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1 Introduction

It is critical to estimate the correct form of the asymptotic covariance matrix for the least squares (LS) estimator.

For example, if the regression error exhibits conditional homoskedastic and martingale difference sequence (MDS)

properties, the information matrix (IM) equality holds so that the standard t-test statistic can be used to infer unknown

parameters.

Nevertheless, the asymptotic covariance matrix displays a sandwich form in a general environment, allowing the

standard t-ratio to be redefined by the heteroskedasticity-consistent (HC) or heteroskedasticity and autocorrelation-

consistent (HAC) covariance matrix estimator. As conditionally heteroskedastic and/or autocorrelated error properties

are only required for a sandwich-form asymptotic covariance matrix, the failure of the IM equality entails regression

errors influenced by either conditional heteroskedasticity or autocorrelation, necessitating the estimation of the co-

variance matrix by the HC or HAC estimator. Furthermore, if the empirical researcher knows how the covariance

matrix is affected by conditional heteroskedastic and/or autocorrelated errors, a more pertinent estimator can be ap-

plied to estimate the asymptotic covariance matrix. If the regression errors exhibit conditional homoskedastic and

MDS properties, it is redundant to estimate the covariance matrix by the HC or HAC estimator.

This study primarily seeks to provide a test methodology to detect a sandwich-form asymptotic covariance matrix

directly and further identify how conditional heteroskedasticity and/or autocorrelation affect the asymptotic covari-

ance matrix. This differs from the conventional approach to testing a sandwich-form asymptotic covariance matrix

by testing conditionally heteroskedastic and/or autocorrelated errors indirectly. As they are only necessary conditions,

a sandwich-form asymptotic covariance matrix is not necessarily obtained by conditionally heteroskedastic and/or

autocorrelated errors. Another goal is to provide an empirical analysis using the proposed test methodology in clas-

sical regression and time-series data analysis settings. This serves the dual purpose of illustrating our method and

reinforcing the inferential process on regression analysis.

We apply the methodologies proposed by Cho and White (2014, CW) and Cho and Phillips (2018a, CP) to the

quasi-maximum likelihood (QML) estimator, which nests the LS estimator as a special case. CW and CP provide

simple, necessary, and sufficient conditions for the equality of two positive-definite matrices using the trace and deter-

minant of a matrix ratio and further extend them to develop test methodologies. We apply their methodologies to test

for a sandwich-form asymptotic covariance matrix entailed by conditional heteroskedastic and/or autocorrelated re-

gression errors. Specifically, we first generalize the maximum test statistic in CP in our context so that our test statistics

have greater power than the maximum test statistic in CP. Next, we separately construct two maximum test statistics

for the sandwich-form asymptotic covariance matrix entailed by conditional heteroskedastic and autocorrelated er-

rors. Specifically, the first maximum test statistic is designed to test the covariance matrix entailed by conditionally

homoskedastic MDS errors, whereas the second tests the covariance matrix affected by conditionally heteroskedastic

errors against the matrix affected by serially correlated errors. Although failure to reject the null hypotheses using the

first and second maximum tests do not necessarily imply conditionally homoskedastic MDS and uncorrelated errors,

respectively, our statistics are omnibus test statistics. Therefore, rejecting the null hypothesis implies a consistent

detection of the sandwich-form covariance matrix entailed by conditional heteroskedastic and/or autocorrelated er-
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rors. The applicability of the maximum test statistic is potentially huge. As we detail below, if the QML estimator

is obtained using a probability distribution model belonging to the linear exponential family, the maximum test is

applicable, despite the fact that the error distribution is misspecified by the probability distribution model.

Furthermore, we develop a sequential testing procedure (STP) by implementing our maximum test statistics sys-

tematically. Although the two statistics are separately designed to test for the sandwich-form covariance matrices

entailed by conditional heteroskedastic and autocorrelated errors, respectively, the empirical researcher can control the

overall type-I error of the two test statistics by applying them in a proper order. Specifically, we first apply the second

maximum statistic and test for the sandwich-form covariance matrix affected by autocorrelated errors. If we cannot

reject the null, we next apply the first maximum statistic to test for the sandwich-form covariance matrix entailed

by conditionally heteroskedastic errors. As discussed below, this test plan can consistently identify how conditional

heteroskedasticity and/or autocorrelation affects the asymptotic covariance matrix.

The test methodology in this study is especially useful if the maximum test statistics defined herein are combined

with resampling bootstraps. The residual bootstrap and wild bootstrap methods of Efron and Tibsharani (1988) and

Wu (1986) are particularly useful for enhancing the utility of the maximum test statistics. Although this study provides

asymptotic null limit distributions for the maximum test statistics, they may lead to relatively large level distortions

when the sample size is relatively small. This fact is mainly due to the large degrees of freedom of the maximum

test statistics. Many components in the two matrices have to be compared to confirm IM equality, leading to large

degrees of freedom. We overcome the level distortion problem by applying the bootstrap methods to the maximum

test statistics. Indeed, the resampling methods are efficient remedies for the level distortion problem. We provide

simulation results to affirm our theory on the maximum test statistics and STP.

For the second goal of illustrating the test methodology, we revisit empirical studies on energy price growth rates.

Estimating the model using autoregressive (AR) and generalized autoregressive conditional heteroskedastic (GARCH)

models for the conditional mean and variance of the energy price growth rate, respectively, is standard. For example,

Bai and Lam (2019) estimate the growth rates of energy prices using AR and GARCH models after supposing a skewed

t-distribution for the standardized error, so that if the skewed t-distribution is correct for the standardized error, their

model must be entirely correct, and their QML estimator becomes a maximum likelihood (ML) estimator, leading

to IM equality for their estimator. Conversely, if only the distribution of the standardized error is misspecified, their

QML estimator consistently estimates the conditional mean and variance equations, while possessing a sandwich-form

asymptotic covariance matrix for the QML estimator.

This empirical outline implies that we can apply these test methodologies for purposes other than the goals of this

study. In addition to applying the STP to the AR and GARCH models, we can further test the fully correct model

hypothesis by testing the IM equality of the (Q)ML estimator. Although failure to reject IM equality does not mean

that the model is entirely correct, rejecting the IM equality means that the full model is indeed misspecified. Therefore,

we can associate this rejection with the maximum test results to detect how the model is misspecified. We detail our

illustration using the models and data in Bai and Lam (2019).

The empirical applicability of the test methodology is potentially huge, given that estimating a sandwich-form
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asymptotic covariance matrix is necessary for many cross-sectional and time-series data analyses. Our test methodol-

ogy can be applied even when the error term is present is a multiplicative form, although we focus on an additive error

case in the current study.

The remainder of the paper is structured as follows. Section 2 discusses the motivation of this study and provides

the theories and definitions of our maximum test statistics along with their null, asymptotic, and local alternative limit

behaviors. We also develop the STP to estimate the status of the asymptotic covariance matrix. Section 3 provides the

simulation evidence of our theory, and Section 4 illustrates the use of our maximum test statistics using an empirical

example. We provide concluding remarks in Section 5 and collect the mathematical proofs in the Appendix.

2 Testing for the Influence of Conditional Heteroskedasticity and Autocor-

relation

In this section, we discuss the motivation of our study and the maximum test statistics used to achieve the goals.

We also provide the null, alternative, and local alternative limit behaviors of the test statistics, so that they can be

systematically structured to estimate the status of the asymptotic covariance matrix by an STP.

2.1 Motivation and Hypotheses

Suppose that the empirical researcher wishes to estimate a parametric model for a conditional equation. That is, for a

stationary process (Yt,Xt) ∈ R1+k, the researcher specifies a parametric model as follows: M ∶= {m(⋅,θ) ∶ θ ∈ Θ ⊂

Rd} to estimate the conditional mean of Yt on Xt such thatM satisfies the standard regularity conditions for the LS

estimation (e.g., White and Domowitz 1984). We further suppose that Xt may possess lagged dependent Yt and that

M is correctly specified for E[Yt∣Xt], viz., for some θ∗ ∈ Θ, m(Xt,θ∗) = E[Yt∣Xt] with probability 1.

The conditional mean equation can be consistently estimated using QML estimation. If the model for the condi-

tional mean equation is correct and the assumed distribution for the QML estimation belongs to the linear exponential

family, Gourieroux, Monfort, and Trognon (1984) show that the conditional mean equation can be consistently es-

timated using the QML estimator that asymptotically follows a normal distribution, and this consistency is achieved

even with incorrect assumption on the error distribution.

To motivate the main goal of this study, we consider the following model environment. If the modelM is estimated

using QML estimation, we may suppose that the QML estimator denoted by θ̂n converges to θ∗ ∈ Θ by supposing

regularity conditions (e.g., White 1982). We denote the error by Ut, viz., Ut ∶= Yt −m(Xt,θ∗). As established in the

literature, the asymptotic behavior of the QML estimator is critically dependent upon the properties of Ut andM. For

example, if Ut is conditionally heteroskedastic on Xt, the asymptotic variance of θ̂n is different from that obtained by

assuming conditional homoskedasticity (e.g., White 1980). This fact implies that the inferencing procedure on θ∗ has

to be differently conducted depending on the properties of Ut andM. We can classify the properties into the following

two categories. First, we let Ft be the smallest sigma field generated by {Xt, Ut−1,Xt−1, Ut−2, . . .} and suppose that
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{Ut,Ft} forms an MDS. With conditional homoskedasticity, viz., for some finite σ2
∗ ∈ R+, E[U2

t ∣Ft] = σ2
∗, it is

straightforward to obtain that
√
n(θ̂n − θ∗)

A
∼ N(0,A−1

∗ ); otherwise, it generally holds that

√
n(θ̂n − θ∗)

A
∼ N(0,A−1

∗ B∗A−1
∗ ), (1)

where A∗ and B∗ are the limit of the Hessian matrix of the quasi-log-likelihood function and asymptotic covariance

matrix of the scores evaluated at θ∗. More specifically, if we let `t(⋅) be the quasi-likelihood function of individual

observations, A∗ ∶= −E[∇2
θ`t(θ∗)] and B∗ ∶= E[sts

′
t], where st denotes the score at θ∗, namely st ∶= ∇θ`t(θ∗).

