E{Gi(y,
Yoi) = Qe(®)}ur(y)] + o(n=*/2) = O(n=+/2).

(iv) From Lemma B1(i), it follows that E[J,, ¢11(v)Jnt(v)] = E[E[Jnii1(y) | Fnil Jns(y)] = n~/2
E[{D(y, Yo) — Q) ns(y)] = O™ 2); BlJnpra(y)Jnp(y)] = EE[nur2(y)|Fagl Jne(y)] =
n " E[[ D(y, z1)dD(x1, Y1) Jni(y)] = O(n~'); and for k = 3,4, ..., E[Jpi4x(y)|Fus] = Op(n=3/?),
so that E[J,, 11 4(Y) Jnt(¥)] = E[E[Jnt11()| Fntl Jni(y)] = O(n=3/2). This is the desired result. W

Remark 4: (a) When the range of integration is not explicitly specified in the proof of above, it should be
understood that the range is from —oo to co.
(b) The strictly stationary and geometric ergodic Markov process assumption has a number of impli-

cations important for us. They can be summarized as follows:

1. Nummelin and Tweedie (1978) show that there is a positively valued measurable function K such
that || E( - |Frik) — Fu()llrv < n*2K(Y,;_}), where for each y, F,(y|Fy,+_1) denotes
P(Yot < y[Fni—k)sand || - [|7v.

2. Nummelin and Touminen (1982) elaborate this further and show that K (Y}, ;) is integrable. This
implies that the S-mixing coefficient of {Y,,;} converges to zero geometrically. That is, 3, <

nk2 [ K(y)dFu(y).

LEMMA B2: Given conditions A1, A2(i), A3, A5, and HY, for eachy, n*/?{F,,(y)—F(y)} N N(Q(y), F(y)
{1-F@)}).

Proof of Lemma B2: To show the given claim, we show that n=1/23°7" jnt(y) A N(0, F(y){1 —
F(y)}). This is equivalent to proving Lemma B2 because J,, +(y) — jmt(y) = Op(n~!), from which
it follows that n= /25" J,;(y) = n~ Y23 Jns(y) + op(1). The asymptotic normality can be
proved by theorem 5.3 of Ango Nze and Doukhan (2004). First, E [jnt(y)] = 0 from the definition
of jnt(y) Second, the asymptotic variance of n= /231" | jnt(y) is obtained by Lemma B1. That is,
62 = var{n 230, Joi(9)} = ElJns ()] + 07t S S ElJni(y)Jr ()], where B[, 4(y)?] =
F(y){1—F(y)}+o(1) by the definition of .J,, s (y) and n = 3> 37, E[Jn s (y) Jn,r ()] = 2071 302 (n—
k)E[Jnt(y) Jnisk(y)] = o(1) by Lemma B1(iii). Therefore, 32 = F(y){1 — F(y)} + o(1). Finally,
Zzozl Bn,k < 0o by Remark 4(b—2). Given this, theorem 5.3 of Ango Nze and Doukhan (2004) completes

the proof. |
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Remark 5: Even if @) is identical to zero, the EGR test statistics can still have local power, arising from
the estimation of the empirical distribution function. The example given below Theorem 6 belongs to this

case.
In what follows, we assume that p € J, unless otherwise noted.

LEMMA B3: Given conditions Al, A2(i), A3, AS, and H¢,
(1) sup, [a(y)| < A, where a(y) := fyoo D(y,z)dF(z);
(i1) for each p and k = 1,2, ..., (15) holds, and ry(p, Yy +) = Op(n™1) uniformly in p;
(i4) for each p and k = 1,2, ..., (16) holds, and 1y, (p) = O(n™1) uniformly in p;
(iv) for each k = 1,2, ..., hy, 1 (p) — hi(p) and 1y, 1, (p) — 71 (p) uniformly in p a.s. —P,
(v) for each p € 1 such that p > % ifwe let py, := F(qn(p));

=~ ~ ~ 1~ _ hn k(ﬁn) Tn k(ﬁn)
P(R,; = klpn) = (1 — nk 1n+n 1/2 - P 7 =\ (19)
(Bni(p) = klpn) = (1 = pn)" P P 0) T FaF1 )
(vi) for each (p, s) € 1 x S such that p > %,
R . ~ ~n (5na 5)
ﬁ(E sBna0))5 1 Pn__ ) = DS (1), (20)
e T —) T R T

where v(p, s) := {1 (i(IS)g)(}Q) + {1 o 1 p 7 f C(p,y)dF(y).

Proof of Lemma B3: (i) We note that |a(y)| < f z)|dF(z) < [7 z)|dF(x) < A by

AS(iv).

(i1) First, from the local alternative (13), P(Yy, 141 < y|Fny) = [*_ dFu(2|Yey) = p+n~/20(p,
S 020 (p, )Y dFy (2| Yo p1) = p(1—p) +n 2 {w(p) —p C(p, Yo 1)} +72(p, Yo i) = p(1—p)+
0 2o (p, Vi) + ra(p, Yau), where ro(p, Y ) == n ™ R(F 1 (), Yay) and R(y, Yy) := [,° D(y, )
dD(x,Yy+), which is Op(n~!) by AS5(iv). Third, P(Yoiv1 > 4, Yntre > U, Yniq3 < ylFnt) =
S Ap(L=p)+n= 2w (p) —p O (p, ) }}dFy (] Yy e—1) +73(ps Yor) = p(1—p)*+n~* {w(p)(1-2p)—
p(1=p) C(p, Yur)} +73(p, Yni) = p(1—p)2+n"2h3(p, Yni) +73(p, Yn,t), where r3(p, Y, ) is defined
tobe n~' [ R(F~1(p), 2){dF(2) + n~'/2dD(2, Yn2)} — 0~ {w(p)C(p, Yns) — pR(F 1 (p), Vo),

Yoi) = p+ n_l/th(p, Y, +), where p denotes F(y). Second, P(Y, 11 > y, Yoo < y|lFns) =

which is also Op(n~!) uniformly in p because (i) |w( - )| is bounded by A by Lemma B3(i), and (ii) both
|C(+,Yny)and |[R(F~'(+ ), Yy,)| are bounded by M, ¢ by AS(idi and iv), and [ |R(F~(p), z)|[{dF (2)
+n~Y2dD(2,Yn4)} < M, uniformly in p. Thus, applying Markov’s inequality ensures that 73(p, Y, ;)
is Op(n~") uniformly in p.

