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Abstract

We consider estimation of and inference on the nonlinear autoregressive distributed lag (NARDL) model, which
is a single-equation error correction model that allows for asymmetry with respect to positive and negative changes in
the explanatory variable(s). We show that the NARDL model exhibits an asymptotic singularity issue that frustrates
efforts to derive the asymptotic properties of the single-step OLS estimator. Consequently, we propose a two-step
estimation framework, in which the parameters of the long-run relationship are estimated first using the fully-modified
least squares estimator before the dynamic parameters are estimated by OLS in the next step. We show that our two-step
estimators are consistent for the parameters of the NARDL model under stated regularity conditions and we derive their
limit distributions. We develop Wald test statistics for the hypotheses of short-run and long-run parameter asymmetry.
We demonstrate the utility of our framework with an application to postwar dividend-smoothing in the US.
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1 Introduction

The Nonlinear Autoregressive Distributed Lag (NARDL) model of Shin, Yu, and Greenwood-Nimmo (2014, hereafter

SYG) is an asymmetric generalization of the ARDL model of Pesaran and Shin (1998) and Pesaran, Shin, and Smith

(2001). Specifically, the NARDL model is a single-equation error correction model that can accommodate asymmetry in

the long-run equilibrium relationship and/or the short-run dynamic coefficients via the use of partial sum decompositions

of the independent variable(s). Due to its simplicity and ease of interpretation, uptake of the NARDL model in applied

research has been rapid, with applications in diverse fields including criminology (Box, Gratzer, and Lin, 2018), economic

growth (Eberhardt and Presbitero, 2015), energy economics (Greenwood-Nimmo and Shin, 2013; Hammoudeh, Lahiani,

Nguyen, and Sousa, 2015), exchange rates and trade (Verheyen, 2013; Brun-Aguerre, Fuertes, and Greenwood-Nimmo,

2017), financial economics (He and Zhou, 2018), health economics (Barati and Fariditavana, 2018), the economics of

tourism (Süssmuth and Woitek, 2013) and political science (Ferris, Winer, and Olmstead, 2020), to list only a few.1

However, despite its growing popularity, the theoretical foundations for estimation of and inference on the NARDL

model have yet to be fully developed. It is this issue that we address.

SYG show that the parameters of the NARDL model can be estimated in a single step by ordinary least squares

(OLS), as is the case in the linear ARDL model. However, the authors note that the positive and negative partial sums of

the independent variables in the NARDL model are dominated by deterministic time trend terms that are asymptotically

perfectly collinear. These collinear trend terms introduce an asymptotic singularity problem that represents a substantial

barrier to the development of asymptotic theory for the single-step estimation framework, frustrating efforts to derive the

limit distribution of the estimator. Consequently, SYG do not provide asymptotic theory but rather conduct Monte Carlo

simulations to validate the properties of the single-step OLS estimator in finite samples.

In order to address this asymptotic singularity problem, we first consider the simple case of a bivariate model with

a scalar dependent variable, yt, and a scalar explanatory variable, xt. In this case, the asymmetric long-run relationship

is usually expressed among the level of the dependent variable and the positive and negative cumulative partial sum

processes of the dependent variable, x+
t and x−t , respectively, the latter of which share asymptotically collinear time

trends. Note, however, that the long-run relationship can be expressed equivalently by making use of a simple one-to-one

transformation as a relationship between yt, xt and x+
t . By reparameterizing the asymmetric long-run relationship to

exclude one partial sum process, the asymptotic singularity issue in the long-run levels relationship is resolved. It is

important to realize, however, that although this reparameterization is sufficient to resolve the singularity in the long-run

relationship and will play an important role in our estimation strategy, it is insufficient to resolve the singularity problem

associated with the single-step NARDL estimator. In fact, we show that it introduces a further asymptotic singularity

problem, once again frustrating efforts to obtain the necessary limit theory (see Appendix A.2 for details).

In the bivariate case, our solution is to adopt a two-step estimation framework for the NARDL model. In the first step,

the parameters of the transformed long-run relationship are estimated using any consistent estimator with a convergence
1At the time of writing, SYG has been cited more than 1,100 times according to Google Scholar.
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rate faster than the square root of the sample size, T 1/2. We demonstrate that it is possible to consistently estimate the

long-run parameters in the first step by OLS but that this approach suffers several drawbacks, most notably that the limit

distribution of the OLS estimators is asymptotically non-normal and depends on nuisance parameters. Consequently,

we advocate the use of the fully-modified OLS (FM-OLS) estimator of Phillips and Hansen (1990) in the first step,

which we show to follow an asymptotic mixed normal distribution that facilitates standard inference on the long-run

parameters. Furthermore, unlike OLS, FM-OLS is known to be robust to potential endogeneity among the regressors and

to serial correlation in the error terms. Given the super-consistency of the long-run parameter estimator from the first

step, the error correction term can be treated as known in the second step regression, where OLS provides a consistent

and asymptotically normal estimator for the short-run dynamic parameters.

The two-step estimator described above will often be sufficient for practical use, as many applications of the NARDL

framework focus on bivariate relationships. A good example is the analysis of Okun’s Law presented by SYG. However,

in general, a NARDL model may contain one or more explanatory variables, i.e., xt ∈ Rk (k ≥ 1). The two-step

procedure is not appropriate for the estimation of NARDL models with multiple explanatory variables (i.e. k > 1)

because, in this case, a further singular matrix problem arises at the limit when estimating the reparameterized long-run

equation due to the collinearity of the trends of xt and x+
t . To resolve this issue, we propose to first detrend x+

t by

OLS and then to use the implied residuals as an explanatory variable together with a time trend and xt. This modified

two-step procedure allows for estimation of the long-run relationship without any singularity problem, even for k > 1.

The short-run parameters can then be estimated in a final step by OLS.

Because the NARDL model allows for asymmetry in both the long-run equilibrium relationship and the short-run

adjustment parameters, testing restrictions on the long- and short-run parameters is an important aspect of inference on

the NARDL model. We develop Wald tests for this purpose. In both the short- and long-run cases, we demonstrate that

the null distribution of the Wald statistics weakly converges to a chi-squared distribution.

We conduct a suite of Monte Carlo simulations to investigate the properties of our estimators and test statistics. We

find that the finite sample bias of the estimators of both the long- and short-run parameters is modest and diminishes

rapidly as the sample size increases. Likewise, the mean squared error of the estimators quickly falls as the sample size

grows. The Wald tests of both the short- and long-run parameters have high power and exhibit only mild size distortions

in small samples that are rapidly corrected at larger sample sizes. Overall, our simulation results lend robust support to

our theoretical findings.

We apply our technique to the analysis of postwar dividend-smoothing in the US. Following the seminal study on

dividend policy by Lintner (1956), it is widely believed that firms gradually adjust their dividends in response to changes

in earnings toward their long-run target payout ratio. Compelling evidence of this effect has been documented by Brav,

Graham, Harvey, and Michaely (2005) on the basis of a survey of 384 financial executives, the results of which show that

the link between dividends and earnings is relatively weak, with payout policy being subject to strategic considerations

including signalling effects.
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Our contribution is to test whether dividend policy may be asymmetric with respect to positive and negative changes

in earnings. We fit a fourth order NARDL model to quarterly data on real dividends and real earnings for the S&P 500

over the period 1946Q1 to 2006Q4. Our model allows for asymmetry in the long-run equilibrium relationship and in the

short-run dynamics. We consider both the single-step estimation procedure proposed by SYG and our newly-developed

two-step procedure. We find that, in long-run equilibrium, executives pass earnings increases through to dividends slightly

more strongly than earnings decreases, although neither the single-step nor the two-step estimation results provide any

support for the existence of short-run dynamic asymmetry. The magnitude of the long-run asymmetry is relatively small

but it is economically significant, which is consistent with existing evidence of asymmetric aggregate payout policy

documented by Brav et al. (2005), among others.

Furthermore, our estimation results shed light on the performance of the single-step estimation procedure of SYG

relative to our two-step framework. In practice, we find that both procedures yield qualitatively and quantitatively similar

estimation and testing results. This indicates that they may be used interchangeably in practice. However, the two-step

framework yields greater precision in the estimation of the long-run parameters, as it is not subject to the influence of

nuisance parameters, unlike the single-step procedure. This may improve one’s ability to detect long-run asymmetry,

particularly in small samples. This represents an important practical benefit of our two-step estimation framework,

particularly given that NARDL models are often used in macroeconomic applications, where a low sampling frequency

and relatively short time period necessitate the use of small samples.

This paper proceeds in 7 sections. In Section 2, we introduce the NARDL model in its original form and demonstrate

how the asymptotic singularity problem arises. In Section 3, we introduce our estimation framework and derive the

asymptotic properties of the estimators. In Section 4, we develop Wald tests for the null hypotheses of short- and long-run

symmetry against the alternative hypotheses of asymmetry. In Section 5, we scrutinize the finite sample properties of the

estimators and test statistics using Monte Carlo simulations. Section 6 is devoted to our empirical application. We

conclude in Section 7. Additional proofs are collected in an Appendix.

2 The NARDL Model in the Prior Literature

Consider the NARDL(p, q) process:

yt =

p∑
j=1

φj∗yt−j +

q∑
j=0

(θ+′
j∗x

+
t−j + θ−′j∗x

−
t−j) + et, (1)

where xt ∈ Rk, x+
t :=

∑t
j=1 ∆x+

j , x−t :=
∑t

j=1 ∆x−j , ∆x+
t := max[0,∆xt], and ∆x−t := min[0,∆xt], such that

∆xt is a stationary process. Note that SYG rewrite (1) in error-correction form as:

∆yt = ρ∗yt−1 + θ+′
∗ x

+
t−1 + θ−′∗ x

−
t−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et, (2)
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for some ρ∗, θ+
∗ , θ−1

∗ , γ∗, ϕj∗ (j = 1, 2, . . . , p − 1), π+
j∗, and π−j∗ (j = 0, 1, . . . , q − 1), where {et,Ft} is a martingale

difference sequence andFt is the smallest σ-algebra driven by {yt−1,x
+
t ,x

−
t , yt−2, x

+
t−1,x

−
t−1, . . .}. If yt is cointegrated

with (x+′
t ,x

−′
t )′, then we may rewrite (2) as:

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et, (3)

where ut−1 := yt−1−β+′
∗ x

+
t−1−β

−′
∗ x
−
t−1 is the cointegrating error, β+

∗ := −(θ+
∗ /ρ∗) and β−∗ := −(θ−∗ /ρ∗). Note that

ut is a stationary process that may be correlated with ∆xt.

The NARDL process is able to capture a cointegrating relationship between a deterministic time trend process driven

by a unit-root process and other unit-root processes, possibly associated with a time trend. Suppose that E[∆xt] ≡ 0 and

that µ+
∗ := E[∆x+

t ] and µ−∗ := E[∆x−t ]. It follows that µ+
∗ + µ−∗ ≡ 0 by construction. Therefore, if we further let

s+
t := ∆x+

t − µ+
∗ and s−t := ∆x−t − µ−∗ , then:

x+
t = µ+

∗ t+
t∑

j=1

s+
j and x−t = µ−∗ t+

t∑
j=1

s−j . (4)

It is clear from (4) that x+
t and x−t are deterministic time-trend processes driven by unit-root processes. It follows that

∆yt is not necessarily distributed around zero even if xt is a unit-root process without a deterministic trend. Note that

ρ∗ := 1 −
∑p

j=1 φj∗. From (1), we find that δ∗ := E[∆yt] = − 1
ρ∗

[
∑q

j=0(θ+
j∗)
′µ+
∗ +

∑q
j=0(θ−j∗)

′µ−∗ ]. Therefore, if we

define dt := ∆yt − δ∗, then:

yt = δ∗t+
t∑

j=1

dj , (5)

which shows that yt is a deterministic time-trend process driven by a unit-root process, if δ∗ 6= 0. It is evident that the

NARDL model captures a cointegrating relationship between a deterministic time-trend process driven by a unit-root

process and a unit-root process without a deterministic time trend.

SYG propose to estimate the unknown parameters of (2) in a single step by OLS, and obtain the properties of the OLS

estimator by simulation because it is not straightforward to derive the limit distributions of the single-step OLS estimator.

To demonstrate this, we make the following assumptions:

Assumption 1.

(i) {(∆x′t, ut)′} is a globally covariance stationary mixing process of (k + 1)× 1 vectors of φ of size −r/(2(r − 1))

or α of size −r/(r − 2) and r > 2;

(ii) E[∆xt] = 0, E[|∆xti|r] <∞ (i = 1, 2, . . . , k), E[|ut|r] <∞, and E[|et|2] <∞;

(iii) limT→∞ var[T−1/2
∑T

t=1(∆x′t, ut)
′] exists and is positive definite; and

(iv) for some (ρ∗,θ
+′
∗ ,θ

−′
∗ , γ∗, ϕ1∗, . . . , ϕp−1∗,π

+′
0∗ , . . . ,π

+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗)

′, ∆yt is generated by (2) such that

{et,Ft} is a martingale difference sequence and Ft is the smallest σ-algebra driven by {yt−1,x
+
t ,x

−
t , yt−2,x

+
t−1,
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x−t−1, . . .}. �

Furthermore, for notational simplicity, we define:

zt := [ z′1t z′2t ]′ := [ yt−1 x+′
t−1 x−′t−1 1 ∆y′t−1 ∆x+′

t . . . ∆x+′
t−q+1 ∆x−′t . . . ∆x−′t−q+1

]′,

where ∆yt−1 := [∆yt−1,∆yt−2, . . . ,∆yt−p+1]′. Note that zt is partitioned into nonstationary and stationary variables.

Next, z2t is further partitioned as:

z2t := [ 1 w′t ]′ := [ 1 w′1t w′2t w′3t ]′ := [ 1 ∆y′t−1 ∆x+′
t . . . ∆x+′

t−q+1 ∆x−′t . . . ∆x−′t−q+1
]′.

In addition, we define:

α∗ := [ α′1∗ α′2∗ ]′ := [ ρ∗ θ+′
∗ θ−′∗ γ∗ ϕ′∗ π+′

0∗ . . . π+′
q−1∗ π−′0∗ . . . π−′q−1∗ ]′,

where ϕ∗ := [ϕ1∗, ϕ2∗, . . . , ϕp−1∗]
′. With this notation in hand, the OLS estimator can be expressed as

α̂T :=

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

zt∆yt

)
= α∗ +

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

ztet

)
.

Inference on the unknown parameters using α̂T is challenging, because
∑T

t=1 ztz
′
t is asymptotically singular. This is

shown in the following lemma:

Lemma 1. Given Assumption 1:

(i)

1

T 3

T∑
t=1

zt1z
′
t1

P→M11 :=
1

3


δ2
∗ δ∗µ

+′
∗ δ∗µ

−′
∗

δ∗µ
+
∗ µ+

∗ µ
+′
∗ µ+

∗ µ
−′
∗

δ∗µ
−
∗ µ−∗ µ

+′
∗ µ−∗ µ

−′
∗

 ;

(ii)

1

T 2

T∑
t=1

z1tz
′
2t

P→M12 :=
1

2


δ∗ δ2

∗ι
′
p−1 δ∗ι

′
q ⊗ µ+′

∗ δ∗ι
′
q ⊗ µ−′

µ+
∗ δ∗µ

+
∗ ι
′
p−1 ι′q ⊗ µ+

∗ µ
+′
∗ ι′q ⊗ µ+

∗ µ
−′

µ−∗ δ∗µ
−
∗ ι
′
p−1 ι′q ⊗ µ−∗ µ+′

∗ ι′q ⊗ µ−∗ µ−′∗

 ; and

(iii)

1

T

T∑
t=1

z2tz
′
2t

P→M22 :=


1 δ∗ι

′
p−1 ι′q ⊗ µ+′

∗ ι′q ⊗ µ−′∗
δ∗ιp−1

E[wtw
′
t]ιq ⊗ µ+

∗

ιq ⊗ µ−∗

 ,

where ιa is an a× 1 vector of ones. �
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Lemma 1 implies that, if we let DT := diag[T 3/2I2+2k, T
1/2Ip+2qk], then:

D−1
T

(
T∑
t=1

ztz
′
t

)
D−1
T

P→M∗ :=

 M11 M12

M21 M22

 ,
which is singular. Due to this singularity, it is difficult to derive the limit distribution of α̂T directly. To do so would

require one to derive the limit distribution of the determinant of
∑T

t=1 ztz
′
t, which is analytically challenging. In practice,

a higher-order approximation of
(∑T

t=1 ztz
′
t

)−1
would be necessary to derive the limit distribution of the OLS estimator,

and the limit distribution of the OLS estimator may depend on the estimated parameter values.

