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Abstract

This study exploits the quantile ARDL model to investigate the dynamic relationship between the con-
firmed COVID-19 cases and deaths in the U.S. following vaccination, with a focus on examining hetero-
geneity across different percentiles. The findings indicate that the confirmed case fatality rate decreased
after vaccination, and the relationship between confirmed cases and deaths varies across different per-
centiles.
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1 Introduction

Since the onset of COVID-19, countries around the world have implemented stringent control measures to

curb the spread of the virus, and these measures have also incurred significant economic costs, resulting in

unprecedented economic losses (Forsythe, Cohen, Neumann, Bertozzi, and Kinghorn, 2020; Deb, Furceri,

Ostry, and Tawk, 2022b).

Meanwhile, vaccination campaigns have had a substantial positive impact on economic recovery from

a health economics perspective (Utami, Rendrayani, Khoiry, Noviyanti, Suwantika, Postma, and Zakiyah,

2023; Hansen and Mano, 2023), and have also been highly effective in reducing confirmed cases and deaths.

However, hesitancy and refusal to be vaccinated continue to undermine the effectiveness of these inter-

ventions. Vaccine hesitancy and refusal not only have the potential to counteract all efforts to control the

pandemic, but also have profound impacts on the global economy (e.g., Rawlings, Looi, and Robson, 2022).

According to Padula, Malaviya, Reid, Cohen, Chingcuanco, Ballreich, Tierce, and Alexander (2021), an-

nual productivity losses caused by unvaccinated workers are predicted to amount to USD 15 billion, despite

vaccinations having already reduced COVID-related costs by approximately 80%. In addition, hesitancy

and refusal to receive vaccines exhibit significant heterogeneity. Goel, Jones, and Saunoris (2023) demon-

strate that US states with higher wealth, a larger elderly population, and more physicians tend to have lower

levels of vaccine hesitancy. In addition, hesitancy to get vaccines is correlated with educational level, age,

vaccine characteristics, vaccination methods, and media coverage (e.g., Kountouris and Remoundou, 2024;

Tan, Straughan, and Cheong, 2022; McPhedran and Toombs, 2021). All of this implies that different groups

have been impacted by both the virus and the vaccination campaign heterogeneously.

In the current study, we focus on the fatality rate of COVID-19 that associates confirmed cases with

deaths and empirically examine how the rate is formed heterogeneously while taking into account the vacci-

nation effect. For this, we characterize the underlying heterogeneity by the risk of confirmed cases exposed

to death and employ the Quantile Autoregressive Distributed Lag (QARDL) estimation proposed by Cho,

Kim, and Shin (2015), which facilitates revealing the heterogeneity of the death rate.

The analysis of the fatality rate taking into account heterogeneity is unique in the literature. Ullah, Wang,

and Yao (2022) note significant differences exist in the number of confirmed cases and deaths across the US

states, providing valuable insights into asymmetric economic activities. Mehta, Gupta, and Maitra (2023)

and Chang, Gohar, Derindag, and Uche (2023) also apply the Autoregressive Distributed-Lag (ARDL)

model to analyze the impact of COVID-19 on real estate, food industries, and healthcare industries. Nev-

ertheless, no prior literature takes into account heterogeneity while analyzing the fatality rate to our knowl-
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edge.

QARDL is useful in detecting heterogeneity in the fatality rate and examining the vaccination effect.

It is widely acknowledged that the currently published COVID-19 data often contain noise, outliers, bi-

ases, skewness, and truncation issues (e.g., Jing and Cho, 2025). Meanwhile, Jiang, Zhao, and Shao (2022)

demonstrate that quantile regression is robust in handling outliers and capturing heterogeneity by focusing

on the short-term forecasts of the confirmed cases. Given that QARDL applies quantile regression to nonsta-

tionary series, we exploit its useful features to estimate the fatality rate defined as the long-run relationship

between the confirmed cases and deaths.

