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1 Introduction

This note provides mathematical proofs of the main theoretical results reported in Cho, Kim, and Shin

(2014). We avoid possible confusions by using an equation number system different from that in Cho, Kim,

and Shin (2014) using square brackets.

1 Proofs

We first provide a number of preliminary lemmas and a corollary that will be used in proving the main

theorems.

Lemma A1. Under Assumption 1,

(i)
∑n

t=1 Wt−i = OP(
√
n) for i = 0, 1, . . . ; and

(ii) for each τ ,
∑n

t=1 K̄t(τ) = OP(
√
n) and

∑n
t=1 Kt(τ) = OP(n). �

Proof of Lemma A1: By letting r = 1, Assumption 1(vi) implies that n−1/2
∑n

t=1 W̄t ⇒ BW(1) and

n−1/2
∑n

t=1 K̄t(τ) ⇒ BK(1, τ). Furthermore, we can apply the ergodic theorem to n−1
∑n

t=1 Kt(τ) →

E[Kt(τ)] in probability, which completes the proof. �

Lemma A2. Under Assumption 1,

(i) n−1
∑n

t=1 Wt−iW
′
t−j → E[Wt−iW

′
t−j ] almost surely (a.s.) for i, j = 0, 1, . . . , q − 1;

(ii)
∑n

t=1 Wt−iX
′
t = OP(n) and

∑n
t=1 Ut−i(τ)Xt = OP(n3/2), where i = 0, 1, . . . ;

(iii) For each τ , n−1
∑n

t=1 Kt(τ)Kt(τ)′ → E[Kt(τ)Kt(τ)′] a.s.;

(iv) For each τ , n−1
∑n

t=1 Kt(τ)W′
t−i → E[Kt(τ)W′

t−i] a.s., where i = 0, 1, . . . , q − 1; and

(v) For each τ , n−3/2
∑n

t=1 Kt(τ)X′t ⇒ E[Kt(τ)]
∫ 1
0 B̄W (r)′dr. �

Proof of Lemma A2: (i) By applying the ergodic theorem to Assumption 1(ii), we obtain the result in Lemma

A2(i).

(ii) We follow the proof of Proposition 18.1(d) in Hamilton (1994, pp. 562–563) by letting his ut−s and

ξt−1 be our Wt−i and Xt, respectively. We then apply Assumption 1(vi), and derive
∑n

t=1 Wt−iX
′
t =

OP(n) by induction. By Assumption 1(vi), n−1/2
∑bn(·)c

t=1 Wt ⇒ B̄W (·). Then, it is straightforward

to show that
∑n

t=1 Ut−i(τ)Xt = OP(n) by the continuous mapping theorem and Assumptions 1(i) and

1(ii). Furthermore, it is elementary to show that
∑n

t=1 Xt = OP(n3/2). From these, it follows that∑n
t=1 Ut−i(τ)Xt = OP(n3/2).
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(iii) We first note that {Kt,i(τ)} is a stationary and ergodic process. First, consider when i ≤ q. Then,

Kt,i(τ) = −
∞∑

j=q−1
ξ0,j∗(τ)′Wt−i−j +

∞∑
j=0

ρj∗(τ)Ut−i−j(τ).

From the definition of ρj∗(τ) and Assumption 1(v), {
∑∞

j=0 ρj∗(τ)Ut−i−j(τ)} is stationary and ergodic. As-

sumption 1(v) and Theorem 4.4.1 of Brockwell and Davis (1991, p. 122) also imply that {
∑∞

j=q−1 ξ0,j∗(τ)′

Wt−i−j} is stationary, which implies that {
∑∞

j=q−1 ξ0,j∗(τ)′Wt−i−j} is ergodic by Theorem 3.35 of White

(2001). Thus, {Kt,i(τ)} is stationary and ergodic when i ≤ q. We next consider when i > q. Then,

Kt,i(τ) = −β∗(τ)′
i−q−1∑
j=0

Wt−q−j +
∞∑
j=0

πj∗(τ)′Wt−i−j +
∞∑
j=0

ρj∗(τ)Ut−i−j(τ),

and {
∑∞

j=0 πj∗(τ)′
∑n

t=1 Wt−i−j +
∑∞

j=0 ρj∗(τ)
∑n

t=1 Ut−i−j(τ)} is stationary and ergodic by the same

logic as above. Furthermore, {
∑i−q−1

j=0 Wt−q−j} is a sequence of finite sums of the stationary and ergodic

processes, so that {Kt,i(τ)} is stationary and ergodic even when i > q.