3 NARDL Estimation and Limit Distribution

In this section, we propose an analytically tractable two-step estimation procedure that draws on Engle and Granger

(1987) and Phillips and Hansen (1990) and derive the relevant limit distributions. For clarity of exposition, we divide this

section into two subsections, the first focusing on the estimation of the model with k = 1 and the second with k > 1. As

detailed below, we provide a separate estimation framework for each case.

3.1 Estimation and Limit Distribution with k = 1

3.1.1 Estimation of the Long-Run Parameters

First Step Estimation by OLS: In keeping with the two-step estimation framework of Engle and Granger (1987), one

may attempt to estimate the long-run parameters by OLS. Recall that the long-run relationship may be written as follows:

yt = α∗ + β+
∗ x

+
t + β−∗ x

−
t + ut. (6)

Now, define D̄T := diag[T 1/2, T 3/2I2] and vt := (1, x+
t , x

−
t )′ such that:

D̄−1
T

(
T∑
t=1

vtv
′
t

)
D̄−1
T

P→


1 1

2µ
+
∗

1
2µ
−
∗

1
2µ

+
∗

1
3µ

+
∗ µ

+
∗

1
3µ

+
∗ µ
−
∗

1
2µ
−
∗

1
3µ
−
∗ µ

+
∗

1
3µ
−
∗ µ
−
∗

 .

By applying Lemma 1(i) and (ii), it is straightforward to show that this is a singular matrix, which frustrates analytical

efforts to obtain the limit distribution of the OLS estimator. Note that this singularity arises from the collinearity of

the trends in x+
t and x−t . We proceed by reparameterizing (6) in the following form, which facilitates estimation of the

long-run parameters:

yt = α∗ + λ∗x
+
t + η∗xt + ut, (7)
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where xt ≡ x+
t + x−t , λ∗ = β+

∗ − β−∗ and η∗ = β−∗ . It follows that β+
∗ = λ∗+ η∗ and β−∗ = η∗. It is possible to estimate

%∗ := (α∗, λ∗, η∗)
′ by OLS as follows:

%̂T := (α̂T , λ̂T , η̂T )′ := arg min
α, λ, η

T∑
t=1

(yt − α− λx+
t − ηxt)2,

where we can recover β̂+
T := λ̂T + η̂T and β̂−T = η̂T . Notice that (β̂+

T , β̂
−
T ) is identical to the OLS estimator obtained by

regressing yt on
(
1, x+

t , x
−
t

)
. Now:

%̂T = %∗ +

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtut

)
, (8)

where qt :=
(
1, x+

t , xt
)′. For the analysis of the components in (8), we define:

Σ∗ :=

 σ
(1,1)
∗ σ

(1,2)
∗

σ
(2,1)
∗ σ

(2,2)
∗

 := lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[gtgs] and [Bx(·),Bu(·)]′ := Σ
1/2
∗ [Wx(·),Wu(·)]′ ,

where gt := [∆xt, ut]
′ and [Wx(·),Wu(·)]′ is a 2 × 1 vector of independent Wiener processes. If {ut} is serially

uncorrelated and independent of {∆xt}, then Σ∗ and [Bx(·),Bu(·)]′ simplify to diag
[
σ2
x, σ

2
u

]
and [σxWx(·), σuWu(·)]′,

respectively, where σ2
x := limT→∞

1
T

∑T
t=1

∑T
s=1 E[∆xt∆xs] and σ2

u := E[u2
t ]. The following lemma provides the limit

behaviors of the components constituting the OLS estimator:

Lemma 2. Given Assumption 1, if k = 1 and Σ∗ is positive definite:

(i)

Q̂T := D̃−1
T

(
T∑
t=1

qtq
′
t

)
D̃−1
T ⇒Q :=


1 1

2µ
+
∗

∫
Bx

1
2µ

+
∗

1
3µ

+
∗ µ

+
∗ µ+

∗
∫
rBx∫

Bx
∫
rBxµ+

∗
∫
BxBx

 ,
where D̃T := diag[T 1/2, T 3/2, T ]; and

(ii) if υ∗ := limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite, then ÛT := D̃−1

T (
∑T

t=1 qtut)⇒ U := [
∫
dBu, µ+

∗
∫
rdBu,∫

BxdBu + υ∗] �

Here, all integrals are computed with respect to r ∈ [0, 1]. For example,
∫
rBx denotes

∫ 1
0 rBx(r)dr. Note that Q is

nonsingular with probability 1, so the limit distribution of %̂T is obtained as a product of Q−1 and U , as stated in the

following corollary:

Corollary 1. Given Assumption 1, if k = 1 and Σ∗ is positive definite, D̃T (%̂T − %∗)⇒Q−1U . �

Corollary 1 has important implications, as summarized in the following remarks:

Remarks.
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(a) By virtue of the reparameterization in (7), the collinearity between x+
t and x−t is removed. The fact that

∑T
t=1 xt =

OP(T 3/2) and
∑T

t=1 x
+
t = OP(T 2) leads to different convergence rates for λ̂T and η̂T , viz., λ̂T −λ∗ = OP(T−3/2)

and η̂T − η∗ = OP(T−1).

(b) Although x+
t is one of the regressors, the limit distribution of %̂T is obtained without applying the functional central

limit theorem (FCLT) to
∑[T (·)]

t=1 (x+
t − µ+

∗ ). We apply the FCLT only to
∑T (·)

t=1 gt and obtain the limit distribution.

(c) Using the definition of λ̂T , we have: T{(β̂+
T − β̂

−
T )− (β+

∗ −β−∗ )} = OP(T−1/2). This implies that T (β̂+
T −β+

∗ ) =

T (β̂−T − β−∗ ) + oP(1), such that the limit distributions of T (β̂+
T − β+

∗ ) and T (β̂−T − β−∗ ) are equivalent. Because

the convergence rate of the long-run parameter estimator is faster than T 1/2, β̂+
T and β̂−T can be treated as known

when estimating the short-run dynamic parameters in the second step. �

The following theorem presents the limit distribution of the OLS estimator of the long-run parameters:

Theorem 1. Given Assumption 1, if k = 1, T [(β̂+
T − β+

∗ ), (β̂−T − β−∗ )]′ ⇒ ι2 ⊗ SQ−1U , where S := [01×2, 1]. �

First Step Estimation by FM-OLS: Note that the limit distribution in Theorem 1 is non-normal and depends on

the nuisance parameters, Σ∗ and υ∗. Due to the presence of nuisance parameters, the limit distribution cannot be

readily exploited for inference on the long-run parameters. Furthermore, except in the special case in which {ut} is

independent of {∆xt} and/or serially uncorrelated, the OLS estimator of the long-run parameter exhibits an asymptotic

bias determined by υ∗. The FM-OLS estimator developed by Phillips and Hansen (1990) overcomes these problems. It

is free from asymptotic bias even in the presence of endogenous regressors and/or serial correlation and it follows an

asymptotic mixed normal distribution. We therefore advocate the use of FM-OLS to estimate the long-run cointegrating

parameters in the first step.

Suppose that Σ∗ can be consistently estimated by a heteroskedasticity and autocorrelation consistent covariance

matrix estimator. For example, following Newey and West (1987), we have:

Σ̃T :=

 σ̃
(1,1)
T σ̃

(1,2)
T

σ̃
(2,1)
T σ̃

(2,2)
T

 :=
1

T

T∑
t=1

ĝtĝ
′
t +

1

T

∑̀
k=1

ω`k

T∑
t=k+1

{
ĝt−kĝ

′
t + ĝtĝ

′
t−k
}
,

where ĝt := [∆xt, ût]
′, ω`k := 1−k/(1 + `), ` = O(T 1/4) and ût := yt− α̂T − β̂+

T x
+
t − β̂

−
T x
−
t . In addition, under mild

regularity conditions, it is straightforward to show that the asymptotic bias, υ∗, in U can be consistently estimated by:

Π̃T :=

 π̃
(1,1)
T π̃

(1,2)
T

π̃
(2,1)
T π̃

(2,2)
T

 :=
1

T

∑̀
k=0

T∑
t=k+1

ĝt−kĝ
′
t.

Now, define the following long-run parameter estimator:

%̃T := (α̃T , λ̃T , η̃T )′ :=

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtỹt − TS′υ̃T

)
,

9



where ỹt := yt −∆xt

(
σ̃

(1,1)
T

)−1
σ̃

(1,2)
T and υ̃T := π̃

(1,2)
T − π̃(1,1)

T

(
σ̃

(1,1)
T

)−1
σ̃

(1,2)
T . Finally, the FM-OLS estimators of

the long-run parameters are obtained as β̃+
T := λ̃T + η̃T and β̃−T := η̃T . Note that these estimators are designed to remove

the asymptotic bias, as in Phillips and Hansen (1990). To derive the limit distribution of the FM-OLS estimator, we add

the following regularity conditions:

Assumption 2.

(i) Σ∗ is finite and positive definite and Σ̃T
P→ Σ∗; and

(ii) Π∗ is finite and Π̃T
P→ Π∗, where:

Π∗ :=

 π
(1,1)
∗ π

(1,2)
∗

π
(2,1)
∗ π

(2,2)
∗

 := lim
T→∞

1

T

T∑
t=1

t∑
i=1

E[gig
′
t]. �

Note that the definition of π(1,2)
∗ is identical to υ∗. The following lemma provides the limit behavior of the constituent

components of the FM-OLS estimator:

Lemma 3. Given Assumptions 1 and 2, , if k = 1, ŨT := D̃−1
T {
∑T

t=1 qt(ut−∆xt(σ̃
(1,1)
T )−1σ̃

(1,2)
T )− TS′υ̃T } ⇒ Ũ :=

τ∗[
∫
dWu, µ

+
∗
∫
rdWu,

∫
BxdWu]′, where τ2

∗ := plimT→∞τ̃
2
T and τ̃2

T := σ̃
(2,2)
T − σ̃(2,1)

T (σ̃
(1,1)
T )−1σ̃

(1,2)
T . �

Given Lemma 2(i), Q̂T ⇒ Q, which is nonsingular with probability 1. The limit distribution of %̃T can therefore be

obtained as the product of Q−1 and Ũ , as stated in the following corollary:

Corollary 2. Given Assumption 1, if k = 1, D̃T (%̃T − %∗)⇒Q−1Ũ . �

Corollary 2 has a number of important implications, as outlined in the following Remarks:

Remarks.

(a) The limit distribution of the FM-OLS estimator is mixed normal. Conditional on σ{Bx(r), r ∈ (0, 1]}, the limit

distribution of D̃T (%̃T − %∗) is N(0, τ2
∗Q−1). Consequently, if a Wald test statistic is constructed using the

FM-OLS estimator, its null limit distribution will be chi-squared.

(b) As in the case of the 2-step OLS estimator, we have: T (β̃+
T − β+

∗ ) = T (β̃−T − β−∗ ) + oP(1), such that the limit

distribution of β̃+
T is equivalent to that of β̃−T . Furthermore, the limit distribution of β̃−T is given by that of η̃T .

(c) The convergence rates of β̃+
T and β̃−T are both T . Because their convergence rates exceed T 1/2, we can estimate the

short-run parameters in the second stage regression by replacing ut−1 with ũt−1 := yt−1−α̃T − β̃+
T x

+
t−1− β̃

−
T x
−
t−1.

�

The following theorem formally presents the limit distribution of the FM-OLS estimator:

Theorem 2. Given Assumptions 1 and 2, if k = 1, T [(β̃+
T − β+

∗ ), (β̃−T − β−∗ )]′ ⇒ ι2 ⊗ SQ−1Ũ . �

10



3.1.2 Estimation of the Short-Run Parameters

As we have shown above, the long-run coefficients can be estimated by an estimator with a convergence rate faster than

T 1/2, so we can treat them as known in order to estimate the short-run parameters. Let:

ut−1 := yt−1 − β+
∗ x

+
t−1 − β

−
∗ x
−
t−1. (9)

Assuming that β+
∗ and β−∗ are known, we can rewrite (2) as:

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et. (10)

Note that all variables in (10) are stationary, so the unknown parameters can be estimated by OLS. If we define ζ∗ :=

(ρ∗,β
′
2∗)
′ and ht := (ut−1, z

′
2t)
′, where β2∗ := (γ∗, ϕ1∗, . . . , ϕp−1∗,π

+′
0∗ , . . . ,π

+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗, )

′, then (10) can

be rewritten as ∆yt = ζ′∗ht + et, and we can obtain the OLS estimator as follows:

ζ̂T :=

(
T∑
t=1

hth
′
t

)−1( T∑
t=1

ht∆yt

)
= ζ∗ +

(
T∑
t=1

hth
′
t

)−1( T∑
t=1

htet

)
. (11)

The following lemma shows the limit behaviors of the constituent components of ζ̂T :

Lemma 4. Given Assumption 1:

(i)

Γ̂T :=
1

T

T∑
t=1

hth
′
t

P→ Γ∗ :=

 E[u2
t ] E[utz

′
2t]

E[z2tut] M22

 ;

(ii) T−1/2
∑T

t=1 htet
A∼ N [0,Ω∗], where Ω∗ := E[e2

thth
′
t]; and

(iii) in the special case where E[e2
t |ht] = σ2

∗ , Ω∗ simplifies to σ2
∗Γ∗. �

We omit the proof of Lemma 4, because it is straightforward. Using Lemma 4, it is possible to derive the limit distribution

of ζ̂T , which is provided in the following theorem:

Theorem 3. Given Assumption 1, if Γ∗ and Ω∗ are positive definite:

(i)
√
T (ζ̂T − ζ∗)

A∼ N(0,Γ−1
∗ Ω∗Γ

−1
∗ ); and

(ii) if it further holds that E[e2
t |ht] = σ2

∗ , then
√
T (ζ̂T − ζ∗)

A∼ N(0, σ2
∗Γ
−1
∗ ). �

Theorem 3 shows that, if there is any estimator converging to the cointegrating coefficient faster than T 1/2 such as the

first-step OLS and FM-OLS estimators, then we can use the resulting parameter estimate as if it is known.
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3.2 Estimation and Limit Distribution with k > 1

3.2.1 Estimation of the Long-Run Parameters

First-Step Transformed OLS: If more than a single explanatory variable enters the long-run relationship, then the

two-step estimation procedure outlined above is not appropriate. This can be seen by letting xt ≡ x+
t + x−t , λ∗ =

β+
∗ − β−∗ and η∗ = β−∗ with k > 1, such that:

yt = α∗ + λ′∗x
+
t + η′∗xt + ut. (12)

If we further let qt := (1,x+′
t ,x

′
t)
′ then, by extending Lemma 2, it follows that:

Q̂T := D̃−1
T

(
T∑
t=1

qtq
′
t

)
D̃−1
T ⇒Q :=


1 1

2µ
+
∗

∫
B′x

1
2µ

+
∗

1
3µ

+
∗ µ

+′
∗ µ+

∗
∫
rB′x∫

Bxdr
∫
rBxµ

+′
∗

∫
BxB′x

 ,

where D̃T := diag[T 1/2, T 3/2Ik, T Ik], and Bx(·) is a k × 1 vector of Brownian motions, such that:

[
Bx(·)′,Bu(·)

]′
:= Σ

1/2
∗
[
Wx(·)′,Wu(·)′

]′ and Σ∗ := lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[gtgs],

with gt := [∆xt, ut]
′ and [Wx(·)′,Wu(·)]′ being a (k + 1) × 1 vector of independent Wiener processes. Note that the

blocks on the second-row of Q now form a sub-matrix with rank equal to unity. That is:

[ 1
2µ

+
∗

1
3µ

+
∗ µ

+′
∗ µ+

∗
∫
rB′x ] = µ+

∗ [ 1
2

1
3µ

+′
∗

∫
rB′x ],

which implies that Q is a singular matrix with probability 1, so the two-step procedure that we develop above cannot be

used to estimate the long-run parameters. To overcome this issue, we first note that, ifmt :=
∑t

j=1 s
+
j in (4), thenmt is

a unit-root process, the increments of which have a population mean of zero. Therefore, if x+
t is regressed against t, µ+

∗

can be estimated by µ̂+
T :=

(∑T
t=1 t

2
)−1∑T

t=1 tx
+
t = µ+

∗ +
(∑T

t=1 t
2
)−1∑T

t=1 tmt, where m̂t := x+
t − µ̂

+
T t is the

regression residual. Consequently,mt = m̂t + tdT , where dT :=
(∑T

t=1 t
2
)−1∑T

t=1 tmt, so that:

x+
t = m̂t + (µ+

∗ + dT )t. (13)

Under the regularity conditions given above, dT = OP(T−1/2). Consequently, if we let δ∗T := µ+
∗ + dT , then δ∗T =

µ∗ +OP(T−1/2). Now, we rewrite (12) using (13) to obtain:

yt = α∗ + λ′∗(µ
+
∗ + dT )t+ λ′∗m̂t + η′∗xt + ut. (14)

12



Therefore, if yt is regressed against rt := (1, t, m̂′t,x
′
t)
′, then λ∗ and η∗ can be consistently estimated. Let $̈T :=

(α̈T , ξ̈∗T , λ̈
′
T , η̈

′
T )′ be the OLS estimate for $∗T := (α∗, ξ∗T ,λ

′
∗,η
′
∗)
′, where ξ∗T := λ′∗δ∗T . The long-run coefficients

are obtained by β̈+
T := λ̈T + η̈T and β̈−T := η̈T for β+

∗ and β−∗ , respectively, similarly to (β̂
+

T , β̂
−
T ). If:

S̈ :=

 0k×1 0k×1 Ik Ik

0k×1 0k×1 0k×k Ik

 , then

 β̂+

T

β̂
−
T

 = S̈$̈T .