Given this, we apply the induction method to obtain the desired result. Suppose that P(Y, ;11 >

Y, Yn,t+2 > Y, "-aYn,t—i—k < y|]:n,t) = p(l - p)k_l + n_l/Qhk(py Yn,t) + Tk’(pa Yn,t)’ and Tk(pa Yn,t) =
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Op(n~!) uniformly in p. Then P(Yy, t+1 > ¥, Yntto > ¥, Yoriki1r < Yl Fnt) = f {p(1 — p)F1 +
02 hy (D, Y1) + 7Py Yot 41) YAFw (Y 41| Fnt) = p(1=p)F 072 {w(p) (1—kp) (1—p)*~ 2—p(1—
PO, Yo )} 47kt (9, Yor) = p(1—=p)* 40720y 1 (p, Yot ) +7841 (D, Yot), where k = 3,4, ..., and
Pt (5, Vi) = 7 1py 2AF (2) 40 Y2dD (2, Yoo o) —n H{(1=p)E 3 (1 (k= 1)p)w(p) C(p, Yas) +
p(1 — p)k2R(F~Y(p), Yn+)}. Note that the first component in the RHS is also Op(n~!) uniformly in
p as F, is a proper distribution function and because 7y (p, Yy, +) is Op(n~!) uniformly in p. Also, given
that |w(-)C(-,Ynt)| < A+ My and |[R(FY(+),Y,1)| < M, 4, the remainders are Op(n ') uniformly
in p because |(1 — p)*=3(1 — (k — 1)p)| < 3 and |p(1 — p)*~2| < 1 uniformly in p and k = 3,4, ....
Thus, 7%41(p, Ynt) is Op(n~1) uniformly in p, and (15) follows from the definition of hj1. These are
the desired results.
(i4i) By Lemma B3(i7), for each k = 1,2,..., P(R,i(p) = k) = EPYntr1 > y,Yniro >
Yy Yiik < YlFnt)|Yor <yl = p(1 — p)F 1 + 0V 2E[hi(p, Vo) Ve < 4] + E[ri(p, Yos)|Yos <
y]. Further, using the definitions of hy, x(p) and r,, x(p), we can substitute F,,(F~(p))~'h, x(p) and
Fo(F7Y(p)) Yk (p) into Elhg(p, Yni)|Ynt < y] and E[rg(p, Yn)|Ynt < y] respectively, yielding
(16). In addition, given that 7¢(p, Y;,.t) = Op(n~1) uniformly in p, it trivially follows from the definition
of 7, 1 (p) that r,, 1 (p) = O(n™') uniformly in p.
(iv) Given the definition of A ( -, Y, ), we have that hy( -, Y}, ;) is uniformly bounded by 3A + M,,
a5 1115, V)l = [C(0, Ya)l < Mags ha(p, Yn)| < [w(p)] + [pC(p, Yig)| < A+ Mygs and for k
3,4, o [ (9, Yoo < [w(p)(1—p) (1= (5= 1)p) |+ p(1—p)*2IC(p, Yy )| < BA+ My Therefore,
[ |hi(p, ®)|dF,(x) < 3A+ E[M,;] < 4A < oo uniformly in n, so that [¥__ hy(p, 2)dF, (x) < 4A uni-
formly in p and n. Also, A5(iv) implies that for every k, [ |hy(p, z)|dF (z) < 3A+ [ |D(F(y),z)|dF(x)
< 4A, implying that [Y__ hy(p, #)dF(z) < 4Auniformly inp, and | [*__ hy(p,x)dF,(z)— [Y__ hi(p, z)
F(z)| = n= 2| [Y _ [* hy(p,2)dD(z,2)dF () + op(1)| < 4A uniformly in p. Thus, |hy,x(p) —

hi(p)| — 0 uniformly in p as n tends to infinity.

As shown in the proof for Lemma B3(ii), 74 (p, Y5.t) = Op(n~1), and |ri(p, Yy,.¢)| is bounded uni-
formly in p by an integrable positive random variable. Given this, the same argument proving hy, ,(p) —
hi(p) uniformly in p applies to show 7, ;(p) — 74 (p) uniformly in p.

(v) We can replace p in (16) with p,, to obtain the given result.

(vi) Using the definition of Ay, 1 (py), Lemmas B3(i7i and v), and the fact that

oo

> o) = 5 1) + [ e mane)

= v(Dn, s) + op(1),

we obtain that n'/2(E[sfi®)|5,] — pns/{1 — s(1 — Pn)}) = v(Bn,s)/Fa(F~1(Bn)) + op(1). This
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completes the proof. |

LEMMA B4: Given conditions Al, A2(1), A3, A5, and H, if Ry (p) is defined by observations starting
fromYy, 111 and p > %, then

(?) for eachpand k = 1,2, ...,
P(Rpi(p) = k| Fng) = p(1=p)* "+ 0720 hie(p) +p~ 'ri(p) + 17 br(p, Yauo1) +op(n 1), 21)

where by.(p, Yn 1) = p~ ' [ hi(p, x)dD(x, Y1) — p~hi(p) D(y, Yni-1);
(id) for each p and k = 1,2, ..., P(Ryi(p) = k) = p(1 — p)*~ 1 + 0= 2p~ hy(p) + p~'ra(p) +
n~tbk(p) + o(n~1), where b(p) := [ br(p, 2)dF(z).

Proof of Lemma B4: (i) Assuming that R,, ;(p) is defined by observations starting from Y;, ;1, we have
P(Rn,z(p) - k“Fn,t) = IP)(Ymt-‘rl =Y,y Yn,t+k—1 >y, Yn,t+k < y|ﬁn,t—l)’ where ﬁmt—l = U(Ymt <
Y, Ynt—1,Ynt—2,...). Given this, we can use (15) to obtain

)
P(Rn,i(p) = k‘]:n,t) =p(1 _p)k_l + n_1/2Fn(y‘Yn,t—l)_1 / hi(p, x)an($’Yn,t—l)

—00

Yy
Py Yor1)! / (0 ) AF (2] V1) 22)

—o0
using the facts that E[hy(p, Yne)| Fri-1] = Fn(y|Yae—1)"" [Y hi(p,2)dF(2]Yy—1) and E[ry (p,
Yo i) | Fni—1) = Fn(y|Yni—1)"" [Y re(p, ®)dF, (2]Yy—1). Using a Taylor expansion yields Fj, (y|Yn,t—1
)"t = 1/F(y) — n~Y2D(y, Yni-1)/F(y)* 4+ op(n~'/2), and substituting (13) and this into (22) yields
the desired result.