For example, if the normal distribution is assumed for the quasi-likelihood function and m(Xt,θ∗) = X′
tθ∗, A∗ =

σ−2∗ E[XtX
′
t] and B∗ = σ−4∗ E[U2

t XtX
′
t], so that the asymptotic covariance matrix of θ̂n is A−1

∗ = σ2
∗E[XtX

′
t]
−1

under the conditional homoskedastic error assumption. On the contrary, the asymptotic covariance matrix becomes

A−1
∗ B∗A−1

∗ = E[XtX
′
t]
−1E[U2

t XtX
′
t]E[XtX

′
t]
−1 under the conditional heteroskedastic error assumption. From

this aspect, it is now clear that if the IM equality does not hold for the asymptotic covariance matrix of the QML

estimator, namely A∗ ≠ B∗, it must follow that Ut exhibits conditional heteroskedasticity under the maintained

regularity conditions. Therefore, the inference on θ∗ has to be conducted using the asymptotic distribution in (1).

In the literature, a number of different test statistics are popularly used to test for conditional heteroskedastic-

ity. Among others, Godfrey (1978b), White (1980), Breusch and Pagan (1979), and Engle’s (1982) conditional het-

eroskedasticity test statistics are popularly used for empirical studies under various data assumptions. These test

statistics are obtained by assuming a particular form of conditional heteroskedasticity; however, they are defined to

have consistent power against a broad class of conditional heteroskedasticity even though they lack omnibus power

against any form of heteroskedasticity. It is also standard to estimate the asymptotic covariance matrix using the HC

covariance matrix estimator if the conditional homoskedasticity hypothesis is rejected by the test statistics.

Second, if {Ut,Ft} does not form an MDS, another form of IM inequality holds. If Ut is autocorrelated, the

asymptotic covariance matrix B∗ in (1) is modified to

C∗ = B∗ + lim
n→∞

1

n

n

∑
t=1

n

∑
τ=1

t≠τ

E[sts
′
τ ],

so that the limit distribution of the QML estimator is accordingly modified as follows:

√
n(θ̂n − θ∗)

A
∼ N(0,A−1

∗ C∗A−1
∗ ). (2)

The second term on the right-hand side of C∗ vanishes to zero if Ut is an MDS, which does not necessarily hold if Ut

is autocorrelated. From this aspect, we can conclude that if B∗ ≠ C∗, Ut must be autocorrelated and the inference on

θ∗ has to be conducted using the asymptotic distribution in (2), thus allowing a suitable test statistic to be defined by

estimating C∗ consistently.

In the literature, a number of test statistics are available to test for autocorrelation. For example, Durbin and Wat-

son (1950, 1951), Breusch (1978), Godfrey (1978a), and Ljung and Box (1978) are popularly used for autocorrelation
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as well as developed by supposing a particular form of autocorrelation as for the test statistics for conditional het-

eroskedasticity. In addition, there are non-parametric test statistics for autocorrelation. To mention a few, Robinson

(1991), Skaug and Tjøstheim (1996), Hong and White (2005), and Cho and White (2011) provide non-parametric test

statistics for autocorrelation. When the no-autocorrelation hypothesis is rejected by these test statistics, it is standard

to estimate the asymptotic covariance matrix using the HAC covariance matrix estimator.

As we see from the test statistics in the literature, testing procedures are developed to indirectly test for conditional

heteroskedasticity and/or autocorrelation in Ut. Nevertheless, any form of conditional heteroskedasticity or autocor-

relation does not necessarily lead to the sandwich-form asymptotic covariance matrix. Conditional heteroskedasticity

and autocorrelation are just two of the necessary conditions for the sandwich-form asymptotic covariance matrix.

That is, the presence of conditional heteroskedasticity and/or autocorrelation in Ut does not necessarily lead to the

sandwich-form asymptotic covariance matrix, so that the empirical researcher may not have to estimate the asymptotic

covariance matrix using the HC or HAC covariance matrix estimator if the IM equality holds even with conditionally

heteroskedastic and autocorrelated regression errors.

This aspect motivates to directly test for the sandwich-form asymptotic covariance matrix hypothesis instead of

indirectly testing for conditional heteroskedastic and/or autocorrelated regression errors. For this goal, we view the

following as the main hypotheses of interest in the current study:

Ḣ0 ∶ A∗ = B∗ vs. Ḣ1 ∶ A∗ ≠ B∗; and Ḧ0 ∶ B∗ = C∗ versus Ḧ1 ∶ B∗ ≠ C∗.

Ḣ0 and Ḣ1 are provided to test for the sandwich-form asymptotic covariance matrix entailed by conditional het-

eroskedastic errors, whereas Ḧ0 and Ḧ1 are investigated to test for the sandwich-form covariance matrix entailed by

autocorrelated errors. Each hypothesis characterizes the status of the asymptotic covariance matrix, and a suitable test

statistic can be applied according to the status. For example, if Ḧ0 turns out to be a suitable status for the asymptotic

covariance matrix, we can estimate the asymptotic covariance matrix using the HC covariance matrix estimator.

2.2 Maximum Test Statistics

The test statistics we examine in this study are developed from the methodologies presented by CW and CP. They

provide simple necessary and sufficient conditions for the equality of two symmetric positive-definite matrices. For

example, when we test Ḣ0 against Ḣ1, any two of the following conditions hold:

tr[D∗] = d; det[D∗] = 1; and tr[D−1
∗ ] = d,

if and only if A∗ = B∗, where D∗ ∶= A∗B−1
∗ . It is also possible to reverse the role of A∗ with that of B∗ to define

D∗, so that the same equality holds between A∗ and B∗ if and only if any two of the following conditions hold:

tr[D̃∗] = d; det[D̃−1
∗ ] = 1; and tr[D̃−1

∗ ] = d,
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where D̃∗ ∶= B∗A−1
∗ . Using these equivalent conditions, these authors define a number of auxiliary omnibus test

statistics to test the equality of two symmetric positive-definite matrices, recommending the most powerful test statistic

as the maximum of the auxiliary test statistics.

We apply their test methodology to our testing problem. For this purpose, we define ξ ∶= (θ′, σ2)′ and suppose

that ξ∗ ∶= (θ′∗, σ
2
∗)

′ is consistently estimated using the QML estimator ξ̂n ∶= (θ̂
′
n, σ̂

2
n)

′: ξ̂n ∶= arg maxξ∈Ξ L̄n(ξ),

where L̄n(⋅) ∶= n−1∑nt=1 `t(⋅), and `t(⋅) is the individual quasi-log-likelihood function defined on Ξ ∶= Θ × [c, d] (c

and d ∈ R+ ). Here, n denotes the sample size. A particular form of quasi-log-likelihood function is assumed, so that it

can consistently estimate θ∗ and the unconditional variance of Ut denoted by σ2
∗. For example, the normal likelihood

function belongs to this case. We further suppose that A∗ and the associated covariance matrices can be consistently

estimated using Ân, B̂n, and Ĉn, respectively, viz., Ân
P
→ A∗, B̂n

P
→ B∗, and Ĉn

P
→ C∗. For example, we can let

Ân ∶= −n
−1
∑
n
t=1∇

2
θ`t(ξ̂n), B̂n ∶= n

−1
∑
n
t=1 ŝtŝ

′
t, and

Ĉn ∶=
1

n

n

∑
t=1
ŝtŝ

′
t +

1

n

`

∑
k=1

ω`k
n

∑
t=k+1

(ŝt−kŝ′t + ŝtŝ
′
t−k) ,

where ŝt ∶= ∇θ`t(ξ̂n) and ω`k and ` are the kernel and bandwidth used to estimate C∗ consistently; moreover, B̂n is

White’s (1980) HC covariance matrix estimator, and a number of different kernels and bandwidths can be employed

for Ĉn. For example, we can let ω`k ∶= 1 − k/(1 + `) and ` = O(n1/3) to employ Newey and West’s (1987) HAC

covariance matrix estimator. As another example, Andrews (1991) recommends using the quadratic spectral kernel

with ` = O(n1/5). Indeed, there are many other kernels and bandwidths for the HAC estimation of C∗ (e.g., Gallant

1987, Ng and Perron 1996).

Using these estimators, we define the auxiliary test statistics as in CW and CP. For example, if Ḣ0 is tested against

Ḣ1, we let D̂n ∶= ÂnB̂−1
n and define the following statistics:

τ̂n ∶=
1

d
tr[D̂n] − 1, η̂n ∶=

d

tr[D̂−1
n ]

− 1, δ̂n ∶= det[D̂n]
1
d − 1, γ̂n ∶= δ̂n − η̂n, and ζ̂n ∶= τ̂n − δ̂n.

These statistics are introduced to consistently estimate

τ̇∗ ∶=
1

d
tr[D∗] − 1, η̇∗ ∶=

d

tr[D−1∗ ]
− 1, δ̇∗ ∶= det[D∗]

1
d − 1, γ̇∗ ∶= δ̇∗ − η̇∗, and ζ̇∗ ∶= τ̇∗ − δ̇∗,

respectively.

The motivations of these statistics stem from the fact that d−1tr[D̂], det[D̂]
1
d , and dtr[D̂−1

n ]−1 estimate the

arithmetic, geometric, and harmonic means of the eigenvalues of D∗. If any two of these are equal to unity, D∗

must be Id, and its converse is also true because any two of the means are equal to each other if and only if all the

eigenvalues are identical. Therefore, if any two of the above five auxiliary statistics estimate zero consistently, this

implies that D∗ = Id.

In addition to these auxiliary test statistics, we let D̃n ∶= B̂nÂ−1
n to test Ḣ0 against Ḣ1 and define the following
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test statistics:

τ̃n ∶=
1

d
tr[D̃n] − 1, η̃n ∶=

d

tr[D̃−1
n ]

− 1, δ̃n ∶= det[D̃n]
1
d − 1, γ̃n ∶= δ̃n − η̃n, and ζ̃n ∶= τ̃n − δ̃n,

where the roles of A∗ and B∗ are reversed from those used to define D∗. As before, these additional statistics are

introduced to estimate

τ̈∗ ∶=
1

d
tr[D−1

∗ ] − 1, η̈∗ ∶=
d

tr[D∗]
− 1, δ̈∗ ∶= det[D−1

∗ ]
1
d − 1, γ̈∗ ∶= δ̈∗ − η̈∗, and ζ̈∗ ∶= τ̈∗ − δ̈∗,

consistently, respectively.