Given this, Assumption 1(vi) implies that E[Kt,i(τ)2] <∞. By applying the ergodic theorem to the def-

inition of Kt(τ), it follows that n−1
∑n

t=1Kt,i(τ)Kt,j(τ) → E[Kt,i(τ)Kt,j(τ)] a.s. for i, j = 1, 2, . . . , p.

This verifies Lemma A2(iii).

(iv) Since Kt(τ) and Wt−i are stationary and ergodic processes by Assumption 1(ii), {Kt(τ)W′
t−i}

is a stationary and ergodic process by Theorem 3.35 of White (2001). Moreover, by Assumption 1(vi),

E[Kt,j(τ)2] < ∞ and E[W 2
t−j,`] < ∞ for j = 1, . . . , p and ` = 1, . . . , k. Hence, the result in Lemma

A2(iv) follows from the ergodic theorem.

(v) First, we consider the case with i ≤ q. Then,

n∑
t=1

Kt,i(τ)X′t = −
∞∑

j=q−1
ξ0,j∗(τ)′

n∑
t=1

Wt−i−jX
′
t︸ ︷︷ ︸

OP(n)

+

∞∑
j=0

ρj∗(τ)

n∑
t=1

Ut−i−j(τ)X′t︸ ︷︷ ︸
OP(n3/2)

.

We now have that
∑n

t=1 Wt−i−jXt = OP(n) and
∑n

t=1 Ut−i−j(τ)Xt = OP(n3/2) by Lemma A2(ii).

Therefore, Assumption 1(v) implies
∑n

t=1Kt,i(τ)X′t = OP(n3/2). Furthermore, Ut−i−j(τ) and Xt are

independent by the definition of Ut−i−j(τ). This implies that
∑n

t=1(Ut−i−j(τ) − E[Ut−i−j(τ)])Xt =

OP(n) by theorem 17. 3 of Hamilton (1994, pp. 505–506). This implies that n−3/2
∑n

t=1Kt,i(τ)X′t =∑∞
j=0 ρj∗(τ)E[Ut−i−j(τ)] n−3/2

∑n
t=1 X′t = E[Kt,i(τ)]

∫ 1
0 B̄W (r)′dr.
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Next, consider the case with i > q. Then, Lemma A2(ii) allows that

n∑
t=1

Kt,i(τ)X′t

= −β∗(τ)′
i−q−1∑
j=0

n∑
t=1

Wt−q−jX
′
t︸ ︷︷ ︸

OP(n)

+

∞∑
j=0

πj∗(τ)′
n∑
t=1

Wt−i−jX
′
t︸ ︷︷ ︸

OP(n)

+

∞∑
j=0

ρj∗(τ)

n∑
t=1

Ut−i−j(τ)X′t︸ ︷︷ ︸
OP(n3/2)

.

By the same reason as above,
∑n

t=1 Wt−q−jX
′
t = OP(n),

∑n
t=1 Wt−i−jX

′
t = OP(n), and

∑n
t=1 Ut−i−j

(τ)X′t = OP(n3/2). Thus, Assumption 1(v) implies that
∑n

t=1Kt,i(τ)X′t is OP(n3/2), and n−3/2
∑n

t=1

Kt,i(τ)X′t = n−3/2
∑∞

j=0 ρj∗(τ)
∑n

t=1 Ut−i−j(τ)X′t + oP(1). The rest of the proof is identical to the case

when i ≤ q. This completes the proof. �

Lemma A3. Under Assumption 1,

n∑
t=1


n−3/2Xt

n−2XtX
′
t

n−1ψτ [Ut(τ)]Xt

⇒


∫ 1
0 B̄W (r)dr∫ 1

0 B̄W (r)B̄W (r)′dr∫ 1
0 B̄W (r)dBψ(r, τ)

 .