(i1) We note the fact that P(R,, ;(p) = k) = E[P(Rn:(p) = k|Fnt)]. Thus, P(R,,;(p) = k) = p(1 —
P 0 2p  hy(p) + 7 i (p) A0t [ bi(p, 2)dFn(2) +o(n™h) = p(1—p)F T 407 2p g (p) +
piri(p) + n7t [ b(p, 2)dF(2) + o(n~!) by Lemma B1(i3). [ ]

LEMMA BS5: Given conditions Al, A2(i), A3, AS, and HY, if Ry, i(p) is defined by observations starting
fromYy, ;11 and p > %, then
(i) foreachpand k,m = 1,2, ..., P(Ryi(p) = k|Fpnt—m)—P(Rni(p) =k) =n

m—+41

)+ op(n~ 3 ), where By, 1 (p, Yni—1) = bi(p, Ynt—1) — bi(p), and for m = 2,3, ..., B (D, Yi—m) =
[ . [ bk (p, 2)dD(2,21)...dD(Zm—2, Yo t—m) — n=" [ ... [be(p,2)dD(z, x1)...dD(xpm—2, x)dF (x);
(it) for each p and k,0,m = 1,2,..., P(Ry,;i(p) = k|Rni—m(p) = £) = P(Rni(p) = k) +

Op(n_(m+1)/2)

_ m+1

2 Bk,m (P, Yn,t—m

(i4i) foreachpand k,t,m = 1,2, ..., P(R,, i(p) = k, Rni—m(p) =) = P(Rpni(p) = k)P(Ry,i—m(p)
— 0) + OO,
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Proof of Lemma B5: (i) For m = 1, the given result trivially follows from Lemmas B4(: and iz). To
show the claim for m > 1, we let cx(p, Yy, t—1) := bi(p, Yn—1) + op(1) for notational simplicity, where
the op(1) term is the last piece multiplied by n in the RHS of (21). Then P(R, i(p) = k|Fnt—m) =
p(L=p)* 0 2 g (p) +p k() + 1 Ele(p, Yoeo1)| Fg—m] and P(Rp,i(p) = k) = p(1 —
)P 0 Y 2p e (p) +p~ ek (p) +n T Eler(p, Yog—1)). Thus, P(Ry;(p) = k| Fnt—m) —P(Rn,i(p) =
k) = n Y E[ek(p, Yni—1)|Fnt—m] — Elck(p, Yni—1)]}. Given this, applying Lemma B1(i) and the fact
that c;(p, Yni—1) = bk(p, Yni—1) + op(1) yields that P(R,, ;(p) = k|Fni—m) — P(Rni(p) = k) =
n=" [ . [ bi(p, 2)dD(z, 21)...dD(Xm—2, Ynt—m) — 1 - [ . [ bi(p, 2)dD(z, 21)...dD (2 —2, x)
dF () 4+ op(n™ "2 ) =0~ "2 By (p, Yim) + op (n~ "2 ). This is the desired result.

(1) Given that R,, ;(p) is defined by the observations starting from Y7, 111, it follows that Y, ; < y.
Given this, we first consider m = 1. Then, {R,;—1(p) = ¢} = {Ynt < ¥, Ynit—1 > vy, ..., Yn—0—1 >
Yy Yoito <y} C Fni—1 = 0(Ynt < Y, Ynt—1, Yni—2,...). Next, we suppose that m > 1. Then, the
latest observation to define R, ;—p,(p) i8S Y, t—m, which is obtained when R, ;1 = ... = Ry i—m41 =
1. Therefore, {Rpi—m(p) = €} C Fotem = 0(Ynt < Y, Ynt—m, Ynt-m,..). Thus, for any m,
{Ry.i—m(p) = £} C Fy\t—m. Finally, we apply Lemma B5(i) to obtain the desired result.

(i43) This trivially follows from Lemma B5(i7) and the fact that P(R,, ;(p) = k, Ry i—m(p) = {) =
P(Rni(p) = k|Rni—m(p) = O)P(Rn,i—m(p) = £). u

LEMMA B6: Given conditions Al, A2(i), A3, AS, and HY, for each (p, s),
(@) E[Wn(p, s)|pn] = v(p, s) + op(1);
(1) E[Hy(p, 5)[Pn] = —ps(1 — s)Q(F () /{1 — s(1 = p)}* + op(1);
(i11) E[W(p, 8)*[Pn] = p?s*(1 = p)(1 = 8)*/{1 = s(1 = p)}*{1 = s*(1 = p)} + v(p, 5)? + op(1);
(iv) B[Hy(p,5)*|pn] = p*s*(1 = p)(1 = 5)*/{1 —s(1 —p)}* + p*s*(1 = s)’Q(F(p))*/ {1 -
s(1- p)}* + 0p(1).

Proof of Lemma B6: (i) Lemma B3(vi) implies that E[W,,(p, s)|pn] = p{Fn(Gn(p)) " 1v(Pn, 8) } +op(1) =
v(p, s) + op(1), where the first equality follows because M, (p)/n = |pn|/n, Gn(p) — F~1(p) a.s.—P,
as the ergodic theorem implies that p,, — p a.s.—P.

(i7) For some p,, between p,, and p,

s(1=8)Mu(p) {Pn—p} _ ps(l = 9)Vn[Fu(@n(p)) = F(Gn(p))]
Halp:2) = (I—s(l—pn)}> Vo {(1=s(1—pn)}2 +op(l)  (23)

by the mean-value theorem. This implies that applying Lemma B2 and the ergodic theorem yields E[H,,(p,
8)|pn) = —ps(1 — $)Q(F~1(p))/{1 — s(1 — p)}* + op(1), which ensures that g,(p) — F~'(p) a.s.—P.

(iii) We decompose W, (p, s)2 into Wi, (p, )2 = Ky (p, s)+ L3 (p, )—i—Z(Q)( s), where K, (p, s) :=
nt P (i) — s 1= 51— F)DR I () =t S () s {1 (1
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PP (5250 — s, /(1= s(1 — Po)}), and 2P (p,5) = n=t YN (sFns) — oy /1 - s(1 -
Pa) P (853 ®) — 55, /{1 —s(1—p,)}), and examine the asymptotic behavior of each component. Note that
ElR(py )] = 0 S El(sTns0) — 5 /{1 = 5(1 = )2 ] and 0! M (p) = i+ 02(1)
From this and (16), we obtain E[K,,(p, s)|pn] = p2s2(1 — pp)(1 — 8)2/[{1 — s(1 — pn)}2{1 — s2(1—
) H-+op(1). Next, E[LL (p,8) ] = 207" (Mo (p) — DE[(s7 )= /{1 (1P }) (s7020)—
$pn/{1—5(1—=Dn)})|pn]- We use Lemma B5(ii7) to obtain E[L( (p, 8)|Pn] = 2P E[sTni®) —sp, /{1 —
s(1=Pu) PP +0p(n 1) = 20715, B (G0 (p)) ~2V(B, 5)>+Op(n 1) = 0p(1). Finally, B[L{? (p, 5) 5]
Tl S S B (R ®) s {1 - s(1— F)})(sFren @) — s /{1 - 5(1 = ) [Pl using
Lemma B5(iii) then implies E[LL? (p, 8)|pn] = 0" (M (p) — 1) (M (p) —2){ E[s4®) — s, /{1 —5(1—
o) }Pn)2 +0(n1)}, s0 that E[L (p, 8)|Pn] = 52 Fn(Gn(p)) "2v(Bns 5)2+08(1). Thus, adding together
E[[?n (p, s)|Pn)s E[ES) (p, s)|pn], and E[ﬂ?) (p, s)|pn) and using p,, — p a.s.—P (by the ergodic theorem),
we have E[Wo(p, 8)2/5] = p?s2(1 - p)(1 — )2/[{1 — 5(1 - p)}{1 — $2(1 = p)}] + v(p, )% + 0p(1).
(7v) This directly follows from Lemma B2 and (23) and by letting p = F'(y). |

