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Abstract

Testing the correct model specification hypothesis for artificial neural
network (ANN) models of the conditional mean is not standard. The tradi-
tional Wald, Lagrange multiplier, and quasi-likelihood ratio statistics weakly
converge to functions of Gaussian processes, rather than to convenient chi-
squared distributions. Also, their large sample null distributions are problem
dependent, limiting applicability. We overcome this challenge by applying
functional regression methods of Cho, Huang, and White (2008) to extreme
learning machines (ELM). The Wald ELM (WELM) test statistic proposed
here is easy to compute and has a large-sample standard chi-squared distri-
bution under the null hypothesis of correct specification. We provide asso-
ciated theory for time-series data and affirm our theory with some Monte
Carlo experiments.

Key Words Artificial neural networks; Gaussian process; Functional regres-
sion; Extreme learning machines.
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1 Introduction
Artificial neural networks (ANNs) are extensively used to approximate stochas-
tic relationships of unknown form. Their appeal is based on their universal ap-
proximation properties (see, e.g., Hornik, Stinchcombe, and White [21, 22], and
Stinchcombe and White [32]). Nevertheless, ANNs are often difficult to apply,
as they may require estimating a large number of unknown parameters (network
weights). Consequently, ANNs may suffer from overfitting, and their predictive
power can be poor for this reason.

This limitation motivates the search for parsimonious ANN models. For this,
one can first train a small ANN network and then train a larger network. One
can then test whether or not the fit of the larger network improves to a statisti-
cally significant degree. If it does, one has evidence that the parsimonious model
suffers from misspecification, in the sense that the smaller model’s errors contain
approximation error as well as pure prediction error. If not, one has evidence that
the larger network is unnecessary, as the smaller network’s errors are mostly pure
prediction error.

There are many test statistics in the literature that can be applied for this pur-
pose; their variety is due to the fact that this is a nonstandard testing problem.
Specifically, there are unidentified parameters under the null of correct model
specification (see Davies, [12, 13]); this causes standard test statistics to behave
in nonstandard ways. For example, the Wald test examined by Bierens [5] and
Hansen [19] for cross-section and time-series data, respectively, does not follow
a standard chi-squared distribution under the null of correct specification. In-
stead, it weakly converges to a function of a Gaussian process, and its limiting
null distribution is problem dependent. As another example, the quasi-likelihood
ratio (QLR) test statistic designed to overcome the twofold identification problem
pointed out by Cho, Ishida, and White [10] also does not follow a standard distri-
bution under the null. As White [36] and Kuan and White [24] note, it can be a
challenging task to construct test statistics in such a way that they follow standard
distributions under the null and, at the same time, have non-negligible power to
detect misspecification.

The goal of the current study is motivated by this observation. We seek a
statistical test for the correct model specification hypothesis, whose application is
straightforward and that has a standard asymptotic null distribution. This test can
then be used to help construct parsimonious ANN models.

We achieve our goal by combining the theory of functional regression with that
of extreme learning machines (ELM). Cho, Huang, and White [9] study functional
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regression, in which functional data are regressed against known deterministic
functions. These authors develop a statistic to test whether or not the population
mean of the functional data is a constant function. Conveniently, the statistic
follows a standard limiting chi-squared distribution under the null. Nevertheless,
the required integrations make computing the test statistic quite demanding. This
limits applicability, except when the observed functional data have a fairly simple
structure. Here, we avoid this difficulty by applying extreme learning machines
(ELM) to generate functional data for the test. Applying ELM methods proposed
by Huang, Zhu, and Siew [23] and by White [43] (“QuickNet”) indeed enables
our Wald ELM (WELM) test to be computed very conveniently.

The plan of this paper is as follows. We first introduce and heuristically moti-
vate the WELM test in Sections 2 and 3. The WELM test is analyzed in Section
4 under a set of formal regularity conditions. There, we examine large sample
properties of the WELM statistic under the null and alternative hypotheses. We
report the results of some Monte Carlo experiments in Section 5; mathematical
proofs are gathered into the Appendix.

2 The Data Generating Process (DGP) and ANN Mod-
els

We suppose the data to be analyzed are weakly dependent time-series data:

Assumption A1 (DGP): Let (Ω,F ,P) be a complete probability space, and let
k ∈ N. Let {(Yt,X′t)′ : Ω → R1+k : t = 1, 2, . . .} be a strictly stationary and
absolutely regular process with mixing coefficients βτ such that for some ρ > 1,∑∞

τ=1 τ
2ρ/(ρ−1)βτ <∞.

Here, Yt and Xt are serially dependent target and explanatory variables, respec-
tively. For convenience, we permit Xt to include a constant element. It may also
include Yt−1, Yt−2, etc. The mixing coefficients βτ measure the dependence of the
stochastic process as

βτ ≡ sup
s∈N

E[ sup
A∈F∞

s+τ

|P (A | F s−∞)− P (A)|],

where F ts is the σ−field (“information set”) generated by (Ys,X
′
s), ..., (Yt,X

′
t),

and Assumption 1 implies that βτ is size of−2ρ/(ρ− 1). That is, for some ε > 0,
βτ = O(τ−2ρ/(ρ−1)−ε). The dependence allowed here is less than that assumed in
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the previous literature, such as Hansen [19, 20], Cho and White [8], Cho, Huang,
and White [9], Cho, Ishida, and White [10]. On the other hand, this stronger
condition enables us not only to consistently estimate the asymptotic covariance
matrix of our estimator, despite the dependence, but also to ensure applicability of
the functional central limit (FCLT) theorem, both of which are needed in deriving
the asymptotic null distribution of our test statistic.

We suppose that the researcher’s interest lies in estimatingE[Yt|Xt], the mean-
squared-error optimal predictor of Yt given Xt. Suppose further that the researcher
approximates E[Yt|Xt] using a function Φ as

E[Yt|Xt] ≈ Φ(Xt,θ∗)

where θ∗ is a suitably chosen parameter vector. For example, Φ(Xt,θ∗) could be
the output of a hidden layer feedforward network (e.g., as in Kuan and White [24])
with network weights θ∗. We call Φ the researcher’s “specification” for E[Yt|Xt].
The question we consider here is whether for some θ∗ the approximation is exact
(“correct specification”), so there is no possible way to improve the prediction,
or if the approximation using Φ is not perfect (“misspecification”), implying that
prediction improvements are possible. If the former is true, we can avoid subop-
timal predictions resulting from unnecessarily elaborating the prediction method.
If the latter, we can avoid suboptimal predictions resulting from an overly simple
prediction method.

To address this issue we impose the following assumption.

Assumption A2 (Model): Let Θ ⊂ Rd, d ∈ N, be a non-empty compact convex
set and suppose that for each θ ∈ Θ, Φ( · ,θ) : Rk 7→ R is a measurable function
such that for each ω ∈ F ∈ F with P(F ) = 1, Φ(Xt(ω), · ) : Θ 7→ R is twice
continuously differentiable. Let Λ ⊂ R and ∆ ⊂ Rk be non-empty compact
convex sets with 0 ∈ int(Λ), and suppose that Ψ : R 7→ R is a non-polynomial
analytic function.

We can now formally state the null hypothesis of correct specification of Φ
and the alternative of misspecification as

H0 : For some θ∗ ∈ Θ, P[E(Yt|Xt) = Φ(Xt,θ∗)] = 1 versus

H1 : For all θ ∈ Θ, P[E(Yt|Xt) = Φ(Xt,θ)] < 1.

The augmented specification f(Xt;θ, λ, δ) := Φ(Xt,θ) + λΨ(X′tδ) is the
original specification, Φ, augmented by the contribution from an additional hidden
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unit with activation function Ψ, input-to-hidden weights δ, and hidden-to-output
weight λ. The augmented specification generates the (augmented) modelM as

M := {f( · ;θ, λ, δ) : (θ, λ, δ) ∈ Θ×Λ×∆}.

Thus, the null model M0 := {Φ( · ,θ) : θ ∈ Θ} obtains when λ = 0 and
is nested in M. When Φ is correctly specified, E[Yt|Xt] ∈ M0, that is, H0

holds. Otherwise,H1 holds. The advantage to specifyingM as we have is that, as
Stinchcombe and White [32] show, if Ψ is generically comprehensively revealing
(GCR), then whenever H1 holds, the augmented specification f is guaranteed to
provide a better prediction than the original specification Φ, revealing the presence
of arbitrary misspecification of Φ. That is, we just need to check whether adding
a single suitably chosen (i.e., GCR) hidden unit to the original specification can
improve prediction performance. By assuming that Ψ is non-polynomial analytic,
we ensure that it is GCR.

There are many admissible choices for Ψ, and each has its own merits. For
example, White [36] considers the logistic cumulative distribution function (CDF)
for Ψ; Bierens [5] examines the correct model specification assumption by letting
Ψ = exp; and Candés [7] analyzes ridgelet functions. In addition, the familiar
trigonometric functions will also work.

Note also that Φ is only mildly restricted. It can be any feedforward network
with any finite number of hidden units and weights and any sufficiently smooth
activation functions. A particularly simple but important case is that of a linear
input-output network, Φ(Xt,θ) = X′tθ, as this form is widely used for making
predictions. White [36] and Lee, Granger, and White [25], among others, explic-
itly test the linearity hypothesis using various analytic functions Ψ.

The literature provides many testing procedures suited to our present goal.
For example, the goodness-of-fit test examined by Delgado and Stute [14] can be
used to test H0. Nevertheless, to maintain a tight focus in what follows, we limit
attention to tests utilizing the universal approximation feature of ANNs.

First, Wald and Lagrange multiplier (LM) test statistics are specifically ex-
amined by Bierens [5] and Hansen [19]. Their approach mainly focuses on the
coefficient λ. The null model M0 is generated if λ∗ is zero, where λ∗ is the
probability limit of the nonlinear least squares (NLS) estimator, say λ̂n Thus, a di-
agnostic test for correct specification can be constructed using the standard Wald
or LM statistics, testing λ∗ = 0. But when λ∗ = 0, the associated optimal pre-
diction parameter δ∗ is not identified, where δ∗ is the probability limit of the NLS
estimator, say δ̂n. The so-called Davies problem [12, 13] of nuisance parameters
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identified only under the alternative hypothesis is present, and the asymptotic null
distributions of the test statistics are different from the standard chi-squared dis-
tribution. Accordingly, a great deal of effort has focused on determining these
test statistics’ asymptotic null distribution. In most cases, this is a function of a
Gaussian process defined on ∆, but the asymptotic null distribution is different
for each modelM. This is also true of Neyman’s [27, 29, 30] C(α) test.

Second, White [36] and Lee, Granger, and White [25] take a different ap-
proach. They avoid the problem of nuisance parameters identified only under the
alternative by randomly selecting input-to-hidden weights δj, j = 1, ..., p, and
estimating the hidden-to-output weights by simple least-squares methods. This
random selection and estimation approach is exactly that known as extreme learn-
ing machines (ELM) in the analysis of Huang, Zhu, and Siew [23] and also pro-
posed by White [43], based on universal approximation results in Stinchcombe
and White [32]. The estimated hidden-to-output weights have a limiting normal
distribution, with mean zero under the null. This property can be used to con-
struct a Wald or LM statistic following a chi-squared distribution, yielding a test
for correct specification that is no longer model dependent. Nevertheless, the ran-
dom selection of a finite number of weights makes it possible that two researchers
using the same data could arrive at different conclusions due to different weight
selections.