We refer to this estimator as the first-step transformed OLS (TOLS) estimator. The intuition of the TOLS estimator

is straightforward—because it is the collinear trend in x+
t that results in the singularity of Q, which, in turn, renders

first-step estimation by OLS and FM-OLS inoperable, we de-trend x+
t prior to estimation.

The limit distribution of the first-step TOLS estimator is obtained in a similar fashion to the limit distribution of the

first-step OLS estimator. First, note that:

$̈T = $∗T +

(
T∑
t=1

rtr
′
t

)−1 T∑
t=1

rtut.

To characterize the limit behaviors of the components on the right side, we first define:

Σ̈∗ := lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[g̈tg̈
′
t] and [Bm(·)′,Bx(·)′,Bu(·)]′ := Σ̈

1/2
∗ [Wm(·)′,Wx(·)′,Wu(·)]′,

where g̈t := [∆m′t,∆xt, ut]
′ and [Wm(·)′,Wx(·)′,Wu(·)]′ is a (2k + 1)× 1 vector of independent Wiener processes.

Lemma 5. Given Assumption 1, if Σ̈∗ is positive definite:

(i) R̈T := D̈−1
T

(∑T
t=1 rtr

′
t

)
D̈−1
T ⇒R, where:

R :=


1 1

2

∫
(1− 3

2r)B
′
m

∫
B′x

1
2

1
3 01×k

∫
rB′x∫

(1− 3
2r)Bm 0k×1

∫
BmB′m − 3

∫
rBm

∫
rB′m

∫
BmB′x − 3

∫
rBm

∫
rB′x∫

Bx

∫
rBx

∫
BxB′m − 3

∫
rBx

∫
rB′m

∫
BxB′x


and D̈T := diag[T 1/2, T 3/2, T I2k]; and

(ii) if υx∗ := limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆xiut] and υm∗ := limT→∞ T

−1
∑T

t=1

∑t
i=1 E[∆miut] are finite, then

ÜT := D̈−1
T

(∑T
t=1 rtut

)
⇒ Ü := [

∫
dBu,

∫
rdBu,

∫
B′mdBu − 3

∫
rdBu

∫
rB′m + υ′m∗,

∫
B′xdBu + υ′x∗]

′. �

Note that R is no longer singular because
∑[T (·)]

t=1 g̈t obeys the FCLT using partially correlated increments. The following

corollary shows the limit behavior of $̈T :

Corollary 3. Given Assumption 1, D̈T ($̈T −$∗T )⇒R−1Ü and T 1/2(ξ̂T − λ′∗µ+
∗ )⇒ 3λ′∗

∫
rBm. �
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The first part of Corollary 3 is straightforward from the structure of the first-step TOLS estimator. For the second part,

notice that ξ̂T is not of primary interest. Although the convergence rate of (ξ̂T − ξ∗T ) is T 3/2, as given in the first part,

ξ∗T := λ′∗δ∗T converges to λ′∗µ
+
∗ at the rate T 1/2. This implies that T 1/2(ξ̂T − λ′∗µ+

∗ ) is asymptotically bounded in

probability. The following theorem provides the limit distribution of the long-run parameter estimator.

Theorem 4. Given Assumption 1, if Σ̈∗ is positive definite, then T [(β̈+
T − β

+
∗ )′, (β̈−T − β

−
∗ )′]′ ⇒ S̈R−1Ü . �

First-Step FM-TOLS: Despite the simplicity of the TOLS estimator of the long-run parameters, the limit distribution

in Theorem 4 does not provide a straightforward basis for inference because it is non-standard and it exhibits asymptotic

bias driven by υ∗m and υ∗x. We therefore provide an alternative estimator in the same spirit as the first-step FM-OLS

estimator introduced in Section 3.1.1 for the case where k = 1. We begin by making the following assumption:

Assumption 3.

(i) Σ̈∗ is finite and positive definite, such that there is a consistent estimator for Σ̈∗:

Σ̄T :=

 Σ̄
(1,1)
T σ̄

(1,2)
T

σ̄
(2,1)
T σ̄

(2,2)
T

 P→ Σ̈∗ :=

 Σ̈
(1,1)
∗ σ̈

(1,2)
∗

σ̈
(2,1)
∗ σ

(2,2)
∗

 ; and

(ii) if we let Π̄T := T−1
∑`

k=0

∑T
t=k+1 ḡt−kḡ

′
t: Π̄

(1,1)
T π̄

(1,2)
T

π̄
(2,1)
T π̄

(2,2)
T

 := Π̄T
P→ Π̈∗ :=

 Π̈
(1,1)
∗ π̈

(1,2)
∗

π̈
(2,1)
∗ π

(2,2)
∗

 := lim
T→∞

1

T

T∑
t=1

t∑
i=1

E[g̈tg̈
′
t],

which is finite, where ḡt := [∆m̂′t,∆x
′
t, üt]

′ and üt := yt − α̈T − β̈+′
T x

+
t − β̈

−′
T x
−
t . �

Note that Assumption 3 corresponds to Assumption 2 in the case where k > 1. The fully-modified TOLS (FM-TOLS)

estimator is defined as follows:

$̄T := (ᾱT , ξ̄T , β̄
+′
T , β̄

−′
T )′ :=

(
T∑
t=1

rtr
′
t

)−1( T∑
t=1

rtȳt − T S̄′ῡT

)
,

where ȳt := yt − `′t(Σ̄
(1,1)
T )−1σ̄

(1,2)
T , `t := (∆m̂′t,∆x

′
t)
′, ῡT := π̄

(1,2)
T − Π̄

(1,1)
T (Σ̄

(1,1)
T )−1σ̄

(1,2)
T and S̄ := [02k×2, I2k].

The limit distribution of the FM-TOLS estimator is obtained in a similar way to the limit distribution of the FM-OLS

estimator. The following lemma corresponds to Lemma 3 in the case where k > 1:

Lemma 6. Given Assumptions 1 and 3, ŪT := D̈−1
T {
∑T

t=1 rt(ut − `
′
t(Σ̄

(1,1)
T )−1σ̄

(1,2)
T )− T S̄′ῡT } ⇒ Ū := τ̈ [

∫
dWu,∫

rdWu,
∫
B′mdWu−3

∫
rdWu

∫
rB′m,

∫
B′xdWu]′, where τ̈2 := plimT→∞τ̄

2
T and τ̄2

T := σ̄
(2,2)
T −σ̄(2,1)

T (Σ̄
(1,1)
T )−1σ̄

(1,2)
T .

�

Given Lemmas 5 and 6, the limit distribution of the FM-TOLS estimator is obtained as the product of R−1 and Ū , which

is formally stated in the following theorem:
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Theorem 5. Given Assumptions 1 and 3, D̈T ($̄T − $̄∗T )⇒R−1Ū and T [(β̄+
T −β

+
∗ )′, (β̄−T −β

−
∗ )′]′ ⇒ S̈R−1Ū . �

The limit distribution of the FM-TOLS estimator is mixed normal. Conditional on σ{(Bm(r)′,Bx(r)′)′, r ∈ (0, 1]}, the

limit distribution of D̄T ($̄T − $̄∗T ) is N(0, τ̈2R−1).

3.2.2 Estimation of the Short-Run Parameters

As in Section 3.1.2, suppose that the cointegrating coefficient is known or can be estimated by an estimator with a

convergence rate faster than T 1/2. That is:

ut−1 := yt−1 − β+′
∗ x

+
t−1 − β

−′
∗ x
−
t−1 = yt−1 − λ′∗µ+

∗ (t− 1)− λ′∗mt−1 − η′∗xt−1. (15)

Assuming that λ∗, µ+
∗ , and η∗ are known, we can rewrite (2) as (10), so that the unknown parameters can be estimated

by OLS as in (11) and Theorem 3 applies. If λ′∗µ
+
∗ , λ∗ and η∗ are estimated by the FM-OLS or FM-TOLS estimators,

we can use the resulting parameter estimate as if it is known. Note that this result is parallel to that in Section 3.1.2.

4 Hypothesis Testing

The NARDL model differs from the linear ARDL model advanced by Pesaran and Shin (1998) and Pesaran et al. (2001)

in its use of partial sum decompositions to accommodate asymmetries. Consequently, it is important to test whether any

asymmetries in the short-run or the long-run are statistically significant. In this section, we develop a testing methodology

based on Wald’s (1943) testing principle. As before, we separate our discussion into two cases by letting k = 1 and k > 1.

4.1 Hypothesis Testing with k = 1

4.1.1 Testing for Symmetry of the Long-Run Parameters

Consider the following hypotheses for the long-run parameters: H ′0 : (β+
∗ − β−∗ ) = r vs. H ′1 : (β+

∗ − β−∗ ) 6= r for some

r ∈ R. By setting r = 0, we can test whether β+
∗ = β−∗ . In models with multiple independent variables, we can also test

the partial equality of β+
∗ and β−∗ by selecting r appropriately.

Recall that λ∗ := β+
∗ − β−∗ in (7). Consequently, we can restate H ′0 as follows: H ′′0 : λ∗ = r vs. H ′′1 : λ∗ 6= r,

from which the long-run symmetry restriction, β+
∗ = β−∗ , is equivalent to the restriction that λ∗ = 0. It is straightforward

to test this restriction if λ∗ is estimated by FM-OLS, because the FM-OLS estimator is asymptotically mixed-normally

distributed, so the Wald test statistic follows an asymptotic chi-squared distribution under the null. This is an important

advantage of FM-OLS over OLS, which yields a non-standard limit distribution for the long-run parameter.

Corollary 2 provides the limit distribution of λ̃T . If we let S` := [0, 1, 0], then T 3/2(λ̃T − λ∗) = S`D̃T (%̃T −%∗)⇒

S`Q−1Ũ , implying that T 3/2(λ̃T − λ∗) ⇒ S`Q−1Ũ , so that T 3/2(λ̃T − r) ⇒ S`Q−1Ũ under H ′′0 . The Wald test
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statistic is constructed in the usual manner:

W(`)
T :=

T 3(λ̃T − r)2(
τ̃2
TS`Q̂

−1
T S′`

) .
Note that the Wald statistic above may be inappropriate to test other forms of hypothesis. For example, consider the

following hypotheses: H ′′′0 : Rβ∗ = r vs. H ′′′1 : Rβ∗ 6= r for some R ∈ Rr×2 and r ∈ Rr (r ∈ {1, 2}), where

β∗ := (β+
∗ , β

−
∗ )′. Define:

R̃` :=

 0 1 1

0 0 1

 ,
such that these hypotheses can be rewritten as follows: H ′′′0 : R̃%∗ = r vs. H ′′′1 : R̃%∗ 6= r, where R̃%∗ = β∗

and R̃ := RR̃`. Define the following Wald test statistic: W̃(`)
T := (R̃%̃T − r)′(τ̃2

T R̃Q−1
T R̃′)−1(R̃%̃T − r), where

QT :=
∑T

t=1 qtq
′
t. The following theorem describes the limit behavior of the Wald test statistics:

Theorem 6. Given Assumptions 1 and 2,W(`)
T

A∼ X 2
1 under H ′′0 and W̃(`)

T
A∼ X 2

2 under H ′′′0 ; and for any sequence, cT

and c̃T , such that cT = o(T 3) and c̃T = o(T 2), P(W(`)
T > cT )→ 1 under H ′′1 and P(W̃(`)

T > c̃T )→ 1 under H ′′′1 . �

The null limit distribution ofW(`)
T can also be generated by simulation, as in SYG.

4.1.2 Testing for Symmetry of the Short-Run Parameters

We begin by examining the test for additive symmetry of the short-run dynamic parameters. Consider the following null

and alternative hypotheses: H0 : Rsζ∗ = r vs. H1 : Rsζ∗ 6= r, where Rs ∈ Rr×(1+p+2q), and r ∈ Rr (r ∈ N)

are selection matrices. If we define Rs :=
[
0′1+p, ι

′
q,−ι′q

]
and r = 0, then we can test the null hypothesis of additive

short-run symmetry against the alternative hypothesis of additive short-run asymmetry: H0 :
∑q−1

j=0 π
+
j∗ =

∑q−1
j=0 π

−
j∗ vs.

H1 :
∑q−1

j=0 π
+
j∗ 6=

∑q−1
j=0 π

−
j∗.

2

We construct a Wald test statistic as: W(s)
T := T (Rsζ̂T − r)′(RsΓ̂

−1

T Ω̂T Γ̂
−1

T R′s)
−1 (Rsζ̂T − r), where Ω̂T is a

consistent estimator for Ω∗: Ω̂T := T−1
∑T

t=1 ê
2
thth

′
t. We let êt := ∆yt − ζ̂

′
Tht, where ζ̂T can be constructed from

the first step regression using FM-OLS. Furthermore, if the condition in Lemma 4(iii) holds, then the Wald test statistic

simplifies to W(s)
T := T (Rsζ̂T − r)′(σ̂2

e,TRsΓ̂
−1

T R′s)
−1(Rsζ̂T − r), where σ̂2

e,T := T−1
∑T

t=1 ê
2
t . In Theorem 7, we

establish that the null and alternative limit distributions of the Wald test statistic are standard.

Theorem 7. Given Assumption 1, if Γ∗ and Ω∗ are positive definite, thenW(s)
T

A∼ X 2
r under H0 and, for any sequence,

cT , such that cT = o(T ), P(W(s)
T > cT )→ 1 under H1. �

We omit the proof of Theorem 7 as it is straightforward.
2Studies in the NARDL literature test several different forms of short-run symmetry restrictions, including the additive form, as well as pairwise

symmetry between π+
j∗ and π−

j∗ for j = 0, . . . , q − 1 (e.g. SYG) and impact symmetry between π+
0∗ and π−

0∗ (e.g. Greenwood-Nimmo and Shin,
2013). It is straightforward to test these alternative symmetry restrictions by specifying appropriate selection matrices, Rs and r.
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4.2 Hypotheses Testing with k > 1

4.2.1 Testing for Symmetry of the Long-Run Parameters

Suppose that k > 1 and consider hypothesis testing on the long-run parameters. We define β∗ := (β+′
∗ ,β

−′
∗ )′ as a natural

extension of the corresponding definition in Section 4.1.1. Consider the following hypotheses: H(4)
0 : Rβ∗ = r vs. H(4)

1 :

Rβ∗ 6= r for some R ∈ Rr×2k and r ∈ Rr (r ≤ 2k). Define ẄT := T 2(Rβ̄T − r)′
{
τ̄2
TRS̈R̈−1

T S̈′R′
}−1

(Rβ̄T − r),

where β̄T := (β̄+′
T , β̄

−′
T )′. The following theorem describes the limit behavior of the Wald test statistic.