LEMMA B7: Given conditions Al, A2(i), A3, AS, and HY, for each (p, ),
(@) Wa(p, )~ Wa(p, ) = v(p, 8)+OP(1) where W (p, s) = n=1/2 Y10 (sni®)— [sRni @) 5,
(i1) E[Sni(p, )| Fnim] = Op(n™ "), where Sni(p, s) = s%ni®) — E[sRni®)] and Ry i(p) is

the run defined by observations starting from Yy, 1 1.

Proof of Lemma B7: (i) We exploit Lemma B3(vi) to show the given result. Note that W, (p,s) —
Walp,5) = n= V2N (p) (Bls™:) ] — pos/{1 = s(1 = P}, and n V20, (p) = pn/2 + oz(1).
Therefore, (20) implies that Wy, (p, s) — Wi(p, $) = pv(Pn, 5)/ Fa(F () + 0p(1) = v(p, s) + op(1),
where the last equality follows because F~!(p,) = F~1(p) + op(1) = y + op(1) by the ergodic theorem
and the fact that F),(y) = F(y) + o(1) = p + o(1) when y is such that p = F(y).

(i7) By the definition of E[S, (D, $)|Fnt-m)s ElSni(D:8)|Fntem] = Doy s*{P(Rni(p) = k|
Fri—m) — P(Rni(p) = k)}. We note that |s| < 1, and P(R,,i(p) = k|Fnt-m) — P(Rni(p) = k) =
n=" 2 Bl (s Y t—m) +op(n™ e 2 ) by Lemma B5(4). This completes the proof. |

LEMMA BS8: Given conditions A1, A2(i), A3, A5, and H., for each (p, s), Gn(p, 5) A N(u(p,s),s*p*(1—
)1 =p)?/[{1 = s(1 —p)}*{1 - s*(1 = p)}]).

Proof of Lemma B8: To show the given claim, we partition our proof into three pieces. First, we obtain the
asymptotic population mean of G, (p, s). Second, we derive the asymptotic variance of G (p, s). Finally,

we derive the asymptotic distribution.
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First, we note that E[Gy,(p, 5)|Pn] = E[W(p, $)|Pn] + E[Hy (p, $)|Pn]. Given this, Lemmas B6(i and

ii) ensure that E[G,(p, s)|pn] = v(p,s) — ps(1 — s)Q(F~1(p)) /{1 — s(1 —p)}% + op(1) = u(p, s) +
op(1). Thus, the asymptotic population mean of Gy, (p, s) must be 1(p, s).

Second, we apply Lemmas B6(i and #i7) to show that the asymptotic variance of W, (p, s) satisfies

N o p*s*(1 —p)(1 —s)?
W7 = W )l = 7= e 2=y

+ op(1). (24)

Lemmas B6(z¢ and iv) imply that

2 _ PP (1-p)(1—s)
{1-s(1-p)}

Further, we have E[W,,(p, s)|Fnn] = —Hn(p, s)+w1(p, s), so that E[W,,(p, s)Hy(p, s)|pn] = —E[Hn(p,
$)?|Dn] + 1(p, 8)E[Hn(p, s)|pn] + op(1). Thus,

E[Hy(p, 5)*|Pn] — E[Hn(p, 5)|Pn] +op(1). (25)

2 EWn(p, s)Hn(p; 8)[Pn] — E[Wn(p, 5)|pn] E[Hn(p, 5)|Pn]}

= —2{E[H,(p, s)?pn] — E[Hn(p, s)|Pn)*} + op(1). (26)

Given these, and adding together (24), (25) and (26), we obtain E[Gp(p, $)2|pn] — E[Gn(p, s)|pn]? =
s2p%(1 — s)*(1 —p)?/{1 — s(1 — p)}*{1 — s%(1 — p)} +op(1), which is the desired asymptotic variance.

Third, the asymptotic normality of H,(p, s) follows from Lemma B2 and (23); the asymptotic covari-
ance between H,,(p, s) and W, (p, s) is given in (26). Thus, if the asymptotic normality of W, (p, s) is
proved, then the asymptotic normality of G, (p, s) is obtained. For this, we consider V[N/n(p, s), which is
Wh(p,s) — v(p, s) + op(1) by Lemma B7(7), so that these have the same limiting distribution. This can
be shown by corollary 2 of Herrndorf (1984). First, from the definition of S, ;(p, s), E[Sy,i(p, s)] = 0,
and E[S,,;(p, 8)?] < oo because |s| < 1. Therefore, {S,,;(p, s)} satisfies the condition (1.1) of Herrndorf
(1984). Second, Lemmas B6(i and i) show that E[W,, (p, s)2] = E[Wn(p, 8)2— E[Wn(p, s)]2+op(1) =
p?s?(1 —p)(1 —8)?/[{1 — s(1 — p)}? {1 — s%(1 — p)}] + op(1), which is greater than zero. Thus, (1.2)
of Herrndorf (1984) holds. Third, (1.3) of Herrndorf (1984) trivially holds by the stationarity condition.
Finally, the size of a-mixing coefficient is bounded by 3-mixing coefficient because 2« 1. < 3, 1, and
Bnk < n%? [ K(y)dF,(y) by Remark 4(a — 2). Thus, o,z = O(n~*/2). Further, |s| < 1, so that
for any k > 2, E[ng] < 00, implying that (1.3) of Herrndorf (1984) holds. Therefore, the asymptotic
normality of Wn (p, s) follows by corollary 2 of Herrndorf (1984). |

Remark 6: (a) The given weak convergence in Lemma B8 can be also proved using the CLT, exploiting
the S-mixing coefficients.