Proof of Lemma A3: By Assumption 1(vi), we have n−1/2
∑bn(·)c

t=1 Wt ⇒ B̄W (·). Then, application of the

continuous mapping theorem and Lemma 3.1(e) in Phillips and Durlauf (1986) delivers the desired result.

�

The following Corollary immediately follows from the previous Lemmas.

Corollary A1. Under Assumption 1,

(i) Let DG := diag([
√
nι′1+qk, nι

′
k]
′) and G := [G1, . . . ,Gn]′. Then,

D−1G G′GD−1G =

n∑
t=1


n−1 n−1W̄′

t n−3/2X′t

n−1W̄t n−1W̄tW̄
′
t n−3/2W̄tX

′
t

n−3/2Xt n−3/2XtW̄t n−2XtX
′
t



⇒


1 0′

∫ 1
0 B̄W (r)′dr

0 E
[
W̄tW̄

′
t

]
0′∫ 1

0 B̄W (r)dr 0
∫ 1
0 B̄W (r)B̄W (r)′dr

 ;

3



(ii) Furthermore,

D−1G G′Ψτ (U) =
n∑
t=1


n−1/2ψτ [Ut(τ)]

n−1/2ψτ [Ut(τ)]W̄t

n−1ψτ [Ut(τ)]Xt

⇒


Bψ(1, τ)

Bψ·W(1, τ)∫ 1
0 B̄W (r)dBψ(r, τ)

 ;

(iii) D−1H G′K(τ) = OP(1), where DH := diag([nι′1+qk, n
3/2ι′k]

′);

(iv) M := n−2X′[I− W̃(W̃′W̃)−1W̃′]X⇒
∫ 1
0 B̃W (r)B̃W (r)′dr; and

(v) n−1X′[I− W̃(W̃′W̃)−1W̃′]Ψτ (U)⇒
∫ 1
0 B̃W (r)dBψ(r, τ). �

Proof of Corollary A1: (i) Lemmas A1(i), A2(i) and A2(ii) imply that{
n−1

n∑
t=1

W̄t, n
−1

n∑
t=1

W̄tW̄
′
t, n
−3/2

n∑
t=1

W̄tX
′
t

}
→P

{
0,E[W̄tW̄

′
t],0

}
.

Next, Lemma A3 implies that

{
n−3/2Xt, n

−2X′tXt

}
⇒
{∫ 1

0
B̄W (r)dr,

∫ 1

0
B̄W (r)B̄W (r)dr

}
.

Combining these two results we obtain the desired result in Corollary A1(i).

(ii) Assumption 1(vi) implies that{
n−1/2

n∑
t=1

ψτ [Ut(τ)], n−1/2
n∑
t=1

ψτ [Ut(τ)]W̄t

}
⇒ {Bψ(1, τ),Bψ·W(1, τ)} .

Moreover, Lemma A3 implies that n−1
∑n

1 ψτ [Ut(τ)]Xt ⇒
∫ 1
0 B̄W (r)dBψ(r, τ). By combining these

results, we show that the asymptotic limit of D−1G G′Ψτ (U) is equal to Corollary A1(ii).

(iii) Notice that D−1H G′K(τ) = [n−1
∑n

t=1 Kt(τ)W̃′
t, n
−3/2∑n

t=1 Kt(τ)X′t]
′. Then, the desired result

in Corollary A1(iii) follows from Lemmas A1(ii), A2(iv) and A2(v).

(iv) Note that

M = n−2X′[I− W̃(W̃′W̃)−1W̃′]X = n−2X′X− (n−3/2X′W̃)(n−1W̃′W̃)−1(n−3/2W̃′X).