Third, Cho, Ishida, and White [10] consider a quasi-likelihood ratio (QLR)
statistic, pointing out a previously overlooked issue that they call the twofold iden-
tification problem. Specifically, they note that nuisance parameters not identified
under the alternative arise not only when λ∗ is zero, but also when δ∗ = 0. In
the latter case, we have f(Xt;θ∗, λ∗, δ∗) = Φ(Xt,θ∗) + λ∗Ψ(0); and the sec-
ond component on the right-hand side (RHS) can form part of Φ(Xt,θ∗), pro-
vided Φ(Xt,θ∗) contains an intercept (bias) term, as it usually does. In this
case, the asymptotic null distribution of the QLR test can be obtained by care-
fully accounting for the interrelationship of the weak limits obtained under each
hypothesis: λ∗ = 0 and δ∗ = 0. Cho, Ishida, White [10] provide asymptotic
distribution results for QLR under new conditions, stronger than those used by
Hansen [19]. Their stronger conditions are needed to approximate the QLR statis-
tic with a fourth-order expansion, similar to the approach taken in related contexts
by Bartlett [3, 4] and McCullagh [26]. Unfortunately, however, the QLR statistic
is also model dependent, and constructing its asymptotic distribution is computa-
tionally intensive, involving use of the weighted bootstrap proposed by Giné and
Zinn [17] and Hansen [19].

Recently, Cho, Huang, and White [9] have proposed another approach to test-
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ing correct model specification. This is based on the fact that under the null of no
misspecification, the residuals obtained from the null model must be orthogonal
to any measurable function of explanatory variables Xt. This is true in particular
for Ψ(X′tδ), so that if we let Ut ≡ Yt − Φ(Xt,θ∗) be the residual derived from
the null model, then it follows that for every δ, E[UtΨ(X′tδ)] = 0 under the null.
Cho, Huang, and White [9] propose regressing UtΨ(X′tδ) on a vector of deter-
ministic functions of δ, say g( · ), and testing whether or not the coefficients of
g( · ) are equal to zero using a Wald-type test statistic. As this is a regression of
UtΨ(X′tδ) on g(δ) for every δ, they call this functional regression. The Wald-
type test is obtained by integrating out the functional coefficients of δ using an
arbitrarily chosen probability measure. Cho, Huang, and White show that their
Wald-type statistic converges to a standard chi-squared random variable under the
null, whereas it is not bounded in probability under the alternative. The test is
therefore not model dependent and has power to detect arbitrary misspecification.
But this can be computationally demanding, as computing integrals of random
functions is a time-consuming process.

These considerations motivate us to devise another approach that overcomes
the limitations of previous methods. Specifically, we combine the functional re-
gression of Cho, Huang, and White [9] with ELM, which replaces computation-
ally demanding methods with simple and straightforward procedures that yield
tests consistent against arbitrary misspecification under mild conditions.

3 A Heuristic Introduction to the WELM Test
We provide a heuristic motivation for our test statistic by first supposing that the
parameter θ∗ is known or given. In the next section, we provide a formal result
supposing more realistically that θ∗ is unknown.

Let θ∗ be the mean-squared-error optimal prediction parameter,

θ∗ ≡ arg min
θ∈Θ

E[(E[Yt|Xt]− Φ(Xt,θ))2].

It is readily verified that θ∗ also solves

min
θ∈Θ

E[(Yt − Φ(Xt,θ))2],

and that, under mild conditions, θ∗ is the probability limit of the NLS estimator,

θ̂n ≡ arg min
θ∈Θ

n−1

n∑
t=1

(Yt − Φ(Xt,θ))2.
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Letting the prediction error be Ut := Yt − Φ(Xt,θ∗), we may decompose it
into the sum of the specification error and a (pure) forecasting error. That is,

Yt ≡ Φ(Xt,θ∗) + E[Yt|Xt]− Φ(Xt,θ∗)︸ ︷︷ ︸
Specification Error

+Yt − E[Yt|Xt]︸ ︷︷ ︸
Forecasting Error︸ ︷︷ ︸

Ut:=Prediction Error

The behavior of Ut is different under H0 and H1. Specifically, if H0 holds, then
E[Yt|Xt] = Φ(Xt,θ∗) with probability one, so Ut = Yt − E[Yt|Xt] and for any
measurable function Ψ, E[UtΨ(X′tδ)] = 0 for every δ. On the other hand, under
H1, Ut = E[Yt|Xt]− Φ(Xt,θ∗) + Yt − E[Yt|Xt], so that

E[UtΨ(X′tδ)] = E[(E[Yt|Xt]− Φ(Xt,θ∗))Ψ(X′tδ)], (1)

is not necessarily equal to zero for every δ. Indeed, Bierens [5] shows that when
Ψ = exp, the δ’s for which E[UtΨ(X′tδ)] = 0 form a set of Lebesgue measure
zero that is not dense in ∆ under the alternative. Stinchcombe and White [32]
generalize this result by showing that it remains true for any GCR function Ψ,
such as nonpolynomial analytic functions.

This property provides the basis for a diagnostic test statistic. That is, if
E[UtΨ(X′tδ)] 6= 0 for some δ, this is evidence that Φ is misspecified, whereas
we cannot reject correct specification when E[UtΨ(X′tδ)] = 0 for all δ. Accord-
ingly, we construct a test statistic by regressing Ψ(X′tδ) on the constant 1 and
Ut := Yt − Φ(Xt,θ∗) for each δ. The estimated regression coefficients are[

α̂n(δ)

β̂n(δ)

]
:=

[
n

∑n
t=1 Ut∑n

t=1 Ut
∑n

t=1 U
2
t

]−1 [ ∑n
t=1 Ψ(X′tδ)∑n

t=1 UtΨ(X′tδ)

]
(2)

for each δ. Following Cho, Huang, and White [9], we call this procedure func-
tional regression, as the estimated coefficients are functions of δ.

For each δ,[
α̂n(δ)

β̂n(δ)

]
→
[
α∗(δ)
β∗(δ)

]
:=

[
1 B∗
B∗ C∗

]−1 [
D∗(δ)
F∗(δ)

]
a.s.− P

under mild regularity conditions, where

B∗ := E[Yt − Φ(Xt,θ∗)]

C∗ := E[(Yt − E[Yt|Xt])
2] + E[(E[Yt|Xt]− Φ(Xt,θ∗))

2]
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D∗(δ) := E[Ψ(X′tδ)], and

F∗(δ) := E[(E[Yt|Xt]− Φ(Xt,θ∗))Ψ(X′tδ)].

When Φ(Xt,θ∗) is an unbiased predictor for Yt, then B∗ = 0 for bothH0 andH1.
Under H0, F∗(δ) = 0 for each δ, so that β̂n(δ) converges to 0 a.s. − P. Under
H1, however, the almost sure limit of β̂n(δ) differs from 0 for almost every δ, by
the GCR property of Ψ.

We exploit these different limits for β̂n(δ) to construct a specification test
statistic. For this, we first obtain the asymptotic distribution of β̂n( · ), using the
Functional Central Limit Theorem (FCLT):

√
n

[
α̂n − α∗
β̂n − β∗

]
⇒ G :=

[
G1

G2

]
. (3)

This weak convergence holds under mild conditions given below, where G1 and
G2 are mean zero Gaussian stochastic processes with

E[G(δ1)G(δ2)′] = r(δ1, δ2) :=

[
r1(δ1, δ2) r2(δ1, δ2)
r2(δ1, δ2) r3(δ1, δ2)

]
:=

[
1 B∗
B∗ C∗

]−1 [
κ1(δ1, δ2) κ2(δ1, δ2)
κ2(δ1, δ2) κ3(δ1, δ2)

] [
1 B∗
B∗ C∗

]−1

for each δ1 and δ2 in ∆, where

κ1(δ1, δ2) := acov
[
n−1/2

∑
Ψ(X′tδ1), n−1/2

∑
Ψ(X′tδ2)

]
,

κ2(δ1, δ2) := acov
[
n−1/2

∑
Ψ(X′tδ1), n−1/2

∑
Ψ(X′tδ2)Ut

]
,

κ3(δ1, δ2) := acov
[
n−1/2

∑
Ψ(X′tδ1)Ut, n

−1/2
∑

Ψ(X′tδ2)Ut

]
,

respectively; and acov[ · , · ] denotes the asymptotic covariance between the indi-
cated variables.

Here, we can apply the FCLT for absolutely regular processes given in Doukhan,
Maasart, and Rio [15], showing the tightness of (α̂n, β̂n)′ as in Billingsley [6] and
van der Vaart [33]. In particular, for every δ,

√
nβ̂n(δ) is asymptotically bounded

in probability under H0, whereas it is not under H1. Using this simple fact, one
can define a variety of statistics that test this particular property.

Here, we seek a procedure that is not model dependent. Note that the given
covariance kernel r depends on the joint distribution of (Xt, Ut), and the particular
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form of Ψ, implying the model dependence of G. Cho, Huang, and White [9]
therefore advocate integrating over the associated random functions, which can
yield a test statistic whose asymptotic distribution is not model dependent.

Following this advice, we integrate
√
n[β̂n( · )− β∗( · )] over ∆. This gives∫

∆

√
n[β̂n(δ)− β∗(δ)] dQ(δ)⇒ N

(
0, τ 2
∗
)
,

where
τ 2
∗ :=

∫
∆

∫
∆

r3(δ1, δ2) dQ(δ1)dQ(δ2),

and Q(·) is a probability measure on ∆, specified by the researcher to focus power
in particular directions of concern. This permits construction of a Wald [34] statis-
tic,

Wn :=
n

τ̂ 2
n

[∫
∆

β̂n(δ) dQ(δ)

]2

,

where τ̂ 2
n is a consistent estimator for τ 2

∗ . Under H0, Wn ⇒ χ2
1, whereas Wn is

not bounded in probability underH1.
AlthoughWn is conceptually straightforward, computingWn can require im-

mense computational resources. To see why, note that computing
∫
∆
β̂n(δ) dQ(δ)

requires first computing
∫
∆

Ψ(X′tδ) dQ(δ) for every t. That is, n integrals of ran-
dom functions have to be computed with respect to δ. When n is even modestly
large, this can be extremely time consuming.

We can reduce this computational burden using ELM. Specifically, we treat
δ as a random variable distributed according to Q on ∆, so thatWn can be also
expressed as

Wn =
n

τ̂ 2
n

{EQ[β̂n(δ)]}2,

where EQ[ · ] denotes the expectation under Q( · ). This also implies that the in-
tegral defining Wn can be approximated by applying the law of large numbers
(LLN). That is, when {δj}mj=1 is a sequence of IID random variables following
Q( · ), the LLN yields that

m−1

m∑
j=1

β̂n(δj)→ EQ[β∗(δ)] a.s.− PQ as m,n→∞.