(b) The given weak convergence in Lemma 8 can be further extended to weak convergence involving
multivariate random variables on multiple elements in J x S by the Cramér-Wold device. We do not show

this for brevity.
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LEMMA B9: Given conditions Al, A2(z), A3, AS, and HY,
W, —v=G;and
(13) H, — (p—v) = H.

Proof of Lemma B9: (i) We can use theorem 3 of Bickel and Wichura (1973) as before to establish this.
Computing the modulus of continuity based on the fourth moment is straightforward, but a tedious task.
We omit this for brevity because it is almost identical to the proof of Theorem 1 (4, 77, and 721).

(i1) Note that for each (p, s), pu(p, s) — v(p, s) = —ps(1 — s)Q(F~1(p))/{1 — s(1 — p)}? and H,,(p,
s) = —ps(1 — $)\Wa{Ep(Gn(p)) — F(Gn(p))}/{1 — s(1 — p,)}? + op(1) by (23). Thus, if we can show
that \/ﬁ{ﬁn — F'} is tight, then the desired result follows by Lemma B2. We complete the proof by
applying theorem 5.3 of Ango Nze and Doukhan (2004), which says that if 3, = O(k~!(log k)~%) for
some a > 2, then the tightness of \/n{F, — F} follows. If we let a = 3 then Brk = o(k™(log k)~) for
any n > 1 by Remark 4(b-2). |

Remark 7: (a) For brevity, we omit deriving the asymptotic covariance structure of W,, and H,, under H f
as this can be obtained in a manner similar to that obtaining the asymptotic variance of Gn (p, 8).

(b) Given the fact that G and ‘H are in C(J x S), they are tight, so that lemma 1.3.8(i7) of van der Vaart
and Wellner (1996, p. 21) implies that W,, and H,, are tight.

Proof of Theorem 6: Given the weak convergence in Lemma B8, the desired result follows by the tightness
implied by Lemma B9(7) (see Remark 6(b)) and the fact that (W,,, H,,)" is tight by lemma 1.4.3 of van der
Vaart and Wellner (1996, p. 30). [

7.2 Other Test Statistics

In this section, we provide formulae for the other test statistics used in our Monte Carlo experiments.

The following statistics are used for DGPs 2.1, 2.4-2.6, and 2.8-2.11:

RE, = maxy %Ln max|ag, Ok

RR,, := maxj, 52 max[dy, B] — miny, 52 max[ay, B;

RECUSUM,, := maxy =——| 31, vil;

OLSCUSUM, := maxy 57| S edls

M, := maxy, sup, \%(1 - %)\/ﬁ(kfl Zf:l Lie,<zy — (n—k)! Z?:kJrl 1{et§z})
SupW, := supy, <<y, Wn(k):

ExpWi, = In{gmboy 02 exp[0.5W, ()]s

AVEW,, = b Y2, Wa(k),

’
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where

(G, Be) = MY/ [k — @1y Brk — Bin)'s My, = Z'Z;

Z is the n x 2 matrix of the regressors;

(1 ks Blk) is the OLS estimator using the first k£ observations;

(o k, ng) is the OLS estimator using the (k + 1)-th to n-th observations;

e =Yy = Qi — PrnZi 67 = (n = 2) T30 e

v =Yy — A1 — Bl,tflzt; 02 :=(n—2)"1 3} sk

Wi(k) :={(n —2)62 — (n—3)62(k)}/52(k); k1 = |0.15n]; ke = [0.85n];
W1 4(k) ==Yy — éa g, — BrnZe; was(k) == Y; — G — BopZs; and

Ga(k) = (n = 3) {0 dne(k)? + iy Bz (k)%

The following statistics are used for DGPs 2.2, 2.7, and 2.12:

RE, := max; &n’i/ﬂgk\;

RR,, := maxy ﬁ’ﬁk\ — ming %@M;
RECUSUM,, := maxy =——| 31y v
NLSCUSUM,, := maxy, ﬁ\ Zle et

My, = maxg sup, | (1 = 2)/n(k™ S0 Liepeay — (0= k)7 000 Lo <o)
SupW,, := supy, <g<k, Wn(k);

ExpWy, 1= In{ o=y k2, expl0.5Wa (k)]}:

AVgWy 1= g S Wa(k),

’

where

B = M)? Brr — Bunl: My = 31, exp(2Z41,0) 27

BLk is the NLS estimator using the first £ observations;

sz is the NLS estimators using the (k + 1)-th to n-th observations;

e =Y —exp(B1nZi); 67 = (n = 1) 30 €

ve = Y; — exp(Bre-124); 3 1= (n — 1)~ T, v

Wi (k) := n{Brx — BoxHnVig/k + nVar/(n — k)} {B1k — Bax}: and

Vi,k and V3 ;. are the variance estimators of 31 j and 3 j respectively.
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Table I: ASYMPTOTIC CRITICAL VALUES OF THE TEST STATISTICS

Statistics \ Level 1% 5% 10% Statistics \ Level 1% 5% 10%
Tf?n(Sl) p=0.1 | 02474 0.1914 0.1639 '717?”(81) p=20.1 | 02230 0.1727 0.1420
0.3 | 05892 04512 0.3828 0.3 | 0.5004 0.3842 0.3225
0.5 | 0.8124 0.6207 0.5239 0.5 | 0.6413 0.4886 0.4092
0.7 | 0.9007 0.6841 0.5763 0.7 | 0.6065 0.4632 0.3889
09 | 0.7052 0.5329 0.4478 09 | 03066 0.2356 0.1973
T2..(S1)  p=0.1 | 0.7483 05683 04750 | 72 ,.(S1) p=0.1 | 0.7454 05677 04750
0.3 | 1.3517 1.0237 0.8582 0.3 | 1.3239 1.0069 0.8441