Theorem 8. Given Assumptions 1 and 3, Ẅ(`)
T

A∼ X 2
r under H(4)

0 . Further, for any sequence cT such that cT = o(T 2),

P(Ẅ(`)
T > cT )→ 1 under H(4)

1 . �

4.2.2 Testing for Symmetry of the Short-Run Parameters

To examine the test for additive symmetry of the short-run dynamic parameters, consider the following null and alternative

hypotheses: H0 : Rsζ∗ = r vs. H1 : Rsζ∗ 6= r, where Rs ∈ Rr×(1+p+2qk) and r ∈ Rr are selection matrices, and

ζ∗ := (ρ∗, γ∗, ϕ1∗, . . . , ϕp−1∗,π
+′
0∗ , . . . ,π

+′
q−1∗, π

−′
0∗ , . . . ,π

−′
q−1∗), which generalizes our prior definition of ζ∗ for k = 1

in Section 4.1.2. If we let Rs :=
[
0k×(1+p), ι

′
q ⊗ Ik,−ιq ⊗ Ik

]
and r = 0, then we can test the null hypothesis of additive

short-run symmetry as for k = 1: H0 :
∑q−1

j=0 π
+
j∗ =

∑q−1
j=0 π

−
j∗ vs. H1 :

∑q−1
j=0 π

+
j∗ 6=

∑q−1
j=0 π

−
j∗. If the cointegration

residuals are obtained as in Section 3.2.2, then we can employ the same Wald test statistic introduced in Section 4.1.2 in

the case where k > 1, because the convergence rates of both the TOLS and FM-TOLS estimators are T .

5 Monte Carlo Simulations

In this section, we examine the estimation and inferential properties of the estimators and test statistics defined in Sections

3 and 4 by simulation. We treat the cases of k = 1 and k > 1 separately. First, we study the finite sample bias and

mean squared error (MSE) of the parameters estimated by our two-step procedure, where the estimator for the long-run

parameters is either OLS or FM-OLS (TOLS or FM-TOLS) and the estimator for the short-run parameters is OLS. We

then examine the properties of the Wald test statistics.

5.1 Monte Carlo Simulations with k = 1

We generate simulated data using the following NARDL(1,0) data generating process (DGP):

∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+
∗ ∆x+

t + π−∗ ∆x−t + et, (16)

where ut−1 := yt−1 − α∗ − β+
∗ x

+
t−1 − β−∗ x

−
t−1, ∆xt := κ∗∆xt−1 +

√
1− κ2

∗vt, and (et, vt)
′ ∼ IIDN(02, I2). We

set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2) and we allow the sample size, T , and the
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parameter ϕ∗ to vary. Note that ∆xt is generated by an AR(1) process with normally distributed disturbances and that ut

is both serially correlated and contemporaneously correlated with ∆xt.

5.1.1 Finite Sample Performance of the Two-step Estimators

Next, we specify the following long-run and short-run models:

yt = α+ λx+
t + ηxt + ut and ∆yt = γ + ρût−1 + ϕ1∆yt−1 + π+

0 ∆x+
t + π−0 ∆x−t + et,

where ût := yt− α̂T − λ̂Tx+
t − η̂Txt. We estimate these models in two steps. In the first step, we estimate the parameters

of the long-run relationship using either OLS or FM-OLS. In the second step, we estimate the short-run parameters by

OLS. In each case, we evaluate the performance of the estimators by comparing their finite sample bias and MSE. We

calculate the bias as follows:

BiasT (β+
∗ ) := R−1

R∑
j=1

(β̂+
T,j − β

+
∗ ) and BiasT (ϕ∗) := R−1

R∑
j=1

(ϕ̂T,j − ϕ∗),

where R is the number of replications used in the simulation experiment, β̂+
T is obtained in the first step by OLS or

FM-OLS and ϕ̂T is obtained in the second-step by OLS. Likewise, we calculate the finite sample MSE of β̂+
T and ϕ̂T as:

MSET (β+
∗ ) := R−1

R∑
j=1

(β̂+
T,j − β

+
∗ )2 and MSET (ϕ∗) := R−1

R∑
j=1

(ϕ̂T,j − ϕ∗)2.

The finite sample bias and MSE of the estimated parameters based on R = 5, 000 replications of the simulation

experiments are reported in Tables 1 and 2, respectively. To conserve space, we do not report the finite sample bias or

MSE for the intercepts, α and γ, but these results are available from the authors on request.

— Insert Tables 1 and 2 Here —

First, consider the long-run parameter estimators obtained in the first step. The finite sample bias of the FM-OLS

estimator is substantially smaller than that of the first step OLS estimator. Recall that FM-OLS yields normally distributed

estimators for the long-run parameters, β+
∗ and β−∗ . Consequently, in most cases, we find that the finite sample bias of

the FM-OLS estimator is close to zero, because T (β̃+
T − β+

∗ ) and T (β̃−T − β−∗ ) are asymptotically mixed-normally

distributed around zero. By contrast, the OLS estimator is not asymptotically distributed around zero and exhibits

non-negligible bias. In addition, our simulation results indicate that the FM-OLS estimator is often more efficient than

its OLS counterpart, resulting in a smaller MSE as the sample size increases. This tendency is particularly apparent for

small and/or negative values of ϕ∗, although it is likely to be different for other nuisance parameters. Taken as a whole,

these results strongly favor the use of FM-OLS in the first step.
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Now, consider the short-run parameter estimators obtained by OLS in the second step. We find that the finite sample

biases of the second step OLS estimators of the dynamic parameters become negligible as the sample size increases.

This is true irrespective of whether we use OLS or FM-OLS in the first step, although the smallest biases are obtained

in almost all cases when the first step estimator is FM-OLS. The MSEs of the second step OLS estimators are similar

irrespective of the use of OLS or FM-OLS in the first step. Even for a small sample of just 50 observations, the bias is

minor in all cases. This is an encouraging observation, because many existing applications of the NARDL model rely on

small datasets, constrained by the low sampling frequency and limited history of many macroeconomic databases.

5.1.2 Finite Sample Performance of the Wald Statistics

Testing Restrictions on the Long-Run Parameters: Here, we confine our attention to the case where the FM-OLS

estimator is used in the first step. We generate data using (16) and set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 1, 1, 0,

−2/3, ϕ∗, 1/3, 1/2, 1/2), as in Section 5.1.1. We test the following hypotheses: H(`)
0 : β+

∗ − β−∗ = 0 vs. H
(`)
1 :

β+
∗ −β−∗ 6= 0. The simulation results reported in Table 3 reveal some mis-sizing in small samples, particularly for negative

values of ϕ∗. Nonetheless, as the sample size increases, the distribution of the Wald test statistic becomes increasingly

well-approximated by the chi-squared distribution with one degree of freedom. However, in practical applications where

the sample size is smaller than 500, the use of resampling techniques to obtain an empirical p-value may be advisable.

— Insert Table 3 Here —

To examine the power of the Wald test, we generate data from (16) with (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) =

(0, 1.01, 1, 0,−2/3, ϕ∗, 1/3, 1/2, 1/2) and we allow ϕ∗ to vary over −0.50, −0.25, 0, 0.25 and 0.50, as before. The

simulation results forW(`)
T are reported in Table 4. We find that the Wald test statistic is consistent under the alternative

hypothesis. Irrespective of the value of ϕ∗, the empirical rejection rates of the Wald test statistic converge to 100%.

Furthermore, the power patterns of the Wald test statistic are largely insensitive to the value of ϕ∗.

— Insert Table 4 Here —

Testing Restrictions on the Short-Run Parameters: To examine the empirical level properties of the Wald test statistic,

we generate data using (16), with (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1/2, 1/2, 1/2) and allow

ϕ∗ to vary over −0.50, −0.25, 0, 0.25 and 0.50, as in Section 5.1.1. We first estimate the long-run parameters by

FM-OLS and compute ût before we estimate the short-run parameters by OLS. We then test the following hypotheses:

H
(s)
0 : π+

∗ − π−∗ = 0 vs. H(s)
1 : π+

∗ − π−∗ 6= 0, usingW(s)
T with the heteroskedasticity consistent covariance estimator

Ω̂T . The value of the Wald test statistic is then compared against the critical values of the chi-squared distribution with

one degree of freedom at the 1%, 5% and 10% levels of significance.

The simulation results reported in Table 5 reveal that the finite sample distribution of the Wald test statistic is

well-approximated by the chi-squared distribution. For each level of significance, the empirical level of the test statistic
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is approximately correct, particularly once the number of observations reaches 500. Interestingly, the empirical levels

display little sensitivity to the value of ϕ∗, even for moderate T .

— Insert Table 5 Here —

Next, we examine the empirical power properties of the Wald test statistic. For this exercise, we maintain the same

hypotheses but update the parameters, setting (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2).

As before, we allow ϕ∗ to vary over −0.50, −0.25, 0, 0.25 and 0.50 and we computeW(s)
T using the heteroskedasticity

consistent covariance matrix estimator. The simulation results are reported in Table 6. Two points are noteworthy. First,

the empirical power of the Wald test statistic increases with T , indicating that the test statistic is consistent. Second, the

power of the Wald test statistic exhibits little sensitivity to the degree of autocorrelation, captured by the value of ϕ∗.

— Insert Table 6 Here —

5.2 Monte Carlo Simulations when k = 2

This section examines the finite sample performance of the Wald test statistics derived in Section 4.2 by letting k = 2.

We first generate simulated data using the following NARDL(1,0) DGP:

∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+′
0∗∆x

+
t + π−′0∗∆x

−
t + et, (17)

where ut−1 := yt−1−α∗−β+′
∗ x

+
t−1−β

−′
∗ x
−
t−1, ∆xt := κ∗∆xt−1 +

√
1− κ2

∗vt, and (et,vt)
′ ∼ IIDN(03, I3). We set

(α∗, γ∗, ρ∗, ϕ∗, κ∗) = (0, 0,−1, ϕ∗, 0.5), (β+′
∗ ,β

−′
∗ )′ = (−1, 0.5, 0.75,−1.5)′, and (π+′

0∗ ,π
−′
0∗)
′ = (0.5,−0.5,−1, 1)′.

As before, we allow T and ϕ∗ to vary and examine the effect of differing degrees of serial correlation.

5.2.1 Finite Sample Performance of the Two-Step Transformed Estimators

We specify the long-run and short-run models as: yt = α + λ′x+
t + ηxt + ut and ∆yt = γ + ρût−1 + ϕ1∆yt−1 +

π+
0 ∆x+

t + π−0 ∆x−t + et, where ût is the regression residual obtained from the first step estimation. In the first step, we

estimate the long-run parameter by TOLS or FM-TOLS, and then subsequently estimate the short-run parameter by OLS.

For k = 2, we cannot estimate the unknown parameters using the OLS or FM-OLS estimators in the first step. As in the

case with k = 1, we evaluate the performance of the estimators by studying their respective finite sample bias and MSE,

which are obtained using R = 5, 000 replications. The results are reported in Tables 7 and 8.

— Insert Tables 7 and 8 Here —

We first examine the long-run parameter estimators obtained in the first step. As T increases, the finite sample bias

of the FM-TOLS estimator becomes smaller than that of the TOLS estimator. Recall that FM-OLS yields normally

distributed estimators for the long-run parameters, β+
∗ and β−∗ . Consequently, we find that the finite sample bias of the
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FM-TOLS estimator approaches zero much faster than the TOLS estimator as T increases. In addition, the FM-TOLS

estimator becomes more efficient than the TOLS estimator as T increases, resulting in a smaller MSE at larger sample

sizes. These results favor the use of the FM-TOLS estimator in samples of small to moderate size.

We next consider the short-run dynamic parameter estimators obtained by OLS. We find that the finite sample biases

of the OLS estimator become negligible as the sample size rises. This is true irrespective of the use of either TOLS

or FM-TOLS in the preceding step. Likewise, the MSEs of the OLS estimators of the dynamic parameters are similar

irrespective of whether we use TOLS or FM-TOLS in the first step, particularly as the sample size becomes larger.

5.2.2 Finite Sample Performance of the Wald Statistics

Testing Restrictions on the Long-Run Parameters: Here, we confine our attention to the case where the FM-TOLS

estimator is used in the first step. We generate data using (17) and set (α∗, γ∗, ρ∗, ϕ∗, κ∗) = (0, 0,−1, ϕ∗, 0.5), (β+′
∗ ,β

−′
∗ )′ =

(−1, 0.5, 0.75,−1.5)′, and (π+′
0∗ ,π

−′
0∗)
′ = (0.5,−0.5,−1, 1)′. We test the following hypotheses: Ḣ(`)

0 : ι′2β
+
∗ = −0.50

and ι′2β
−
∗ = −0.75 versus Ḣ(`)

1 : ι′2β
+
∗ 6= −0.50 or ι′2β

−
∗ 6= −0.75 using the Wald test by allowing ϕ∗ to vary over

−0.3, −0.1, 0, 0.1 and 0.3. The simulation results are reported in Table 9. As the sample size increases, we find that

the distribution of the Wald test statistic becomes well approximated by the chi-squared distribution with two degrees of

freedom. In the case of ϕ∗ = 0.3, however, a larger sample size is required to achieved a satisfactory approximation

using the chi-square distribution. In this setting, the use of resampling methods may be advisable.

— Insert Table 9 Here —

To examine the empirical power of the Wald test statistic, we generate the same data from (17) and allow ϕ∗ to vary

as before. We test the following hypotheses: Ḣ(`)
0 : ι′2β

+
∗ = −0.40 and ι′2β

−
∗ = −0.65 versus Ḣ(`)

1 : ι′2β
+
∗ 6= −0.40

or ι′2β
−
∗ 6= −0.65. The results reported in Table 10 reveal that the Wald test statistic is consistent under the alternative

hypothesis. Irrespective of the value of ϕ∗, the empirical rejection rates of the Wald test statistic converge to 100%.

— Insert Table 10 Here —

Testing Restrictions on the Short-Run Parameters: To examine the empirical level properties of the Wald test statistic

in this case, we generate data using (17), with (α∗, γ∗, ρ∗, ϕ∗, κ∗) = (0, 0,−1, ϕ∗, 0.5), (β+′
∗ ,β

−′
∗ )′ = (−1, 0.5, 0.75,

−1.5)′, and (π+′
0∗ ,π

−′
0∗)
′ = (0.5, 0.2, 0.5, 0.2)′, while allowing ϕ∗ to vary as before. For this exercise, we limit our

attention to the case in which the long-run parameters are estimated using the FM-TOLS estimator and we compute ût

prior to estimation of the short-run parameters by OLS. We then test the following hypotheses: Ḣ(s)
0 : π+

0∗−π
−
0∗ = 0 vs.

Ḣ
(s)
1 : π+

0∗ −π
−
0∗ 6= 0, using the Wald test with the heteroskedasticity consistent covariance estimator Ω̂T . The resulting

value of the Wald test statistic is then compared against the critical values of the chi-squared distribution with two degrees

of freedom at the 1%, 5% and 10% levels of significance.

The simulation results reported in Table 11 reveal that the finite sample distribution of the Wald test statistic is

well-approximated by the chi-squared distribution. For each level of significance, the empirical level of the test statistic
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is approximately correct, particularly once the number of observations reaches 1,000. Interestingly, the empirical levels

display little sensitivity to the value of ϕ∗, even for moderate T .

— Insert Table 11 Here —

Next, we examine the empirical power of the Wald test statistic. For this exercise, we work with the same DGP and

test the following hypotheses: Ḧ(s)
0 : π+

0∗−π
−
0∗ = 0.3ι vs. Ḧ(s)

1 : π+
0∗−π

−
0∗ 6= 0.3ι. We use the same Wald test statistic

and report the simulation results in Table 12. The empirical power of the Wald test statistic increases with T to reach

100% and the Wald test statistic once again exhibits little sensitivity to the degree of autocorrelation measured by ϕ∗.

— Insert Table 12 Here —

6 Empirical Application: Post-war Dividend Smoothing in the US

To illustrate the use of our two-step estimation procedure, we analyze the relationship between real dividends and real

earnings in the US. Among firms that pay dividends, the common practice is to adjust the dividend gradually in response to

earnings news. The seminal study of dividend smoothing behavior was conducted by Lintner (1956), based on interviews

with managers from twenty-eight companies. A key finding from these interviews is that managers are reluctant to

announce dividend changes that they may subsequently be obliged to reverse. Consequently, Lintner contends that firms

only adjust their dividends in response to non-transitory earnings changes, with the goal of achieving a desired long-run

target payout ratio. A substantial body of empirical work supports this view (e.g. Fama and Babiak, 1968; Marsh and

Merton, 1987; Garrett and Priestley, 2000; Andres, Betzer, Goergen, and Renneboog, 2009).