By Lemma A3, we have n−2X′X = OP (1); by Corollary A1(i) and Assumption 1(vi), (n−1W̃′W̃)−1 →
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diag[1,E(W̄tW̄
′
t)
−1] a.s.; and by Corollary A1(i) n−3/2W̃′X⇒ [

∫ 1
0 B̄W (r)dr,0]. Therefore, we have

M = n−2X′X− (n−3/2X′ιn)(n−3/2X′ιn)′ + oP(1)

⇒
∫ 1

0
B̄W (r)B̄W (r)′dr −

∫ 1

0
B̄W (r)dr

∫
B̄W (r)′dr =

∫ 1

0
B̃W (r)B̃W (r)′dr.

(v) We note that n−1X′Ψτ (U) ⇒
∫ 1
0 B̄W (r)dBψ(r, τ) = OP(1) by Corollary A1(ii), n−3/2W̃′X ⇒

[
∫ 1
0 B̄W (r)dr,0] by Corollary A1(i), (n−1W̃′W̃)−1 → diag[1,E[W̄tW̄

′
t]
−1] a.s. by Corollary A1(i) and

Assumption 1(vi), and n−1/2W̃′Ψτ (U)⇒
∫ 1
0 dBψ·W(r, τ) = OP(1) by Corollary A1(ii). Therefore,

n−1X′Ψτ (U)− n−3/2X′W̃(n−1W̃′W̃)−1n−1/2W̃′Ψτ (U)

⇒
∫ 1

0
B̄W (r)dBψ(r, τ)−

∫ 1

0
B̄W (r)dr

∫ 1

0
dBψ(r, τ) =

∫ 1

0
B̃W (r)dBψ(r, τ).

This completes the proof. �

Lemma A4. Under Assumptions 1 and 2,

(i)

n−1/2
bn( · )c∑
t=1

[ψτ1 [Ut(τ1)] , . . . , ψτs [Ut(τs)]]
′ ⇒ [Bψ (·, τ1) , . . . ,Bψ (·, τs)]′ ; and

(ii) J(τ )⇒ J β(τ ), where

J(τ ) :=



{
fτ1

(
1−

∑p
j=1 φj∗ (τ1)

)}−1
n−1X′

[
I− W̃(W̃′W̃)−1W̃′

]
Ψτ1(U){

fτ2

(
1−

∑p
j=1 φj∗ (τ2)

)}−1
n−1X′

[
I− W̃(W̃′W̃)−1W̃′

]
Ψτ2(U)

...{
fτs

(
1−

∑p
j=1 φj∗ (τs)

)}−1
n−1X′

[
I− W̃(W̃′W̃)−1W̃′

]
Ψτs(U)


.

Proof of Lemma A4: (i) The result in Lemma A4(i) is obviously implied by Assumption 2.

(ii) We note from the proof of Corollary A1(v) that, for each j = 1, 2, . . . , s,

1

n
X′[I− W̃(W̃′W̃)−1W̃′]Ψτj (U) =

1

n
X′Ψτj (U)−

[
1

n3/2

n∑
t=1

X′t

][
1√
n

n∑
t=1

ψτj [Ut(τj)]

]
+ oP(1),

where we use that for each j, n−1/2W̃′Ψτj (U) = OP(1) by Assumption 2. Applying Lemma A4(i) and

the continuous mapping theorem, we obtain the desired result in Lemma A4(ii). �

Although Lemmas A3 and A4, and Corollary A1 state the weak convergency results as if they are indepen-
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dent, their weak limits are jointly achieved under Assumptions 1 and 2. This is mainly because the weak

limits in Lemmas A3 and A4, and Corollary A1 are the variations of the weak limits jointly obtained by

Assumptions 1 and 2, respectively.

Using Lemmas A1–A4, we now prove the main results: Theorems 1–4.