0.5 | 1.6846 12818 1.0728 0.5 | 1.5909 1.1990 1.0091
0.7 | 1.7834 1.3590  1.4000 0.7 | 1.5019 1.1360 0.9617
09 | 1.3791 1.0486 0.8839 0.9 | 0.7912  0.6028  0.5060
T s=-0.5 1] 03114 02439 0.2152 7~—fn s=-0.5 1] 02197 0.1785 0.1587
-03 | 0.1698 0.1330 0.1164 -0.3 | 0.1124  0.0905 0.0803
-0.1 | 0.0514 0.0402 0.0351 -0.1 | 0.0313 0.0254 0.0225
0.1 | 0.0466 0.0361 0.0315 0.1 | 0.0262 0.0210 0.0187
0.3 | 0.1246  0.0957 0.0836 0.3 | 0.0631 0.0504 0.0446
0.5 | 0.1769 0.1356 0.1183 0.5 | 0.0780 0.0625  0.0552
Tom s=-0.5 | 0.8091 0.6885 0.6160 7~;§0n s=-0.5 1] 0.6229 0.5319 0.4799
-0.3 | 0.4349 0.3650 0.3267 -0.3 | 0.3107 0.2668 0.2412
-0.1 | 0.1282  0.1072  0.0960 -0.1 | 0.0864 0.0734  0.0670
0.1 | 0.1124  0.0939  0.0840 0.1 | 0.0714 0.0604  0.0547
0.3 | 0.2898 0.2416 0.2154 0.3 | 0.1718 0.1454 0.1306
0.5 | 03962 0.3304 0.2948 0.5 | 02175 0.1869 0.1684
Tin(S1) 04571 03547 03124 Tin(S1) 03080 0.2440 0.2187
Toom(S1) 22956 19130 1.7331 Toon(S1) 20411 17101  1.5615
T1,n(S2) 0.1219  0.0955 0.0836 7~'17n(82) 0.0725 0.0590 0.0523
Toom(S2) 0.8091  0.6885 0.6160 Toon(S2) 0.6229  0.5319  0.4799
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Table II: LEVEL SIMULATION AT 5% LEVEL (IN PERCENT, 10,000 ITERATIONS)

DGP 1.1
Statistics \ n 100 300 500
T2, (S1) p=0.1 4.05 4.71 5.09
0.3 5.02 4.95 461
0.5 522 474 4.87
0.7 5.34 4.90 5.31
0.9 435 6.63 6.07
T2 A(S1) p=0.1 3.86 4.44 4.49
0.3 3.54 4.65 4.59
0.5 5.42 4.40 5.05
0.7 7.00 5.03 5.08
0.9 421 6.27 471
Ten s=-05 436 472 426
0.3 432 477 4.08
0.1 423 471 3.83
0.1 4.19 4.64 3.68
0.3 4.01 4.08 3.25
0.5 3.85 3.63 2.55
Tom s=-05 4.90 6.07 5.95
0.3 4.92 6.11 5.86
0.1 5.15 6.29 6.13
0.1 4.89 6.22 5.94
0.3 5.11 5.76 6.06
0.5 5.05 5.18 5.57
Tin(S1) 3.71 421 3.60
Toom(S1) 491 6.40 6.65
Tin(S2) 4.06 4.65 4.12
Toom(S2) 4.77 5.94 5.74
R,? 47
ST, 5.1
HW,? 6.5

aThese results are those given in Hong and White (2005). Their number of replications is 1,000.
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Table III: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)

DGP 1.2 DGP 1.3 DGP 1.4 DGP 1.5
Statistics \ n 100 200 100 200 100 200 100 200
TP.(S1)  p=0.1 | 2067 3317 | 2950 4500 | 27.53 4747 | 580 927
03 | 3327 5937 843 1057 | 877 1207 | 977 1540

05 | 3660 6517 | 533 547 | 520 580 | 1877 3293

07 | 3413 6030 | 933 1137 | 537 610 | 7617  97.33

09 | 2377 3807 | 3030 5157 | 1540 2397 | 7537  97.10

T2.(S1)  p=0.1 660 667 | 710 633 | 503 537 | 363 473
03 | 1057 2397 | 360 540 | 370 540 | 570  11.00

05 || 2407 4287 | 577 613 | 490 633 | 1643 2670

07 | 2953 4167 | 980 687 | 693 420 | 7297 9277

09 | 2247 2263 | 2730 3267 | 1443 1330 | 7230  89.87

Tin s=-05 || 6256 99.83 | 1353 9090 | 840 1163 | 81.73  99.30
03 || 6770  99.86 | 1466 9206 | 933 1296 | 8030  99.33

0.1 | 7006 9973 | 1566 9273 | 1053 1530 | 7686  98.90

0.1 | 7130 9970 | 1646 9340 | 1186 18.10 | 69.66  97.73

03 | 7030 99.60 | 1730 9346 | 1393 2350 | 58.50  94.00

05 | 6736 9946 | 1993 9333 | 1863 3280 | 4490  82.73

T2 s=-05 | 4380 7950 | 7.83 1346 | 570 610 | 7446  98.73
03 | 4966 8396 | 850 1366 | 660 676 | 7140  98.03

0.1 | 5563 87.80 | 9.83 1533 | 803  9.16 | 6643  96.53

0.1 | 5970 89.06 | 1120 17.66 | 10.10 1443 | 5506  91.33

03 | 6140 8830 | 1433 2486 | 1546 2560 | 40.76  79.13

05 | 5840 8483 | 2236 3723 | 2360 4633 | 2243 5030

Tr.n(S1) 5973 9093 | 1196 23.13 | 940 1373 | 1460 2733
Toon(S1) 2730 6156 | 583 1070 | 470 646 | 1813 3433
Tin(S2) 97.03  99.86 | 1636 2636 | 7560 8606 | 8230  92.40
Toon(S2) 4403 8050 | 720 1360 | 556 726 | 1376  18.56
R,* 138 254 | 264 522 15.0 72 | 598 754

ST, 124 220 | 612 900 | 278 520 | 816 984
HW,,? 140 270 | 376 676 | 206 352 | 696 956

aThese results are those given in Hong and White (2005). Their number of replications is 500.
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Table IV: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)

DGP 1.6 DGP 1.7 DGP 1.8 DGP 1.9
Statistics \ n 100 200 100 200 100 200 100 200
TP.(S1)  p=0.1 130  6.83 100 533 | 277 373 | 2783 4770
0.3 993 1633 | 1890 3367 | 1773 3257 | 3947  64.23

0.5 833 1087 | 927 1137 | 3177 5980 | 43.13  68.00

0.7 | 3087 5717 | 1807 2873 | 33.60 5843 | 3997  62.13

09 | 2643 4127 | 2400 3903 | 2237 3463 | 2630 3750

T2, (S1)  p=01 373 573 | 433 430 | 377 367 | 950 1453
0.3 600 1047 | 893 1623 | 583 1280 | 2223 4433

0.5 847 990 | 810 983 | 2047 3693 | 3460  59.23

0.7 | 3363 4720 | 1667 1817 | 3003 3993 | 3783  54.90

09 | 2580 2960 | 2253 2270 | 2063 1997 | 2483  29.80

Ten s=-05 | 2513 6093 | 21.96 5146 | 50.13  83.03 | 5636  80.73
03 | 2513 60.10 | 2413 5593 | 5426  86.16 | 5743  81.10