In a different environment, D̂n and D̃n can be redefined to test the hypotheses. If the researcher wishes to test Ḧ0

against Ḧ1, we can let D̂n ∶= B̂nĈ−1
n and D̃n ∶= ĈnB̂−1

n and obtain the statistics accordingly using the new D̂n and

D̃n.

The maximum test statistic in this study is defined using the auxiliary statistics. Specifically, we let our test statistic

be defined as follows:

M̂n ∶= max
j=1,2

[B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, Ẽj,n] ,

where B̂1,n ∶= (nd/2)(τ̂2n + 2ζ̂n), B̂2,n ∶= (nd/2)(δ̂2n + 2ζ̂n), Ŝ1,n ∶= (nd/2)(δ̂2n + 2γ̂n), Ŝ2,n ∶= (nd/2)(η̂2n + 2γ̂n),

Ê1,n ∶= (nd/2)(τ̂2n + 2γ̂n), and Ê2,n ∶= (nd/2)(η̂2n + 2ζ̂n). For j = 1 and 2, we also let B̃j,n, S̃j,n, and Ẽj,n be

similarly defined using τ̃n, η̃n, δ̃n, γ̃n, and ζ̃n.

The auxiliary test statistics constituting M̂n are defined by applying Wald’s (1943) test principle, and M̂n is

designed to have the maximum power out of the 12 auxiliary test statistics. For example, τ̂n estimates the distance

between the arithmetic average of the eigenvalues of D̂n and unity, and ζ̂n estimates the distance between τ̂n and δ̂n

that estimates the distance between the geometric average of the eigenvalues of D̂n and unity, so that B̂1,n now tests

whether the arithmetic average of the eigenvalues of D∗ is unity and also equal to the geometric average of the same

eigenvalues. Likewise, for j = 1 and 2, the auxiliary test statistics B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, and Ẽj,n test whether

any two of the arithmetic, geometric, and harmonic averages of D∗ and D−1
∗ are equal to unity using Wald’s (1943)

test principle. Furthermore, CP show that the null limit behaviors of the auxiliary statistics are equivalent, so that the

null limit behavior of M̂n turns out to be identical to that of each auxiliary test statistic.

The maximum test statistic M̂n is different from that in CP. Although our test statistic is constructed by following

their approach, their maximum test statistic is defined as the maximum of only B̂j,n, Ŝj,n, and Êj,n with j = 1 and 2.

They do not explicitly examine the role of D̃n when defining their maximum test statistic. Accommodating the roles

of both D̂n and D̃n, we define M̂n and expect more powerful behavior from M̂n than that in CP in addition to being

an omnibus test statistic.

When defining the maximum test statistic M̂n, not every auxiliary test statistic is used to define the maximum test

statistic. For example, the researcher may define another auxiliary test statistic by applying Wald’s test principle to τ̂n

and the distance between τ̂n and η̂n, so that it can contribute to M̂n. Nevertheless, CP show that the other auxiliary
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test statistics not considered here have asymptotic power inferior to the auxiliary test statistics contributing to M̂n. We

therefore focus only on B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, and Ẽj,n to define the maximum test statistics.

Hereafter, we denote the maximum test statistics and their auxiliary test statistics using a superscript to represent

the hypothesis tested by the maximum test statistics and avoid any confusion. That is, M̂(1)
n and M̂

(2)
n denote the

maximum test statistics designed to test Ḣ0 against Ḣ1 and Ḧ0 against Ḧ1, respectively.

Before examining the limit behaviors of the maximum test statistics, we formally state the regularity conditions

for the maximum test statistics by applying those in CP. For an efficient provision of the regularity conditions, for each

i = 1 and 2, we let P(i)(⋅), P̄(i)(⋅), and P
(i)
n (⋅) denote the functions corresponding to the left-hand side matrix in

Ḣ0 or Ḧ0. For example, we let P(1)(ξ∗) = A∗ and P(2)(ξ∗) = B∗ under Ḣ0 and Ḧ0, respectively, which are the

left-hand side matrices in Ḣ0 and Ḧ0, respectively. Likewise, for i = 1 and 2, we let Q(i)(⋅), Q̄(i)(⋅), and Q
(i)
n (⋅)

denote the functions corresponding to the right-hand side matrices in Ḣ0 and Ḧ0, respectively. For each i = 1 and 2,

we further let P̂
(i)
n ∶= Pn(ξ̂n) and Q̂

(i)
n ∶= Qn(ξ̂n), so that, for example, P̂

(1)
n = Ân and Q̂

(1)
n = B̂n under Ḣ0.

Assumption 1. (i) {Zt ∶= (Yt,X
′
t)
′ ∈ R(1+k) ∶ t = 1,2, . . .} is a strictly stationary process defined on a complete

probability space (Ω,F ,P) with k ∈ N;

(ii) Ξ ∶= Θ × [b, c] is a non-empty compact and convex set with Θ ⊂ Rd;

(iii) The sequence of {ξ̂n ∶= (θ̂
′
n, σ̂

2
n)

′ ∶ Ω ↦ Ξ} converges to ξ∗ ∶= (θ′∗, σ
2
∗)

′ ∈ Ξ in probability, where ξ∗ is

unique and interior to Ξ, ξ̂n ∶= arg maxξ∈Ξ L̄n(ξ) with L̄n(ξ) ∶= n−1∑nt=1 `t(ξ), and `t(⋅) ∶= `(Zt, ⋅) is the quasi-

log-likelihood function assuming a correctly specified model M ∶= {m(⋅,θ) ∶ θ ∈ Θ ⊂ Rd} for E[Yt∣Xt] and a

constant conditional variance such that `t(⋅) is continuous on Ξ almost surely −P;

(iv) For each i = 1 and 2, there are P
(i)
n (⋅) ∶ Ξ↦ Rd×d and Q

(i)
n (⋅) ∶ Ξ↦ Rd×d consistent for P(i)(⋅) and Q(i)(⋅)

uniformly on Ξ;

(v) For each i = 1 and 2 and for some positive-definite Σ(i)∗ ,
√
n[(ξ̂n − ξ∗), (P̂

(i)
n − P

(i)
∗ ), (Q̂

(i)
n − Q

(i)
∗ )] ⇒

(Zξ, P̄
(i)
∗ + ZP(i) , Q̄

(i)
∗ + ZQ(i)) such that [Z′

ξ,vech(ZP(i))
′,vech(ZQ(i))

′]′ ∼ N(0,Σ(i)∗ ), where (v.i) P̂
(i)
n ∶=

P
(i)
n (ξ̂n) and Q̂

(i)
n ∶= Q

(i)
n (ξ̂n); (v.ii) P

(i)
∗ ∶= P(i)(ξ∗) and Q

(i)
∗ ∶= Q(i)(ξ∗) are symmetric and positive definite

such that P(i) ∶ Ξ ↦ Rd×d and Q(i) ∶ Ξ ↦ Rd×d are in C(2)(Ξ); and (v.iii) P̄
(i)
∗ ∶= P̄(i)(ξ∗) and Q̄

(i)
∗ ∶= Q̄(i)(ξ∗)

are symmetric and positive semi-definite such that P̄
(i)
∗ ≠ Q̄

(i)
∗ , and P̄(i) ∶ Ξ ↦ Rd×d and Q̄(i) ∶ Ξ ↦ Rd×d are in

C(1)(Ξ);

(vi) For each i = 1,2 and j = 1,2, . . . , d, (∂/∂θj)P
(i)
n (⋅) and (∂/∂θj)Q

(i)
n (⋅) are consistent for (∂/∂θj)P

(i)(⋅)

and (∂/∂θj)Q
(i)(⋅) uniformly on Ξ in probability; and

(vii) For each i = 1,2 and j = 1,2, . . . , d, (P(i)∗ )−1(∂/∂θj)(P
(i)
n (ξ∗) −P

(i)
∗n) and (Q

(i)
∗ )−1(∂/∂θj) (Q

(i)
n (ξ∗) −

Q
(i)
∗n) are OP(n

−1/2). ◻

Here, Assumption 1(v) is imposed to apply a multivariate central limit theorem to ξ̂n, P̂
(i)
n , and Q̂

(i)
n , where the

last two statistics are involved in the local-to-zero parameters P̄
(i)
∗ and Q̄

(i)
∗ , respectively. As we show in the next

subsection, these local-to-zero parameters are used to examine the limit behaviors of the maximum test statistics under

the local alternative. If both P̄
(i)
∗ and Q̄

(i)
∗ are zero, Assumption 1(vii) can be used to derive the limit behaviors of the

maximum test statistics under the null and alternative hypotheses.
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2.3 Limit Behaviors of the Test Statistics

In this section, we examine the limit distributions of the maximum test statistics discussed in the previous sections

under the null hypotheses (Ḣ0 and Ḧ0), alternative hypotheses (Ḣ1 and Ḧ1), and following local alternative hypothe-

ses:

• H(1)` ∶ A∗ = B∗ with A∗n = A∗ + n−1/2Ā∗ + o(n−1/2) and B∗n = B∗ + n−1/2B̄∗ + o(n−1/2);

• H(2)` ∶ B∗ = C∗ with B∗n = B∗ + n−1/2B̄∗ + o(n−1/2) and C∗n = C∗ + n−1/2C̄∗ + o(n−1/2),

where Ā∗, B̄∗, and C̄∗ are positive semi-definite matrices. H(1)` and H(2)` capture the local alternative hypotheses

to their corresponding null hypotheses. For example, A∗n differs from B∗n under H(1)` , but their limits are identical

at the convergence rate n−1/2. If Ā∗ = B̄∗ = C̄∗ = 0, H(1)` and H(2)` reduce to the null hypotheses Ḣ0 and Ḧ0,

respectively.

We first obtain the local alternative limit distributions of the maximum test statistics. If we let the local-to-zero

parameters be zero, the local alternative limit distributions of the maximum test statistics become the null limit distri-

butions of the same test statistic. We therefore first obtain the local limit distributions of the maximum test statistics.