The remainder of this paper is organized as follows. Section 2 provides a comprehensive review of

the literature that forms the basis and motivation for this study. Section 3 details the QARDL estimation

methodology, highlighting its theoretical framework and advantages over conventional approaches. Sec-

tion 4 presents the empirical analysis, in which we investigate the dynamic relationship between confirmed

COVID-19 cases and deaths across different percentiles. Finally, Section 5 summarizes the key findings,

discusses their policy implications, and outlines directions for future research.

2 Literature Review

Amid the global health crisis, an increasing number of studies examine infection and death counts during the

COVID-19 pandemic. These studies help to understand viral transmission and fatality mechanisms and offer

valuable guidance for public health policymaking. As vaccination coverage continues to expand, the nature

of this dynamic relationship evolves, and it warrants further investigation into the potential heterogeneity

under widespread vaccination. Drawing on the existing literature, we review the determinants of COVID-

19 fatality, the role of vaccination, recent findings on the dynamic case-fatality relationship, and the latest

methodological advances for empirical analysis.

Existing studies show that multiple factors influence COVID-19 fatality. First, demographic charac-

teristics, such as age and gender, play a decisive role in fatality differences (e.g., Verity, Okell, Dorigatti,

Winskill, Whittaker, Imai, Cuomo-Dannenburg, Thompson, Walker, Fu et al., 2020; Torres, García, Meslé,

Barbieri, Bonnet, Camarda, Cambois, Caporali, Couppié, Poniakina et al., 2023; OâĂŹDriscoll, Ribeiro

Dos Santos, Wang, Cummings, Azman, Paireau, Fontanet, Cauchemez, and Salje, 2021). Second, chronic

underlying conditions, such as hypertension, diabetes, and cardiovascular diseases, significantly increase

the risk of death (e.g., Lee and Hwang, 2025). In addition, the adequacy of medical resources, such as the

number of general practitioners and hospital beds per capita, as well as government interventions, including
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lockdown policies, social distancing, and travel restrictions, also have important effects on fatality (e.g.,

Di Porto, Naticchioni, and Scrutinio, 2022; Fang, Wang, and Yang, 2020).

Widespread vaccination serves as a crucial measure in controlling the pandemic. Multiple empirical

studies demonstrate that vaccines significantly reduce infection and severe illness rates, thereby indirectly

lowering fatality (e.g., Kim and Lee, 2022). However, vaccine effectiveness exhibits spatial and population

heterogeneity, as elderly individuals, immunocompromised patients, and viral variants may affect vaccine

efficacy (e.g., Tiu, Susswein, Merritt, and Bansal, 2022; Mori, Yokoyama, Shichida, Sasuga, Maekawa, and

Moriyama, 2023). Some studies also suggest that the protective efficacy of vaccines may gradually decline

over time following vaccination (e.g., Suah, Husin, Tok, Tng, Thevananthan, Low, Appannan, Zin, Zin,

Yahaya et al., 2022).

Existing studies suggest that there is a dynamic lag relationship between confirmed cases and deaths

(e.g., Jin, 2021). Some studies employ time series models to forecast and analyze the number of confirmed

COVID-19 cases and deaths (e.g., Liu, Moon, and Schorfheide, 2021; Gupta and Pal, 2020; Sujath, Chat-

terjee, and Hassanien, 2020). The traditional ARDL model, due to its favorable properties in small samples,

has been widely applied in COVID-19 pandemic analysis (e.g., Chang et al., 2023; Jeris and Nath, 2020).

However, the ARDL model assumes homogeneity in the relationships between variables across all levels,

which fails to capture the influence of heterogeneity on fatality rate under different severity conditions.

In recent years, quantile regression has been widely applied in health research to reveal heterogeneous

effects across different points of distribution (e.g., Okada, 2018; Chen, Ma, Sundell, Alaka, Schuh, Raskin,

and Dean, 2016; Silva, Simões, and Andrade, 2018). In the context of COVID-19 research, quantile regres-

sion methods can identify the variational mechanisms between confirmed cases and deaths under different

levels of disease severity, particularly capturing the dynamic features at extreme values, such as periods of

high fatality risk (e.g., Jiang et al., 2022; Ribeiro, Cordeiro, Pena-Ramirez, and Guerra, 2021).