Thus, the Wald ELM (WELM) test statistic is computed as

Wn,m :=
n

τ̂ 2
n

(
m−1

m∑
j=1

β̂n(δj)

)2

.
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Before moving to the next section, where we drop the assumption that θ∗ is
known, we note that the functional regression approach considered here differs
somewhat from that considered by Cho, Huang, and White [9]. Specifically, they
construct a test statistic by regressing UtΨ(X′tδ) on the constant 1 and determin-
istic functions g(δ). Here, however, we regress Ψ(X′tδ) on the constant 1 and Ut.
This permits us to avoid specifying and integrating out the functions g, further
reducing the computational burden.

4 Formal Asymptotics for the WELM Test
Instead of assuming that θ∗ is known, we now treat it as unknown. We suppose the
researcher estimates θ∗ for the null model by NLS, so that θ̂n := arg minθ∈ΘQn(θ),
where for each θ,

Qn(θ) :=
1

2n

n∑
t=1

{Yt − Φ(Xt,θ)}2.

We impose the following regularity condition.

Assumption A3 (Estimator): There is a sequence of measurable functions {θ̂n :

Ω 7→ Rd} converging to θ∗ a.s. such that
√
n(θ̂n − θ∗) = −n1/2D−1

∗ Mn(θ∗) +
oP(1) = OP(1), where θ∗ := arg minθ∈Θ E[Qn(θ)] is unique and interior to Θ;
D∗ is a nonstochastic finite nonsingular d×dmatrix; and Mn(θ∗) := n−1

∑n
t=1 st(θ∗)

such that for every t, st(θ∗) := Ut∇θΦ(Xt,θ∗).

Assumption A3 is a standard condition ensuring consistency and asymptotic nor-
mality for the NLS estimator (see, e.g., White, 1994). Here, Mn(θ∗) is the gradi-
ent of Qn( · ) at θ∗; D∗ is the probability limit of the Hessian matrix of Qn( · ) at
θ∗; and θ∗ is not necessarily such that E[Yt|Xt] = Φ(Xt,θ∗), although this holds
underH0.

The NLS estimator is not the only estimator consistent for the conditional
mean, as pointed out by White [35]. Other estimators, such as the quasi-maximum
likelihood estimator (QMLE) can be used instead. This is useful, for example,
when Yt is binary, taking only the values 0 or 1. In such cases, we impose A3 with
Qn( · ) chosen to be a quasi-likelihood function. We then interpret θ̂n and st(θ∗) as
the QMLE estimator and score, respectively. Here, we specify the NLS estimator
for concreteness and to convey the key ideas without unnecessary technicality.
We note that A3 imposes certain implicit conditions: θ∗ is not defined without
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assuming the existence of E[Y 2
t ] and of E[Φ(Xt,θ)2] for every θ. This implies

that A3 cannot be effective without imposing these conditions. The following
condition explicitly ensures these, and suffices for a uniform law of large numers
(ULLN).

Assumption A4 (ULLN): There is a sequence of stationary and ergodic random
variables {Wt} with E[W 2

t ] <∞ such that
(i) |Yt| ≤ Wt;
(ii) supθ∈Θ |Φ(Xt,θ)| ≤ Wt; and
(iii) | ∂

∂θj
Φ(Xt,θ)| ≤ Wt, j = 1, . . . , d.

We now define the prediction error as Ût := Yt − Φ(Xt, θ̂n), t = 1, 2, ....
Next, we define the functional regression estimator. Replacing Ut in our previous
definition with Ût gives[

α̂n(δ)

β̂n(δ)

]
:=

[
n

∑n
t=1 Ût∑n

t=1 Ût
∑n

t=1 Û
2
t

]−1 [ ∑n
t=1 Ψ(X′tδ)∑n

t=1 ÛtΨ(X′tδ)

]
. (4)

We call this the two-stage functional ordinary least squares (2SFOLS) estimator
following Cho, Huang, and White [9].

To establish the consistency of the 2SFOLS estimator, we impose the follow-
ing additional conditions.

Assumption A5 (Bounds I): There is a sequence of stationary and ergodic ran-
dom variables {Mt} such that

(i) for some η ≥ 2(ρ− 1), E[M4+2η
t ] <∞;

(ii) |Ut| ≤Mt;
(iii) supδ∈∆ |Ψ(X′tδ)| ≤Mt; and
(iv) supδ∈∆ | ∂∂δj Ψ(X′tδ)| ≤Mt, j = 1, . . . , k.

Our first lemma is key to establishing the consistency of the functional regression
coefficients.

Lemma 1. Given A1, A2, A3, A4, and A5,
(i) {n−1

∑
Ût, n

−1
∑
Û2
t } → {B∗, C∗} a.s.−P;

(ii) ForDn(δ) := n−1
∑

Ψ(X′tδ) andG1,n(δ) := Dn(δ)−D∗(δ), supδ∈∆ |G1,n(δ)| →
0 a.s.−P; and

(iii) For Fn(δ,θ) := n−1
∑
{Yt−Φ(Xt,θ)}Ψ(X′tδ) andG2,n(δ,θ) := Fn(δ,θ)−

F∗(δ), supδ∈∆ |G2,n(δ, θ̂n)| → 0 a.s.−P.

12



From this, consistency of [α̂n, β̂n] for [α∗, β∗] easily follows. To save space, before
stating this result, we provide another regularity condition allowing us to establish
the desired weak limit. We let λmin( · ) denote the minimum eigenvalue of its
argument matrix.

Assumption A6 (Covariance): (i) λmin{V(δ1, δ2, δ1, δ2)} ≥ 0, where V(δ1, δ2, δ3, δ4) :=
acov[

√
nZn(δ1, δ2),

√
nZn(δ3, δ4)], Zn(δ1, δ2) := [Mn(θ∗)

′, G1,n(δ1), G2,n(δ2,θ∗)]
′;

and
(ii) Writing

V(δ1, δ2, δ3, δ4) :=

 I∗ %1(δ3) %2(δ4)
%1(δ1)′ κ1(δ1, δ3) κ2(δ1, δ4)
%2(δ2)′ κ2(δ2, δ3) κ3(δ2, δ4)

 ,
I∗ is a nonstochastic finite symmetric positive definite d× d matrix; and %i : ∆ 7→
R and κj : ∆×∆ 7→ R are continuous, i = 1, 2; j = 1, 2, 3.

Remark: We do not require the usual condition that λmin{V(δ1, δ2, δ1, δ2)} is
strictly positive, as zero is often encountered in applications. For example, if
δ1 = δ2 = 0, and Φ(Xt,θ) is an affine function of Xt, so that Φ(Xt,θ) =

X′tθ1 + θ0 with θ := (θ0,θ
′
1)′, then Fn(0, θ̂n) = n−1

∑
{Yt−Φ(Xt, θ̂n)}Ψ(0) =

Ψ(0) n−1
∑
{Yt − Φ(Xt, θ̂n)} = 0. Hence, λmin{V(0,0,0,0)} = 0. This is a

typical twofold identification example of the sort considered by Cho, Ishida, and
White [10]. They handle this problem using the QLR statistic, approximated by
a quartic expansion. (See Bartlett [3, 4] and McCallagh [26].) Assumption A6
accommodates this degenerate case.

The condition A6 enables us to derive the asymptotic behavior of the scores
constituting the WELM statistic. The following lemma formally states this.

Lemma 2. Given A1 - A6,
√
nZn ⇒ Z , where for each δ, Z(δ) := [S ′0,G1(δ),G2(δ)]′,

and Z : Ω ×∆ 7→ Rd+2 is a zero-mean Gaussian process such that for δ1, δ2,
E[Z(δ1)Z(δ2)] = V(δ1, δ1, δ2, δ2).

The result of Lemma 2 corresponds to eq. (3), but Lemma 2 accommodates the
parameter estimation error through n1/2Mn(θ∗). This results in an increase in the
dimension of V(δ, δ) relative to that in eq. (3). If θ∗ is in fact known, there is no
need to examine the asymptotic distribution of n1/2Mn(θ∗).

The next condition ensures that the determinant of the matrix defining [α∗, β∗]
is strictly greater than zero, ensuring a unique limit for the 2SFOLS estimator.
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Assumption A7 (Identification): C∗ > B2
∗ .

This condition is equivalent to requiring that C∗ −B2
∗ = var(Ut) > 0.

The following result establishes the consistency and asymptotic distribution
for the 2SFOLS estimator.

Theorem 1. Given A1 - A7,
(i) supδ∈∆ |α̂n(δ)− α∗(δ)| → 0 a.s.−P;
(ii) supδ∈∆ |β̂n(δ)− β∗(δ)| → 0 a.s.−P;
(iii) sup(θ,δ)∈Θ×∆ |n−1

∑
Ψ(X′tδ) ∂

∂θj
Φ(Xt,θ)−E[Ψ(X′tδ) ∂

∂θj
Φ( Xt,θ)]| →

0 a.s.−P, j = 1, . . . , d; and
(iv)
√
n[α̂n−α∗, β̂n−β∗]′ ⇒ U , where for each δ, U(δ) := A−1

∗ R∗(δ)Z(δ),

A∗ :=

[
1 B∗
B∗ C∗

]
, R∗(δ) :=

[
0′ 1 0

−K∗(δ)′D−1
∗ 0 1

]
,

and K∗(δ) := E[Ψ(X′tδ)∇θΦ(Xt,θ∗)].

Note that U is a linear function of Z . Thus, its covariance structure is also deter-
mined by that of V:

E[U(δ1)U(δ2)′] = A−1
∗ B(δ1, δ2)A−1

∗ ,

where B(δ1, δ2) := R∗(δ1)V(δ1, δ1, δ2, δ2)R∗(δ2)′. Here, R∗(δ) accommo-
dates the parameter estimation error. If K∗(δ) = 0 for each δ, so that R∗(δ) =
[02×d, I2×2], then the parameter estimation error does not influence the asymptotic
covariance matrix. In this case, it follows that E[U(δ1)U(δ2)] = r(δ1, δ2).

For notational simplicity in what follows, we partition E[U(δ1)U(δ2)] as[
ς1(δ1, δ2) ς2(δ1, δ2)
ς2(δ1, δ2) ς3(δ1, δ2)

]
.

We use Theorem 1 to construct a test that is not model dependent. We achieve
this by following Cho, Huang, and White [9], integrating over δ. For this, we use
the following conditions:

Assumption A8 (Adjunct Probability Measure): (i) (∆,D,Q) is a complete
probability space; and

(ii) (Ω×∆,F ⊗D,P ·Q) is a complete probability space.
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Assumption A9 (Integrability): Suppose λmax(L∗) < ∞ and λmin(L∗) > 0,
where

L∗ :=

[
G∗ J∗
J∗ Q∗

]
,

G∗ :=
∫
∆

∫
∆
ς1(δ1, δ2) dQ(δ1)dQ(δ2), J∗ :=

∫
∆

∫
∆
ς2(δ1, δ2) dQ( δ1)dQ(δ2),

and Q∗ :=
∫
∆

∫
∆
ς3(δ1, δ2) dQ(δ1)dQ(δ2).