We now formally provide the local alternative limit distributions of the maximum test statistics in the following

theorem:

Theorem 1. For i = 1 and 2, if Assumption 1 holds, M̂(i)
n ⇒ (Z(i) + V̈

(i)
∗ )′Ω(i)∗ (Z(i) + V̈

(i)
∗ ) underH(i)` , where

Z(i) ∶=
⎡
⎢
⎢
⎢
⎢
⎢
⎣

vec(ZQ(i) −ZP(i))

vec(Z′
θ ⊗ Id)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Ω(i)∗ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(P
(i)
∗ )−1 ⊗ (P

(i)
∗ )−1 (P

(i)
∗ )−1R(i)′∗ ⊗ (P

(i)
∗ )−1

(P
(i)
∗ )−1 ⊗R

(i)
∗ (P

(i)
∗ )−1 (P

(i)
∗ )−1R(i)′∗ ⊗R

(i)
∗ (P

(i)
∗ )−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with R
(i)
∗ ∶= [∇θ(Q

(i)
∗ − P

(i)
∗ )′]′, V̈

(i)
∗ ∶= Ω(i)−1/2∗ V

(i)
∗ with V

(i)
∗ ∶= (Q

(i)
∗ )−1Q̄(i)∗ − (P

(i)
∗ )−1P̄(i)∗ , and Zξ ∶=

[Z′
θ, Zσ2]′. ◻

The local alternative limit distribution in Theorem 1 is obtained by deriving the local alternative weak limit of each

maximand as in CP. More specifically, we show that for each j = 1 and 2, all B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, and

Ẽj,n weakly converge to the same weak limit given as (Z(i) +V
(i)
∗ )′Ω(i)∗ (Z(i) +V

(i)
∗ ) for i = 1 and 2, so that their

maximum also weakly converges to (Z(i) +V
(i)
∗ )′Ω(i)∗ (Z(i) +V

(i)
∗ ) under the local alternativeH(i)` .

We next derive the null limit distributions of the maximum test statistics by letting the local-to-zero parameters be

zero, as mentioned above. The following corollary formally states the null limit distributions.

Corollary 1. For i = 1 and 2, if Assumption 1 holds, M̂(i)
n ⇒ Z(i)′Ω(i)∗ Z

(i) underH(i)0 . ◻

Corollary 1 simply follows by letting V
(i)
∗ = 0 in Theorem 1. This fact implies that the null limit distributions of the

maximum test statistics are obtained as non-central chi-squared distributions with a zero non-centrality parameter.

If the sample size n is relatively small, the null distributions of the maximum test statistics can be better approxi-

mated by applying the residual and wild bootstraps to M̂
(1)
n and M̂

(2)
n , respectively. The finite sample level distortion
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can be substantially large if the asymptotic critical values apply, because the degrees of freedom in the null limit dis-

tribution can be large. Note that Z(i) is obtained by vectorizing ZQ(i) − ZP(i) and Z′
θ ⊗ Id, so that relatively large

degrees of freedom are obtained from the vectorization, leading to finite sample null distributions that can substan-

tially differ from the null limit distributions. Instead, the finite sample null distributions can be easily generated using

the resampling methods. In Section 3, we present the results of Monte Carlo simulations conducted to examine the

performance of the maximum test statistics implemented using the resampling methods.

We next provide the power properties of the maximum test statistics in the following theorem.

Theorem 2. For i = 1 and 2, if Assumption 1 holds, M̂(i)
n = n{µ

(i)
∗ +OP(1)} under the fixed alternative hypothesis

H
(i)
1 , where µ(i)∗ ∶= (d/2)max[Ḃ

(i)
1,∗, Ė

(i)
1,∗, Ė

(i)
2,∗, B̈

(i)
1,∗, Ë

(i)
1,∗, Ë

(i)
2,∗], Ḃ

(i)
1,∗ ∶= (τ̇

(i)
∗ )2 + 2ζ̇∗, Ė(i)1,∗ ∶= (τ̇

(i)
∗ )2 + 2γ̇∗,

Ė
(i)
2,∗ ∶= (η̇

(i)
∗ )2 + 2ζ̇∗, B̈(i)1,∗ ∶= (τ̈

(i)
∗ )2 + 2ζ̈

(j)
∗ , Ë(i)1,∗ ∶= (τ̈

(i)
∗ )2 + 2γ̈∗, and Ë

(i)
2,∗ ∶= (η̈

(i)
∗ )2 + 2ζ̈∗. ◻

That is, the limit distribution of the maximum test statistics diverges to positive infinity at the rate of n. Here, the first

term µ
(i)
∗ denotes the location parameter leading to the divergence of the maximum test statistics. On the contrary, the

remaining term OP(n) determines the dispersion scale of the maximum test statistics under the alternative.

The asymptotic power of the maximum test statistics is expected to be greater than that in CP if the power direction

of their maximum test statistic differs from µ
(i)
∗ . For each i = 1 and 2, applying their maximum test statistic yields

the leading term µ̇
(i)
∗ ∶= maxj=1,2[Ḃ

(i)
j,∗, Ṡ

(i)
j,∗, Ė

(i)
j,∗], where Ṡ

(i)
1∗ ∶= (δ̇

(i)
∗ )2 + 2γ̇

(i)
∗ and Ṡ

(i)
2∗ ∶= (η̇

(i)
∗ )2 + 2ζ̇

(i)
∗ . Here,

δ̇
(i)
∗ ∈ [η̇

(i)
∗ , τ̇

(i)
∗ ], so that Ṡ(i)1,∗ ≤ Ė

(i)
1,∗. Furthermore, Ṡ(i)2,∗ ≤ max[Ë

(i)
1,∗, B̈

(i)
1,∗] by the definitions of Ë(i)1,∗ and B̈

(i)
1,∗,

implying that µ̇(i)∗ ≤ µ
(i)
∗ . From this feature, for each i = 1 and 2, the leading term of M̂(i)

n becomes greater than that

in CP. From this fact, greater power is expected from the maximum test statistics.

The applicability of this test methodology is substantially huge. Note that the QML estimator can consistently

estimate the conditional mean equation if the error distribution is specified by a distribution belonging to the linear

exponential family (e.g., Gourieroux, Monfort, and Trognon, 1984), implying that our methodology can be applied to

possibly misspecified models for error distribution.

2.4 Plan to Test for the Influence of Conditional Heteroskedasticity and Autocorrelation

When testing for the sandwich-form asymptotic covariance matrix entailed by both conditional heteroskedastic and/or

autocorrelated errors, we recommend testing autocorrelation first and then conditional heteroskedasticity. One of the

assumptions retained to test Ḣ0 against Ḣ1 is that {Ut,Ft} is an MDS. If {Ut,Ft} is not an MDS, it is difficult to

detect how the asymptotic covariance matrix is formed by conditionally heteroskedastic and autocorrelated errors. We

therefore recommend testing for the sandwich-form asymptotic covariance matrix sequentially, viz., first testing for

the asymptotic covariance matrix influenced by autocorrelated errors and then testing for the asymptotic covariance

matrix influenced by heteroskedastic regression errors. Specifically, we provide the following STP by applying that in

Cho and Phillips (2018b):

● Step 1: Test Ḧ0 against Ḧ1 using M̂
(2)
n . If Ḧ0 is rejected, stop the STP. Otherwise, move to the next step.
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● Step 2: Test Ḣ0 against Ḣ1 using M̂
(1)
n . If Ḣ0 is rejected, conclude that Ut is conditionally heteroskedastic.

Otherwise, conclude that A∗ = B∗.

Using the provided STP, the given hypotheses (i.e., the statuses of the asymptotic covariance matrix) are selected

with different asymptotic probabilities. Under Ḧ1, the empirical researcher can detect the correct hypothesis with an

asymptotic probability converging to 100% using the STP from the fact that M̂(2)
n is a consistent test statistic. On

the contrary, under Ḣ1 that also belongs to Ḧ0, the empirical researcher can detect the correct hypothesis with an

asymptotic probability converging to (1−α)×100% using the STP, where α denotes the level of significance selected

by the researcher. In the first step, the empirical researcher can commit to an α×100% type-I error while testing for the

sandwich-form asymptotic covariance matrix entailed by autocorrelated errors. On the contrary, the sandwich-form

asymptotic covariance matrix entailed by conditional heteroskedastic errors can be consistently detected by M̂
(1)
n with

an asymptotic probability converging to 100%. In total, the researcher therefore commits to an asymptotic probability

converging to (1 − α) × 100%. Finally, under Ḣ0, the empirical researcher can detect the correct hypothesis with an

asymptotic probability converging to (1−2α)×100%. Ḣ0 can be selected only when neither Ḧ0 nor Ḣ0 is rejected by

the STP. As the testing procedure is conducted at α × 100% in each step, the overall asymptotic type-I error becomes

2α × 100%. In the next section, we show the Monte Carlo simulations and affirm this feature.

3 Simulations

In this section, we present the results of the Monte Carlo simulations conducted to affirm the theory in Section 2.

Given that the test statistics can be sequentially applied, we first discuss testing Ḣ0 against Ḣ1 and Ḧ0 against Ḧ1 and

then discuss the STP.

For the goal of this section, we consider the following simulation setup. We first suppose that time-series observa-

tions are generated according to the following formula:

Yt = β0∗ + β1∗Yt−1 + β2∗Yt−2 +Ut and Ut =
√
htεt,

such that ht = κ∗ + φ∗ht−1 + γ∗U2
t−1 and εt ∼ IID N(0,1). Different time-series observations can be generated by

letting the parameters in the data generating process (DGP) be specified differently. We consider the following three

parameter specifications:

● DGP1: (β0∗, β1∗, β2∗, κ∗, φ∗, γ∗) = (0.0,0.5,0.0,1.0,0.0,0.0);

● DGP2: (β0∗, β1∗, β2∗, κ∗, φ∗, γ∗) = (0.0,0.5,0.0,1.0,0.2,0.2); and

● DGP3: (β0∗, β1∗, β2∗, κ∗, φ∗, γ∗) = (0.0,0.5,−0.2,1.0,0.2,0.2).

DGP1 generates serially uncorrelated errors with conditionally homoskedastic variance from the fact that ht = 1, so

that we can use DGP1 to examine the level property of M̂(1)
n under Ḣ0. That is, if we let σ2

∗ ∶= E[U2
t ], σ

2
∗E[XtX

′
t]

becomes identical to the probability limit of the HC covariance matrix estimator for E[U2
t XtX

′
t]. On the contrary,
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DGP2 generates conditionally heteroskedastic errors, although the errors form an MDS. Therefore, we can use DGP2

to examine the performance of M̂(2)
n under Ḧ0. In addition to this feature, the probability limit of the HC covari-

ance matrix estimator becomes identical to the probability limit of the HAC covariance matrix estimator, whereas

σ2
∗E[XtX

′
t] becomes different from the probability limit of the HC covariance matrix estimator. Therefore, DGP2

can be used to investigate the performance of M̂(1)
n under Ḣ1. Finally, DGP3 generates autocorrelated and condi-

tionally heteroskedastic errors from the fact thatM is dynamically misspecified for E[Yt∣Yt−1, Yt−2, . . .], so that the

probability limits of the HC and HAC covariance matrix estimators differ. From this fact, DGP3 can be used to

examine the power performance of M̂(2)
n under Ḧ1.