The QARDL model combines the dynamic properties of ARDL with quantile regression to identify

heterogeneity, allowing for the estimation of both short- and long-run dynamics across different percentiles.

In the fields of macroeconomics and finance, QARDL has been popular in effectively capturing nonlinearity

and distributional heterogeneity (e.g., Cho et al., 2015; Hammoudeh, Mensi, and Cho, 2022). However, its

application in health economics remains relatively new, particularly in the analysis of COVID-19 data.

Overall, although the existing literature has extensively examined the determinants of COVID-19 fatality

and the effectiveness of vaccination, systematic empirical evidence is lacking on whether quantile-dependent

dynamic differences exist between confirmed cases and deaths in the post-vaccination period. This study

employs QARDL methodology to systematically analyze the dynamic relationship between confirmed cases
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and deaths across different percentiles in the context of vaccination in the U.S., providing more nuanced

evidence for understanding the evolution of the pandemic and offering new empirical insights for public

health policymaking.

3 QARDL Estimation and Inference

Cho et al. (2015) extend the ARDL approach by applying the quantile regression and jointly analyze the

short- and long-run relationships across a range of percentiles, which is known as the QARDL methodology.

In this section, we apply the QARDL methodology to COVID-19 data.

The QARDL methodology assumes different cointegrating coefficients depending on the percentile.

Specifically, it assumes the following relationship:

Yt = α∗(τ) +

p∑
j=1

ϕj∗(τ)Yt−j +

q∑
j=0

θj∗(τ)
′Xt−j + Ut(τ).

This specification is commonly referred to as QARDL(p, q) process. Here, ∆Xt is assumed to be a k-

dimensional stationary ergodic process (k ∈ N); the error term Ut(τ) is defined as Yt − Qτ (Yt|Ft−1),

where Qτ (Yt|Ft−1) is the conditional quantile function on Ft−1; Ft−1 is the smallest σ-field generated by{
X′

t, Yt−1,X
′
t−1, . . .

}
; and p and q are the QARDL lag orders such that Ut(τ) is identically and indepen-

dently distributed.

Based on the existing empirical and theoretical analysis, we suppose the current death Dt and the con-

firmed case Ct are cointegrated. It is widely accepted that there exists a long-run relationship between

confirmed cases and deaths, represented as

Dt = β∗Ct + εt,

where β∗ denotes the long-run fatality rate (e.g., Brodeur, Gray, Islam, and Bhuiyan, 2021). Here, εt repre-

sents the cointegration error. If εt is stationary, the QARDL process is rewritten as follows:

△Dt = α∗ + ζ∗Dt−1 + γ∗Ct−1 +

p−1∑
j=1

λj∗△Dt−j +

q−1∑
j=0

δj∗△Ct−j + Ut

such that Ut is identically and independently distributed, which is ensured by letting the lag orders p and q

be sufficiently large. By substituting the cointegrating relationship Dt−1 = β∗Ct−1 + εt−1, we obtain the
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following ARDL(p, q) process:

△Dt = α∗ + ζ∗(Dt−1 − β∗Ct−1) +

p−1∑
j=1

λj∗△Dt−j +

q−1∑
j=0

δj∗△Ct−j + Ut (1)

where β∗ := −γ∗
ζ∗

.

We are interested in estimating the parameters in (1). Each parameter has the following interpretations.