This condition ensures that the integrals of the 2SFOLS estimator are well de-
fined. We obtain the asymptotic distribution of the integrated 2SFOLS estimators
as follows.

Corollary 1. Given A1 - A9,

√
n

[ ∫
∆
{α̂n(δ)− α∗(δ)} dQ(δ)∫

∆
{β̂n(δ)− β∗(δ)} dQ(δ)

]
A∼ N

[[
0
0

]
,

[
G∗ J∗
J∗ Q∗

]]
.

Note that the asymptotic variance Q∗ is different from τ∗ in the last section, as Q∗
accommodates the parameter estimation error. Unless K∗( · ) = 0, its influence
survives at the limit, and Q∗ 6= τ∗.

Corollary 1 has important consequences. Under H0, β∗ ≡ 0, so that
∫
∆
β∗(δ)

dQ(δ) = 0. Further, B∗ = 0 and C∗ = E[(Yt − E[Yt|Xt])
2], so that

ς1(δ1, δ2) = κ1(δ1, δ2)

ς2(δ1, δ2) = C−1
∗ {κ2(δ1, δ2)− %1(δ1)′D−1

∗ K∗(δ2)} and

ς3(δ1, δ2) =C−2
∗ {κ3(δ1, δ2)− %2(δ1)′D−1

∗ K∗(δ2)

−K∗(δ1)′D−1
∗ %2(δ2) + K∗(δ1)′D−1

∗ I∗D
−1
∗ K∗(δ2)}.

Under H1, β∗(δ) differs from 0 almost everywhere, so that
∫
∆
β∗(δ) dQ(δ) 6= 0

except in exceptional circumstances. Accordingly, we can test

H′0 :

∫
∆

β∗(δ) dQ(δ) = 0 versus H′1 :

∫
∆

β∗(δ) dQ(δ) 6= 0

using the Wald statistic

Ŵn :=
n

Q̂n

[∫
∆

β̂n(δ) dQ(δ)

]2

,
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where Q̂n is a consistent estimator for Q∗. We provide this below. The asymptotic
behavior of Ŵn underH0 andH1 and can be given as follows.

Theorem 2. Given A1 - A9, if Q̂n = Q∗ + oP(1), then
(i) Under H0, Ŵn ⇒ χ2

1 ; and
(ii) Under H′1, P[Ŵn ≥ cn]→ 1 for any sequence {cn} such that cn = o(n).

Theorem 2 follows easily from Corollary 1, although we provide its proof in the
Appendix.

To obtain a consistent estimator Q̂n for Q∗, we let

qt(θ) := Ut(θ)[Ψ̄t −∇θΦ(Xt,θ)J∗],

where for each θ ∈ Θ and t = 1, 2, ...,

Ut(θ) := Yt − Φ(Xt,θ), Ψ̄t :=

∫
∆

Ψ(X′tδ) dQ(δ),

J∗ := D−1
∗ F∗, and F∗ := E[Ψ̄t∇θΦ(Xt,θ∗)].

We use the following conditions to estimate Q∗ consistently.

Assumption A10 (Bounds II): There is a sequence of stationary and ergodic
random variables {M̃t} such that

(i) for some η̃ ≥ 2(ρ− 1), E[M̃4+2η̃
t ] <∞;

(ii) |qt( · )| ≤ M̃t;
(iii) | ∂

∂θj
qt( · )| ≤ M̃t for j = 1, 2, . . . , d;

(iv) E[supθ∈Θ |Ψ̄t
∂
∂θj

Φ(Xt,θ)|] <∞ for j = 1, 2, . . . , d; and

(v) for any θ and θ† ∈ Θ, | ∂
∂θj
qt(θ) − ∂

∂θj
qt(θ

†)| ≤ At‖θ − θ†‖ such that
E[At] <∞ for j = 1, . . . , d.

Assumption A11 (Near Epoch Dependence): {qt(θ)} is near epoch dependent
(NED) on {Yt,Xt} of size −2(2ρ− 1)/(2ρ− 2) uniformly on Θ, where ρ is given
in A1.

See Gallant and White (1988) for discussion of NED processes and the defini-
tion of NED size. The following lemma provides a class of consistent covariance
estimators.
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Lemma 3. Given A1 - A11, let Q̂n := (σ̂2
n)−2Ĥn, where

Ĥn :=
1

n

{
ωn0

n∑
t=1

Γ̂2
n,t + 2

kn∑
`=1

ωn`

n∑
t=`+1

Γ̂n,tΓ̂n,t−`

}
;

for each t, Γ̂n,t := Ût[Ψ̄t −∇′θΦ(Xt, θ̂n)Ĵn]; Ĵn := D̂−1
n F̂n;

F̂n := n−1

n∑
t=1

Ψ̄t∇θΦ(Xt, θ̂n);

σ̂2
n := n−1

∑n
t=1 Û

2
t ; D̂n is a consistent estimator for D∗, where {kn} is a se-

quence of integers such that kn → ∞ as n → ∞ with kn = o(n1/4); and
ωn` is such that |ωn`| < ∆̄ < ∞ and for each `, ωn` → 1 as n → ∞. Then
Q̂n = Q∗ + oP(1).

We note that Q̂n has almost same formula as theorem 6.8 of Gallant and White
[16], which generalizes the consistent covariance estimator of Newey and West
[28] based on the Bartlett [2] kernel. Lemma 3 follows as a corollary to theo-
rem 6.8 of Gallant and White [16]. The result follows by noting that the dataset
{(Yt,Xt)} in A1 is also an α-mixing sequence of size −2r/(r − 2) for r > 2.
This trivially holds by letting r = 2ρ and using the fact that 2ατ ≤ βτ for all τ .

The consistent estimator for Q∗ can be further simplified if the disturbance
term {Ut := Yt − Φ(Xt,θ∗)} is a martingale difference sequence (MDS). For
this, we assume

Assumption A12 (MDS): {Ut,Ft} is a martingale difference sequence, where
for each t, Ft−1 is the σ-field generated by {Xt, Ut−1,Xt−1, Ut−2, . . .}.

When A12 is imposed, Q∗ can be consistently estimated using a simpler form.
The following theorem states this.

Corollary 2. Given A1 - A12, Q̃n = Q∗ + oP(1), where Q̃n := (σ̂2
n)−2H̃n and

H̃n := n−1

n∑
t=1

Γ̂2
n,t.

Note that Q̃n does not take into account the serial correlation between time-series
observations, as A12 ensures that this does not matter. The Wald statistic using
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this estimator is

W̃n :=
n

Q̃n

[∫
∆

β̂n(δ) dQ(δ)

]2

.

Despite the promising features of these Wald tests, they are challenging to
compute, due to need to compute quantities such as n−1

∑n
t=1 Ût

∫
∆

Ψ(X′tδ) dQ(δ).
We overcome this difficulty by applying ELM. We suppose that IID random vari-
ables {δ1, δ2, . . . , δm} are drawn satisfying

Assumption A13 (Extended Adjunct Probability Space): (i) (∆∞,D∞,Q∞) is
a complete probability space, where ∆∞ := ×∞j=1∆, D∞ is the σ-field generated
by {×∞j=1Dj : Dj ∈ D}, and Q∞ is the measure onD∞ such that Q∞(×∞j=1Dj) =
×∞j=1Q(Dj);

(ii) (Ω×∆∞,F ⊗D∞,P ·Q∞) is a complete probability space; and
(iii) {δi} is a sequence of IIDD∞-measurable random variables, independent

of {Yt,X′t}.

The ELM condition enables computing the Wald statistics by applying the LLN.
For this, for each t, we let Ψ̄m,t := m−1

∑m
j=1 Ψ(X′tδj) and, with β̂n,m :=

m−1
∑m

j=1 β̂n(δj), we compute the WELM test statistics as:

Ŵn,m :=
n(β̂n,m)2

Q̂n,m

, and W̃n,m :=
n(β̂n,m)2

Q̃n,m

,

where Q̂n,m := (σ̂2
n)−2Ĥn,m and Q̃n,m := (σ̂2

n)−2H̃n,m, respectively. Here, for the
same ωn` and kn,

Ĥn,m :=
1

n

{
ωn0

n∑
t=1

Γ̂2
n,m,t + 2

kn∑
`=1

ωn`

n∑
t=`+1

Γ̂n,m,tΓ̂n,m,t−`

}
;

H̃n,m := n−1

n∑
t=1

Γ̂2
n,m,t,

where Γ̂n,m,t := ÛtΨ̄m,t − Ût∇′θΦ(Xt, θ̂n)D̂nF̂n,m; and

F̂n,m := n−1

n∑
t=1

Ψ̄m,t∇θΦ(Xt, θ̂n).
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The following theorem establishes the properties of the WELM test statistics. To
state the result, we write m,n → ∞ to denote the limit when first m → ∞ and
then n→∞.

Theorem 3. Suppose A1 - A11 and A13 hold. (a) If the conditions in Lemma 3
are further satisfied, then Q̂n,m → Q∗ + oPQ∞(1) as m,n→∞; further,

(i) Under H0, Ŵn,m ⇒ χ2
1 as m,n→∞; and

(ii) Under H′1, PQ∞[Ŵn,m ≥ cn] → 1 as m,n → ∞ for any sequence {cn}
such that cn = o(n).

(b) If A12 also holds, then Q̃n,m → Q∗ + oPQ∞(1) as m,n→∞; further,
(i) Under H0, W̃n,m ⇒ χ2

1 as m,n→∞; and
(ii) Under H′1, PQ∞[W̃n,m ≥ cn] → 1 as m,n → ∞ for any sequence {cn}

such that cn = o(n).

Therefore, the WELM tests and the Wald tests have essentially the same properties
for m and n sufficiently large. By letting m tend to infinity first and then letting n
go to infinity, we first approximate

∫
∆

Ψ(X′tδ)dQ(δ) by Ψ̄m,t and then apply the
asymptotics with respect to n. This simplifies the analysis.

One can refine this result by examining the convergence rate of the WELM
test. Letting m first tend to infinity turns out to be sufficient for obtaining the
desired results in Theorem 3. For this, we may apply arguments used in the simu-
lated method of moments literature (Gourieroux and Monfort [18]), which yield

1√
n

n∑
t=1

{UtΨ̄m,t − E[UtΨ̄t]}

=
1√
n

n∑
t=1

{UtΨ̄t − E[UtΨ̄t]}+
1√
n

n∑
t=1

{UtΨ̄m,t − UtΨ̄t}

= OP·Q∞(1) +OP·Q∞(1/
√
m).

Thus, just letting m tend to infinity eliminates the uncertainty introduced by using
ELM, and this result applies directly to the WELM test. In obtaining our result,
the ratio n/m does not matter, which differs from the result of Gourieroux and
Monfort [18]. In their case, as their estimator is nonlinear, one needs to examine
the limit of n/m to ensure the desired asymptotic behavior of their estimator.