Given these DGP conditions, we further suppose that the researcher specifies the following model: M ∶= {θ0 +

θ1Yt−1 ∶ (θ0, θ1)
′ ∈ R2} and estimates the unknown coefficients in M using the LS estimator. This estimation

procedure is equivalent to estimating the linear model by supposing that the error is normally distributed. For notational

simplicity, we let Xt ∶= (1, Yt−1)′.

It is useful to apply resampling methods to test for the sandwich-form asymptotic covariance matrices, as slightly

mentioned above. For our simulations, we apply the residual bootstrap in Efron and Tibsharani (1988) and the wild

bootstrap in Wu (1986). Specifically, residual bootstrap resampling is useful for testing Ḣ0 against Ḣ1 by M̂
(1)
n ,

whereas wild bootstrap resampling is useful for testing Ḧ0 against Ḧ1 by M̂
(2)
n . The residual bootstrap method is

applied in the following plan:

• Step 1: Estimate θ̂n using the LS method and obtain {Ût ∶= Yt −X′
tθ̂n ∶ t = 1,2, . . . , n} to estimate σ̂2

nÂn and

B̂n. From these matrix estimators, compute M̂
(1)
n , where

σ̂2
n ∶=

1

n

n

∑
t=1
Û2
t , Ân ∶=

1

n

n

∑
t=1

XtX
′
t, and B̂n ∶=

1

n

n

∑
t=1
Û2
t XtX

′
t; (3)

• Step 2: Resample {Û bt ∶ t = 1,2, . . . , n} and obtain σ̂2b
n Ân and B̂b

n to compute M̂
(1)b
n by σ̂2b

n ∶= n−1∑nt=1 Û
b2
t

and B̂b
n ∶= n

−1
∑
n
t=1 Û

b2
t XtX

′
t;

• Step 3: Iterate Step 2 for b = 1,2, . . . ,B and estimate the bootstrapped p-value by p̂(1)n ∶= B−1
∑
B
b=1 1{M̂

(1)
n <

M̂
(1)b
n };

• Step 4: If p̂(1)n < α, reject Ḣ0; otherwise, do not reject Ḣ0.

On the contrary, the wild bootstrap method is implemented in the following plan to test Ḧ0 against Ḧ1:

• Step 1: Estimate θ̂n using the LS estimation and obtain {Ût ∶= Yt − X′
tθ̂n ∶ t = 1,2, . . . , n} to estimate B̂n

and Ĉn. From these matrix estimators, compute M̂
(2)
n , where B̂n is the same estimator as B̂n in the residual

bootstrap, and

Ĉn ∶= B̂n +
1

n

`

∑
k=1

ω`k
n

∑
t=k+1

(Ût−kÛtXt−kX′
t + ÛtÛt−kXtX

′
t−k). (4)

Here, ω`k and ` are the HAC kernel and bandwidth, respectively used to estimate C∗ consistently;
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• Step 2: Resample Vt ∼ IID (0,1) and define {W b
t ∶= VtÛt ∶ t = 1,2, . . . , n} to compute B̈n and C̈n and obtain

M̂
(2)b
n , where

B̈n ∶=
1

n

n

∑
t=1
W b2
t XtX

′
t and C̈n ∶= B̈n +

1

n

`

∑
k=1

n

∑
t=k+1

ω`k(Wt−kWtXt−kX′
t +WtWt−kXtX

′
t−k);

• Step 3: Iterate Step 2 for b = 1,2, . . . ,B and estimate bootstrapped p-value by p̂(2)n ∶= B−1
∑
B
b=1 1{M̂

(2)
n <

M̂
(2)b
n };

• Step 4: If p̂(2)n < α, reject Ḧ0; otherwise, do not reject Ḧ0.

Wild bootstrap resampling has many variations, as Vt can be drawn differently from the standard normal and many

alternative estimators exist for C∗. For example, the Rademacher distribution is also popularly used for Vt in the

literature. For our simulations, we let Vt ∼ IID N(0,1) and ω`k be the quadratic kernel in Andrews (1991). We further

let ` = ⌊n1/5⌋ − 1.

We conduct Monte Carlo simulations using DGP1, 2, and 3 according to the above two methods with B = 1,000.

Table 1 reports the simulation results.1 Figures in parentheses are the empirical rejection rates obtained by the maxi-

mum test statistics in CP that are computed by letting Â−1
n B̂n and Ĉ−1

n B̂n be D̂n in CP to test Ḣ0 and Ḣ1, respectively.

We summarize the simulation results as follows:

(a) The first panel of Table 1 reports the empirical rejection rates of M̂
(1)
n under Ḣ0. We applied the residual

bootstrap to evaluate M̂
(1)
n , which is computed using data observations following DGP1. As the sample size n

increases, the empirical rejection rates approach nominal levels, implying that the resampling method enables

us to control the type-I error successfully.

(b) The first two panels of Table 1 report the empirical rejection rates of M̂(2)
n under Ḧ0. Both DGP1 and DGP2 can

be used to generate observations belonging to Ḧ0. Hence, we applied the wild bootstrap method to M̂
(2)
n . As

the sample size n increases, the empirical rejection rates approach nominal levels, implying that the resampling

method also enables us to control the type-I error successfully under Ḧ0. In particular, when the error term

exhibits conditional homoskedasticity (i.e., under DGP1), the empirical rejection rates of M̂(2)
n are closer to

nominal levels than those under DGP2. Furthermore, the empirical rejection rates are closer to nominal levels

when the level of significance α is small. Although we do not report these here, our simulations show that a

rather larger sample size n is required for a successful application of the wild bootstrap method when the level

of significance α is relatively large.

(c) The second and third panels of Table 1 report the empirical rejection rates of M̂(1)
n under Ḣ1. Both DGP2 and

DGP3 can be used to generate observations belonging to Ḣ1. The two panels of Table 1 show that the empirical

rejection rates converge to unity as the sample size n increases. The empirical rejection rates are more or less

similar between the two panels.

1The following URL provides the GAUSS, MATLAB, and R codes to compute the maximum test statistics and their p-values for linear models:
http://web.yonsei.ac.kr/jinseocho/cospimt.htm.
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(d) The third panel of Table 1 reports the empirical rejection rates of M̂(2)
n under Ḧ1. As the sample size n increases,

the empirical rejection rates converge to unity, whereas the rejection rates are lower than those of M̂(1)
n under

Ḣ1.

(e) Finally, when comparing the empirical rejection rates of the maximum test statistics of here with those in CP, the

empirical powers of our test statistics are always greater than those in CP under DGPs 2 and 3. This is mainly

because our maximum test statistics are defined by including the test bases whose power directions produce

higher powers than those in CP. If their maximum test statistics are also defined by the same test bases with the

greatest power direction, the power properties of their maximum tests are expected more or less similar to ours.

These simulation results show that the theories on M̂
(1)
n and M̂

(2)
n are affirmed when testing Ḣ0 and Ḧ0 against Ḣ1

and Ḧ1, respectively, implying that we can consistently distinguish the statuses of the asymptotic covariance matrices

generated by homoskedastic, heteroskedastic, and autocorrelated errors.

We next examine the performance of the STP using Monte Carlo simulations. Using DGP1, 2, and 3, we examine

the asymptotic portion of the hypotheses selected by the STP. As discussed in Section 2.4, if the STP is successfully

implemented, Ḣ0 should be selected with an asymptotic probability converging to (1 − 2α) × 100% under DGP1.

On the contrary, Ḧ0 should be selected with an asymptotic probability converging to (1 − α) × 100% under DGP2.

Finally, Ḧ1 should be selected with an asymptotic probability converging to 100% under DGP3. We let the level

of significance α be 0.05 to conduct the simulations. Table 2 reports the simulation results using the maximum test

statistics of here and CP. We denote the precision rates obtained by CP in parentheses. We summarize the simulation

results as follows:

(a) Under DGP1, Ḣ0 is estimated with a proportion close to 90% as the sample size n increases. This aspect affirms

that the STP estimates Ḣ0 with an asymptotic probability converging to (1− 2α)× 100%. On the contrary, both

Ḧ0 and Ḧ1 are selected with asymptotic probabilities converging to α × 100%. This feature is caused by the

α× 100% type-I error, so that if a small α is selected, the researcher can estimate Ḣ0 with a high precision rate.

(b) Under DGP2, Ḧ0 is estimated with a proportion close to 95% as the sample size n increases. This aspect affirms

that the STP estimates Ḧ0 with an asymptotic probability converging to (1 − α) × 100%. On the contrary, Ḣ0

and Ḧ1 are selected with probabilities converging to 0% and α × 100%, respectively. The portion of Ḧ1 is

determined by the type-I error. As for DGP1, if the researcher selects α to be close to zero, (s)he can estimate

Ḧ0 with a high precision rate.

(c) Under DGP3, Ḧ1 is estimated with a proportion close to 100% as the sample size n increases. Under the first

step of the STP, the researcher can reject Ḧ0 with an asymptotic probability converging to unity, so that Ḧ1 can

be consistently selected. When n = 2,000, Ḧ1 is selected with 86.10%, whereas if the sample size n further

increases, Ḧ1 must be selected with a probability converging to 100%.

(d) When comparing with STP implemented by the maximum test statistics in CP, we observe that the finite sample

precision rates of the STP using our maximum test statistics are closer to the hypothetical rates than their tests.
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This feature is well expected from the fact that our maximum tests display higher powers than theirs under DGPs

2 an 3.

Our Monte Carlo simulations affirm the theories in Section 2.3, validating the use of the matrix equality testing.