First, the Error Correction Model (ECM) parameter ζ∗ measures the smoothing fatality that reflects the

adjustment speed of the death toward the long-run equilibrium with the confirmed case. Second, the long-

run cointegration coefficient β∗ measures the fatality rate. Third, the momentum effect of death growth

λ∗ :=
∑p−1

j=1λj∗ measures the cumulative impact of the lagged changes in Dt on the current death, viz.,∑p−1
j=1∂△Dt/∂△Dt−j . Finally, the impulse response coefficient of the death change to the newly confirmed

cases, viz., δ∗ :=
∑q−1

j=0δj∗, assesses the impact of the most recent changes in the confirmed case on the

current death change. It is worth emphasizing that δ∗ measures the short-run impact of the change in newly

confirmed cases on the change in deaths. It accounts for the effect of the multiple lags, whereas β∗ describes

the relationship between the number of newly confirmed cases and deaths, reflecting the long-run fatality

rate of the pandemic. In short, δ∗ focuses on the short-run dynamic adjustment, while β∗ represents the

long-run fatality rate of the pandemic.

Based on their definitions, the signs of some parameters are predetermined. First, −1 < ζ∗ < 0 is

implied by the long-run relationship between Ct and Dt. A significant and negative coefficient implies a

strong corrective force toward the long-run equilibrium. Second, 0 < β∗ < 1 is implied from the long-run

relationship. The long-run relationship between Ct and Dt can be neither negative nor greater than unity by

definition.

We extend the ARDL expression to QARDL specification and allow for heterogeneous relationships be-

tween the confirmed cases and deaths. For each percentile τ ∈ (0, 1), we let the following be the QARDL(p,

q) model:

△Dt = α∗(τ) + ζ∗(τ)(Dt−1 − β∗(τ)Ct−1) +

p−1∑
j=1

λj∗(τ)△Dt−j +

q−1∑
j=0

δj∗(τ)△Ct−j + Ut(τ). (2)

This specification allows the coefficients in (1) to be different from those of different percentiles so that

heterogeneous cointegrating relationships exist between Dt and Ct.

The QARDL model captures the heterogeneity by the risk level of death. The confirmed patients with a

high level of percentile are likely to face death sooner than those with a low level of percentile, from which
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we use the risk of death as the heterogeneity index. As Ullah et al. (2022) point out, there are significant

differences in the projections of the COVID-19 confirmed cases and deaths across the US states. (see also

Deb, Furceri, Jimenez, Kothari, Ostry, and Tawk, 2022a; Hansen and Mano, 2023). This suggests potential

systematic variations in the fatality rate, leading to heterogeneous relationships for different groups. The

QARDL model in (2) assumes the risk of death as a summary index representing heterogeneous groups.

We apply the Wald test principle to the estimated coefficients and identify the heterogeneous relation-

ship. Specifically, we test for different relationships between confirmed cases and deaths across percentiles.

The following four null hypotheses are considered:

Hζ
0 : ζ∗(0.25) = ζ∗(0.5) = ζ∗(0.75), Hβ

0 : β∗(0.25) = β∗(0.5) = β∗(0.75),

Hλ
0 : λ∗(0.25) = λ∗(0.5) = λ∗(0.75), Hδ

0 : δ∗(0.25) = δ∗(0.5) = δ∗(0.75).

The heterogeneous relationship provides valuable policy implications. For example, strategically de-

veloped control measures can be implemented to curb the spread of the virus efficiently to the extent of

heterogeneity. As another example, the vaccination campaign can result in different consequences depend-

ing on the heterogeneity.

4 Empirical Analysis

In this section, we conduct empirical analysis by applying the QARDL methodology to empirical data in

the U.S.

First, we describe the data used in this study. The US COVID-19 confirmed case and death data are

obtained from the World Health Organization’s Coronavirus Dashboard.1 Given the crucial role of vacci-

nation in the progress of the pandemic, we explicitly incorporate the timing of vaccine administration into

our sample selection. The first COVID-19 vaccine dose was administered on December 8, 2020 outside of

clinical trials. As of December 8, 2021, approximately 55.9% of the global population received at least one

dose; 45.5% completed two doses; and 4.3% received booster shots.