In practice, we compute the WELM statistic as follows:
• Step 1: Estimate θ̂n using NLS and compute Ût := Yt−Φ(Xt, θ̂n) for every

t = 1, ..., n;
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• Step 2: For sufficiently large m, generate a sequence {δj} satisfying A13,
j = 1, 2, . . . ,m;
• Step 3: For each t, compute Ψ̄m,t := m−1

∑m
j=1 Ψ(X′tδj) for sufficiently

large m;
• Step 4: Compute the integrated 2SFOLS estimator by[

α̂n,m
β̂n,m

]
=

[
n

∑n
t=1 Ût∑n

t=1 Ût
∑n

t=1 Û
2
t

]−1 [ ∑n
t=1 Ψ̄m,t∑n

t=1 ÛtΨ̄m,t

]
;

• Step 5: Estimate the asymptotic variance by Q̂n,m := (σ2
n)−2Ĥn,m or Q̃n,m :=

(σ2
n)−2H̃n,m, where Ĥn,m and H̃n,m are given above;
• Step 6: Compute the WELM statistics as in the definition of Ŵn,m or W̃n,m,

respectively.
Although the WELM statistic is computationally convenient compared to its

non-ELM analog, the terms
∑n

t=1 Ψ̄m,t and
∑n

t=1 ÛtΨ̄m,t involve double sums,
requiring O(mn) operations. When n is large, this can still represent a good deal
of computation. An alternative method that requires only O(n) operations bases
the test on β̂+

n , computed from[
α̂+
n

β̂+
n

]
=

[
n

∑n
t=1 Ût∑n

t=1 Ût
∑n

t=1 Û
2
t

]−1 [ ∑n
t=1 Ψ(X′tδt)∑n

t=1 ÛtΨ(X′tδt)

]
.

Note that only single sums appear in the last term on the RHS, where we see that
each term uses a different random draw δt. Nevertheless, under our conditions,
we have β̂+

n → EQ[β∗(δ)] a.s. − PQ∞ as n → ∞, so tests based on β̂+
n should

have some power.
We call tests based on β̂+

n WELM-plus or simply WELM+ tests, given their
minimal computing requirements. The WELM+ test statistics are

Ŵ+
n :=

n(β̂+
n )2

Q̂+
n

and W̃+
n :=

n(β̂+
n )2

Q̃+
n

,

where Q̂+
n := (σ̂2

n)−2Ĥ+
n and Q̃+

n := (σ̂2
n)−2H̃+

n , respectively. Here, Ĥ+
n and

H̃+
n are computed analogously to Ĥn,m and H̃n,m, but with Γ̂n,m,t replaced by

Γ̂+
n,t := ÛtΨ(X′tδt)− Ût∇′θ Φ(Xt, θ̂n)D̂nF̂

+
n , where

F̂+
n := n−1

n∑
t=1

Ψ(X′tδt)∇θΦ(Xt, θ̂n).
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The following theorem establishes the properties of the WELM+ test statistics.

Theorem 4. Suppose A1 - A11 and A13 hold. (a) If the conditions in Lemma 3
are further satisfied, then Q̂+

n → Q∗ + oPQ∞(1) as n→∞; further,
(i) Under H0, Ŵ+

n ⇒ χ2
1 as n→∞; and

(ii) Under H′1, PQ∞[Ŵ+
n ≥ cn] → 1 as n → ∞ for any sequence {cn} such

that cn = o(n).
(b) If A12 also holds, then Q̃+

n → Q∗ + oPQ∞(1) as n→∞; further,
(i) Under H0, W̃n,m ⇒ χ2

1 as n→∞; and
(ii) Under H′1, PQ∞[W̃+

n ≥ cn] → 1 as n → ∞ for any sequence {cn} such
that cn = o(n).

Therefore, the WELM+ tests and the Wald tests have essentially the same proper-
ties for n sufficiently large.

In practice, we compute the WELM+ statistic as follows:
• Step 1: Estimate θ̂n using NLS and compute Ût := Yt−Φ(Xt, θ̂n) for every

t = 1, ..., n;
• Step 2: For sufficiently large m, generate a sequence {δt} satisfying A13,

t = 1, . . . , n;
• Step 3: Compute β̂+

n as given above;
• Step 4: Estimate the asymptotic variance by Q̂+

n or Q̃+
n as given above;

• Step 5: Compute the WELM+ statistics Ŵ+
n or W̃+

n as given above.
Although the WELM+ statistic is an order of magnitude simpler to compute,

it has the potential drawback that different researchers could reach different infer-
ences based on different draws of {δt}. This is less likely to be an issue with the
WELM statistic. Ultimately, whether to use WELM or WELM+ must be deter-
mined by their level and power properties. We investigate these below.

5 A Model Exercise
We now illustrate use of our methods by deriving the objects need to compute
a WELM statistic suitable for testing the correct specification of a linear model.
This provides foundation for our Monte Carlo experiments in the next section.

We suppose data are generated according to the following stationary and er-
godic first-order autoregressive process

Yt = θ1∗ + θ2∗Yt−1 + εt,
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where εt ∼ IID N(0, σ2
∗). Given this, we let our explanatory variable Xt be Yt−1

and suppose that θ = (θ1, θ2)′, so that our null model isM0 := {Φ( · ,θ) : θ ∈
Θ}, where Φ(Xt,θ) := θ1 + θ2Yt−1. We let Θ = R2; the fact that this is not
compact will create no difficulties here.

Next, we define our alternative model using the exponential function. That
is, M := {f( · ;θ, λ, δ) : (θ, λ, δ) ∈ Θ × Λ × ∆}, where f(Xt;θ, λ, δ) :=
θ1 + θ2Yt−1 + λ exp(δYt−1), Λ = [−λ̄, λ̄], ∆ := [δ, δ̄].

With this choice, the quantities relevant to the Wald ELM test are: Zn(δ1, δ2) :=
n−1

∑
[εt, εtYt−1, exp(δYt−1)−E[exp(δYt−1)], εt exp(δYt−1)]′; A∗ = diag{1, σ2

∗};
I∗ = σ2

∗D∗;

K∗(δ) :=

[
E[exp(δYt)]
E[Yt exp(δYt)]

]
; D∗ :=

[
1 E[Yt]

E[Yt] E[Y 2
t ]

]
;

%2(δ) :=

[
σ2
∗E[exp(δYt)]

σ2
∗E[Yt exp(δYt)]

]
; and

κ3(δ1, δ2) := σ2
∗E[exp{(δ1 + δ2)Yt}].

It then follows that

%3(δ1, δ2) :=
1

σ2
∗
M(δ1)M(δ2){exp(δ1δ2ω

2
∗)− 1− δ1δ2ω

2
∗},

using the fact that Yt ∼ N(µ∗, ω
2
∗), where µ∗ := θ1∗/(1−θ2∗), and ω2

∗ := σ2
∗/(1−

θ2
2∗), where M(δ) is the moment generating function of a normal random variable

with population mean µ∗ and variance ω2
∗ . That is, M(δ) := exp[µ∗δ + 1

2
ω2
∗δ

2].
This implies that

Q∗ =
1

σ2
∗

∫
∆

∫
∆

M(δ1)M(δ2)

× {exp(δ1δ2ω
2
∗)− 1− δ1δ2ω

2
∗} dQ(δ1)dQ(δ2).

Thus,
√
n
∫
∆
β̂n(δ) dQ(δ)

A∼ N(0, Q∗) by Corollary 1.

6 Monte Carlo Experiments
We report some Monte Carlo experiments in this section. First we consider the
behavior of the WELM test under the null hypothesis. We then consider its be-
havior under the alternative. Finally, we discuss the properties of the WELM+

test.
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Table 1: NULL REJECTION RATES FOR WELM TEST W̃n,m (IN PERCENT)
NUMBER OF REPLICATIONS: 10,000

DGP: Yt = Ut; Ut ∼ IID N(0, 1)

MODEL: Yt = θ1 + θ2Yt−1 + λ exp(δYt−1) + Ut

n 50 100 200 500 1,000
Nominal Level δj ∼ IID U [−0.5, 0.5] and m = 10, 000

1.00 % 0.38 0.55 0.67 0.90 0.94
5.00 % 4.04 4.57 4.61 4.66 5.15
10.0 % 10.35 10.52 10.11 9.54 9.84

Nominal Level δj ∼ IID U [−1.0, 1.0] and m = 10, 000
1.00 % 0.35 0.66 0.55 0.77 0.83
5.00 % 4.08 4.27 4.66 4.63 4.62
10.0 % 10.33 9.49 9.90 10.28 9.63

6.1 WELM Tests under the Null
6.1.1 Examination of W̃n,m

For H0, we use the environment described in Section 5, with θ1∗ = θ2∗ = 0 and
σ2
∗ = 1, so that µ∗ = 0 and ω2

∗ = 1. Accordingly, the observed data sequence
{Yt} is a sequence of IID standard normal random variables, implying that it is
an MDS sequence. We use W̃n,m for our Monte Carlo simulations, where Q is
selected as the uniform measure on ∆ = [−0.5, 0.5], implying that Q∗ ≈ 0.0040,
which we compute using MATHEMATICAr7.0. In particular, for each t, we
approximate Ψ̄t :=

∫
∆

Ψ(X′tδ) dQ(δ) by Ψ̄m,t := m−1
∑m

i=1 exp(X′tδi), so
that Q̃n := (σ̂2

n)−2H̃n can be approximated by Q̃n,m := (σ̂2
n)−2H̃n,m, where

H̃n,m := n−1
∑n

t=1 Γ̂2
n,m;

Γ̂n,m,t := ÛtPm,t − F̂′n,mD̂−1
n st(θ̂n); F̂n,m := n−1

n∑
t=1

Ψ̄m,t[1, Yt−1]′;

and st(θ̂n) := Ût[1, Yt−1]′. We let m = 10, 000.
Our simulation results for the null are presented in the first panel of Table

1. The total number of Monte Carlo replications is 10,000. The finite sample
null distribution is well approximated by the standard chi-squared distribution
with one degree of freedom. Even for small sample sizes, this approximation is
successful. We can also affirm this conclusion using the empirical distribution
functions. The first panel in Figure 1 shows that these are very close to the chi-
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Table 2: NULL REJECTION RATES FOR WELM TEST Ŵn,m (IN PERCENT)
NUMBER OF REPLICATIONS: 10,000

DGP: Yt = 0.75Yt−1 − 0.25Yt−2 + Ut; Ut ∼ IID N(0, 1)

MODEL: Yt = θ1 + θ2Yt−1 + λ exp(δYt−1) + Ut

n 50 100 200 500 1,000
Nominal Level δj ∼ IID U [−0.5, 0.5] and m = 10, 000

1.00 % 0.54 0.72 0.79 1.12 1.16
5.00 % 5.29 5.81 5.22 6.05 6.22
10.0 % 11.87 11.96 11.17 11.45 11.80

Nominal Level δj ∼ IID U [−1.0, 1.0] and m = 10, 000
1.00 % 0.55 0.48 0.74 0.87 0.99
5.00 % 4.57 4.49 5.40 5.37 5.81
10.0 % 11.11 10.63 11.45 11.57 11.34

squared distribution with one degree of freedom, for sample sizes n = 50, 100,
200, and 1,000 respectively. This affirms Theorem 6.