Before moving to the next section, we note that further extension of the current research can be made to have a

better powered maximum test statistic. Li, Yu, and Zeng (2018) provide a Bayesian perspective to test the equality

of two matrices using the power enhancement test statistic in Fan, Liao, and Yao (2015). Although our test statistic

is not built on the Bayesian principle, it may be feasible to combine the power enhancing component to enable the

maximum test statistics to have greater powers than those obtained here. For this goal, it is necessary to remedy the

level distortions of the maximum test statistics other than bootstrapping, because bootstrapping can nullify the use of

the power enhancement component. As this remedy is beyond scope of the current study, we leave it as our future

research.

4 Empirical Applications

In this section, we apply the matrix equality testing to empirical data. We examine how a typical time-series data

analysis can be combined with the matrix equality testing. For this purpose, we use the energy data provided by Bai

and Lam (2019).

Classical time-series analysis attempts to specify a model without autocorrelation in the prediction errors and

estimate a model with a high precision rate for the parameter estimates. For this purpose, the empirical researcher

popularly estimates the conditional mean and variance models specified as AR and GARCH models, respectively.

In this section, we conduct an empirical practice using energy price growth rates. The typical model assumption

for the energy price growth rate is an AR-GARCH(1,1) model, and it has been empirically reported that the growth

rates of energy prices such as the liquefied petroleum gas (LPG) freight rate and growth rate of Brent crude oil price are

well estimated using the AR-GARCH(1,1) model. The AR order is typically selected using the Bayesian information

criterion and the autocorrelation in the residuals is tested using Ljung–Box’s (1978) Q-test statistic. If the autocorre-

lation cannot be detected, the researcher estimates the conditional heteroskedastic behavior based on a GARCH(1,1)

model and attempts to estimate the parameters using ML estimation after supposing a particular distribution for the

standardized error.

Specifying a correct model without autocorrelation in the prediction error and for conditional variance is important

for further examining the growth rates of energy prices. For example, Bai and Lam (2019) analyze the conditional

dependence structure among the LPG freight rate, product price arbitrage, and crude oil price by analyzing them using

a copula model estimation. Without having the correct models for the individual variables, estimating the next-stage

models using copula estimation can lead to the failure to infer the economic variables correctly. This is mainly because

the dependence structure between the individual variables cannot be correctly inferred without estimating the marginal

distribution of each variable.

In this section, we revisit the data analysis to estimate the marginal distributions of the energy price growth rates
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in Bai and Lam (2019) by testing the conditional heteroskedasticity and autocorrelation assumption in the prediction

error. Seven marginal distributions of energy variables are examined in Bai and Lam (2019): the growth rates of the

Baltic LPG (BLPG) price, Brent crude oil price (BRENT), propane Mt Belvieu price (MB), propane Argus Far East

index (PAFEI), propane CP swap month 1 price (CPS), AFEI-US price index (AFEIUS), and AFEI-CP swap price

index (AFEICPS). They are weekly observed data from the second week of 2005 to the 35th week of 2016, and the

total number of observations is 601. Table 1 in Bai and Lam (2019) provides the descriptive statistics of the variables.

Using the data sets provided by Bai and Lam (2019), we verify whether their model analysis is affirmed by the

maximum test statistics. Bai and Lam (2019) employ Ljung–Box’s (1978) Q-test statistic and specify an AR(2) model

for BLPG, whereas they select an AR(1) for the others. In addition, they adopt a GARCH(1,1) model based on ML

estimation by assuming the skewed t-distribution for the standardized error distribution. Table 3 in Bai and Lam

(2019) presents Engle’s (1982) ARCH-LM test statistic to show that the standardized errors are homoskedastic.

We conduct our empirical analysis for the same data sets using M̂
(1)
n and M̂

(2)
n assisted by the residual and wild

bootstraps, respectively with B = 100,000. We summarize our empirical inference results as follows:

(a) We first test for the sandwich-form asymptotic covariance matrix entailed by autocorrelated errors using M̂
(2)
n .

Specifically, for p = 1,2, . . . ,10, we estimate the AR(p) model using the LS estimation and test Ḧ0 ∶ B∗ = C∗

using B̂n and Ĉn in (3) and (4), respectively by applying the wild bootstrap method. Here, we let Xt ∶=

(1, Yt−1, Yt−2, . . . , Yt−p)′. When applying the wild bootstrap method, we use the HAC estimation with the

quadratic kernel and bandwidth ` = ⌊n1/5⌋ − 1 in Andrews (1991). Table 3 reports the p-values estimated using

the wild bootstrap method. According to the maximum test statistics, the AR(1) model is correctly specified

for BLPG, BRENT, PAFEI, CPS, and AFEIUS. For these variables, if Ḧ0 cannot be rejected at the 5% level of

significance, most AR models with lags greater than unity turn out not to reject Ḧ0. This aspect implies that

the AR(2) model may not be the most parsimonious model for BLPG, although AR(2) is also correct for the

conditional mean.

(b) Nevertheless, the AR(1) model is not correctly specified for MB and AFEICPS, although Bai and Lam (2019)

select the AR(1) model using the Bayesian information criterion. For every p = 2,3, . . . ,10, AR(p) is not

correctly specified for MB as implied by M̂
(2)
n . Although not reported, we increased the order of AR(p) to 15

in a further empirical analysis for MB and also found that the regression errors are still autocorrelated. On the

contrary, if p ≥ 3, the AR(p) model is correctly specified for AFEICPS. Although the AR(9) model yields a

p-value less than 5% for M̂(2)
n , it does not show a consistent test result as the p-value rises above 5% again for

p = 10. These investigations allow us to conclude that the AR(1) model is dynamically misspecified for MB and

AFEICPS, which could not be detected using Ljung–Box’s (1978) Q-test statistic.

(c) We next test for conditional heteroskedasticity using M̂
(1)
n . As shown in Table 3, the p-values of the M̂

(1)
n

test statistics are less than 5% for BLPG, BRENT, MB, PAFEI, CPS, and AFEICPS, implying that conditional

heteroskedastic aspects are persistently observed from these variables.

(d) We also computed the maximum test statistics in CP and contained their p-values in the parentheses next to the
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p-values of the maximum tests. As a result, we could see that the inferential results are more or less similar to

each other.

(e) Finally, we test the correct model assumption using the IM equality. White (1982) provides the IM test for the

model specification of ML estimation. Given that the AR-GARCH(1,1) model specified by Bai and Lam (2019)

is estimated using ML estimation assuming a skewed t-distribution for the standardized error, we apply White’s

(1982) IM equality testing to Bai and Lam’s (2019) models. Specifically, if we let A∗ be the limit matrix of the

negative Hessian matrix and B∗ be the asymptotic covariance matrix of the scores for ML estimation, we can

also test A∗ = B∗ using the maximum test statistic of the current study to test distributional misspecification for

standardized errors. This test motivation is also addressed by Golden, Henley, White, and Kashner (2013, 2016)

by generalizing the IM test in White (1980). We obtain the p-values of the maximum test statistic using the

parametric bootstrap method and report them in Table 4, which is obtained by letting B = 3,000. The desired

IM equality is not sufficient but is necessary for the correct distributional specification. Hence, we cannot say

whether the AR-GARCH(1,1) model with a skewed t-distribution is the correct assumption for the DGP, even

if we cannot reject A∗ = B∗. Nevertheless, we can be assured that the model is misspecified if the hypothesis

A∗ = B∗ is rejected. As shown in Table 4, the IM equality for the correct distributional assumption cannot

be rejected for BLPG, BRENT, PAFEI, and CPS, implying that the skewed t-distribution fits the standardized

error distribution sufficiently well. On the contrary, the skewed t-distribution is misspecified for AFEIUS. The

p-value for AFEIUS is 0.25%. Although the AR-GARCH(1,1) model is correct for AFEIUS, the low p-value

shows that the skewed t-distribution is misspecified for the standardized error distribution. Likewise, the skewed

t-distribution is also misspecified for the standardized error distribution of AFEICPS. The AR-GARCH(1,1)

model with an AR lag equal to unity is dynamically misspecified, as already seen in Table 3, implying that

the IM equality is unlikely to hold for ML estimation for AFEICPS. Finally, the IM equality test statistic does

not reject the hypothesis that A∗ = B∗ for MB, whereas it does not imply that the skewed t-distribution is

correctly specified for the standardized error distribution of MB. Table 3 already showed that AR-GARCH(1,1)

is dynamically misspecified, implying that the model is misspecified. Given that the IM equality is a necessary

condition for the correct model specification, this result does not necessarily imply that the AR-GARCH(1,1)

model with a skewed t-distribution is the correct model for MB.

5 Concluding Remarks

The current study tests for the sandwich-form covariance matrix entailed by conditional heteroskedasticity and/or

autocorrelation in the regression error. Given that conditional heteroskedastic and/or autocorrelated errors produce

different sandwich forms for the covariance matrix of the LS estimator, if the precise form is known for the covariance

matrix, the empirical researcher can estimate it by a pertinent estimator to the covariance matrix. Accordingly, we

extend the test methodologies in CW and CP to construct maximum test statistics via the standard, HC, and HAC

covariance matrix estimators of the QML estimator, which nests the LS estimator as a special case and allows for a
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possibly misspecified model for error distribution. Furthermore, we provide the STP to identify how the sandwich-

form covariance matrix is affected by the conditionally heteroskedastic and/or autocorrelated regression errors. The

null, alternative, and local alternative limit distributions of the maximum test statistics are provided, and we affirm

the theories on the maximum test statistics through a simulation. We also apply our test principle to test the correct

model hypothesis of the empirical models for many growth rates of energy prices provided by Bai and Lam (2019); we

cannot find evidence that their model assumptions are incorrect for most growth rates, although some are misspecified.