0.1 | 2240 5620 | 25.16 5893 | 5593 8753 | 57.80  81.46

0.1 | 2013 5210 | 2510 5996 | 5620  87.26 | 5846  81.96

03 | 1690 4373 | 23.10 5646 | 5333 8490 | 59.13 8213

05 | 1236 3230 | 1753  47.60 | 4893 8023 | 59.50  82.20

T s=-05 | 23.13 5423 | 2080 4336 | 4046 7583 | 5570  80.06
03 | 2203 5046 | 21.50 4680 | 4556  79.86 | 57.20  80.83

0.1 | 2050 4550 | 23.03 4993 | 49.60 8236 | 57.83  81.53

0.1 | 1743 3826 | 2196 4836 | 5120 8273 | 5856  82.00

03 | 1416 3010 | 2050 4570 | 49.70  80.60 | 59.33  82.40

0.5 9.83 2140 | 1490 3826 | 4386 7143 | 5953  82.56

Tr.n(S1) 2590 5936 | 1943 4610 | 4796 8150 | 5633  79.96
Toon(S1) 2236 5056 | 1450  29.10 | 2636 5580 | 5026  75.60
Tin(S2) 2280 5640 | 2363 5723 | 5490 8640 | 5870  81.40
Toom(S2) 2280 5370 | 19.66 4150 | 39.63 7636 | 5460  79.73
R,? 318 652 | 246 808 142 346 | 602 840

ST, 348 728 | 258 868 134 238 | 558 798
HW,? 340 740 | 256 854 170 262 | 608 84.6

aThese results are those given in Hong and White (2005). Their number of replications is 500.
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Table V: LEVEL SIMULATION AT 5% LEVEL (IN PERCENT, 10,000 ITERATIONS)

DGP 2.1 DGP 2.2
Statistics \ 7 100 300 500 100 300 500
T2, (S1) p=0.1 412 4.88 5.02 425 5.01 5.02
0.3 5.12 522 5.07 5.20 5.12 5.23

0.5 476 551 533 5.02 5.04 538

0.7 5.81 5.63 5.19 5.14 451 532

0.9 3.71 6.63 592 435 6.87 6.02

T2 .(S1) p=0.1 3.86 6.38 6.04 433 6.44 6.32
0.3 5.56 4.56 6.10 5.68 4.82 6.38

0.5 5.17 534 5.60 5.60 5.06 5.77

0.7 7.44 5.70 4.88 6.89 4.54 5.15

0.9 3.58 6.25 7.43 4.14 6.47 7.49

Tin s=-05 437 4.66 432 418 471 421
0.3 427 482 4.40 429 475 413

-0.1 3.98 457 4.06 4.18 447 3.97

0.1 3.90 446 3.78 4.02 429 3.67

0.3 3.46 3.95 3.30 3.86 3.96 3.04

0.5 334 331 2.72 3.50 3.52 257

Tm s=-05 4.42 5.96 6.13 4.63 6.16 6.12
0.3 4.49 5.73 6.12 4.64 6.07 6.06

-0.1 4.64 5.87 6.27 4.62 5.94 6.19

0.1 441 5.66 6.28 453 5.65 6.04

0.3 447 5.53 5.84 479 5.27 5.77

0.5 478 4.95 521 478 4.95 522

T (S1) 3.69 434 3.50 3.62 3.90 3.46
Toom(S1) 522 6.65 6.50 5.00 5.98 6.97
Tin(S2) 3.94 433 3.98 371 441 4.09
Toom(S2) 487 5.53 6.02 4.89 5.62 6.25

M, 2.89 443 475 3.98 533 5.62

RE, 7.89 4.14 3.11 71.90 70.70 31.01

RR, 9.28 430 2.74 64.39 60.78 66.15

SupW,, 477 441 457 2.93 0.94 1.31
AvgW, 5.81 5.29 5.10 2.60 1.69 2.22
ExpW,, 534 5.35 5.04 1.78 235 3.13
RECUSUM, 1.65 3.07 3.68 3.41 3.86 3.64
O(N)LSCUSUM, 2.68 4.20 4.01 2891 30.22 55.50
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Table VI: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)

DGP 2.3 DGP 2.4 DGP 2.5 DGP 2.6 DGP 2.7
Statistics \ n 100 200 100 200 100 200 100 200 100 200
7~'17?n(81) p=0.1 1420 2273 | 18.13 29.60 | 2220 3993 | 16.70 24.70 | 35.67 59.00
0.3 || 19.06 31.86 | 27.47 48.43 | 20.53 37.60 7.80 10.37 | 22.87 39.23
0.5 || 21.00 37.70 | 29.03 5543 | 21.83 37.77 5.80 7.77 | 1943 35.07
0.7 || 19.23 31.03 | 29.03 51.70 | 22.33  38.20 7.67 10.17 | 27.37 48.37
09 || 10.70 14.66 | 19.37 3277 | 22.63 3923 | 17.30 24.07 | 43.27 71.47
%oﬂ’n(Sl) p=0.1 4.10 4.30 5.90 5.53 5.50 6.80 6.07 5.03 7.57 9.47
0.3 4.43 8.70 7.70  21.80 6.87 1643 4.77 8.40 7.20 18.10
05 || 11.36 17.56 | 18.23 3347 | 13.80 20.50 5.93 6.50 | 12.63 20.10
0.7 || 1556 16.53 | 25.27 4440 | 18.83 32.30 7.30 9.83 | 2247 41.37
0.9 | 10.23 8.10 | 17.37 39.73 | 20.33 44.47 | 1527 2577 | 40.10 74.80
7~'fn s=-0.5 | 28.76 5146 | 4736 83.30 | 37.53 67.60 920 17.23 | 47.83 76.43
-0.3 || 33.46 59.10 | 53.60 86.73 | 4240 73.60 | 10.60 19.63 | 51.56 81.03
-0.1 || 3940 6650 | 57.76  89.13 | 4646 7733 | 11.96 21.56 | 54.83 82.93
0.1 || 46.20 73.23 | 60.73 90.73 | 48.80 80.13 | 13.36 23.63 | 57.36 84.66
0.3 || 50.73 79.46 | 61.06 91.00 | 49.83 81.00 | 14.53 24.16 | 58.26 85.16
0.5 || 5843 85.13 | 60.23 90.00 | 50.03 80.10 | 15.66 26.00 | 59.20 84.03
7~'§>’n s=-0.5 | 22.60 43.50 | 33.90 6830 | 22.96 49.46 6.10 10.56 | 31.66 59.56
-03 || 2870 53.10 | 41.16 75.53 | 28.20 56.63 7.06 12.56 | 36.50 64.93
-0.1 || 37.13 6240 | 47.10 80.76 | 33.66  63.53 893 1490 | 40.60 69.56
0.1 || 4430 70.36 | 51.76 83.30 | 3733 67.33 9.96 1590 | 43.76  71.96
0.3 || 51.06 77.03 | 55.50 84.86 | 41.23 70.16 | 11.73 18.43 | 47.63 72.53
0.5 || 59.70 83.50 | 54.63 83.56 | 43.00 6996 | 13.60 2243 | 49.13 73.06
’7~‘17n(Sl) 3273  56.70 | 46.53 80.13 | 36.06 66.73 946 1496 | 4593 46.86
%Oo,n(Sl) 1276 2450 | 22.13  46.10 | 15.63 30.06 5.50 7.70 | 19.06 38.26
7~‘17,,L(SQ) 4290 67773 | 58776 89.06 | 45.83 76.33 | 1226 19.83 | 54.86 84.70
%oo)n(Sg) 2393 4430 | 3500 69.13 | 23.63 49.40 6.03 9.60 | 29.43  60.00
M, 97.13 100.0 | 100.0 100.0 | 1293 23.03 1.97 2770 | 3596 6143
RE, 99.16 100.0 | 100.0 100.0 | 100.0 100.0 | 9496 100.0 | 79.50 89.13
RR, 9333 100.0 | 99.97 100.0 | 99.96 100.0 | 87.90 9993 | 69.43 81.73
SupW,, 98.26  100.0 | 100.0 100.0 | 100.0 100.0 | 85.63 97.86 | 94.89 99.03
AvgW,, 98.26 9996 | 100.0 100.0 | 100.0 100.0 | 73.76  92.60 | 94.87 99.02
ExpW, 98.76  100.0 | 100.0 100.0 | 100.0 100.0 | 85.73 97.70 | 90.19 98.14
RECUSUM,, 87.13  99.40 6.77 9.92 930 1143 | 1473 19.10 | 15.60 20.20
O(N)LSCUSU M, 99.16 100.0 | 19.67 2429 | 2243 26.60 | 1550 22.03 | 83.03 9240
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Table VII: POWER SIMULATION AT 5% LEVEL (IN PERCENT, 3,000 ITERATIONS)