A more recent study by Brav et al. (2005) focusing on the factors that determine dividend and share repurchase

decisions largely corroborates Lintner’s findings. Specifically, Brav et al. find that 93.8% of managers agree that

executives strive to avoid reducing dividends, while 89.6% agree that executives smooth the dividend stream. 77.9% agree

that executives are reluctant to announce dividend changes that will subsequently be reversed, because 88.1% of managers

perceive that there are negative consequences to cutting dividends. Indeed, such is the reluctance to cut dividends that

Brav et al. (2005) find that managers would first consider liquidating assets, reducing the workforce or even deferring

profitable investments. The importance that managers attach to dividends supports DeAngelo and DeAngelo’s (2006)

view that dividends matter to investors, contrary to the classic irrelevance theorem of Miller and Modigliani (1961).

To capture the gradualism with which firms approach their target dividend, Lintner (1956) proposes the following

partial adjustment model: ∆Dt = a∗ − ζ∗ (D∗t −Dt−1) + εt, where Dt and D∗t denote the current level and the target

level of dividends at time t, respectively, and where |ζ∗| measures the speed with which the dividend is adjusted toward

the target. As noted by Cho, Kim, and Shin (2015), it is widely believed that an equilibrium relation exists between the

dividend target and current earnings, Et. Writing this equilibrium relation as D∗t = β∗Et, where β∗ captures the target
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payout ratio, we rewrite Lintner’s partial adjustment model in the following form:

∆Dt = a∗ + ζ∗Dt−1 + θ∗Et + εt, (18)

where θ∗ = −ζ∗β∗. As a linear partial adjustment process, (18) implies that the dividend is adjusted symmetrically with

respect to both positive and negative earnings news. This is incompatible with the behavior documented in the surveys

of Lintner (1956) and Brav et al. (2005). In particular, it is difficult to reconcile with the survey respondents’ insistence

that managers tend to smooth the dividend stream and avoid cutting dividends where possible. To allow for differential

adjustment with respect to positive and negative earnings news, we first define the following partial sum decomposition

of real earnings: Et = E0 + E+
t + E−t , where the initial value, E0, can be set to zero without loss of generality,

E+
t =

∑t
j=1

(
∆Ej1{∆Ej≥0}

)
, E−t =

∑t
j=1

(
∆Ej1{∆Ej<0}

)
and 1{·} is a Heaviside function taking the value 1 if

the condition in braces is satisfied and zero otherwise. Now, we propose the following asymmetric generalization of the

equilibrium relation between the target dividend and real earnings: D∗t = β+
∗ E

+
t + β−∗ E

−
t , where β+

∗ and β−∗ capture the

target payout ratios with respect to positive and negative earnings news, respectively. We now rewrite (18) as:

∆Dt = a∗ + ζ∗Dt−1 + θ+
∗ E

+
t + θ−∗ E

−
t + εt, (19)

where θ+
∗ = −ζ∗β+

∗ and θ−∗ = −ζ∗β−∗ . Unit root testing reveals that Dt and Et are first difference stationary time series,

implying that there is an asymmetric cointegrating relation between these variables provided that their linear combination

is stationary.3 To account for serial correlation in εt, (19) may be embedded within a NARDL(p,q) model as follows:

∆Dt = α∗ + ζ∗(Dt−1 − β+
∗ E

+
t−1 − β

−
∗ E
−
t−1) +

p−1∑
j=1

λj∗∆Dt−j +

q−1∑
j=0

d+
j∗∆E

+
t−j +

q−1∑
j=0

d−j∗∆E
−
t−j + εt, (20)

where the use of a sufficiently rich lag structure will ensure that εt is serially uncorrelated. Noting that this a NARDL

model with a single explanatory variable, it follows that (20) can be estimated either by the single-step procedure advanced

by SYG or by the two-step procedure that we propose above, without the need for detrending prior to estimation. We will

take the opportunity to compare both estimation procedures.

Using data from the Irrational Exuberance dataset maintained by Robert Shiller, we construct a quarterly dataset

of real earnings and real dividends for the S&P 500 index over the period 1946Q1–2006Q4.4 Our sample period starts

after World War II because there is evidence of a substantial change in payout policy at approximately this time. For

example, Chen, Da, and Priestley (2012) find that dividends adjust to earnings news four times slower in the post-war

period (1946–2006 in their analysis) compared to a pre-war sample period (1871–1945). We choose to end our sample in

2006Q4, immediately prior to the period of extreme earnings volatility associated with the global financial crisis.

In Table 13, we report descriptive statistics for both the level and first difference of real earnings and real dividends.
3Unit root testing results are available from the authors on request.
4Shiller’s dataset is available from http://www.econ.yale.edu/˜shiller/data/ie_data.xls.
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The descriptive statistics demonstrate that real earnings are considerably more volatile than real dividends, with greater

tail mass. The standard deviation of real earnings is almost four times larger than that of real dividends. Furthermore,

unlike the real dividends data, which is approximately symmetrically distributed with little excess kurtosis, real earnings

display a notable right skew and notable excess kurtosis. Similar patterns are also evident in the first-differenced data,

although neither series displays a notable skew after differencing. These observations are collectively consistent with the

notion that executives smooth the time path of dividends relative to earnings news. This tendency can be easily discerned

by eye in Figure 1, which presents time series plots of the level of real earnings and real dividends.

— Insert Table 13 and Figure 1 Here —

In light of the quarterly sampling frequency of our data, we estimate a NARDL(4,4) model using both the single-step

estimation routine devised by SYG and the two-step procedure that we develop above for models where k = 1, using

FM-OLS in the first step. In Table 14, we report the long-run parameter estimates obtained in each case. To facilitate

comparisons between the two estimation strategies, we transform the estimated parameters to obtain estimated values

of β+ and β−, the corresponding standard errors of which are computed via the delta method. The point estimates

obtained from the two different estimation frameworks are remarkably similar in both cases, although the two-step

estimation procedure yields more precise estimates, with standard errors approximately half as large as those obtained

from the single-step procedure. We conjecture that the relative imprecision of the long-run parameters obtained from the

single-step estimator may arise due to the way in which the long-run parameters are constructed as ratios. For example,

the standard error of the long-run parameter estimator may be inflated if the numerator and demoninator share a negative

covariance. In addition, the precision of the single-step estimates of the long-run parameters may deteriorate for values

of the error correction coefficient close to zero. No such issue arises in the case of two-step estimation.

The difference in precision of the long-run parameter estimates has an important practical implication. Based on the

results of the single-step procedure, we are unable to reject the null hypothesis of long-run symmetry: the Wald test of

H0 : β+ = β− versus H1 : β+ 6= β− returns a p-value of 0.412. By contrast, the increased precision of the two-step

estimation procedure allows us to reject the null hypothesis of long-run symmetry at the 5% level (the Wald test of

H0 : λ = 0 versus H1 : λ 6= 0 returns a p-value of 0.0126). A comparison of the magnitude of the long-run parameters

associated with positive and negative earnings reveals that dividends respond slightly more strongly to earnings increases

than to earnings decreases in long-run equilibrium. This phenomenon offers a simple explanation for the growing gap

between real earnings and real dividends in Figure 1 and is consistent with the evidence that executives are loathe to cut

dividends for fear of sending adverse signals regarding corporate performance.

— Insert Table 14 Here —

Following SYG, support for the existence of an asymmetric cointegrating relationship between real dividends and real

earnings can be obtained using either the ECM-based tBDM -test of Banerjee, Dolado, and Mestre (1998) or FPSS-test
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proposed by Pesaran et al. (2001) in the case of single-step estimation. However, the lagged levels terms Dt−1, E+
t−1 and

E−t−1 are not included in the second-step of our two-step estimation framework, so only the tBDM -test is applicable in

this case. Based on the single-step estimation results, we obtain a tBDM -test statistic of -2.935; in the two-step case, we

obtain a value of -3.086. Both exceed the relevant 10% critical value of -2.91 tabulated by Pesaran et al. (2001), indicating

a rejection of the null hypothesis of no asymmetric cointegration at the 10% level.5

Given the similarity of the point estimates of the long-run parameters obtained from the single-step and two-step

estimation frameworks, we expect that the long-run disequilibrium errors obtained from each method should track

one-another closely. Figure 2 reveals that this is the case, with both displaying almost identical dynamics.

— Insert Figure 2 Here —

The similarity of the long-run disequilibrium errors, in turn, suggests that the speed of error correction implied by

each model should also be very similar. Table 15 reveals this to be the case. The single-step parameter estimates imply

that disequilibrium errors are corrected at a rate of 3.1% per quarter, while the corresponding value based on the two-step

approach is 3.2%. Likewise, given the similarities documented to this point, we expect the dynamic parameter estimates

to be very similar across both estimation methods. In practice, the degree of similarity revealed by Table 15 is striking.

— Insert Table 15 Here —

Neither the single-step nor the two-step estimation results provide support for the hypothesis of short-run asymmetry

at any horizon. For example, the Wald test of the null hypothesis of impact symmetry, H0 : δ+
0∗ = δ−0∗, versus the

two-sided alternative H1 : δ+
0∗ 6= δ−0∗ returns a p-value of 0.127 in the single-step case and 0.145 in the two-step case.

Likewise, the null hypothesis of additive short-run symmetry, H0 :
∑q−1

j=0 δ
+
j∗ =

∑q−1
j=0 δ

−
j∗, is not rejected against the

alternative, H1 :
∑q−1

j=0 δ
+
j∗ 6=

∑q−1
j=0 δ

−
j∗, in both cases, with p-values of 0.251 (single-step) and 0.236 (two-step).

Overall, our empirical results suggest that executives pass earnings increases through to dividends slightly more

strongly than earnings decreases in long-run equilibrium. The magnitude of this asymmetry is relatively small but

nonetheless it is economically significant and it is consistent with existing evidence of asymmetric aggregate payout

policy (e.g. Brav et al., 2005). Both the single-step and two-step estimation procedures yield qualitatively and quantitatively

similar results, indicating that both procedures may be used in practice, particularly in large samples, where their

asymptotic equivalence should become apparent. However, when working with small samples, the two-step approach

may yield greater precision in the estimation of the long-run parameters and this may improve one’s ability to detect

long-run asymmetry.
5This critical value is obtained from Table CII(iii) in Pesaran et al. (2001). Following the conservative rule-of-thumb advocated by SYG, we

select the critical value for a model with a single explanatory variable (i.e. we count the number of explanatory variables prior to their decomposition
into positive and negative cumulative partial sums).
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7 Concluding Remarks

In this paper, we revisit the NARDL model developed by SYG. In the existing literature, it is typically estimated in a

single step by OLS. Support for the efficacy of the single-step OLS estimator based on Monte Carlo simulations has been

provided by SYG. However, efforts to develop asymptotic theory for the single-step estimator have been impeded by the

presence of an asymptotic singularity problem caused by the presence of asymptotically perfectly collinear time trends in

the positive and negative cumulative partial sum processes that are used to introduce asymmetry in the NARDL model.

We develop a two-step estimation procedure that makes use of a one-to-one transformation of the asymmetric long-run

relationship in the NARDL model to overcome this asymptotic singularity issue. In models with a single explanatory

variable, the first step involves estimating the parameters of the transformed asymmetric long-run relationship using any

consistent estimator with a convergence rate faster than the square root of the sample size, T 1/2. In practice, we advocate

the use of OLS or the FM-OLS estimator of Phillips and Hansen (1990) in the first step, the latter of which accounts

for serial correlation and potential endogeneity of the explanatory variables, while facilitating standard inference by

virtue of its asymptotic mixed normality. In models with multiple explanatory variables, it is necessary to transform

the partial sum processes of the explanatory variables to remove their trends prior to estimating the parameters of the

long-run relationship. In the second step, the dynamic coefficients can be estimated consistently by OLS treating the

error correction term obtained from the first step as given, in light of the super-consistency of the first step estimator.

Unlike the single-step estimation procedure, our two-step procedure is analytically tractable. Consequently, we are able

to derive the asymptotic properties of the estimators and to characterize their limit distributions. We also develop Wald

tests that can be used to evaluate restrictions on the short- and long-run parameters. In both cases, we demonstrate that the

null distribution of the Wald statistic weakly converges to a chi-squared distribution. A suite of Monte Carlo simulations

indicate that our asymptotic results offer satisfactory approximations even in finite samples.

We illustrate our methodology with an application to dividend-smoothing in the postwar period in the US. Our results

are consistent with a large body of research that finds that managers smooth the time path of dividends relative to earnings.

We document evidence of asymmetry in long-run equilibrium, where we find that managers allow real dividends to

respond slightly more strongly to positive earnings news than to negative earnings news. By contrast, we find no evidence

of asymmetry in the short-run dynamic parameters.
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A Appendix

A.1 Proofs

Proof of Lemma 1. (i) By (4) and (5), we obtain the following:

• T−3
∑T

t=1 y
2
t−1 = 1

3δ
2
∗ + oP(1);

• T−3
∑T

t=1 yt−1x
+′
t = 1

3δ∗µ
+′
∗ + oP(1);

• T−3
∑T

t=1 yt−1x
−′
t = 1

3δ∗µ
−′
∗ + oP(1);

• T−3
∑T

t=1 x
+
t x

+′
t = 1

3µ
+
∗ µ

+′
∗ + oP(1);

• T−3
∑T

t=1 x
+
t x
−′
t = 1

3µ
+
∗ µ
−′
∗ + oP(1); and

• T−3
∑T

t=1 x
−
t x
−′
t = 1

3µ
−
∗ µ
−′
∗ + oP(1).

These limits imply that T−3
∑T

t=1 z1tz
′
1t = M11 + oP(1).

(ii) By (4) and (5), we note that:

• T−2
∑T

t=1 yt−1 = 1
2δ∗ + oP(1);

• T−2
∑T

t=1 yt−1w
′
1t = T−2

∑T
t=1[δ2

∗t, δ
2
∗t, . . . , δ

2
∗t] + oP(1) = 1

2δ
2
∗ι
′
p−1 + oP(1);

• T−2
∑T

t=1 yt−1w
′
2t = T−2
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t=1[δ∗µ

+′
∗ t, δ∗µ

+′
∗ t, . . . , δ∗µ

+′
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2δ∗ι
′
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t=1 yt−1w
′
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t=1[δ∗µ
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∗ t, . . . , δ∗µ

−′
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2δ∗ι
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t=1 x
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t−1 = 1
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+
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+
t−1w

′
1t = T−2

∑T
t=1[δ∗µ

+
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+
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+
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+
∗ ι
′
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t=1 x
+
t−1w

′
2t = T−2
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t=1[µ+

∗ µ
+′
∗ t,µ

+
∗ µ

+′
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+
∗ µ
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2ι
′
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′
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2µ
+
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−
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−
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−
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−
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′
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t=1 x
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′
2t = T−2

∑T
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These limit results imply that T−1
∑T

t=1 z1tz
′
2t = M12 + oP(1).

(iii) We note that:

• T−1
∑T

t=1w
′
1t = E[∆yt−1]′ + oP(1) = δ∗ι

′
p−1 + oP;

• T−1
∑T

t=1w
′
2t = [E[∆x+′

t ],E[∆x+′
t−1], . . . ,E[∆x+′
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′
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′
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These limits imply that T−1
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t=1 z2tz
′
2t = M22 + oP(1), as desired. �

Proof of Lemma 2.

(i) We note that:

• T−2
∑T

t=1 x
+
t = T−1

∑T
t=1 µ

+
∗ (t/T ) + oP(1)

P→ 1
2µ

+
∗ ;

• T−3/2
∑T

t=1 xt = T−1
∑T

t=1(T−1/2
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i=1 ∆xi)⇒
∫
Bx using that T−1/2

∑[T (·)]
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0 dBx;
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∑T
t=1 µ

+
∗ µ
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• T−5/2
∑T

t=1 x
+
t xt = T−1

∑T
t=1 µ

+
∗ (t/T )(T−1/2

∑t
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Therefore, Q̂T ⇒Q, as desired.

(ii) We note that:

• T−1/2
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t=1 ut ⇒
∫
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t=1 ut ⇒

∫ (·)
0 dBu;
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Therefore, ÛT ⇒ U . �

Proof of Corollary 1.

Given (8), the desired result follows from Lemma 4. �

Proof of Theorem 1.