Proof of Theorem 1: (i) We first note that

%τ
{
Yt − Z′tα̃n(τ)

}
= %τ

{
Ut(τ)−D−1n ṽn(τ)′Zt

}
,

where we let ṽn(τ) := Dn{α̃n(τ) − α∗(τ)} and Dn := diag([
√
nι′1+qk, nι

′
k+p]

′). Thus, minimizing∑n
t=1 %τ{Yt − Z′tα} with respect to α is equivalent to minimizing

Qτ,n(v) :=

n∑
t=1

[
%τ
{
Ut(τ)− (D−1n v)′Zt

}
− %τ {Ut(τ)}

]
with respect to v. Notice that this objective function can be rewritten as

Qτ,n(v) =−
n∑
t=1

v′D−1n Ztψτ [Ut(τ)] (A.1)

+
n∑
t=1

{
Ut(τ)− v′D−1n Zt

}
I
[
v′D−1n Zt < Ut(τ) < 0

]
−

n∑
t=1

{
Ut(τ)− v′D−1n Zt

}
I
[
0 < Ut(τ) < v′D−1n Zt)

]
where %τ (x− y)− %τ (x) = −yψτ (x) + (x− y) [I(0 > x > y)− I(0 < x < y)] for x 6= 0.

We derive the asymptotic behavior of each element in the RHS of (A.1) by combining the techniques in

Pesaran and Shin (1998) and Xiao (2009). First, notice that Assumptions 1(i, ii, iii, and vi) imply Assump-

tions A, B, and C of Xiao (2009). Thus, we can use his results to prove Theorem 1 as follows:

n∑
t=1

{
Ut(τ)− v′D−1n Zt

}
I
[
v′D−1n Zt < Ut(τ) < 0

]
=

1

2
fτv

′D−1n (Z′Z)D−1n vI
[
v′D−1n Zt < 0

]
+ oP(1)

n∑
t=1

{
v′D−1n Zt − Ut(τ)

}
I
[
0 < Ut(τ) < v′D−1n Zt

]
=

1

2
fτv

′D−1n (Z′Z)D−1n vI
[
v′D−1n Zt > 0

]
+ oP(1),

where Z := [Z1,Z2, . . . ,Zn]′. Hence, Qτ,n(v) = −v′D−1n (
∑n

t=1 Ztψτ [Ut(τ)]) + 1
2fτv

′D−1n (Z′Z)D−1n v

+oP(1), implying that D−1n ṽn(τ) = α̃n(τ)−α∗(τ) = f−1τ (Z′Z)−1Z′Ψτ (U) + oP(1).
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Next, partitioning Z into [G, Ỹ], where G := [G1,G2, . . . ,Gn]′ and Ỹ := [Ỹ1, Ỹ2, . . . , Ỹn]′, we can

show that

φ̃n(τ)− φ∗ (τ) = f−1τ [Ỹ′PGỸ]−1Ỹ′PGΨτ (U),

where PG := I−G(G′G)−1G′ and α̃n (τ)−α∗ (τ) = [(λ̃n(τ)−λ∗ (τ))′, (φ̃n(τ)−φ∗ (τ))′]′. We also

note that Ỹ = GΓ∗(τ) + K(τ), where K(τ) := K(τ) := [K1(τ), . . . ,Kn(τ)]′. Since PGG = 0, hence

Ỹ′PGỸ = K(τ)′K(τ)−K(τ)′G(G′G)−1G′K(τ),

Ỹ′PGΨτ (U) = K(τ)′Ψτ (U)−K(τ)′G(G′G)−1G′Ψτ (U).

Furthermore, n−1K(τ)′K(τ) → E[Kt(τ)Kt(τ)′] a.s. by Lemma A2(iii), and K(τ)′GD−1G (D−1G G′G

D−1G )−1D−1G G′K(τ) = OP(n) by Corollary A1(iii). More specifically, it follows that n−1/2K(τ)′GD−1G

⇒ [E[Kt(τ)],E[Kt(τ)W̄′
t],E[Kt(τ)]

∫ 1
0 B̄W (r)′dr]. Furthermore, note that n1/2DG = DH and from this,

it follows that K(τ)′GD−1H (D−1G G′GD−1G )−1D−1H G′K(τ) →P E[Kt(τ)W̃′
t]E[W̃tW̃

′
t]
−1E[W̃t Kt(τ)′]

by Corollary A1(i). This simple result follows from the fact that the limit matrix of D−1G G′GD−1G has zero

blocks that prevent the effects of
∫ 1
0 B̄W (r)′dr from being conveyed to the limit. This implies that

n−1Ỹ′PGỸ →P E
[
Kt(τ)Kt(τ)′

]
− E

[
Kt(τ)W̃′

t

]
E
[
W̃tW̃

′
t

]−1
E
[
W̃tKt(τ)′

]
= E

[
H̃t(τ)H̃t(τ)′

]
.