Based on these key vaccination milestones, we let the sample period from December 8, 2020 to De-

cember 7, 2021. This sample period enables us to analyze the dynamic relationship between confirmed

cases and deaths in the context of large-scale vaccination efforts. All data are collected daily to capture the

fluctuations and potential dynamic features between the two variables.

1The data are available at the following URL: https://ourworldindata.org/covid-vaccinations.
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4.1 Full Sample Analysis

We report the QARDL estimation results based on the full sample. According to the Bayesian information

criterion (BIC), the lag orders are set to p = 7 and q = 2. As shown in Table 1, the estimated coeffi-

cients are statistically significant across all percentiles, indicating that the model specification is robust and

heterogeneous dynamic relationships exist across different percentile levels.

To better illustrate the quantile-dependent effects, we plot the estimation results in Figure 1. The figure

presents the estimated trajectories of the four key parameters: ζ∗(τ), β∗(τ), λ∗(τ), and δ∗(τ) across the

percentiles ranging from 0.1 to 0.9. We also provide the 90% confidence bands of the estimated parameters,

by which we can assess the precision and statistical significance of the estimates at each percentile.

The quantile-specific coefficient estimates reveal clear evidence of location asymmetry, indicating that

the dynamic relationship between confirmed cases and deaths systematically varies across different levels

of pandemic severity. In particular, the heterogeneous effects captured by the QARDL model highlight that

the distributional effect produces different estimates for different percentiles, which is often overlooked in

the conventional mean-based model estimation.

We summarize the estimation results as follows. First, the estimated error correction model (ECM) pa-

rameter |ζ∗(τ)| indicates a clear downward trend in adjustment speed for the increase in the percentile level.

Specifically, at lower percentiles (e.g., τ = 0.1), the adjustment speed reaches as high as 33.2%, implying

that the system corrects deviations from the long-run equilibrium at a relatively faster pace under lower

fatality risk conditions. This suggests that short-term fluctuations in the relationship between confirmed

cases and deaths are more easily absorbed and stabilized under mild pandemic conditions. In contrast, at

higher percentiles (e.g., τ = 0.9), the estimated adjustment speed drops sharply to 7.6%, indicating that

the convergence to the long-run equilibrium is substantially slower under high fatality risk conditions. This

slower adjustment process reflects that all the factors such as overloaded healthcare system, shortage of

medical resources, delays in reporting, and increasing uncertainty regarding treatment effectiveness may

contribute to the prolonged deviation from equilibrium during the severe phase of the pandemic. From this

finding, we can conclude that the heterogeneity in adjustment speeds across percentiles contributes to the

joint distribution between confirmed cases and deaths.

Second, the estimation results of the fatality rate β∗(τ) reveal a clear upward trend for the increase

in the percentile level, indicating another significant heterogeneity across different percentiles. At lower

percentile levels (e.g., τ = 0.1), the estimated fatality rate is relatively low, with β(τ) = 0.01, suggesting

that the proportion of deaths relative to confirmed cases remains small under mild pandemic conditions. This
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reflects that most infected individuals experience mild symptoms or receive timely and adequate medical

treatment under lower infection risks. In contrast, at higher percentile levels (e.g., τ = 0.9), the fatality

rate rises sharply to 0.04, indicating that under more severe pandemic conditions, the death count increases

substantially relative to confirmed cases. This sharp rise can be associated with overwhelmed healthcare

systems, the shortage of intensive care resources, or a higher proportion of vulnerable groups such as the

elderly and individuals with pre-existing medical conditions. These findings further support the view of

Ullah et al. (2022) that significant variations in COVID-19 fatality rates exist in the U.S., and our model

effectively captures this feature through the heterogeneous risk of death across different percentiles.