We note that T{(β̂+
T −β̂

−
T )−(β+

∗ −β−∗ )} = OP(T−1/2) by the definition of λ̂T . Therefore, the weak limit of T (β̂+
T −β+

∗ )

is equivalent to that of T (β̂−T −β−∗ ). Furthermore, Corollary 1 implies that T (β̂−T −β−∗ )⇒ SQ−1U , leading to the desired

result. �

Proof of Lemma 3.

Given Assumption 2, we note that υ̃T
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T )−1σ̃
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T
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Proof of Corollary 2.
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T ]−1ŨT , the desired result follows from Lemmas 2(i) and 3. �

Proof of Theorem 2.
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Proof of Lemma 4.

This result is easily obtained using the ergodic theorem and the multivariate central limit theorem. �

Proof of Theorem 3.

(i) Given (11), we can combine Lemmas 4 (i and ii) to obtain the desired result.

(ii) If it further holds that E[e2
t |ht] = σ2
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∗Γ∗. Therefore, Theorem 3(i) now

implies that
√
T (ζ̂T − ζ∗)

A∼ N(0, σ2
∗Γ
−1
∗ ). �

30



Proof of Lemma 5.

(i) We note that:
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t=1(t/T )ut + oP(1)⇒
∫
rdBu;

• T−1
∑T

t=1 m̂tut = T−1
∑T

t=1 ut(mt − t (
∑T

t=1 t
2)−1

∑T
t=1 tmt) = T−1

∑T
t=1 utmt − T−3/2

∑T
t=1 utt(T

−3∑T
t=1 t

2)−1T−5/2
∑T

t=1 tmt ⇒
∫
BmdBu+υm∗−3

∫
rdBu

∫
rBm using the fact that υm∗ := limT→∞ T

−1
∑T

t=1∑t
i=1 E[∆miut] is finite.

• T−1
∑T

t=1 xtut = T−1/2
∑T

t=1(T−1/2
∑t

i=1 ∆xi)ut ⇒
∫
BxdBu + υx∗ using the fact that υx∗ := limT→∞

T−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite.

Therefore, ÜT ⇒ Ü . �

Proof of Corollary 3.

As the first claim follows in straightforward fashion from Lemma 5, we instead focus on the proof of the second

claim. Note that T 3/2(ξ̂T − ξ∗T ) = OP(1) and ξ∗T = λ′∗µ
+
∗ + λ′∗

∑
tmt(

∑
t2)−1, so that T 3/2(ξ̂T − λ′∗µ+

∗ −

λ′∗
∑
tmt(

∑
t2)−1) = OP(1). Here, we note that T 1/2

∑
tmt(

∑
t2)−1 ⇒ 1

3

∫
rBm. Therefore, it now follows that

T 1/2(ξ̂T − λ′∗µ+
∗ ) = T 1/2λ′∗

∑
tmt(

∑
t2)−1) +OP(T−1)⇒ 3λ′∗

∫
rBm. �

Proof of Theorem 4.
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This result is easily obtained from Corollary 3. �

Proof of Lemma 6.

Given Assumption 3, note that ῡT
P→ ϋ∗ := [υ′m∗,υ

′
x∗]
′ and (Σ̄

(1,1)
T )−1σ̄

(1,2)
T

P→ ν̈∗ := (Σ
(1,1)
∗ )−1σ

(1,2)
∗ . Therefore,

if we let ◦
ut := ut − `′tν̈∗, ŪT = D̈−1

T

∑T
t=1

{
rt

◦
ut − S̄′ϋ∗

}
+ oP(1), then ŪT ⇒ [

∫
dB◦

u,
∫
rdB◦

u,
∫
B′mdB◦

u −

3
∫
rdB◦

u

∫
rB′m,

∫
B′xdB◦

u]′, where B◦
u(·) := τ̈Wu(·). Therefore, ŪT ⇒ Ū . �

Proof of Theorem 5.

Given that D̈T ($̄T − $̄∗T ) = (D̈−1
T (
∑T

t=1 rtr
′
t)D̈

−1
T )−1ŪT , Lemma 6 now proves the first claim. Second, note that

T [(β̄+
T − β

+
∗ )′, (β̄−T − β

−
∗ )′]′ = S̈D̈T ($̄T − $̄∗T )⇒ S̈R−1Ū , as desired. �

Proof of Theorem 6.

Corollary 2 implies that T 3/2(λ̃T − r) ⇒ SQ−1Ũ under H ′′0 , while Lemma 2(i) implies that Q̂T := D̃−1
T (
∑T

t=1 qt

q′t)D̃
−1
T ⇒ Q. Furthermore, Assumption 2(i) implies that τ̃2

T = τ2
∗ + oP(1). Given the mixed normal distribution of the

FM-OLS estimator for the long-run parameter in Corollary 2, it follows thatW(`)
T

A∼ X 2
1 underH′′0 .

In addition, we note that W̃(`)
T = (R̃%̃T − r)′D̃T (τ̃2

T R̃Q̂−1
T R̃′)−1D̃T (R̃%̃T − r). Furthermore, Theorem 2 implies

that D̃T (R̃%̃T − r)
A∼ N(0, τ2

∗ R̃Q−1R̃′) conditional on σ{Bx(r) : r ∈ (0, 1]} under H ′′′0 . Given the condition that

Q̂T ⇒Q and τ̃2
T

P→ τ2
∗ , it now follows that W̃(`)

T
A∼ X 2

2 under H ′′′0 .

Given that (λ̃T−λ∗) = OP(T−3/2),W(`)
T = OP(T 3) underH ′′1 . Therefore, for any cT = o(T 3), P(W(`)

T > cT )→ 1.

Furthermore, (β̃T − β∗) = OP(T−1), implying that W̃(`)
T = OP(T 2) under H ′′′1 . Therefore, for any c̃T = o(T 2),

P(W̃(`)
T > c̃T )→ 1. This completes the proof. �

Proof of Theorem 7.

Due to its similarity to the standard case, we omit the proof. �

Proof of Theorem 8.

Due to its similarity to the standard case, we omit the proof. �

A.2 A Further Singularity Problem under Single-Step Estimation

It is important to realize that the re-parameterization of the long-run relationship that we propose to resolve the singularity

issue under 2-step estimation in (7) is insufficient to resolve the singularity issue involved in single-step NARDL estimation.

In fact, efforts to estimate the short-run and the long-run parameters in a single step by combining (9) with (3) will

encounter a further singularity problem, even if k = 1. Using the definitions of λ∗ := β+
∗ − β−∗ and η∗ := β−∗ , it follows

that ut−1 = yt−1 − λ∗x+
t−1 − β∗xt−1, such that:

∆yt = ρ∗yt−1 + (θ+
∗ − θ−∗ )x+

t−1 + θ−∗ xt−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+
j∗∆x

+
t−j + π−j∗∆x

−
t−j

)
+ et, (21)
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where β+
∗ := −θ+

∗ /ρ∗ and β−∗ := −θ−∗ /ρ∗. Let:

ξ∗ :=
[
ξ′1∗ ξ′2∗

]′
:=
[
ρ∗ θ∗ θ−∗ α′2∗

]′
and pt :=

[
p′1t p′2t

]′
:=
[
yt−1 x+

t−1 xt−1 z′2t

]′
.

Note that ξ2∗ and p2t are identical to α2∗ and z2t, respectively, where θ∗ := θ+
∗ − θ−∗ . If we attempt to estimate the

vector of unknown parameters, ξ∗, in (21) by OLS, we obtain:

ξ̂T :=

(
T∑
t=1

ptp
′
t

)−1( T∑
t=1

pt∆yt

)
.

We demonstrate that the inverse matrix in ξ̂T is asymptotically singular in the following lemma:

Lemma 7. Given Assumption 1:

(i) D̈−1
1,T

(∑T
t=1 p1tp

′
1t

)
D̈−1

1,T ⇒ P11, where D̈1,T := diag[T 3/2I2, T ] and:

P11 :=


1
3δ

2
∗

1
3δ∗µ

+
∗ δ∗

∫
rBx

1
3δ∗µ

+
∗

1
3µ

+
∗ µ

+
∗ µ+

∗
∫
rBx

δ∗
∫
rBx

∫
rBxµ+

∗
∫
B2
x

 ;

(ii) D̈−1
1,T

(∑T
t=1 p1tp

′
2t

)
D̈−1

2,T ⇒ P12, where D̈2,T := diag[T 1/2I1+p+2q] and:

P12 :=


1
2δ∗

1
2δ

2
∗ι
′
p−1

1
2δ∗ι

′
q ⊗ µ+

∗
1
2δ∗ι

′
q ⊗ µ−∗

1
2µ

+
∗

1
2δ∗µ

+
∗ ι
′
p−1

1
2ι
′
q ⊗ µ+

∗ µ
+
∗

1
2ι
′
q ⊗ µ+

∗ µ
−
∗∫

Bx δ∗
∫
Bxι′p−1 ι′q ⊗

∫
Bxµ+

∗ ι′q ⊗
∫
Bxµ−∗

 ; and

(iii) D̈−1
2,T

(∑T
t=1 p2tp

′
2t

)
D̈−1

2,T
P→ P22 := M22. �

We omit the proof of Lemma 7, as it can be easily derived from the proof of Lemma 1. Let D̈T := diag[T 3/2I2, T, T
1/2

I1+p+2q], then:

D̈−1
T

(
T∑
t=1

ptp
′
t

)
D̈−1
T ⇒ P :=

 P11 P12

P21 P22

 ,
where P21 := P ′12. Note that P is singular, so it is difficult to obtain the limit distribution of ξ̂T using the one-step

approach even after applying the re-parameterization of the long-run levels relationship in (7).
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Sample Size 50 100 150 200 250
First Step OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.50 β+

∗ -0.263 -0.130 -0.140 -0.038 -0.095 -0.017 -0.072 -0.010 -0.058 -0.006
β−
∗ -0.269 -0.038 -0.140 -0.009 -0.095 -0.004 -0.071 -0.002 -0.058 -0.001
ρ∗ -0.101 -0.083 -0.036 -0.029 -0.022 -0.017 -0.015 -0.012 -0.012 -0.009
ϕ∗ 0.112 0.074 0.055 0.028 0.036 0.016 0.028 0.012 0.023 0.009
π+
∗ -0.062 -0.022 -0.026 0.004 -0.018 0.007 -0.012 0.005 -0.010 0.006
π−
∗ -0.107 -0.038 -0.044 -0.008 -0.032 -0.008 -0.024 -0.006 -0.020 -0.005

-0.25 β+
∗ -0.185 -0.073 -0.098 -0.020 -0.066 -0.007 -0.050 -0.002 -0.040 -0.001
β−
∗ -0.192 0.004 -0.099 0.002 -0.066 0.003 -0.050 0.004 -0.041 0.003
ρ∗ -0.084 -0.070 -0.030 -0.026 -0.018 -0.017 -0.012 -0.012 -0.011 -0.010
ϕ∗ 0.088 0.044 0.048 0.016 0.033 0.008 0.025 0.006 0.020 0.004
π+
∗ -0.042 -0.002 -0.024 0.002 -0.017 0.003 -0.010 0.005 -0.009 0.005
π−
∗ -0.069 -0.011 -0.032 -0.005 -0.026 -0.007 -0.019 -0.004 -0.015 -0.003

0.00 β+
∗ -0.112 -0.033 -0.057 -0.010 -0.037 -0.001 -0.027 0.000 -0.022 0.002
β−
∗ -0.117 0.023 -0.057 0.004 -0.037 0.005 -0.027 0.005 -0.022 0.004
ρ∗ -0.081 -0.069 -0.035 -0.034 -0.024 -0.023 -0.017 -0.016 -0.013 -0.012
ϕ∗ 0.051 0.016 0.028 0.007 0.019 0.003 0.015 0.001 0.011 0.000
π+
∗ -0.035 -0.010 -0.018 -0.006 -0.009 0.001 -0.008 0.000 -0.006 0.002
π−
∗ -0.047 -0.007 -0.026 -0.011 -0.017 -0.007 -0.015 -0.007 -0.009 -0.003

0.25 β+
∗ -0.024 0.000 -0.009 -0.006 -0.006 -0.003 -0.004 -0.001 -0.004 -0.001
β−
∗ -0.027 0.024 -0.010 -0.003 -0.007 -0.001 -0.004 0.000 -0.004 -0.001
ρ∗ -0.072 -0.068 -0.035 -0.036 -0.022 -0.023 -0.017 -0.018 -0.014 -0.014
ϕ∗ 0.015 0.001 0.006 0.002 0.005 0.001 0.003 0.000 0.003 0.000
π+
∗ -0.001 -0.004 -0.004 -0.011 0.001 -0.004 -0.003 -0.007 -0.001 -0.005
π−
∗ -0.024 -0.022 -0.007 -0.015 -0.007 -0.012 -0.004 -0.008 -0.005 -0.008

0.50 β+
∗ 0.065 0.015 0.034 -0.023 0.024 -0.016 0.018 -0.013 0.014 -0.011
β−
∗ 0.062 -0.004 0.034 -0.035 0.024 -0.021 0.017 -0.016 0.014 -0.012
ρ∗ -0.046 -0.046 -0.022 -0.019 -0.015 -0.013 -0.011 -0.010 -0.008 -0.007
ϕ∗ -0.016 -0.008 -0.009 0.002 -0.005 0.003 -0.004 0.002 -0.003 0.002
π+
∗ 0.023 -0.017 0.011 -0.021 0.010 -0.012 0.006 -0.012 0.005 -0.009
π−
∗ 0.026 -0.019 0.013 -0.021 0.007 -0.017 0.005 -0.012 0.004 -0.010

Table 1: FINITE SAMPLE BIAS. This table reports the finite sample bias associated with our two-step estimation
procedure, both in the case where OLS is used in the first step and in the case where FM-OLS is used in the first
step. In all cases, OLS is used in the second step. The data is generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 +
∆x+

t + (1/2)∆x−t + et, where ut := yt − 2x+
t − x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2).
The simulation results are obtained using R = 5, 000 replications.
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Sample Size 50 100 150 200 250
First Step OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.50 β+

∗ 0.104 0.057 0.029 0.009 0.013 0.003 0.007 0.001 0.005 0.001
β−
∗ 0.120 0.129 0.029 0.010 0.014 0.003 0.007 0.001 0.005 0.001
ρ∗ 0.026 0.024 0.006 0.006 0.003 0.003 0.002 0.002 0.002 0.002
ϕ∗ 0.020 0.013 0.006 0.004 0.003 0.002 0.002 0.001 0.002 0.001
π+
∗ 0.153 0.134 0.062 0.053 0.037 0.032 0.025 0.022 0.019 0.017
π−
∗ 0.180 0.152 0.062 0.053 0.038 0.032 0.026 0.022 0.020 0.017

-0.25 β+
∗ 0.060 0.034 0.016 0.006 0.007 0.002 0.004 0.001 0.003 0.001
β−
∗ 0.068 0.096 0.016 0.007 0.007 0.002 0.004 0.001 0.003 0.001
ρ∗ 0.023 0.022 0.007 0.007 0.004 0.004 0.003 0.003 0.002 0.002
ϕ∗ 0.016 0.011 0.007 0.004 0.004 0.003 0.003 0.002 0.002 0.002
π+
∗ 0.136 0.125 0.055 0.051 0.034 0.031 0.023 0.021 0.018 0.017
π−
∗ 0.140 0.130 0.056 0.050 0.033 0.030 0.023 0.021 0.018 0.017

0.00 β+
∗ 0.032 0.023 0.007 0.004 0.003 0.001 0.002 0.001 0.001 0.000
β−
∗ 0.036 0.045 0.007 0.005 0.003 0.001 0.002 0.001 0.001 0.000
ρ∗ 0.022 0.021 0.008 0.008 0.005 0.005 0.003 0.003 0.003 0.003
ϕ∗ 0.011 0.010 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002
π+
∗ 0.126 0.121 0.050 0.048 0.031 0.030 0.022 0.022 0.018 0.017
π−
∗ 0.128 0.126 0.050 0.048 0.030 0.029 0.023 0.022 0.018 0.017

0.25 β+
∗ 0.015 0.018 0.002 0.003 0.001 0.001 0.001 0.001 0.000 0.000
β−
∗ 0.015 0.034 0.003 0.004 0.001 0.001 0.001 0.001 0.000 0.000
ρ∗ 0.019 0.019 0.007 0.007 0.004 0.004 0.003 0.003 0.002 0.002
ϕ∗ 0.007 0.009 0.004 0.004 0.002 0.002 0.002 0.002 0.001 0.001
π+
∗ 0.116 0.117 0.047 0.046 0.030 0.029 0.021 0.021 0.017 0.017
π−
∗ 0.112 0.114 0.047 0.047 0.030 0.030 0.022 0.022 0.017 0.017