As another experiment, we consider the case in which ∆ is larger: ∆ =
[−1, 1]. The experiment is identical to the previous case, except that here we
generate δj from U [−1.0, 1.0]. The second panel of Table 1 reports the simulation
results under H0, and the results are more or less similar to the previous case, al-
though the convergence rate is a bit slower than the first case. This is also affirmed
by the second panel in Figure 1, where we show the empirical distributions of the
WELM tests along with the chi-squared distribution with one degree of freedom.
The sample sizes are n = 50, 100, 200, and 1,000 respectively, as before. All are
very close to each other, again affirming Theorem 6.

6.1.2 Examination of Ŵn,m

We next examine the WELM test when Q∗ is estimated by Q̂n,m. Now data are
generated as

Yt = 0.75Yt−1 − 0.25Yt−2 + Ut,

where Ut ∼ IID N(0, 1), but the specification is still a first-order autoregression,
as in Section 6.1.1. Thus, this model is correctly specified for E[Yt|Yt−1], but it is
dynamically misspecified because the specification omits Yt−2. Hence, we test the
correct model assumption using Ŵn,m, together with the same simulation designs
as in Section 6.1.1.
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The null distribution of WELM statistic Ŵn,m is also well approximated by
the standard chi-squared distribution. Table 2 and Figure 2 contain the simulation
results when ∆ = [−0.5, 0.5] and ∆ = [−1.0, 1.0]. The results are slightly inferior
to those in Table 1 and Figure 1, but the difference is minor.

6.2 WELM Tests under the Alternative
We now examine the asymptotic power of the WELM tests. For this, we suppose
that data are generated by a nonlinear AR(1) process Yt = π∗ cos(Yt−1) +Ut with
Ut ∼ IID N(0, 1). We again assume a first order linear autoregression specifica-
tion, as in Section 6.1.1. This model is misspecified when π∗ 6= 0. Thus, the
WELM statistic should reject the null whenever π∗ 6= 0. The farther π∗ is from
zero or the larger is n, the more often the WELM statistic should reject the null.

The simulation results for W̃n,m and Ŵn,m at the 5% significance level are
presented in Tables 3 and 4, respectively. We note that the power of the test is
rather good when ∆ = [−0.5, 0.5] and δj is randomly drawn from U [−0.5, 0.5].
As we expect, the empirical rejection rate increases as π∗ departs from zero or n
increases.

We also conduct the analogous experiment with ∆ = [−1.0, 1.0] and draw
δj from U [−1.0, 1.0]. The second panels of Tables 3 and 4 show the simulation
results, and we observe the same encouraging behavior.

As a further experiment to examine power, we consider another distribution
for δj , drawing δj from the mixture of two distributions. Specifically, let Zj ∼
U [0.0, 1.0], and draw δj = (Z50

j − 1)/2 with probability 0.5, and (1 − Z50
j )/2

with probability 0.5. Thus, the support set of δj is [−0.5, 0.5]; we denote this as
M50[−0.5, 0.5]. We compare this to the WELM test where δj ∼ U [−0.5, 0.5]. Al-
though these choices have the same support set, their densities are very different.
Our simulation results are given in the third panel of Tables 3 and 4. From this, we
can see that their power properties are not so different. As a further comparison,
we draw δj = Z50

j −1 with probability 0.5, and 1−Z50
j with probability 0.5. This

distribution is denoted as M50[−1.0, 1.0], and the simulation results are provided
in the final panel of Tables 3 and 4. We see that this test is slightly weaker than
the WELM test with δj ∼ U [−1.0, 1.0]. This suggests that when the parameter
space gets larger, selecting the probability measure Q becomes more important.
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6.3 Properties of WELM+ Tests
Analogous simulations for the WELM+ test show very similar patterns to those
observed in Tables 1 and 2 for the levels of the WELM test, so we do not report
these here. On the other hand, the WELM test appears to have much better power
than the WELM+ test. To illustrate, consider the results of Table 5 for the Ŵ+

n

statistic. We considered the same DGP and model as in Table 4, and we test the
hypotheses using the WELM+ test.

Although this WELM+ test does have power, its performance is much less
impressive than that for Ŵn,m. The results for W̃+

n are even more mediocre, com-
pared to W̃n,m. The reason is simple: the sample variance of β̂+

n is several orders
of magnitude greater than that of β̂n,m. Indeed, using β̂+

n is comparable to β̂n,m
with m = 1. Taking m large stabilizes the test statistic.

We therefore recommend using the WELM test instead of WELM+ unless
n is quite large. Alternatively, one could perform a quick preliminary test using
WELM+. If rejection of the null occurs, then one has very strong evidence of mis-
specification, and one can stop with WELM+. If not, one can proceed to conduct
the more powerful WELM test. One further possibility is to consider a modi-
fied version of β̂+

n , say β̂+
n,m, that replaces Ψ(X′tδt) with m−1

∑m
j=1 Ψ(X′tδt,j) for

some moderate value ofm. For brevity, we leave this as a topic for future research.

7 Conclusion
In this study, we propose WELM tests for correct model specification, obtained by
combining the theory of functional regression of Cho, Huang, and White [9] with
that of Extreme Learning Machines. The goals of the WELM test are straight-
forward: we seek a test powerful against essentially arbitrary alternatives that is
simple to compute and that has a standard asymptotic null distribution for the
test statistic that is not model dependent. Computation of the WELM statistic
is convenient because it computes the associated function integrals using ELM
methods. The WELM statistic asymptotic null distribution is standard: it weakly
converges to a chi-squared random variable. This makes the WELM test different
from the others popularly considered in the literature, as their null distributions are
typically functions of Gaussian processes. Further, these distributions are model
dependent. The WELM statistic distribution is not model dependent.

We also examine the asymptotic power of the WELM test under the alterna-
tive; the test is consistent against essentially arbitrary alternatives.
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Our Monte Carlo experiments affirm the asymptotic theory developed here.
The WELM statistic’s null distribution is well approximated by the chi-squared
distribution even for small sample sizes, and it has useful power. The WELM
statistic’s features make it widely applicable to testing for model misspecification.

A Proofs
Before proving the main claims in the text, we first provide some preliminary lem-
mas to facilitate our proofs. For notational implicity, we let Ψt(δ) and Φ(Xt,θ)
denote Ψ(X′tδ) and Φt(θ), respectively.

Lemma A1. Given A1, A2, and A4,
(i) supθ∈Θ |n−1

∑n
t=1 Ut(θ)− E[Ut(θ)]| → 0 a.s.−P;

(ii) supθ∈Θ |n−1
∑n

t=1 Ut(θ)2 − E[Ut(θ)2]| → 0 a.s.−P.

Proof of Lemma A1: (i) We note that

sup
θ∈Θ
|n−1

n∑
t=1

{Yt − Φt(θ)} − {E[Yt]− E[Φt(θ)]}|

≤ |n−1

n∑
t=1

{Yt − E[Yt]}|+ sup
θ∈Θ
|n−1

n∑
t=1

{Φt(θ)− E[Φt(θ)]}|.

We can now apply the ergodic theorem to n−1
∑n

t=1 Yt and the ULLN of Ranga
Rao (1962) to n−1

∑n
t=1 Φt( · ) by A4(i and ii). The desired result follows from

this.
(ii) From the definition of Ut(θ),

sup
θ∈Θ
|n−1

n∑
t=1

{Yt − Φt(θ)}2 − E[{Yt − [Φt(θ)]}2]|

≤|n−1

n∑
t=1

Y 2
t − E[Y 2

t ]|+ 2|n−1

n∑
t=1

YtΦt(θ)− E[YtΦt(θ)]|

+ sup
θ∈Θ
|n−1

n∑
t=1

Φt(θ)2 − E[Φt(θ)2]|.

We can now apply the ergodic theorem to n−1
∑n

t=1 Y
2
t and the ULLN of Ranga

Rao (1962) to n−1
∑n

t=1 Φt( · )2 by A4(i and ii). Further, we note that |YtΦt( · )| ≤
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W 2
t and E[W 2

t ] < ∞. Thus, we can apply the ULLN to n−1
∑n

t=1 YtΦt( · ) as
well. This complete the proof. �

Proof of Lemma 1: (i) Given that θ̂n → θ∗ a.s.−P and that n−1
∑
Ut( · ) and

n−1
∑
Ut( · )2 satisfy the ULLN as shown in Lemma A1, the desired consequence

follows becauseE[Ut( · )] andE[Ut( · )2] are continuous; for every t, Ût = Ut(θ̂n);
E[Ut(θ∗)] = B∗; and E[Ut(θ∗)

2] = C∗.
(ii) This follows by applying the ULLN of Ranga Rao (1962) and using A5(iii).
(iii) We note that supδ∈∆ |n−1

∑
YtΨt(δ) − E[YtΨt(δ)]| → 0 a.s.−P by the

ULLN because we can apply Cauchy-Schwarz inequality using A4(i) and A5(iii),
where E[W 2

t ] < ∞ and E[M2
t ] < ∞. Also, supδ∈∆ |n−1

∑
Φt(θ)Ψt(δ) −

E[Φt(θ)Ψt(δ)]| → 0 a.s.−P for the same reason. Further, E[Φt(θ)Ψt(δ)] is a
continuous function of (θ, δ). From these, the desired consequence follows. �

Proof of Lemma 2: As the first step, we prove the tightness of {
√
nG1,n( · )} and

{
√
nG2,n( · )}. Then, given the covariance structure in A6, the asymptotic weak

limits follow as a corollary of this tightness.
We note that |Ψt(δ)−Ψt(δ̃)| ≤Mt · ‖δ − δ̃‖ by A5(iv), so that

E

[
sup

‖δ−δ̃‖≤ζ
|Ψt(δ)−Ψt(δ̃)|2+η

] 1
2+η

≤ E[M2+η
t ]

1
2+η ζ.

Further, |E[Ψt(δ) − Ψt(δ̃)]| ≤ |E[Mt] · ‖δ − δ̃‖, so that there is some B′ > 0
such that

E

[
sup

‖δ−δ̃‖≤ζ
|Ψt(δ)−Ψt(δ̃)− E[Ψt(δ)−Ψt(δ̃)]|2+η

] 1
2+η

≤ B′ζ.

Thus, Ossiander’s L2+η entropy is finite, and {
√
nG1,n( · )} is tight by Theorem 1

of Doukhan, Massrt, and Rio (1995), given that {Yt,Xt} is a β−mixing sequence
with size −2ρ/(ρ− 1), implying that

∑∞
τ=1 βττ

1/(ρ−1) <∞.
Next, |Ut{Ψt(δ) − Ψt(δ̃)}| ≤ Mt · |Ut| · ‖δ − δ̃‖ by A2, A5(ii), and A5(iv).