In a similar manner, K(τ)′GD−1G (D−1G G′GD−1G )−1D−1G G′Ψτ (U) = OP(
√
n) by Corollaries A1(i,ii,iii).

Hence,

n−1/2K(τ)′GD−1G (D−1G G′GD−1G )−1D−1G G′Ψτ (U)

= E
[
Kt(τ)W̃′

t

]
E
[
W̃tW̄

′
t

]−1 (
n−1/2W̃′Ψτ (U)

)
+ oP(1),

which implies that

n−1/2Ỹ′PGΨτ (U) = n−1/2K(τ)′Ψτ (U)− E
[
Kt(τ)W̃′

t

]
E
[
W̃tW̃

′
t

]−1
n−1/2W̃′Ψτ (U) + oP(1)

= n−1/2H̃(τ)′Ψτ (U) + oP(1)
A∼ N

{
0, τ(1− τ)E

[
H̃t(τ)H̃t(τ)′

]}
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according to Assumption 1(vi). This in turn implies that

√
n
(
φ̃n (τ)− φ∗ (τ)

)
A∼ N

[
0, τ(1− τ)f−2τ E

[
H̃t(τ)H̃t(τ)′

]−1]
.

We note that the asymptotic variance is identical to Π(τ) by definition.

(ii) To prove Theorem 1(ii), we use the fact that Ỹ = GΓ∗(τ) + K(τ). We then show that

λ̃n(τ)− λ∗ (τ) = f−1τ (G′G)−1G′Ψ(U)− (G′G)−1G′Ỹ
(
φ̃n(τ)− φ∗ (τ)

)
= f−1τ

(
G′G

)−1
G′Ψ(U)− Γ∗(τ)

(
φ̃n(τ)− φ∗ (τ)

)
−
(
G′G

)−1
G′K(τ)

(
φ̃n(τ)− φ∗ (τ)

)
.

(A.2)

If we let ς̃n(τ) := λ̃n(τ) + Γ∗(τ)φ̃n(τ) and ς∗(τ) := λ∗(τ) + Γ∗(τ)φ∗(τ), it easily follows that ς̃n (τ)−

ς∗ (τ) := ( λ̃n (τ)− λ∗ (τ)) + Γ∗(τ)(φ̃n(τ)− φ∗ (τ)), so we obtain from (A.2) that

√
n (ς̃n (τ)− ς∗ (τ)) =

√
nf−1τ D−1G

(
D−1G G′GD−1G

)−1
D−1G G′Ψτ (U)

−
√
nD−1G (D−1G G′GD−1G )−1D−1G G′K(τ)

(
φ̃n(τ)− φ∗ (τ)

)
.

Furthermore, Corollaries A1(i, ii) imply that D−1G G′GD−1G = OP(1) and D−1G G′Ψτ (U) = OP(1). Also,

D−1G G′K(τ) = OP(1) by Corollary A1(iii). We have already shown that Theorem 1(i) implies that φ̃n(τ)−

φ∗ (τ) = oP(1) and
√
nD−1G = O(1). By combining all of these results, we obtain that

√
n (ς̃n (τ)− ς∗ (τ)) =

√
nf−1τ D−1G (D−1G G′GD−1G )−1D−1G G′Ψτ (U) + oP(1)

=f−1τ N
(
D−1G G′GD−1G

)−1
D−1G G′Ψτ (U) + oP(1), (A.3)

where N := diag([ι′1+qk,0
′
k×1]

′). Thus, the last k elements of
√
n(ς̃n (τ)−ς∗ (τ)) are oP(1), which implies

that
√
n
{

(γ̃n(τ)− γ∗ (τ)) + β∗ (τ) ι′p

(
φ̃n(τ)− φ∗ (τ)

)}
= oP(1)
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because

(ς̃n(τ)− ς∗ (τ))

=



α̃n(τ)− α∗ (τ)

δ̃0,n(τ)− δ0∗ (τ)
...