0.50 β+
∗ 0.022 0.020 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.001
β−
∗ 0.022 0.033 0.004 0.007 0.002 0.002 0.001 0.001 0.001 0.001
ρ∗ 0.011 0.011 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002
ϕ∗ 0.007 0.007 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001
π+
∗ 0.116 0.115 0.045 0.046 0.030 0.030 0.021 0.021 0.017 0.017
π−
∗ 0.113 0.111 0.046 0.047 0.029 0.029 0.021 0.021 0.017 0.017

Table 2: FINITE SAMPLE MEAN SQUARED ERROR (MSE) OF THE ESTIMATORS. This table reports the finite sample
MSE associated with our two-step estimation procedure, both in the case where OLS is used in the first step and in the
case where FM-OLS is used in the first step. In all cases, OLS is used in the second step. The data is generated as follows:
∆yt = −(2/3)ut−1 +ϕ∗∆yt−1 +∆x+

t +(1/2)∆x−t +et, where ut := yt−2x+
t −x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt,

and (et, vt)
′ ∼ IIDN(02, I2). The simulation results are obtained using R = 5, 000 replications.
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ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 12.40 5.06 2.38 1.82 1.44

5% 23.34 12.88 7.96 7.70 5.90
10% 31.50 21.04 14.08 13.22 11.46

-0.25 1% 8.74 3.80 2.54 1.74 1.18
5% 19.06 11.10 8.44 6.62 5.48
10% 27.22 18.36 14.96 11.68 10.48

0.00 1% 4.96 2.92 1.84 1.72 1.42
5% 13.86 9.76 7.20 6.60 6.12
10% 21.40 16.28 13.02 12.20 11.34

0.25 1% 3.32 1.62 1.34 1.22 1.06
5% 10.38 6.24 5.56 5.66 5.60
10% 17.28 11.42 10.96 11.22 10.70

0.50 1% 1.70 0.86 0.78 0.66 0.72
5% 5.82 4.06 4.60 4.30 4.22
10% 10.74 8.20 9.88 9.08 9.12

Table 3: EMPIRICAL LEVELS THE WALD TEST FOR LONG-RUN SYMMETRY. This table reports the empirical level
of the Wald test statistic for the long-run parameter, where FM-OLS is used in the first step. The data is generated
as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + (1/3)∆x+

t + (1/2)∆x−t + et, where ut := yt − x+
t − x−t , ∆xt =

0.5∆xt−1 +
√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2). H(`)

0 : β+
∗ − β−∗ = 0 vs. H(`)

1 : β+
∗ − β−∗ 6= 0. The simulation

results are obtained using R = 5, 000 replications.

ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 9.80 20.76 83.66 97.34 99.76

5% 20.00 35.78 89.36 98.54 99.96
10% 27.66 44.70 91.98 98.92 99.96

-0.25 1% 7.90 26.04 88.16 98.44 99.82
5% 17.98 41.74 92.88 99.32 99.92
10% 25.08 51.30 94.58 99.60 99.94

0.00 1% 5.74 32.24 91.22 99.20 99.86
5% 14.72 49.46 95.12 99.68 99.96
10% 22.40 58.54 96.66 99.80 99.98

0.25 1% 4.4 34.46 92.36 99.38 99.96
5% 12.08 52.82 96.04 99.70 100.0
10% 19.2 61.96 97.22 99.82 100.0

0.50 1% 2.92 25.40 90.96 99.16 99.98
5% 9.44 47.06 95.40 99.70 100.0
10% 16.08 58.68 96.98 99.82 100.0

Table 4: EMPIRICAL POWER THE WALD TEST FOR LONG-RUN SYMMETRY (IN PERCENT). This table shows the
empirical power of the Wald test statistic for the long-run parameter, where FM-OLS is used in the first step. The data is
generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + (1/3)∆x+

t + (1/2)∆x−t + et, where ut := yt − 1.01x+
t − x

−
t ,

∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2). H(`)

0 : β+
∗ − β−∗ = 0 vs. H(`)

1 : β+
∗ − β−∗ 6= 0. The

simulation results are obtained using R = 5, 000 replications.
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ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 2.44 1.60 0.98 1.18 1.12

5% 8.06 6.06 5.42 5.46 6.02
10% 13.82 11.00 10.90 10.36 10.94

-0.25 1% 2.38 1.74 1.46 1.30 1.14
5% 7.38 6.44 6.02 5.36 5.30
10% 12.90 11.38 11.28 10.54 10.48

0.00 1% 2.12 1.18 1.22 1.26 0.98
5% 7.30 5.86 5.76 6.00 5.20
10% 13.40 11.26 10.94 11.16 10.22

0.25 1% 2.28 1.42 1.36 0.96 0.82
5% 7.32 6.14 5.84 5.12 4.68
10% 13.42 11.40 10.96 9.76 9.50

0.50 1% 2.02 1.80 0.98 1.10 1.22
5% 6.64 6.44 5.44 5.52 5.54
10% 11.84 11.54 10.62 10.60 10.74

Table 5: EMPIRICAL LEVELS THE WALD TEST FOR SHORT-RUN SYMMETRY (IN PERCENT). This table reports the
empirical levels of testing the short-run parameters, where FM-OLS is used in the first step and OLS is used in the
second step. The data is generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + (1/2)∆x+

t + (1/2)∆x−t + et, where
ut := yt − 2x+

t − x−t , ∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2). H

(s)
0 : π+

∗ − π−∗ = 0 vs.
H

(s)
1 : H0 : π+

∗ − π−∗ 6= 0. The simulation results are obtained using R = 5, 000 replications.

ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 17.86 44.00 78.48 93.50 98.40

5% 35.38 66.66 91.82 98.44 99.76
10% 45.56 76.70 95.76 99.34 99.92

-0.25 1% 17.58 44.84 79.40 93.70 98.32
5% 34.96 66.66 91.90 98.26 99.72
10% 46.04 76.64 95.96 99.14 99.86

0.00 1% 17.26 43.16 78.56 93.28 98.60
5% 35.66 66.68 92.38 98.14 99.72
10% 46.62 76.14 96.06 99.18 99.90

0.25 1% 17.90 43.02 78.76 93.34 98.72
5% 35.02 66.14 92.12 98.32 99.68
10% 45.80 76.24 95.48 99.34 99.98

0.50 1% 17.50 42.82 77.82 92.94 98.54
5% 34.20 65.78 91.32 98.28 99.78
10% 44.90 76.06 94.90 99.26 99.92

Table 6: EMPIRICAL POWER THE WALD TEST FOR SHORT-RUN SYMMETRY (IN PERCENT). This table reports the
empirical rejection rates of testing the short-run parameters, where FM-OLS is used in the first step and OLS is used in
the second step. The data is generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + ∆x+

t + (1/2)∆x−t + et, where
ut := yt − 2x+

t − x−t , ∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2). H

(s)
0 : π+

∗ − π−∗ = 0 vs.
H

(s)
1 : H0 : π+

∗ − π−∗ 6= 0. The simulation results are obtained using R = 5, 000 replications.
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Sample Size 50 100 200 300 400 500
First Step TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.30 β+

1∗ 0.416 0.723 0.208 0.246 0.102 0.061 0.067 0.035 0.051 0.019 0.040 0.011
β+
2∗ -0.334 -0.737 -0.168 -0.242 -0.082 -0.064 -0.057 -0.039 -0.039 -0.024 -0.033 -0.013
β−
1∗ -0.431 -0.816 -0.212 -0.289 -0.107 -0.071 -0.069 -0.043 -0.053 -0.023 -0.042 -0.014
β−
2∗ 0.568 1.065 0.289 0.365 0.144 0.095 0.097 0.057 0.071 0.032 0.057 0.018
ρ∗ -0.190 0.024 -0.076 -0.031 -0.032 -0.032 -0.021 -0.020 -0.015 -0.016 -0.011 -0.011
ϕ∗ 0.137 0.036 0.067 0.043 0.033 0.023 0.022 0.016 0.016 0.010 0.013 0.007
π+
1∗ 0.091 0.226 0.023 0.083 0.004 0.015 0.003 0.012 0.004 0.007 0.000 0.003
π+
2∗ -0.120 -0.312 -0.057 -0.099 -0.030 -0.024 -0.021 -0.013 -0.008 -0.008 -0.012 -0.004
π−
1∗ -0.047 -0.222 0.002 -0.076 0.003 -0.014 0.008 -0.008 0.003 -0.002 0.005 -0.001
π−
2∗ -0.011 0.219 -0.027 0.066 -0.022 0.017 -0.017 0.012 -0.017 0.006 -0.014 0.004

-0.10 β+
1∗ 0.390 0.694 0.190 0.259 0.090 0.075 0.059 0.040 0.044 0.021 0.034 0.015
β+
2∗ -0.318 -0.683 -0.153 -0.265 -0.074 -0.078 -0.048 -0.043 -0.037 -0.024 -0.029 -0.016
β−
1∗ -0.414 -0.779 -0.198 -0.293 -0.098 -0.086 -0.062 -0.047 -0.047 -0.025 -0.037 -0.018
β−
2∗ 0.522 0.999 0.252 0.384 0.121 0.111 0.080 0.062 0.059 0.034 0.047 0.022
ρ∗ -0.158 0.019 -0.063 -0.016 -0.026 -0.026 -0.016 -0.017 -0.012 -0.013 -0.009 -0.011
ϕ∗ 0.124 0.050 0.068 0.042 0.034 0.024 0.024 0.015 0.017 0.010 0.013 0.007
π+
1∗ 0.073 0.227 0.017 0.079 0.003 0.024 0.001 0.013 0.003 0.008 -0.001 0.006
π+
2∗ -0.109 -0.280 -0.048 -0.111 -0.021 -0.031 -0.010 -0.012 -0.010 -0.009 -0.008 -0.003
π−
1∗ -0.030 -0.222 0.005 -0.071 0.004 -0.022 0.010 -0.009 0.004 -0.008 0.007 -0.005
π−
2∗ -0.017 0.233 -0.036 0.088 -0.032 0.033 -0.026 0.016 -0.018 0.011 -0.015 0.008

0.00 β+
1∗ 0.379 0.698 0.173 0.264 0.083 0.078 0.053 0.042 0.040 0.026 0.031 0.016
β+
2∗ -0.317 -0.686 -0.146 -0.267 -0.071 -0.081 -0.047 -0.045 -0.034 -0.026 -0.028 -0.017
β−
1∗ -0.409 -0.811 -0.186 -0.310 -0.092 -0.090 -0.058 -0.049 -0.044 -0.030 -0.034 -0.019
β−
2∗ 0.501 1.014 0.232 0.391 0.111 0.116 0.075 0.065 0.055 0.038 0.044 0.025
ρ∗ -0.141 0.033 -0.057 -0.007 -0.025 -0.021 -0.014 -0.015 -0.011 -0.013 -0.008 -0.010
ϕ∗ 0.112 0.044 0.061 0.040 0.032 0.023 0.021 0.015 0.017 0.010 0.013 0.007
π+
1∗ 0.084 0.237 0.015 0.089 0.003 0.027 0.002 0.016 0.001 0.011 -0.002 0.006
π+
2∗ -0.106 -0.287 -0.043 -0.118 -0.023 -0.029 -0.014 -0.014 -0.009 -0.012 -0.007 -0.007
π−
1∗ -0.041 -0.239 0.011 -0.086 0.008 -0.025 0.010 -0.013 0.007 -0.009 0.007 -0.008
π−
2∗ -0.027 0.226 -0.045 0.094 -0.033 0.037 -0.023 0.019 -0.019 0.016 -0.015 0.009

0.10 β+
1∗ 0.345 0.729 0.169 0.272 0.077 0.083 0.049 0.048 0.036 0.030 0.029 0.019
β+
2∗ -0.306 -0.706 -0.148 -0.291 -0.067 -0.085 -0.042 -0.049 -0.032 -0.030 -0.026 -0.020
β−
1∗ -0.389 -0.829 -0.182 -0.311 -0.086 -0.095 -0.053 -0.054 -0.040 -0.034 -0.033 -0.022
β−
2∗ 0.476 1.059 0.223 0.411 0.101 0.122 0.066 0.071 0.049 0.043 0.039 0.029
ρ∗ -0.125 0.051 -0.050 0.005 -0.020 -0.018 -0.014 -0.012 -0.010 -0.011 -0.007 -0.009
ϕ∗ 0.101 0.035 0.055 0.038 0.029 0.022 0.021 0.013 0.015 0.010 0.012 0.007
π+
1∗ 0.056 0.258 0.018 0.092 0.004 0.036 0.001 0.019 -0.001 0.014 -0.001 0.008
π+
2∗ -0.105 -0.294 -0.042 -0.129 -0.019 -0.035 -0.008 -0.020 -0.009 -0.014 -0.007 -0.007
π−
1∗ -0.022 -0.239 0.013 -0.081 0.010 -0.029 0.012 -0.014 0.009 -0.015 0.006 -0.008
π−
2∗ -0.027 0.265 -0.041 0.100 -0.033 0.042 -0.022 0.026 -0.019 0.018 -0.014 0.011

0.30 β+
1∗ 0.306 0.774 0.140 0.303 0.063 0.103 0.040 0.054 0.029 0.034 0.023 0.025
β+
2∗ -0.308 -0.770 -0.128 -0.306 -0.062 -0.101 -0.040 -0.052 -0.028 -0.035 -0.023 -0.023
β−
1∗ -0.369 -0.886 -0.160 -0.348 -0.071 -0.117 -0.047 -0.061 -0.034 -0.039 -0.027 -0.027
β−
2∗ 0.438 1.137 0.181 0.437 0.082 0.148 0.052 0.077 0.038 0.052 0.030 0.036
ρ∗ -0.093 0.086 -0.039 0.022 -0.017 -0.007 -0.010 -0.009 -0.008 -0.008 -0.006 -0.006
ϕ∗ 0.069 0.012 0.041 0.028 0.022 0.019 0.015 0.012 0.011 0.008 0.009 0.006
π+
1∗ 0.044 0.269 0.013 0.114 0.001 0.046 -0.001 0.024 0.000 0.018 -0.002 0.012
π+
2∗ -0.105 -0.323 -0.039 -0.133 -0.019 -0.040 -0.011 -0.023 -0.006 -0.013 -0.006 -0.011
π−
1∗ -0.013 -0.268 0.018 -0.104 0.016 -0.045 0.014 -0.023 0.010 -0.016 0.009 -0.013
π−
2∗ -0.032 0.304 -0.042 0.122 -0.034 0.050 -0.022 0.027 -0.021 0.021 -0.016 0.019

Table 7: FINITE SAMPLE BIAS. This table reports the finite sample bias associated with our two-step estimation
procedure, both in the case where the TOLS is used in the first step and in the case where the FM-TOLS is used in
the first step. In all cases, OLS is used in the second step. The data is generated as follows: ∆yt = −ut−1 + ϕ∗∆yt−1 +
π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where ut := yt − β+′

∗ x
+
t − β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼

IIDN(03, I3). The simulation results are obtained using R = 5, 000 replications.
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Sample Size 50 100 200 300 400 500
First Step TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS TOLS FM-TOLS

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.30 β+

1∗ 0.461 1.373 0.113 0.183 0.027 0.017 0.012 0.007 0.007 0.002 0.004 0.001
β+
2∗ 0.406 1.443 0.096 0.188 0.024 0.019 0.011 0.007 0.006 0.003 0.004 0.001
β−
1∗ 0.472 1.573 0.111 0.221 0.028 0.020 0.012 0.008 0.007 0.003 0.004 0.001
β−
2∗ 0.543 2.052 0.139 0.279 0.035 0.025 0.016 0.009 0.008 0.003 0.006 0.001
ρ∗ 0.059 0.060 0.012 0.012 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001
ϕ∗ 0.027 0.020 0.007 0.006 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000
π+
1∗ 0.423 0.586 0.117 0.132 0.040 0.031 0.021 0.018 0.015 0.011 0.011 0.009
π+
2∗ 0.412 0.673 0.115 0.142 0.039 0.031 0.023 0.017 0.015 0.011 0.011 0.009
π−
1∗ 0.408 0.595 0.117 0.132 0.039 0.032 0.022 0.018 0.015 0.012 0.011 0.008
π−
2∗ 0.345 0.505 0.112 0.124 0.040 0.032 0.023 0.018 0.016 0.012 0.012 0.009