This implies that

E

[
sup

‖δ−δ̃‖≤ζ
|Ut[Ψt(δ)−Ψt(δ̃)]|2+η

] 1
2+η

≤ E[M4+2η
t ]

1
2+η ζ,
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and also that |E[Ut{Ψt(δ)−Ψt(δ̃)}]| ≤ |E[M2
t ] · ‖δ− δ̃‖, so that there is B > 0

such that

E

[
sup

‖δ−δ̃‖≤ζ
|Ut[Ψt(δ)−Ψt(δ̃)]− E[Ut[Ψt(δ)−Ψt(δ̃)]]|2+η

] 1
2+η

≤ Bζ,

implying that Ossiander’s L2+η entropy is finite, and that {
√
nG2,n( · )} is tight

by the same argument. Thus, the desired weak convergence follows from this
tightness and the finite dimensional covariance structure, which we do not prove,
as it is straightforward. �

Proof of Theorem 1: (i) and (ii) We note that[
α̂n − α∗
β̂n − β∗

]
= Â−1

n

[
G1,n

G2,n

]
+ (Â−1

n −A−1
∗ )

[
E[Ψt]
E[UtΨt]

]
,

where

Ân :=

[
1 n−1

∑
Ût

n−1
∑
Ût n−1

∑
Û2
t

]
.

Given this, Lemma 1(ii) and (iii) imply that G1,n and G2,n uniformly converge to
0 a.s. − P; and A−1

n − A−1
∗ → 0 a.s. − P by Lemma 1(i) and A7, so that each

element in the second term of the RHS converges to zero a.s.−P. These two facts
imply the desired results.

(iii) We note that supδ∈∆ |Ψt(δ)| ≤ Mt with E[M2
t ] < ∞ by A5; and

supθ∈Θ | ∂∂θj Φt(θ)| ≤ Wt withE[W 2
t ] <∞ by A4. The desired result now follows

by the ULLN of Ranga Rao (1962) and the Cauchy-Schwarz inequality.
(iv) We note that for some θ̄n between θ∗ and θ̂n,∑

ÛtΨt(δ) =
∑

UtΨt(δ)−
∑
∇′θΦt(θ̄n)Ψt(δ)(θ̂n − θ∗)

by the mean-value theorem. Thus, we can write
√
n[α̂n−α∗, β̂n−β∗]′ = Â−1

n R̂nZn+
oP(1), where for each δ,

R̂n(δ) :=

[
0′ 1 0

−K̄n(δ)′D−1
∗ 0 1

]
,

and K̄n(δ) := n−1
∑
∇θΦt(θ̄n)Ψt(δ). Given this, Theorem 1(iii) shows that

n−1
∑
∇θΦ( · )Ψt( · ) obeys the ULLN, so that K̄n( · ) → K∗( · ) a.s. − P be-

cause θ̄n → θ∗ a.s.− P by A3. Also, applying Lemma 2 implies that {
√
n(θ̂n −
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θ∗), n
−1/2

∑
UtΨt} ⇒ {D−1

∗ S0,G2}. From this, n−1/2
∑
ÛtΨt ⇒ G2−K′∗D

−1
∗ S0

by the continuous mapping theorem. Combining these implies that
√
n[α̂n −

α∗, β̂n − β∗]′ ⇒ A−1
∗ R∗Z =: U . �

Proof of Corollary 1: By the continuous mapping theorem and Theorem 1,

√
n

[ ∫
∆
{α̂n(δ)− α∗(δ)}dQ(δ)∫

∆
{β̂n(δ)− β∗(δ)}dQ(δ)

]
⇒
[ ∫

∆
U1(δ)dQ(δ)∫

∆
U2(δ)dQ(δ)

]
,

where for each δ, U(δ) is partitioned into [U1(δ),U2(δ)]′. We note that the RHS
is a vector of integrated Gaussian processes, so that it is jointly normal, implying
that

∫
∆
U(δ)dQ(δ) ∼ N [0,C∗]. This is the desired result. �

Proof Theorem 2: (i) UnderH0,
√
n
∫
∆
β̂n(δ) dQ(δ)

A∼ N(0, Q∗). Thus, Ŵn(Q)
A∼

χ2
1 given that Q̂n = Q∗ + oP(1), as is assumed.

(ii) Under H1, n{
∫
∆
β̂n(δ) dQ(δ) −

∫
∆
β∗(δ) dQ(δ)}2 = OP(1). Thus,

n{
∫
∆
β̂n(δ) dQ(δ)}2 = OP(n), if

∫
∆
β∗(δ) dQ(δ) 6= 0, as is assumed. �

Proof of Lemma 3: Proving Lemma 3 is completed by verifying the regularity
conditions for theorem 6.8 of Gallant and White [16] denoted as DG, OP′, MX′,
SM, DM′′, NE′′′, ID′, TL, and WT. We verify these conditions one by one. First,
condition DG is satisfied by A1. Second, the compact parameter space Θ is as-
sumed in A2; but their Qn( · ) is not formed from our qt( · ). We therefore simply
let their Snt( · ) be our qt( · ), which is equivalent to assuming that their gn(x) and
∇θqnt( · ) are our x and qt( · ) respectively. Their OP′ then holds. Third, condition
MX′ is satisfied by our β−mixing condition of size−2ρ/(ρ−1). If we let r := 2ρ,
then our dataset {Yt,Xt} is also an α-mixing sequence of size −2r/(r − 2) be-
cause ατ ≤ 1

2
βτ for all τ , which is required by MX′. Fourth, their smoothness

(SM) condition requires that our qt( · ) and ∇θqt( · ) are L1-Lipschitz continuous.
By our A2, Φt( · ) is twice continuously differentiable, and A10(i and iii) provide
sufficient conditions for the L1-dominating Lipschitz constant. This implies that
qt( · ) is L1-Lipschitz continuous. Also, ∇θqt( · ) are L1-Lipschitz continuous by
A10(v). Fifth, their domination condition (DM) requires that qt( · ) and ∇θqt( · )
are 4ρ-dominated in our context. This is already assumed by A10(i, ii, and iii).
Sixth, their near epoch (NE) and model identification (ID) conditions are given in
A11 and A3 respectively. Seventh, the truncation lag (TL) condition is directly
assumed as an additional condition to Lemma 3. Eighth, the covariance matrix in
our case is a scalar. Thus, the weight condition (WT) is not necessary under our
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consideration. Finally, the condition in Lemma 3 assumes that D̂n → D∗ a.s.,
and we can apply Ranga Rao [31] to F̂n using A10(iv), so that Ĵn → J∗ a.s. This
completes the proof. �

Proof of Corollary 2: Given A12, this follows trivially by noting that {Ut,Ft}
and {st(θ∗),Ft} are martingale difference sequences, so that E[Ut|Ft−1] = 0 and
E[st(θ∗)|Ft−1] = 0, implying that {Γt := UtPt − F′D∗st(θ∗),Ft} is an MDS,
and E[ΓtΓt−`] = 0 for ` = 1, 2, . . ., where F :=

∫
∆

K(δ) dQ(δ). Thus, the
off-diagonal elements in Ĥn must estimate zero, and ωn0

σ̂2
nn

∑n
t=1 Γ̂2

n,t of Ĥn can
consistently estimate Q∗ a.s. − P. Letting ωn0 be one satisfies the condition for
ωn`. Thus, H̃n − Ĥn → 0 a.s.− P. This completes the proof. �

We provide a supplementary lemma before proving Theorem 3.

Lemma A2. Given A1 - A11 and A13, as n,m→∞,
(i)m−1

∑m
j=1

√
n[α̂n(δj)−α∗(δj), β̂n(δj)−β∗(δj)]′ ⇒

∫
∆
U(δ) dQ(δ); and

(ii)
√
n[β̂n,m −

∫
∆
β∗(δ)dQ(δ)]

A∼ N(0, Q∗).

Proof of Lemma A2: (i) By the definition of (α̂n, β̂n),

A∗
1

m

m∑
j=1

√
n

[
α̂n(δj)− α∗(δj)
β̂n(δj)− β∗(δj)

]

=
1√
n

n∑
t=1

1

m

m∑
j=1

[
Ψ(X′tδj)− EP[Ψ(X′tδj)]

−K∗(δj)
′D−1
∗ st(θ∗) + UtΨ(X′tδj)

]
+ oP(1),

where EP[ · ] denotes the expectation operator with respect to P. Applying Kol-
mogorov’s LLN implies that m−1

∑m
j=1 K∗(δj) →

∫
∆

K∗(δ)dQ(δ) a.s.−Q∞,
so that it follows that for each ω ∈ Ω, m−1

∑m
j=1 K∗( δj)

′ D−1
∗ st(ω,θ∗) →∫

∆
K∗(δ)dQ(δ)D−1

∗ st(ω,θ∗) a.s.−Q∞. It also follows that
∫
∆

K∗(δ)dQ(δ) =∫
Ω

∫
∆

Ψ(X(ω)′δ)dQ(δ)∇θΦ(X(ω),θ∗)dP(ω), so that
∫
∆
EP[Ψ(X′δ)]dQ(δ) =∫

∆

∫
Ω

Ψ(X(ω)′δ)dQ(δ)dP(ω) by Fubini’s theorem, A4, and A5. Next, for each
ω ∈ Ω, we have that

1

m

m∑
j=1

Ψ(Xt(ω)′δj) =

∫
∆

Ψ(Xt(ω)′δ)dQ(δ) + oa.s.−Q∞(1), (5)

31



and similarly

1

m

m∑
j=1

Ut(ω)Ψ(Xt(ω)′δj)

=

∫
∆

Ut(ω)Ψ(Xt(ω)′δ) dQ(δ) + oa.s.−Q∞(1) (6)

by Kolmogorov’s LLN.
Thus, we have that

A∗
1

m

m∑
j=1

√
n

[
α̂n(δj)− α∗(δj)
β̂n(δj)− β∗(δj)

]

=
1√
n

n∑
t=1

[ ∫
∆

Ψ(X′tδ)dQ(δ)− EP[
∫
∆

Ψ(X′tδ)dQ(δ)]∫
∆
UtΨ(X′tδ)dQ(δ)−

∫
∆

K∗(δ)′dQ(δ)D−1
∗ st(θ∗)

]
+

1√
n

n∑
t=1

{
ηm,t

}
+ oP(1),

where ηm,t(ω, ·) is oa.s.−Q∞(1) for each ω ∈ Ω and t. That is, for each t, ω and
each ξ ∈ D ∈ D∞ with Q∞(D) = 1, for every ε > 0 there exists M(ε; t, ω, ξ)
such that if m > M(ε; t, ω, ξ), then for j = 1, 2, |ηm,t,j(ω, ξ)| < ε, where we
let ηm,t(ω, ξ) = [ηm,t,1(ω, ξ), ηm,t,2(ω, ξ)]′. We further note that for j = 1, 2,
n−1/2

∑n
t=1 ηm,t,j(ω, ξ) = oPQ∞(1) because when ε = δn−(1/2)−a for some a > 0

and δ > 0, we can let m be greater than M(ε; t, ω, ξ), so that |ηm,t,j(ω, ξ)| <
δn−(1/2)−a.