δ̃q−1,n(τ)− δq−1∗ (τ)

γ̃n(τ)− γ∗ (τ)


+



µ∗(τ) µ∗(τ) · · · µ∗(τ)

ξ1,0∗(τ) ξ2,0∗(τ) · · · ξp,0∗(τ)
...

...
. . .

...

ξ1,q−1∗(τ) ξ2,q−1∗(τ) · · · ξp,q−1∗(τ)

β∗(τ) β∗(τ) · · · β∗(τ)


(
φ̃n(τ)− φ∗ (τ)

)
.

By the asymptotic result in Theorem 1(i), the desired result in Theorem 1(ii) follows. �

Proof of Theorem 2: We focus on the asymptotic behavior of

n

(γ̃n(τ)− γ∗ (τ)) + β∗ (τ)

p∑
j=1

(
φ̃j,n(τ)− φj∗ (τ)

) ,

which is equal to the last k elements of DG(ς̃n(τ)− ς∗ (τ)) by definition. Notice that

DG (ς̃n(τ)− ς∗ (τ)) =
(

D−1G G′GD−1G

)−1 {
f−1τ D−1G G′Ψτ (U)−D−1G G′K(τ)

(
φ̃n(τ)− φ∗ (τ)

)}
= f−1τ

(
D−1G G′GD−1G

)−1
D−1G G′Ψτ (U) + oP(1) (A.4)

because D−1G G′GD−1G = OP(1), D−1G G′K(τ) = OP(1), and φ̃n(τ)−φ∗ (τ) = OP(n−1/2) by Corollaries

A1(i), A1(iii), and Theorem 1(i), respectively. The last k elements of (D−1G G′GD−1G )−1D−1G G′Ψτ (U) are

also equal to M−1n−1X′[I− W̃(W̃′W̃)−1W̃′]Ψτ (U). Therefore, (A.4) implies that

n

(γ̃n(τ)− γ∗ (τ)) + β∗ (τ)

p∑
j=1

(
φ̃j,n(τ)− φj∗ (τ)

)
= f−1τ M−1

{
n−1X′[I− W̃(W̃′W̃)−1W̃′]Ψτ (U)

}
+ oP(1) = OP(1). (A.5)

Second, we focus on the relationship between {(γ̃n(τ) − γ∗ (τ)) + β∗ (τ)
∑p

j=1(φ̃j,n(τ) − φj∗ (τ))}
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and (β̃n(τ)− β∗ (τ)). Using the identity in [10], we have

n
(
β̃n(τ)− β∗ (τ)

)
=

1−
p∑
j=1

φj∗ (τ)


−1

n

(γ̃n(τ)− γ∗ (τ)) + β∗ (τ)

p∑
j=1

(
φ̃j,n(τ)− φj∗ (τ)

)+ oP(1) (A.6)

because Theorem 1(i) implies that φ̃n(τ) = φ∗ (τ) + oP(1), |
∑q

j=1 φj∗ (τ) | < 1 by Assumption 1(v), and

n{(γ̃n(τ)− γ∗ (τ)) + β∗ (τ)
∑p

j=1(φ̃j,n(τ)− φj∗ (τ))} = OP(1) by (A.5). Finally, combining the results

in (A.5) and (A.6), we obtain:

n
(
β̃n(τ)− β∗ (τ)

)
=

fτ
1−

p∑
j=1

φj∗ (τ)


−1

M−1
{
n−1X′[I− W̃(W̃′W̃)−1W̃′]Ψτ (U)

}
+ oP(1) (A.7)

the result of which, combined with Corollary A1(iv,v), and the continuous mapping theorem, delivers the

desired result in Theorem 2(i).