Third, the estimation results of the momentum parameter λ∗(τ) show a decreasing trend for the increase

in the percentile level, declining from −2.27 at τ = 0.1 to −3.60 at τ = 0.9. This pattern indicates that the

momentum effect gradually strengthens at higher percentile levels. Specifically, the increasingly negative

value of λ∗(τ) suggests that past deaths exert a stronger suppressive effect on current deaths as the severity

condition of the pandemic intensifies. At lower percentile levels, where the fatality risk is relatively mild,

a weaker moment parameter is estimated. The weaker momentum effect implies that current deaths are

less influenced by their past values. In contrast, the momentum effect becomes more pronounced at higher

percentile levels, indicating that past deaths have a stronger dampening impact on current deaths.

Fourth, the estimated response coefficient δ∗(τ) fluctuates between 0.008 and 0.01 across all the per-

centiles, indicating a positive impact of a short-run fluctuation in confirmed cases on the change in deaths.

This result highlights that even low levels of variation in confirmed cases affect the death count in the short

term.

Finally, we conduct parameter heterogeneity tests across percentiles. In the bottom panel of Table 1,

we report the Wald test statistics for the null hypotheses described in Section 3. The test results strongly

reject the null hypotheses for ζ∗(τ), β∗(τ), and λ∗(τ), indicating that the parameters exhibit significant

heterogeneity across different percentiles. This suggests that the error correction speed, fatality rate, and

momentum effect all vary substantially with the severity condition of the pandemic. This further highlights

the importance of incorporating quantile-dependent dynamics when analyzing the relationship between con-

firmed cases and deaths. In contrast, the test for δ∗(τ) fails to reject the null hypothesis, suggesting that the

short-run dynamics captured by δ∗(τ) does not show a significant variation across different risk levels.

4.2 Sub-Sample Analysis

In this section, we examine the impact of the vaccination campaign on the parameters across different

percentiles over different sample periods.
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To this end, we first plot the estimates of the four parameters. Figure 2 shows the estimates obtained

using observations in numerous samples, along with their 90% confidence bands. A robust rolling estimation

technique with a window length of 266 days is employed to ensure sufficient observations. Specifically, the

rolling window approach shifts the sample window forward by one day at a time until the end of the sample

period is reached. This approach enables us to dynamically track the evolution of the parameter estimates in

response to changes in the pandemic and vaccination. As shown in Figure 2, the rolling quantile regression

estimates display pronounced time-varying patterns across different percentile levels. This indicates that

the relationship between confirmed cases and deaths is not only heterogeneous across percentiles but also

dynamically evolves.

We examine the estimated parameters specifically. First, the estimated degree of smoothing fatality

|ζ∗(τ)| decreases as the percentile increases throughout the entire period. In the early period, location

asymmetry is relatively strong with the average adjustment speed being approximately 22.0%, 14.0%, and

12.0% for τ = 0.25, τ = 0.5, and τ = 0.75, respectively. In the middle period, location asymmetry peaks

at 30.0%, 20.0%, and 10.0%, respectively. However, the location asymmetry weakens in the later period.

All the estimated values are about 20% for all the percentiles. It is worth noting that the U.S. began its

vaccination campaign in December 2020 and accelerated its schedule in the spring of 2021. During the

first few months of the year, a broad vaccination infrastructure was established, and this led to significant

changes in the parameter estimates for the period from 21/02/12 to 21/11/04.

Second, the rolling quantile regression estimates of β∗(τ) show a clear downward trend, indicating

that the fatality rate has significantly decreased after the vaccination campaign began. In addition, β∗(τ)

exhibits significant location asymmetry throughout the entire period such that the estimated β∗(τ) increases

as τ increases. In the early period, the fatality rate is approximately estimated as 1.20%, 1.70%, and 2.20%

for τ = 0.25, τ = 0.5, and τ = 0.75, respectively. However, these estimated rates drop to 1.10%, 1.40%,

and 1.80% over time, respectively. From this, we can conclude that the fatality rate has declined with a more

pronounced decline at the higher percentiles. That is, the vaccination has impacted the group with a higher

risk of death.

Third, the momentum effect of the death change exhibits a location asymmetry in the later period, with

λ∗(τ) being −3.0, −3.5, and −4.0 at τ = 0.25, τ = 0.5, and τ = 0.75, respectively. In contrast, the rolling

quantile regression estimates of ζ∗(τ) remain stable at around 0.005 throughout the entire sample period.