DGP 2.8 DGP 2.9 DGP 2.10 DGP 2.11 DGP 2.12
Statistics \ n 100 200 100 200 100 200 100 200 100 200
7~'17:n(81) p=0.1 18.13  29.13 | 18.13 27.06 | 14.86 23.66 4.10 1233 | 24.03 4553
0.3 || 2747 49.87 | 25.50 43.26 | 20.06 37.43 | 37.83 63.23 | 20.53 34.53
0.5 || 29.03 55.77 | 2633 4790 | 21.56 41.06 | 46.40 74.57 | 18.93 29.27
0.7 || 29.03 5097 | 2546 45.06 | 22770 3990 | 35.87 63.67 | 1520 24.10
09 || 1937 3233 | 21.10 27.73 | 16.06 26.13 0.43 0.03 0.93 0.20
7~—£’n(§1) p=0.1 5.90 5.27 543 4.93 5.10 4.23 4.23 7.13 | 2427  46.60
0.3 7.70  20.83 7.86  15.83 6.43 1450 | 31.27 43.87 | 23.07 30.87
0.5 || 1823 3273 | 1640 28.16 | 13.10 2396 | 37.17 65.13 | 16.87 26.87
0.7 || 2527 4443 | 2243 2873 | 1976 2556 | 38.13 56.77 | 17.60  20.17
09 || 17.37 39.57 | 1990 15.06 | 14.80 14.23 0.40 0.07 0.90 0.53
7~'fn 5s=-0.5 | 46.63 80.86 | 4233 7543 | 37.63 6790 | 64.23 90.10 | 27.63 47.73
-03 || 53.33 8520 | 4693 80.03 | 42.76  73.26 | 6420 9030 | 25.16 44.40
-0.1 || 57.06 87.26 | 50.73 8343 | 4543 75.76 | 61.46 89.30 | 22.10 40.00
0.1 || 59.73 88.63 | 53.53 8530 | 4736 77.46 | 5523 86.33 | 17.76  33.00
0.3 || 60.66 89.20 | 54.50 85.40 | 4753 77.53 | 4473 79.60 | 11.93 23.70
0.5 || 60.13 88.20 | 53.70 83.86 | 46.26 7540 | 31.13 6443 7.06 13.96
7227” s=-0.5 | 3430 66.83 | 29.60 62.03 | 26.00 5293 | 55.86 84.30 | 22.80 36.33
-0.3 || 40.60 73.86 | 34.66 69.00 | 31.70 60.06 | 55.60 84.50 | 21.10 35.70
-0.1 || 46.56 80.56 | 40.30 7423 | 37.00 6590 | 54.46 83.53 | 19.46 33.33
0.1 || 5096 83.23 | 45.03 77.23 | 39.66 69.10 | 46.73 79.30 | 15.00 28.23
0.3 || 53.66 84.20 | 47.76  78.23 | 4250 70.40 | 37.33 7043 | 10.70 21.10
0.5 || 52.36 81.86 | 47.96 76.26 | 41.66 6743 | 1946 47.96 5.80 10.36
’7}’”(81) 46.26  81.20 | 40.16 75.83 | 35.63 66.20 | 58.73 88.66 | 26.10 47.30
%w,7l(81) 21.13  47.66 | 1756 4193 | 16.06 3543 | 4730 77.06 | 21.93 39.50
7}77,,(82) 5743 87.66 | 50.60 84.80 | 46.83 7546 | 59.86 89.90 | 21.66 39.76
%w,n(Sg) 33.00 66.73 | 28.73 62.60 | 2546 53.83 | 56.13 85.46 | 22.53 37.47
M, 100.0  13.67 9.80 1220 8.10 9.40 0.66 0.86 2.36 2.73
RE, 100.0 100.0 | 78.06 60.00 | 36.23 3.12 7.77 491 | 80.70 89.16
RR, 99.97 9996 | 77.86 59.73 | 34.33 3093 8.85 524 | 71.16  79.93
SupW,, 100.0 100.0 | 98.16 63.26 | 41.86 46.06 3.73 3.46 3.82 3.64
AvgW,, 100.0 100.0 | 92.80 50.16 | 34.16 32.63 4.35 3.63 3.34 3.15
ExpW, 100.0 100.0 | 98.86 62.66 | 43.50 42.40 3.56 3.19 1.76 1.87
RECUSUM,, 6.77 9.20 7.03 9.50 5.46 8.50 0.23 0.39 1.26 3.10
OLSCUSUM,, 19.67 2336 | 17.80 2040 | 13.63 15.70 0.43 0.39 | 2843 35.13
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