Finally, we note that Theorem 1(iv) implies that

1√
n

n∑
t=1

[ ∫
∆

Ψ(X′tδ)dQ(δ)− EP[
∫
∆

Ψ(X′tδ)dQ(δ)]
−
∫

∆
K∗(δ)′dQ(δ)D−1

∗ st(θ∗) +
∫
∆
UtΨ(X′tδ)dQ(δ)

]
⇒
[ ∫

∆
G1(δ)dQ(δ)∫

∆
−K∗(δ)′D−1

∗ S0 + G2(δ)dQ(δ)

]
= A∗

∫
∆

U( δ)dQ(δ),

where the equality holds by the definition of U , so that

1

m

m∑
j=1

√
n

[
α̂n(δj)− α∗(δj)
β̂n(δj)− β∗(δj)

]
⇒
∫
∆

U( δ)dQ(δ),

as desired.
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(ii) We note that β̂n,m := m−1
∑m

j=1 β̂n(δj) and that Kolmogorov’s LLN im-
plies thatm−1

∑m
j=1 β∗(δj)→

∫
∆
β∗(δ)Q(δ) a.s.−P·Q∞, so thatm−1

∑m
j=1

√
n[β̂n(δj)−

β∗(δj)]−
√
n[β̂n,m−

∫
∆
β∗(δ)dQ(δ)] = oPQ∞(1). The desired result follows from

Lemma A2(i) and Corollary 1. �

Proof of Theorem 3: (a) We first show that Q̂n,m = Q∗ + oPQ∞(1). First, for each
ω ∈ Ω, m−1

∑m
j=1 Ψ(Xt(ω)′δj) =

∫
∆

Ψ(Xt(ω)′δ)dQ(δ)+oa.s.−Q∞(1) as we saw
in (5). This implies that

F̂n,m :=
1

nm

n∑
t=1

m∑
j=1

Ψ(X′tδj)∇θΦ(Xt, θ̂n)

=
1

n

n∑
t=1

∫
∆

Ψ(X′tδ)dQ(δ)∇θΦ(Xt, θ̂n) + oPQ∞(1) = F̂n + oPQ∞(1),

where the first equality holds by A10(iv), and the last equality holds by the defini-
tion of F̂n. Next, by the definition of Γ̂n,m,t := Ût[Ψ̄m,t −∇′θΦ(Xt, θ̂n)D̂nF̂n,m],
it also follows that, uniformly in t,

Γ̂n,m,t = Ût[m
−1

m∑
j=1

Ψ(X′tδj)−∇′θΦ(Xt, θ̂n)D̂nF̂n,m]

= Ût[

∫
∆

Ψ(X′tδ)dQ(δ)−∇′θΦ(Xt, θ̂n)D̂nF̂n] + oPQ∞(1)

= Γ̂n,t + oPQ∞(1),

where the second last equality holds by (5) and F̂n,m = F̂n + oPQ∞(1), and the
last equality holds by the definition of Γ̂n,t. This fact implies that

Ĥn,m =
1

n

{
ωn0

n∑
t=1

{Γ̂n,t + oPQ∞(1)}2

+2
kn∑
`=1

ωn`

n∑
t=`+1

{Γ̂n,t + oPQ∞(1)}{Γ̂n,t−` + oPQ∞(1)}

}

=
1

n

{
ωn0

n∑
t=1

Γ̂2
n,t + 2

kn∑
`=1

ωn`

n∑
t=`+1

Γ̂n,tΓ̂n,t−`

}
+ oPQ∞(1)

= Ĥn + oPQ∞(1),
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where the second last equality holds because
∑n

t=1 Γ̂n,t = OPQ∞(n),
∑kn

`=1 ωn`
∑n

t=`+1 Γ̂n,t =

OPQ∞(n), and
∑kn

`=1 ωn`
∑n

t=`+1 Γ̂n,t−` = OPQ∞(n). The desired result now holds
as corollary of Lemma 3.

(i) UnderH0,
∫
∆
β∗(δ)dQ(δ) = 0, so that Lemma A2 (ii) implies that

√
nβ̂n,m

A∼
N(0, Q∗) and that n(β̂n,m)2/Q∗ ⇒ χ2

1 as m,n → ∞. We already shown that
Q̂n,m = Q∗ + oPQ∞(1), so that Ŵn,m := n(β̂n,m)2/Q̂n,m = n(β̂n,m)2/Q∗ +
oPQ∞(1)⇒ χ2

1.
(ii) Under H1,

∫
∆
β∗(δ)Q(δ) 6= 0, so that n(β̂n,m)2/Q∗ = OPQ∞(n) but not

oPQ∞(n), and this implies the desired result.
(b) We note that E[ΓtΓt−`] = 0 by A12 for ` = 1, 2, . . ., implying that Q∗ =

C−2
∗ E[Γ2

t ]. We already saw that H̃n,m = E[Γ2
t ] + oPQ∞(1) and σ̂2

n = C∗ + oP(1),
while proving that Q̂n,m = Q∗ + oPQ∞(1) in (a). Thus, Q̃n,m := (σ̂2

n)−2H̃n,m =
Q∗ + oPQ∞(1), and the proofs of (i and ii) follow from this and (a).

Proof of Theorem 4: The results follow by standard arguments, similar to those
previously given, applying the LLN and CLT for β−mixing processes. �
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Figure 1: Empirical Distributions of the WELM Test Statistic W̃n,m(Q)
Number of Replications: 10,000, and m = 10, 000

∆ = [−0.5, 0.5] ∆ = [−1.0, 1.0]

Figure 2: Empirical Distributions of the WELM Test Statistic Ŵn,m(Q)
Number of Replications: 10,000, and m = 10, 000

∆ = [−0.5, 0.5] ∆ = [−1.0, 1.0]
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Table 3: ALTERNATIVE REJECTION RATES FOR WELM TEST W̃n,m

LEVEL OF SIGNIFICANCE: 5%
NUMBER OF REPLICATIONS: 2,000

DGP: Yt = π∗ cos(Yt−1) + Ut; Ut ∼ IID N(0, 1)

n 50 100 200 400 600 800
π∗ δj ∼ IID U [−0.5, 0.5] and m = 10, 000
0.1 5.80 6.70 8.96 13.05 17.65 19.70
0.2 7.70 12.15 22.35 37.80 53.10 65.55
0.3 11.80 24.60 42.30 67.05 86.15 94.50
0.4 16.85 34.75 64.00 90.60 98.30 99.50
0.5 24.80 48.35 79.60 98.35 99.90 100.0
π∗ δj ∼ IID U [−1.0, 1.0] and m = 10, 000
0.1 4.65 6.05 8.00 11.75 15.75 21.05
0.2 6.45 11.60 21.85 36.30 51.35 63.10
0.3 11.35 21.45 38.35 64.60 83.45 90.10
0.4 16.95 32.50 59.75 87.05 96.35 98.90
0.5 23.50 45.40 76.60 95.75 99.30 100.0
π∗ δj ∼ IID M50[−0.5, 0.5] and m = 10, 000
0.1 3.95 7.00 9.30 12.55 16.55 22.50
0.2 8.15 11.55 21.60 37.30 53.70 65.85
0.3 12.32 21.65 40.95 67.85 86.20 93.55
0.4 17.55 35.00 62.20 89.05 97.00 99.40
0.5 24.65 49.00 79.70 97.30 99.70 100.0
π∗ δj ∼ IID M50[−1.0, 1.0] and m = 10, 000
0.1 4.75 5.60 8.75 12.80 16.60 20.30
0.2 5.15 10.95 19.25 32.90 47.00 58.10
0.3 9.25 20.30 36.00 63.30 80.35 89.00
0.4 13.40 28.15 54.15 83.95 94.45 98.00
0.5 21.55 43.75 74.05 93.55 98.45 99.15
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Table 4: ALTERNATIVE REJECTION RATES FOR WELM TEST Ŵn,m

LEVEL OF SIGNIFICANCE: 5%
NUMBER OF REPLICATIONS: 2,000

DGP: Yt = π∗ cos(Yt−1) + Ut; Ut ∼ IID N(0, 1)

n 50 100 200 400 600 800
π∗ δj ∼ IID U [−0.5, 0.5] and m = 10, 000
0.1 5.25 5.75 9.05 12.60 17.75 34.21
0.2 7.35 11.65 22.50 39.35 54.30 64.00
0.3 12.45 20.90 41.95 70.40 86.90 93.55
0.4 17.40 34.50 62.90 89.80 97.30 99.55
0.5 23.70 51.10 81.60 98.00 99.70 100.0
π∗ δj ∼ IID U [−1.0, 1.0] and m = 10, 000
0.1 5.50 6.15 7.70 12.55 16.40 21.80
0.2 7.50 11.70 20.35 35.50 51.05 63.00
0.3 10.80 20.10 39.45 66.50 80.90 90.30
0.4 15.75 31.70 59.65 87.00 96.60 98.55
0.5 22.60 44.49 77.70 95.75 99.15 100.0
π∗ δj ∼ IID M50[−0.5, 0.5] and m = 10, 000
0.1 4.95 6.55 9.75 12.30 18.15 22.05
0.2 8.10 12.15 22.10 39.05 54.25 66.30
0.3 11.75 20.70 40.95 68.75 85.65 93.45
0.4 17.35 33.85 62.60 88.70 97.70 99.55
0.5 26.50 47.70 79.30 97.35 99.80 99.95
π∗ δj ∼ IID M50[−1.0, 1.0] and m = 10, 000
0.1 4.85 5.20 8.25 11.90 17.05 19.40
0.2 6.50 11.90 18.65 35.10 46.45 58.20
0.3 9.75 18.25 35.90 64.20 79.70 88.60
0.4 14.35 29.35 56.40 83.45 93.70 97.60
0.5 18.85 43.15 72.50 93.50 97.75 99.10
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Table 5: ALTERNATIVE REJECTION RATES FOR WELM TEST Ŵ+
n

LEVEL OF SIGNIFICANCE: 5%
NUMBER OF REPLICATIONS: 4,000

DGP: Yt = π∗ cos(Yt−1) + Ut; Ut ∼ IID N(0, 1)

n 50 100 200 400 600 800
π∗ δj ∼ IID U [−0.5, 0.5]
0.1 4.47 3.67 4.62 4.75 5.80 6.15
0.2 4.25 4.40 5.32 6.47 6.52 7.22
0.3 4.87 4.82 6.17 7.52 8.50 10.05
0.4 4.77 5.07 6.92 9.97 12.62 17.95
0.5 5.15 5.05 6.67 11.72 14.80 20.45
π∗ δj ∼ IID U [−1.0, 1.0]
0.1 3.85 3.70 4.77 4.95 5.25 6.70
0.2 3.82 4.05 5.27 7.72 9.05 11.02
0.3 4.17 4.92 7.25 11.92 13.95 18.57
0.4 4.82 6.30 8.42 14.72 23.15 29.42
0.5 4.72 6.92 11.02 21.00 30.77 39.70
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