Finally, we present the p-values of the Wald tests based on the rolling estimates in Figure 3. The results

show that the null hypotheses of parameter constancy for ζ(τ) and β(τ) are strongly rejected throughout

the entire sample period, indicating that both the error correction speed and fatality rate exhibit persistent
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heterogeneity over time and across different percentiles. This suggests that even under continuous vacci-

nation progress, both the adjustment process toward long-run equilibrium and the fatality dynamics remain

highly sensitive to evolving pandemic conditions. However, the location asymmetry of λ(τ) is statistically

significant only in the later sample period. This finding reflects that as the pandemic evolves, the dynamic

feedback between past and current deaths becomes increasingly complex and asymmetric. In contrast, the

test results for ζ∗(τ) indicate that its location asymmetry is not statistically significant throughout the entire

period, suggesting a relatively stable behavior over time.

Taken together, these findings confirm the existence of significant asymmetries in the dynamic rela-

tionship between confirmed cases and deaths. More importantly, the continued presence of heterogeneity

even after the large-scale vaccination implies that it has not eliminated the underlying distributional dif-

ferences in how the pandemic affects various segments of the population. This further highlights the need

for flexible and risk-sensitive public health policies that fully account for such heterogeneous effects in the

post-vaccination phase.

5 Conclusion

This study exploits the QARDL methodology and empirically examines the heterogeneous dynamic rela-

tionship between confirmed COVID-19 cases and deaths. Further, we investigate the role of vaccination

campaigns in shaping this relationship. The heterogeneity across different groups is assessed based on the

varying risks of death faced by confirmed patients. The empirical results reveal significant differences in

the dynamic linkage between infections and fatalities across different levels of death risk. In particular,

the vaccination campaigns have played a crucial role in reducing the COVID-19 fatality rate, especially for

high-risk groups, although heterogeneity in fatality rates has persisted.

These findings obtained by introducing a quantile-based framework contribute to the existing literature

that often overlooks heterogeneity in conventional empirical analysis. The study also offers important impli-

cations for public health policymakers, highlighting the need for targeted vaccination strategies and resource

allocation to protect vulnerable populations more effectively. As the pandemic continues to evolve with the

emergence of new variants and vaccine-induced immunity potentially declines, further research is warranted

to explore the long-term dynamics and to refine policy interventions accordingly.

Although this study provides important insights into the quantile-dependent dynamic relationship be-

tween confirmed COVID-19 cases and deaths, several directions remain for future research. First, as new

variants continue to emerge, future studies need to incorporate variant-specific data to examine whether the
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heterogeneous effects identified in this study persist or change across different virus strains. Second, more

detailed individual-level data can be employed to capture heterogeneity more efficiently across demographic

groups, such as age, comorbidities, and vaccination status. Finally, the QARDL framework can be extended

to multi-country panel data to conduct cross-country comparisons and assess how different healthcare sys-

tems, public health interventions, and vaccination strategies influence the short- and long-run relationships

between confirmed cases and deaths.
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τ ζ∗(τ) β∗(τ) λ∗(τ) δ∗(τ)

0.1
-0.3323***

(0.0243)
0.0120***
(0.0012)

-2.2685***
(0.1546)

0.0093***
(0.0013)

0.2
-0.2544***

(0.0227)
0.0126***
(0.0009)

-2.5575***
(0.2603)

0.009***
(0.0012)

0.3
-0.2405***

(0.0231)
0.0126***
(0.0007)

-3.0958***
(0.3469)

0.0082***
(0.0015)

0.4
-0.2129***

(0.0239)
0.0129***
(0.0009)

-3.1513***
(0.3741)

0.0082***
(0.0013)

0.5
-0.1788***

(0.0197)
0.016***
(0.0012)

-3.3311***
(0.3586)

0.0078***
(0.0014)