We turn to proving Theorem 2(ii). By the result in (A.7) and using the fact that M = OP(1) by Corollary

A1(iv), we obtain that

nM1/2
(
β̃n(τ)− β∗ (τ)

)
=

fτ
1−

p∑
j=1

φj∗ (τ)


−1

M−1/2
{
n−1X′[I− W̃(W̃′W̃)−1W̃′]Ψτ (U)

}
+ oP(1).

Corollary A1(iv,v) provides the asymptotic limits of M and n−1X′[I − W̃(W̃′W̃)−1W̃′]Ψτ (U). Noting

that W̃ and Ψτ (U) are independent, the desired result in Theorem 2(ii) follows using the mixture normality

of Phillips (1991b). �

Proof of Theorem 3: (i) It follows from [7] that for each j = 1, 2, . . . , s,

√
n
(
φ̃n(τj)− φ∗(τj)

)
= f−1τj E

[
H̃t(τj)H̃t(τj)

′
]−1 (

n−1/2H̃(τj)
′Ψτj (U)

)
+ oP(1). (A.8)

Assumption 1(vi) implies that E[H̃t(τj)H̃t(τj)
′] is positive definite. Using (A.8), we also note that the

10



asymptotic covariance matrix between
√
n(φ̃n(τi)− φ∗(τi)) and

√
n(φ̃n(τj)− φ∗(τj)) is obtained as

f−1τi f
−1
τj (min[τi, τj ]− τiτj)E

[
H̃t(τi)H̃t(τi)

′
]−1

E
[
H̃t(τi)H̃t(τj)

]
E
[
H̃t(τj)H̃t(τj)

′
]−1

= f−1τi f
−1
τj (min[τi, τj ]− τiτj)L(τi, τi)

−1L(τi, τj)L(τj , τj)
−1

by the definition of L(τi, τj). That is, the i-th row and j-th column block matrix of Ξ(τ ) are obtained. By

Assumption 2(i), Ξ(τ ) is positive definite, and we can apply the multivariate CLT using this to obtain that
√
n(Φ̃n(τ )−Φ∗(τ ))

A∼ N [0,Ξ(τ )].

(ii) By [9], for each j = 1, . . . , s,
√
n{(γ̃n(τj)−γ∗(τj))+β∗(τj)ι

′
p(φ̃n(τj)−φ∗(τj))} = oP(1), which

also implies that
√
n[Γ̃n(τ ) − Γ∗(τ )] = −

√
n[Λ(τ )(Φn(τ ) − Φ∗(τ ))] + oP(1). Hence, Theorem 3(i)

implies that
√
n[Γ̃n(τ )− Γ∗(τ )]

A∼ N(0,Λ(τ )Ξ(τ )Λ(τ )′). This completes the proof. �

Proof of Theorem 4: (i) It is easily seen from the definition of B̃n(τ ) and the result in (A.7) that

n
[
B̃n(τ )−B∗(τ )

]
= [Is ⊗M−1]J(τ ) + oP(1), (A.9)

and J(τ )⇒ J β(τ ) by Lemma A4(ii). Thus, Corollary A1(iv) implies that

n
[
B̃n(τ )−B∗(τ )

]
⇒

[
Is ⊗

(∫ 1

0
B̃W (r)B̃W (r)′dr

)−1]
J β(τ ).

(ii) Using (A.9), we note that rank[Is ⊗M1/2] = ks implies that n[Is ⊗M1/2][B̃n(τ ) − B∗(τ )] =

[Is ⊗M−1/2]J(τ ) + oP(1). Hence, applying the continuous mapping theorem, we obtain:

n
[
Is ⊗M1/2

] [
B̃n(τ )−B∗(τ )

]
⇒

[
Is ⊗

(∫ 1

0
B̃W (r)B̃W (r)′dr

)−1/2]
J β(τ ).

For each i = 1, 2, . . . , s, Bψ(·, τi) is independent of B̃W (·), so that we can obtain the desired result by

applying the mixture interpretation of Phillips (1991b). �
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