Appendix: Proofs

Proof of Theorem 1: For each i = 1 and 2, theorem 2 of CP implies that for j = 1 and 2, the local alternative approxi-

mations of B̂(i)j,n, Ŝ(i)j,n, and Ê
(i)
j,n are equivalent and obtained as 1

2
tr[(V

(i)
∗ +

√
nK

(i)
o,n)

2]+oP(1), where K
(i)
o,n ∶= M

(i)
o,n+

∑
d
j=1(θ̂j,n−θj∗)S

(i)
j,∗, M

(i)
o,n ∶= (Q

(i)
∗ )−1(Q(i)n (ξ∗)−P

(i)
n (ξ∗)−Q

(i)
∗n+P

(i)
∗n), and S

(i)
j∗ ∶= (P

(i)
∗ )−1[∂/(∂θj)Q(i)(ξ∗)−

∂/(∂θj)P
(i)
∗ (ξ∗)]. Furthermore, the symmetry between P

(i)
∗ and Q

(i)
∗ implies that for j = 1,2, the local alter-

native approximations of B̃(i)j,n, S̃(i)j,n, and Ẽ
(i)
j,n are equivalently obtained as 1

2
tr[(Ṽ

(i)
∗ +

√
nK̃

(i)
o,n)

2] + oP(1), where

Ṽ
(i)
∗ ∶= (P

(i)
∗ )−1P̄(i)∗ −(Q

(i)
∗ )−1Q̄(i)∗ , K̃

(i)
o,n ∶= M̃

(i)
o,n+∑

d
j=1(θ̂j,n−θj∗)S̃j,∗, M̃

(i)
o,n ∶= (P

(i)
∗ )−1(P(i)n (ξ∗)−Q

(i)
n (ξ∗)−

P
(i)
∗n +Q

(i)
∗n), and S̃

(i)
j∗ ∶= (Q

(i)
∗ )−1[∂/(∂θj)P

(i)
∗ (ξ∗)−∂/(∂θj)Q

(i)(ξ∗)]. That is, V
(i)
∗ = −Ṽ

(i)
∗ and K

(i)
o,n = −K

(i)
o,n,

so that for j = 1 and 2, the local alternative approximations of B̂
(i)
j,n, Ŝ(i)j,n, and Ê

(i)
j,n are equivalent to the local

alternative approximations of B̃(i)j,n, S̃(i)j,n, and Ẽ
(i)
j,n. Therefore, it now follows that

M̂(i)
n ∶= max

j=1,2
[B̂
(i)
j,n, Ŝ

(i)
j,n, Ê

(i)
j,n, B̃

(i)
j,n, S̃

(i)
j,n, Ẽ

(i)
j,n] =

1

2
tr[(V

(i)
∗ +

√
nK(i)o,n)

2
] + oP(1).

In addition, Corollary 1 of CP implies that 1
2
tr[(

√
nK

(i)
o,n)

2]⇒ Z(i)′Ω(i)∗ Z
(i), suggesting that

1

2
tr[(V

(i)
∗ +

√
nK(i)o,n)

2
]⇒ (Z(i)′ +V

(i)′
∗ Ω(i)−1/2∗ )Ω(i)∗ (Z(i) +Ω(i)−1/2∗ V

(i)
∗ ).

Note that V̈
(i)
∗ ∶= Ω(i)−1/2∗ V

(i)
∗ , so that M̂(i)

n ⇒ (Z(i) + V̈
(i)
∗ )′Ω(i)∗ (Z(i) + V̈

(i)
∗ ), as desired. ∎

Proof of Corollary 1: For each i = 1 and 2, given the null hypothesis H(i)0 , P̄
(i)
∗ = Q̄

(i)
∗ = 0. Therefore, Theorem 1

implies that M̂(i)
n ⇒ Z(i)′Ω(i)∗ Z

(i). ∎

Proof of Theorem 2: For i = 1 and 2, we first note that M̂(i)
n = max[Ṁ

(i)
n ,M̈

(i)
n ], where Ṁ(i)

n ∶= maxj=1,2[B̂
(i)
j,n, Ŝ

(i)
j,n,

Ê
(i)
j,n] and M̈

(i)
n ∶= maxj=1,2[B̃

(i)
j,n, S̃

(i)
j,n, Ẽ

(i)
j,n]. Here, the leading term of Ṁ(i)

n is determined by µ̇(i)∗ ∶= maxj=1,2[Ḃ
(i)
j,∗,

Ṡ
(i)
j,∗, Ė

(i)
j,∗], where Ḃ

(i)
2∗ ∶= (δ̇

(i)
∗ )2 + 2ζ̇

(i)
∗ , Ṡ(i)1∗ ∶= (δ̇

(i)
∗ )2 + 2γ̇

(i)
∗ , and Ṡ

(i)
2∗ ∶= (η̇

(i)
∗ )2 + 2ζ̇

(i)
∗ . Here, (δ̇(i)∗ )2 is dom-

inated by (τ̇
(i)
∗ )2 or (η̇

(i)
∗ )2 from the fact that δ̇(i)∗ ∈ [η̇

(i)
∗ , τ̇

(i)
∗ ] and η̇

(i)
∗ ≥ −1. Therefore, it now follows that

µ̇
(i)
∗ = max[Ḃ

(i)
1,∗, Ṡ

(i)
2,∗, Ė

(i)
1,∗, Ė

(i)
2,∗].

Likewise, if we let µ̈(i)∗ be the leading term of M̈(i)
n , µ̈(i)∗ = max[B̈

(i)
1,∗, S̈

(i)
2,∗, Ë

(i)
1,∗, Ë

(i)
2,∗], where S̈

(i)
2,∗ ∶= (η̈

(i)
∗ )2 +

2γ̈
(i)
∗ . Therefore, it now follows that µ(i)∗ = max[Ḃ

(i)
1,∗, Ṡ

(i)
2,∗, Ė

(i)
1,∗, Ė

(i)
2,∗, B̈

(i)
1,∗, S̈

(i)
2,∗, Ë

(i)
1,∗, Ë

(i)
2,∗], and further Ṡ(i)2,∗ ≤
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max[Ė
(i)
1,∗, B̈

(i)
1,∗] and S̈

(i)
2,∗ ≤ max[Ë

(i)
1,∗, Ḃ

(i)
1,∗]. Therefore, we can further simplify µ(i)∗ : µ(i)∗ = max[Ḃ

(i)
1,∗, Ė

(i)
1,∗, Ė

(i)
2,∗,

B̈
(i)
1,∗, Ë

(i)
1,∗, Ë

(i)
2,∗]. This completes the proof. ∎

References

ANDREWS, D.W.K. (1991): “Heteroskedasticity and autocorrelation consistent covariance matrix estimation,”

Econometrica, 59, 817–858.

BAI, X. AND J. S. L. LAM, (2019): “A Copula-GARCH Approach for Analyzing Dynamic Conditional Dependency

Structure between Liquefied Pertroleum Gas Freight Rate, Product Price Arbitrage and Crude Oil Price,” Energy

Economics, 78, 412–427.

BREUSCH, T. S. (1978): “Testing for Autocorrelation in Dynamic Linear Models,” Australian Economic Papers, 17,

334–355.

BREUSCH, T. S. AND PAGAN, A. R. (1979): “A Simple Test for Heteroscedasticity and Random Coefficient Varia-

tion,” Econometrica, 47, 1287–1294.

CHO, J.S., KIM, T.-H., AND SHIN, Y. (2015): “Quantile Cointegration in the Autoregressive Distributed Lag Mod-

eling Framework,” Journal of Econometrics, 188, 281–300.

CHO, J.S. AND PHILLIPS, P. C. B. (2018a): “Pythagorean Generalization of Testing the Equality of Two Symmetric

Positive Definite Matrices,” Journal of Econometrics, 202, 45–56.

CHO, J.S. AND PHILLIPS, P.C.B. (2018b): “Sequentially Testing Polynomial Model Hypothesis Using the Power

Transform of Regressors,” Journal of Applied Econometrics, 33, 141–159.

CHO, J.S. AND WHITE, H. (2011): “Generalized Runs Tests for the IID Hypothesis,” Journal of Econometrics, 162,

326–344.

CHO, J.S. AND WHITE, H. (2015): “Testing the Equality of Two Positive-Definite Matrices with Application to

Information Matrix Testing,” Essays in Honor of Peter CB Phillips, 491–556.

DURBIN, J. AND WATSON, G. S. (1950): “Testing for Serial Correlation in Least Squares Regression, I,” Biometrika,

37, 409–428.

DURBIN, J. AND WATSON, G. S. (1951): “Testing for Serial Correlation in Least Squares Regression, II,” Biometrika,

38, 159–179.

EFRON, B. AND TIBSHARANI, R. J. (1988): An Introduction to the Bootstrap. Chapman & Hall/CRC.

ENGLE, R. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom

Inflation,” Econometrica, 50, 987–1008.

19



FAN, J., LIAO, Y., AND YAO, J. (2015): “Power Enhancement in High-Dimensional Cross-Sectional Tests,” Econo-

metrica, 83, 1497–1541.

GALLANT, R. (1987): Nonlinear Statistical Models, New York: John Wiley & Sons.

GODFREY, L. G. (1978a): “Testing against General Autoregressive and Moving Average Error Models when the

Regressors Include Lagged Dependent Variables,” Econometrica, 46, 1293–1301.

GODFREY, L. G. (1978b): “Testing for Multiplicative Heteroskedasticity,” Journal of Econometrics, 8, 227–236.

GOLDEN, R. M., HENLEY, S. S., WHITE, H., AND T. M. KASHNER (2013): “New Directions in Information Matrix

Testing: Eigenspectrum Tests,” Recent Advances and Future Directions in Causality, Prediction, and Specification

Analysis: Festschcrify Hal White Conference, Chen, X., Swanson, N. R., Eds. 145-178. New York: Springer.

GOLDEN, R. M., HENLEY, S. S., WHITE, H., AND T. M. KASHNER (2013): “Generalized Information Matrix Tests

for Detecting Model Misspecification,” Econometrics, 4, 46.

GOURIEROUX, C., MONFORT, A., AND TROGNON, A. “Pseudo Maximum Likelihood Methods: Theory,” Econo-

metrica, 52, 681–700.

HONG, Y. AND WHITE, H. (2005): “Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial

Dependence,” Econometrica, 73, 837–901.

LI, Y., YU, J., AND ZENG, T. (2018): “Specification Tests Bases on MCMC Output,” Journal of Econometrics, 207,

237–260.

LJUNG, G. M. AND BOX, G. E. P. (1978): “On a Measure of a Lack of Fit in Time Series Models,” Biometrika, 65,

297–303.

NEWEY, W. K. AND WEST, K. D. (1987): “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation

Consistent Covariance Matrix,” Econometrica, 55, 703–708.

NG, S. AND PERRON, P. (1996): “The Exaxt Error in Estimating the Spectral Density at the Origin,” Journal of Time

Series Analysis, 17, 379–408.

ROBINSON, P. M. (1991): “Consistent Nonparametric Entropy-Based Testing,” Review of Economic Studies, 58,

437–453.