0.6
-0.1646***

(0.0294)
0.0186***
(0.0018)

-3.5187***
(0.2636)

0.0088***
(0.0018)

0.7
-0.1315***

(0.0242)
0.0238***
(0.0028)

-3.7000***
(0.2610)

0.0097***
(0.0018)

0.8
-0.0966**
(0.0297)

0.0278***
(0.0065)

-3.5458***
(0.2190)

0.0093***
(0.0017)

0.9
-0.0760***

(0.0190)
0.0391***
(0.0100)

-3.6006***
(0.1986)

0.0104***
(0.0012)

Wald Tests
p-values 0.0004 0.0001 0.0795 0.6576

Table 1: QARDL ESTIMATION RESULTS. (i) QARDL estimation results are based on the following model:
∆Dt = α∗(τ)+ ζ∗(τ)Dt−1+γ∗(τ)Ct−1+

∑p−1
j=1 λj∗(τ)∆Dt−j +

∑q−1
j=0 δj∗(τ)∆Ct−j +Ut(τ) = α∗(τ)+

ζ∗(τ)(Dt−1−β∗(τ)Ct−1)+
∑p−1

j=1 λj∗(τ)∆Dt−j +
∑q−1

j=0 δj∗(τ)∆Ct−j +Ut(τ). (ii) Standard errors are in
parentheses, and those for the long-run coefficient are calculated using the delta method. (iii) The p-values of
the Wald tests are computed to test the hypotheses: Hζ

0 : ζ∗(0.25) = ζ∗(0.5) = ζ∗(0.75), H
β
0 : β∗(0.25) =

β∗(0.5) = β∗(0.75), H
λ
0 : λ∗(0.25) = λ∗(0.5) = λ∗(0.75), H

δ
0 : δ∗(0.25) = δ∗(0.5) = δ∗(0.75). (iv) ∗

indicates a significance level of p < 0.05, ∗∗ indicates a significance level of p < 0.01, and ∗∗∗ indicates a
significance level of p < 0.001.
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Figure 1: PARAMETER ESTIMATES USING THE WHOLE SAMPLE. The middle lines show the estimated
parameters obtained by using all observations for different percentile levels: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, along with 90% confidence bands.
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Figure 2: PARAMETER ESTIMATES ζ∗(τ), β∗(τ), λ∗(τ), AND δ∗(τ) USING THE ROLLING WINDOW

METHOD. The figures show the estimated parameters using the rolling window method with 90% confi-
dence bands, and each window is constructed by 266 observations. Three different percentiles levels are
employed: 0.25, 0.5, 0.75.

17



20/12/08~21/08/30

21/01/10~21/10/02

21/02/12~21/11/04

21/03/17~21/12/07
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
W

n
( ) Tests

20/12/08~21/08/30

21/01/10~21/10/02

21/02/12~21/11/04

21/03/17~21/12/07
0

0.005

0.01

0.015

W
n
( ) Tests

20/12/08~21/08/30

21/01/10~21/10/02

21/02/12~21/11/04

21/03/17~21/12/07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
W

n
( ) Tests

20/12/08~21/08/30

21/01/10~21/10/02

21/02/12~21/11/04

21/03/17~21/12/07
0

0.2

0.4

0.6

0.8

1
W

n
( ) Tests

Figure 3: THE p-VALUES OF THE WALD TESTS. The figures show the estimated p-values of the Wald
tests: (i) Wn(β) tests Hβ

0 : β∗(0.25) = β∗(0.5) = β∗(0.75); (ii) Wn(ζ) tests Hζ
0 : ζ∗(0.25) = ζ∗(0.5) =

ζ∗(0.75); (iii) Wn(λ) tests Hλ
0 : λ∗(0.25) = λ∗(0.5) = λ∗(0.75); and (iv) Wn(δ) tests Hδ

0 : δ∗(0.25) =
δ∗(0.5) = δ∗(0.75). The horizontal axis indicates the last observation of the window.
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