-0.10 β+
1∗ 0.445 1.257 0.098 0.192 0.023 0.019 0.010 0.006 0.005 0.002 0.003 0.001
β+
2∗ 0.378 1.234 0.087 0.192 0.020 0.019 0.008 0.007 0.005 0.002 0.003 0.001
β−
1∗ 0.438 1.438 0.098 0.224 0.024 0.022 0.010 0.008 0.006 0.003 0.003 0.001
β−
2∗ 0.509 1.812 0.114 0.289 0.027 0.028 0.011 0.010 0.006 0.003 0.004 0.002
ρ∗ 0.043 0.041 0.010 0.010 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001
ϕ∗ 0.024 0.018 0.008 0.006 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.382 0.549 0.102 0.130 0.036 0.031 0.020 0.017 0.014 0.011 0.010 0.009
π+
2∗ 0.378 0.569 0.111 0.133 0.035 0.032 0.020 0.017 0.014 0.011 0.010 0.009
π−
1∗ 0.355 0.565 0.102 0.126 0.034 0.031 0.020 0.017 0.013 0.011 0.010 0.009
π−
2∗ 0.341 0.507 0.105 0.126 0.037 0.032 0.021 0.018 0.014 0.012 0.011 0.009

0.00 β+
1∗ 0.429 1.254 0.088 0.190 0.020 0.020 0.008 0.006 0.005 0.003 0.003 0.001
β+
2∗ 0.371 1.350 0.077 0.196 0.019 0.020 0.008 0.007 0.004 0.003 0.003 0.001
β−
1∗ 0.440 1.516 0.093 0.235 0.021 0.024 0.009 0.008 0.005 0.003 0.003 0.001
β−
2∗ 0.476 1.933 0.099 0.305 0.023 0.030 0.010 0.010 0.006 0.004 0.004 0.002
ρ∗ 0.037 0.042 0.009 0.009 0.003 0.003 0.001 0.002 0.001 0.001 0.001 0.001
ϕ∗ 0.021 0.018 0.007 0.006 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.365 0.549 0.099 0.127 0.034 0.030 0.019 0.017 0.013 0.012 0.010 0.009
π+
2∗ 0.352 0.609 0.096 0.132 0.033 0.031 0.019 0.017 0.013 0.012 0.009 0.009
π−
1∗ 0.343 0.559 0.102 0.124 0.033 0.030 0.020 0.017 0.013 0.012 0.010 0.009
π−
2∗ 0.332 0.505 0.098 0.122 0.035 0.031 0.020 0.017 0.014 0.012 0.010 0.009

0.10 β+
1∗ 0.397 1.286 0.084 0.209 0.017 0.021 0.007 0.007 0.004 0.003 0.003 0.001
β+
2∗ 0.372 1.294 0.078 0.219 0.017 0.022 0.007 0.007 0.004 0.003 0.002 0.001
β−
1∗ 0.416 1.551 0.087 0.238 0.019 0.026 0.008 0.008 0.004 0.003 0.003 0.002
β−
2∗ 0.461 2.088 0.097 0.323 0.020 0.032 0.009 0.011 0.005 0.004 0.003 0.002
ρ∗ 0.030 0.041 0.007 0.009 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
ϕ∗ 0.018 0.016 0.006 0.006 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.340 0.539 0.095 0.131 0.032 0.031 0.018 0.017 0.013 0.012 0.010 0.009
π+
2∗ 0.336 0.567 0.091 0.143 0.032 0.031 0.018 0.017 0.013 0.012 0.010 0.009
π−
1∗ 0.317 0.553 0.091 0.126 0.032 0.032 0.020 0.018 0.013 0.011 0.010 0.009
π−
2∗ 0.318 0.532 0.095 0.126 0.032 0.032 0.020 0.018 0.014 0.012 0.011 0.009

0.30 β+
1∗ 0.360 1.553 0.071 0.225 0.014 0.027 0.006 0.008 0.003 0.003 0.002 0.002
β+
2∗ 0.391 1.511 0.066 0.232 0.014 0.026 0.006 0.008 0.003 0.003 0.002 0.002
β−
1∗ 0.413 1.866 0.074 0.276 0.015 0.032 0.006 0.009 0.003 0.004 0.002 0.002
β−
2∗ 0.436 2.386 0.076 0.357 0.016 0.043 0.006 0.012 0.003 0.005 0.002 0.002
ρ∗ 0.021 0.041 0.006 0.009 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
ϕ∗ 0.012 0.015 0.005 0.005 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
π+
1∗ 0.305 0.567 0.084 0.134 0.029 0.034 0.018 0.017 0.012 0.012 0.009 0.009
π+
2∗ 0.320 0.611 0.083 0.140 0.029 0.034 0.017 0.018 0.012 0.011 0.009 0.009
π−
1∗ 0.313 0.603 0.081 0.131 0.029 0.034 0.017 0.017 0.012 0.012 0.009 0.009
π−
2∗ 0.282 0.573 0.089 0.130 0.031 0.035 0.019 0.018 0.013 0.012 0.010 0.009

Table 8: FINITE SAMPLE MEAN SQUARED ERROR (MSE) OF THE ESTIMATORS. This table reports the finite sample
MSE associated with our two-step estimation procedure, both in the case where the TOLS is used in the first step and
in the case where the FM-TOLS is used in the first step. In all cases, OLS is used in the second step. The data is
generated as follows: ∆yt = −ut−1 + ϕ∗∆yt−1 + π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where ut := yt − β+′

∗ x
+
t − β−′∗ x

−
t ,

∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et,v
′
t)
′ ∼ IIDN(03, I3). The simulation results are obtained using R = 5, 000

replications.
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ϕ∗ sample size 100 250 500 1,000 3,000 5,000
-0.30 1% 45.20 17.06 7.46 2.62 1.10 1.32

5% 58.92 30.68 17.62 9.50 5.64 5.86
10% 65.82 40.08 25.76 16.40 11.72 10.62

-0.10 1% 42.96 18.12 8.12 3.32 1.48 1.24
5% 57.82 31.10 19.04 10.76 6.02 5.48

10% 65.34 39.20 26.66 17.48 11.64 10.34
0.00 1% 42.50 16.78 8.44 4.30 1.42 1.28

5% 56.38 29.90 19.20 11.62 5.80 5.60
10% 64.06 38.70 28.20 18.74 11.36 10.76

0.10 1% 41.24 16.18 8.56 4.02 1.68 1.18
5% 56.14 30.00 19.30 11.32 6.68 5.56

10% 63.30 38.78 27.12 19.24 12.50 11.26
0.30 1% 40.10 15.72 6.94 3.92 2.16 1.84

5% 54.52 28.24 17.16 12.52 8.00 7.34
10% 63.44 36.76 24.94 19.10 14.24 12.88

Table 9: EMPIRICAL LEVELS THE WALD TEST FOR LONG-RUN SYMMETRY. This table reports the empirical level
of the Wald test statistic for the long-run parameter, where the FM-TOLS estimator is used in the first step. The data
is generated as follows: ∆yt = −ut−1 + ϕ∗∆yt−1 + π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where ut := yt − β+′

∗ x
+
t − β−′∗ x

−
t ,

∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et,v
′
t)
′ ∼ IIDN(03, I3). Ḣ(`)

0 : ι′2β
+
∗ = −0.5 and ι′2β

−
∗ = −0.75 vs. Ḣ(`)

1 :
ι′2β

+
∗ 6= −0.5 or ι′2β

−
∗ 6= −0.75. The simulation results are obtained using R = 5, 000 replications.

ϕ∗ sample size 100 200 300 400 500
-0.30 1% 47.46 70.16 90.44 98.10 99.74

5% 62.40 80.76 94.26 99.00 99.88
10% 70.16 85.42 96.18 99.32 99.92

-0.10 1% 48.98 71.36 91.30 98.24 99.70
5% 63.08 81.32 95.26 99.10 99.88

10% 70.12 86.22 96.76 99.36 99.94
0.00 1% 47.32 70.54 90.56 98.20 99.78

5% 61.72 81.70 94.02 99.12 99.94
10% 69.78 86.56 95.44 99.46 99.94

0.10 1% 46.36 69.20 90.22 98.06 99.86
5% 60.26 79.82 94.00 98.98 99.96

10% 67.16 84.56 95.86 99.36 99.98
0.30 1% 43.10 63.52 88.70 97.58 99.44

5% 56.98 75.22 93.74 98.88 99.78
10% 65.50 80.66 95.68 99.18 99.88

Table 10: EMPIRICAL POWER THE WALD TEST FOR LONG-RUN SYMMETRY (IN PERCENT). This table shows the
empirical power of the Wald test statistic for the long-run parameter, where the FM-TOLS estimator is used in the
first step. The data is generated as follows: ∆yt = −ut−1 + ϕ∗∆yt−1 + π+′

0∗∆x
+
t + π−′0∗∆x

−
t + et, where ut :=

yt − β+′
∗ x

+
t − β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼ IIDN(03, I3). Ḧ(`)

0 : ι′2β
+
∗ = −0.4 and

ι′2β
−
∗ = −0.65 vs. Ḧ(`)

1 : ι′2β
+
∗ 6= −0.4 or ι′2β

−
∗ 6= −0.65. The simulation results are obtained using R = 5, 000

replications.
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ϕ∗ sample size 100 200 400 600 800 1,000
-0.30 1% 10.62 4.16 1.58 1.66 1.28 1.56

5% 23.24 11.90 7.28 6.78 5.88 5.74
10% 31.96 18.88 13.34 12.26 11.34 10.80

-0.10 1% 10.58 3.72 2.02 1.34 1.20 1.22
5% 22.50 11.12 7.56 6.36 6.06 5.84

10% 32.18 18.66 13.38 12.28 11.38 10.94
0.00 1% 10.90 3.92 2.00 1.54 1.48 1.28

5% 23.34 11.80 7.90 6.36 6.64 5.50
10% 31.46 19.30 13.96 11.36 12.46 10.50

0.10 1% 10.80 3.98 2.00 1.36 1.44 1.26
5% 22.60 11.96 7.36 6.54 6.46 5.40

10% 30.78 18.68 12.74 12.38 12.16 10.82
0.30 1% 11.04 4.14 1.84 1.72 1.38 1.10

5% 22.68 11.56 7.60 7.20 6.74 5.14
10% 32.22 18.98 13.06 12.56 12.34 10.62

Table 11: EMPIRICAL LEVELS THE WALD TEST FOR SHORT-RUN SYMMETRY (IN PERCENT). This table reports the
empirical levels of testing the short-run parameters, where the FM-TOLS estimator is used in the first step and OLS is
used in the second step. The data is generated as follows: ∆yt = −ut−1 +ϕ∗∆yt−1 +π+′

0∗∆x
+
t +π−′0∗∆x

−
t + et, where

ut := yt − β+′
∗ x

+
t − β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼ IIDN(03, I3). Ḣ(s)

0 : π+
0∗ − π

−
0∗ = 02

vs. Ḣ(s)
1 : π+

0∗ − π
−
0∗ 6= 02. The simulation results are obtained using R = 5, 000 replications.

ϕ∗ sample size 100 200 400 600 800 1,000
-0.30 1% 20.96 21.94 39.98 60.80 77.26 86.48

5% 36.20 39.78 62.62 80.76 91.16 95.32
10% 45.90 51.10 73.52 87.68 94.76 97.76

-0.10 1% 21.56 22.94 41.36 61.54 76.68 86.96
5% 37.70 41.56 63.86 80.14 91.18 95.40

10% 46.98 52.92 74.76 87.70 95.16 97.72
0.00 1% 21.04 23.38 42.32 61.96 76.86 86.66

5% 36.70 42.28 64.08 81.12 90.50 95.58
10% 46.52 53.74 74.38 88.60 94.46 97.34

0.10 1% 20.04 24.42 40.92 61.14 76.30 86.52
5% 35.20 42.46 63.34 80.60 90.32 95.54

10% 45.34 53.40 73.86 87.96 94.84 97.78
0.30 1% 20.48 23.32 42.08 62.02 76.58 86.82

5% 36.56 42.84 63.60 80.88 90.20 95.28
10% 46.76 53.20 73.78 87.98 94.48 97.42

Table 12: EMPIRICAL POWER THE WALD TEST FOR SHORT-RUN SYMMETRY (IN PERCENT). This table reports the
empirical rejection rates of testing the short-run parameters, where the FM-TOLS estimator is used in the first step and
OLS is used in the second step. The data is generated as follows: ∆yt = −ut−1 +ϕ∗∆yt−1 +π+′

0∗∆x
+
t +π−′0∗∆x

−
t + et,

where ut := yt−β+′
∗ x

+
t −β−′∗ x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et,v

′
t)
′ ∼ IIDN(03, I3). Ḧ(s)

0 : π+
0∗−π

−
0∗ =

0.3ι2 vs. Ḧ(s)
1 : π+

0∗ − π
−
0∗ 6= 0.3ι2. The simulation results are obtained using R = 5, 000 replications.
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Real Earnings Real Dividends
Level Difference Level Difference

Mean 41.059 0.374 19.289 0.091
Median 38.462 0.375 18.988 0.064
Maximum 103.475 14.383 31.585 1.257
Minimum 11.177 -13.117 8.422 -1.289
Standard Deviation 15.951 2.458 4.296 0.352
Skewness 1.353 -0.435 -0.239 0.319
Excess Kurtosis 2.275 9.909 0.326 2.223

Table 13: COMMON SAMPLE DESCRIPTIVE STATISTICS. Descriptive statistics are computed over 243 quarters from
1946Q2–2006Q4. Both real earnings and real dividends are measured in US Dollars at January 2000 prices. We convert
from the original monthly sampling frequency used by Shiller to quarterly frequency by taking end-of-period values.

One-step NARDL Two step FM-OLS
Estimate S.E. Estimate S.E.

Intercept – – 17.774 1.558
β+ 0.168 0.075 0.170 0.038
β− 0.143 0.099 0.135 0.049

Table 14: LONG-RUN PARAMETER ESTIMATES. This table reports the long-run parameter estimates obtained from the
single-step estimation procedure of SYG as well as our two-step estimation procedure, where FM-OLS is used in the first
step and OLS is used in the second step. The long-run parameters are obtained from the single-step estimation results as
β̂+ = −θ̂+/ρ̂ and β̂− = −θ̂−/ρ̂ and the corresponding analytical standard errors are computed via the Delta method.
Note that the intercept of the cointegrating equation is not identified in the single-step estimation procedure. The long-run
parameters are obtained from first stage FM-OLS estimation results as β̂+ = λ̂ + η̂ and β̂− = η̂. The standard error of
β̂− is obtained directly, while the analytical standard error of β̂+ is computed via the Delta method.
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One-step NARDL Two-step FM-OLS
Estimate S.E. Estimate S.E.

Intercept 0.406 0.146 0.008 0.030
Dt−1 -0.031 0.010 – –
E+
t−1 0.005 0.003 – –

E−t−1 0.004 0.003 – –
ECMt−1 – – -0.032 0.010
∆Dt−1 0.245 0.066 0.245 0.066
∆Dt−2 0.161 0.067 0.159 0.067
∆Dt−3 0.139 0.066 0.136 0.065
∆E+

t 0.052 0.017 0.049 0.015
∆E+

t−1 -0.012 0.018 -0.014 0.017
∆E+

t−2 0.004 0.018 0.003 0.018
∆E+

t−3 0.006 0.017 0.004 0.017
∆E−t 0.007 0.021 0.010 0.020
∆E−t−1 0.005 0.026 0.006 0.026
∆E−t−2 0.014 0.026 0.014 0.026
∆E−t−3 -0.024 0.021 -0.021 0.020
Adjusted R2 0.285 0.291
X 2

S.Corr. 0.092 0.103
X 2

Hetero. 0.064 0.094

Table 15: DYNAMIC PARAMETER ESTIMATES. This table reports parameter estimates for the NARDL(4,4) model in
error correction form, estimated in a single-step following SYG and using our two-step procedure, where FM-OLS is
used in the first step and OLS is used in the second step. χ2

S.Corr. denotes the Breusch–Godfrey Lagrange multiplier test
for serial correlation up to order four. χ2

Hetero. denotes the Breusch–Pagan–Godfrey Lagrange multiplier test for residual
heteroskedasticity. The values reported for these two tests are asymptotic p-values.
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