SKAUG, H. AND TJØSTHEIM, D. (1996): “Measures of Distance between Densities with Applications to Testing for

Serial Independence,” Time Series Analysis in Memory of E. J. Hannan, ed. P. Robinson and M. Rosenblatt. New

York: Springer-Verlag, 363-377.

WALD, A. (1943): “Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations

is Large,” Transactions of American Mathematical Society, 54, 426–482.

20



White, H. (1980): “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedas-

ticity,” Econometrica, 48, 817–838.

White, H. (1982): “Maximum Likelihood Estimation of Misspecified Models,,” Econometrica, 48, 1–25.

WHITE, H. AND DOMOWITZ, I. (1984): “Nonlinear Regression with Dependent Observations,,” Econometrica, 52,

143–161.

WU, C.F.J. (1986): “Jacknife Bootstrap and Other Resampling Methods in Regression Analysis,” Annlas of Statistics,

14, 1261–1295.

21



Table 1: Empirical rejection rates of the maximum test statistics (in percent)

DGP1: Ḣ0 or Ḧ0

test statistics levels\n 200 400 600 800 1,000 1,200

1% 0.93 (0.83) 0.90 (1.00) 0.70 (1.30) 1.17 (1.13) 0.77 (1.23) 1.03 (1.03)
M̂
(1)
n 5% 4.70 (4.33) 4.63 (4.97) 4.77 (5.57) 4.47 (5.40) 4.30 (5.20) 4.80 (4.57)

10% 9.23 (9.30) 8.83 (9.63) 9.73 (10.63) 9.53 (10.17) 9.23 (9.13) 9.97 (9.57)

1% 0.27 (0.10) 0.60 (0.17) 0.87 (0.27) 0.67 (0.43) 0.60 (0.33) 1.23 (0.73)
M̂
(2)
n 5% 2.83 (0.93) 4.07 (2.23) 3.97 (3.07) 3.83 (3.33) 4.10 (3.90) 6.00 (4.60)

10% 6.10 (4.03) 8.83 (8.03) 8.60 (7.83) 8.37 (7.13) 7.63 (8.47) 11.40 (9.70)

DGP2: Ḣ1 or Ḧ0

test statistics levels\n 200 400 600 800 1,000 1,500

1% 13.00 (7.20) 35.93 (27.43) 57.00 (50.43) 73.97 (67.37) 84.93 (80.13) 96.83 (96.00)
M̂
(1)
n 5% 28.63 (21.20) 56.33 (48.90) 76.13 (71.77) 87.03 (85.20) 94.43 (92.27) 98.97 (99.13)

10% 39.33 (33.13) 66.30 (61.07) 83.10 (80.80) 91.93 (91.27) 96.70 (95.73) 99.43 (99.60)

1% 0.33 (0.00) 0.57 (0.17) 0.97 (0.10) 0.87 (0.27) 0.67 (0.30) 1.20 (0.50)
M̂
(2)
n 5% 3.20 (1.00) 5.20 (2.13) 5.03 (3.23) 5.23 (3.57) 5.00 (4.40) 5.63 (4.83)

10% 8.07 (5.10) 11.37 (7.87) 11.03 (8.67) 11.20 (10.40) 11.57 (10.37) 11.73 (11.37)

DGP3: Ḣ1 or Ḧ1

test statistics levels\n 200 400 600 800 1,000 2,000

1% 14.70 (7.27) 38.90 (28.43) 58.87 (50.73) 75.70 (70.23) 84.80 (82.03) 99.33 (99.17)
M̂
(1)
n 5% 29.10 (22.57) 59.27 (52.10) 77.57 (72.97) 88.87 (86.60) 93.93 (93.00) 99.87 (99.90)

10% 39.80 (33.13) 68.10 (64.70) 84.13 (81.57) 93.33 (91.70) 96.33 (95.87) 100.0 (100.0)

1% 5.17 (0.53) 18.70 (2.57) 24.53 (7.40) 30.07 (13.20) 37.27 (18.13) 67.73 (45.63)
M̂
(2)
n 5% 18.13 (10.07) 40.27 (22.03) 48.63 (31.93) 54.07 (41.87) 60.87 (49.13) 86.10 (76.90)

10% 28.83 (23.20) 51.97 (42.43) 59.17 (49.00) 65.53 (56.87) 70.27 (65.03) 91.43 (87.30)
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Table 2: Empirical precision rates using the STP (in percent)

DGP1: Ḣ0 or Ḧ0

hypotheses \n 200 400 600 800 1,000 1,200

Ḣ0 92.57 (94.80) 91.40 (92.90) 91.40 (91.60) 91.93 (91.43) 91.80 (91.10) 89.57 (91.13)
Ḧ0 4.60 (4.27) 4.53 (4.87) 4.63 (5.33) 4.23 (5.23) 4.10 (5.00) 4.43 (4.27)
Ḧ1 2.83 (0.93) 4.07 (2.23) 3.97 (3.07) 3.83 (3.33) 4.10 (3.90) 6.00 (4.60)

Sum 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

DGP2: Ḣ1 or Ḧ0

hypotheses \n 200 400 600 800 1,000 1,500

Ḣ0 69.17 (77.90) 41.67 (49.83) 23.00 (27.20) 12.37 (14.33) 5.30 (7.37) 0.97 (0.83)
Ḧ0 27.63 (21.10) 53.13 (48.03) 71.97 (69.57) 82.40 (82.10) 89.70 (88.23) 93.40 (94.33)
Ḧ1 3.20 (1.00) 5.20 (2.13) 5.03 (3.23) 5.23 (3.57) 5.00 (4.40) 5.63 (4.83)

Sum 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

DGP3: Ḣ1 or Ḧ1

hypotheses \n 200 400 600 800 1,000 2,000

Ḣ0 57.80 (68.97) 24.87 (35.53) 10.60 (17.00) 4.83 (6.67) 1.87 (3.10) 0.00 (0.00)
Ḧ0 24.07 (20.97) 34.87 (42.43) 40.77 (51.07) 41.10 (51.47) 37.27 (42.77) 13.90 (23.10)
Ḧ1 18.13 (10.07) 40.27 (22.03) 48.63 (31.93) 54.07 (41.87) 60.87 (49.13) 86.10 (76.90)

Sum 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
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Table 3: p-values of testing for the influence of conditional heteroskedasticity and autocorrelation (in percent)

BLPG BRENT MB PAFEI
lags Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1 Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1 Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1 Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1

1 0.00 (0.19) 26.67 (30.55) 0.03 (0.32) 96.67 (96.59) 0.01 (0.42) 6.31 (11.14) 0.86 (2.34) 68.25 (66.08)
2 0.01 (0.38) 81.82 (83.09) 0.11 (0.54) 40.23 (48.04) 0.04 (1.40) 4.49 (10.61) 0.59 (2.83) 80.64 (85.51)
3 0.00 (0.30) 86.05 (89.05) 0.10 (0.89) 30.20 (53.27) 0.07 (2.09) 4.18 (8.62) 0.09 (2.42) 91.11 (92.59)
4 0.01 (0.96) 94.97 (95.72) 0.02 (1.03) 6.06 (14.08) 0.13 (3.20) 2.51 (3.57) 0.02 (1.72) 98.84 (99.15)
5 0.03 (2.02) 96.62 (97.29) 0.05 (1.76) 11.88 (23.73) 0.01 (1.80) 1.85 (3.15) 0.10 (3.00) 96.76 (98.48)
6 0.04 (1.99) 99.55 (99.70) 0.02 (2.07) 12.89 (27.93) 0.04 (2.74) 4.15 (6.75) 0.10 (4.10) 94.15 (97.08)
7 0.09 (2.71) 80.45 (85.07) 0.01 (1.99) 10.60 (20.02) 0.03 (3.32) 3.26 (5.78) 0.05 (3.58) 71.65 (87.16)
8 0.38 (5.72) 43.99 (47.65) 0.01 (3.09) 12.80 (21.59) 0.04 (3.21) 2.37 (5.73) 0.01 (2.52) 80.64 (93.64)
9 1.13 (9.78) 43.57 (51.13) 0.01 (3.32) 17.04 (25.86) 0.08 (5.19) 2.88 (6.45) 0.03 (4.91) 71.58 (85.69)

10 1.49 (9.12) 44.59 (53.04) 0.03 (4.30) 16.40 (24.28) 0.18 (7.54) 3.95 (7.04) 0.06 (6.13) 66.72 (80.25)
CPS AFEIUS AFEICPS

lags Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1 Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1 Ḣ0 vs Ḣ1 Ḧ0 vs Ḧ1

1 1.48 (3.17) 57.92 (63.10) 2.50 (3.75) 6.51 (12.71) 0.03 (3.49) 0.15 (1.13)
2 1.41 (4.56) 10.47 (26.05) 4.06 (8.17) 15.34 (11.39) 0.06 (10.69) 1.06 (0.83)
3 1.47 (6.29) 23.08 (52.21) 2.91 (10.14) 15.47 (7.95) 0.06 (14.17) 5.01 (4.19)
4 2.79 (9.53) 29.61 (45.07) 3.32 (18.41) 14.77 (8.82) 0.22 (24.46) 9.37 (10.22)
5 4.64 (15.00) 16.01 (30.49) 4.38 (21.28) 13.72 (8.37) 0.28 (29.46) 8.91 (10.95)
6 4.59 (18.38) 31.65 (46.15) 8.55 (37.94) 13.65 (10.79) 0.37 (36.90) 6.09 (8.72)
7 1.74 (14.00) 21.51 (39.63) 12.34 (44.86) 13.24 (11.74) 0.40 (43.58) 8.92 (13.42)
8 0.30 (9.74) 30.13 (45.37) 21.39 (62.33) 27.07 (21.71) 0.81 (51.53) 14.74 (22.99)
9 0.26 (11.15) 39.55 (55.95) 29.71 (76.30) 43.42 (34.91) 1.11 (54.03) 4.19 (6.53)

10 0.54 (11.50) 42.43 (55.26) 41.11 (76.14) 39.27 (20.86) 1.30 (56.68) 8.90 (15.06)

Table 4: p-value of the information matrix equality test (in percent)

BLPG BRENT MB PAFEI CPS AFEIUS AFEICPS

information matrix test statistic 31.80 22.90 63.05 83.55 56.90 0.25 0.35
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