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Abstract

This study utilizes modal regression to forecast the cumulative confirmed COVID-19 cases in Canada,
Japan, South Korea, and the United States. The objective is to improve the accuracy of the forecasts
compared to standard mean and median regressions. To evaluate the performance of the forecasts, we
conduct simulations and introduce a metric called the coverage quantile function (CQF), which is opti-
mized using modal regression. By applying modal regression to popular time-series models for COVID-
19 data, we provide empirical evidence that the forecasts generated by the modal regression outperform
those produced by the mean and median regressions in terms of the CQF. This finding addresses the
limitations of the mean and median regression forecasts.
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1 Introduction

Since the first confirmed identification of corona virus disease (COVID-19) in Wuhan, China, in December
2019, it has emerged as a global concern. On March 11, 2020, the World Health Organization (WHO)
declared it a global pandemic. By April 2022, there were over 500 million confirmed cases and 6 million
deaths worldwide. Given the seriousness of COVID-19, numerous countries swiftly implemented various
measures, including short-term actions, such as lockdowns, and long-term strategies, such as social distanc-
ing and vaccine development.

The economic impact of COVID-19 has been severe, leading governments worldwide to respond with
a significant increase in budget expenditures. As depicted in Table 1, governments have employed various
measures to combat COVID-19, resulting in substantial budget allocations. For instance, the U.S. and
Canadian economies witnessed a 2.14% and 1.99% increase in health expenditure between 2019 and 2020,
respectively. Consequently, both the U.S. and Canada were able to provide the public with vaccines starting
in December 2020, while the Japanese and South Korean governments followed suit in February 2021.
By December 2022, the vaccination rates per 100 people reached 247.84, 285.44, 250.19, and 197.37 for
Canada, Japan, South Korea, and the U.S., respectively. These vaccination efforts led to reductions in the

fatality rates to 1.1%, 0.2%, 0.1%, and 1.1% for the respective countries.
<Insert Table 1 around here>

Governmental health policies are formulated to anticipate the future course of a pandemic. The effec-
tiveness of government responses to a pandemic relies heavily on the accuracy of these forecasts. Accurate
pandemic forecasting allows for the early identification and mitigation of potential health risks, thereby pre-
venting the spread and outbreak of the disease. Additionally, forecasting plays a crucial role in enabling
healthcare systems and governments to efficiently plan and allocate resources, such as medical equipment,
personnel, and drugs. This ensures optimal control and mitigation of the disease’s impact. For instance,
if the forecasted number of confirmed COVID-19 cases is lower than the actual number, governments may
face the risk of increasing fatality rates owing to limited vaccine availability from suppliers. Therefore, ac-
curate forecasting is vital for governments to make informed decisions on the procurement and distribution
of vaccines and other essential resources.

Therefore, the primary objective of our study is to introduce an alternative methodology for forecasting
COVID-19 cases that complements the forecasts generated by the standard mean and median regression
methods. To achieve this goal, we leverage the benefits offered by modal regression compared to mean and

median regressions. Our study focuses on forecasting the cumulative confirmed COVID-19 cases for the



four countries mentioned above using the modal regression approach. By utilizing this methodology, we
aim to enhance the accuracy and reliability of COVID-19 forecasts, providing a valuable addition to the
existing forecasting methods based on mean and median regressions.

A considerable body of literature has been dedicated to empirically analyzing the COVID-19 trend by
applying various classical forecasting methods. Studies such as Boccaletti, Ditto, Mindlin, and Atangana
(2020); Almeshal, Almazrouee, Alenizi, and Alhajeri (2020); Vespignani, Tian, Dye, Lloyd-Smith, Eggo,
Shrestha, Scarpino, Gutierrez, Kraemer, Wu et al. (2020); Chan, Chu, Zhang, and Nadarajah (2021); Gning,
Ndour, and Tchuenche (2022) focus on estimating the strain on medical services, understanding epidemi-
ological patterns, and providing policymakers with comprehensive information to formulate effective poli-
cies. Furthermore, Musulin, Baressi gegota, Stifanié, Lorencin, Andeli¢, Sustersic, Blagojevié, Filipovic,
Cabov, and Markova-Car (2021) review the application of standard regression methods in various Al-based
COVID-19 applications. However, conditional mean- or median-based forecasts can be significantly in-
fluenced by outliers or heavy-tailed noise in the data (see Chen, Genovese, Tibshirani, and Wasserman,
2016; Zhou and Huang, 2016; Xiang and Yao, 2022, for example). These limitations highlight the need for
alternative forecasting approaches to mitigate the impact of such data irregularities.

Modal regression is a valuable alternative to standard regression methods for forecasting random pro-
cesses that contain outliers and/or exhibit heavy-tailed noise distributions. The literature on modal regression
has demonstrated its advantages over other forecasting techniques. Sasaki, Sakai, and Kanamori (2020) rec-
ognize that estimating the conditional mode is more robust than estimating the conditional mean or median,
particularly when dealing with wide-ranging noise. Xiang and Yao (2022) provide an intuitive location es-
timator for skewed data, highlighting the superiority of modal regression in such cases. Furthermore, Yao
and Li (2014) introduce modal linear regression, exploring its application to high-dimensional data and an-
alyzing its asymptotic properties without assuming a symmetric error density function. Yu, Zhu, Shi, and
Ai (2020) propose a robust estimation procedure for partial functional linear regression using modal regres-
sion, specifically designed to handle outliers and heavy-tailed error distributions. Xiang and Yao (2022) also
propose a novel nonparametric statistical learning tool based on modal regression, serving as a complemen-
tary approach to standard mean and median regressions. Overall, the literature highlights the advantages
of modal regression in addressing the challenges posed by outliers, heavy-tailed noise, and skewed data,
thereby providing a robust and flexible forecasting methodology.

Despite the recent advancements in modal regression, its application to COVID-19 data remains lim-
ited. The COVID-19 pandemic has exhibited exponential growth, a wide range of government responses,

and the emergence of unexpected virus variants. These factors introduce unexpected noise and outliers,



making COVID-19 data an excellent opportunity to explore the capabilities of modal regression. Although
Ullah, Wang, and Yao (2022) have conducted preliminary investigations by applying modal regression to
examine the interrelationship between COVID-19 cases and deaths in the U.S., there is still scope for further
exploration using modal regression. In this study, we utilize modal regression to forecast COVID-19 data
using specific time-series models. We then compare the results with those obtained using mean and median
regressions, as highlighted in previous studies (e.g., Musulin et al., 2021).

This study contributes to the existing literature in two significant ways. First, we introduce the coverage
quantile function (CQF) as a metric to evaluate the performance of modal regression. While the root-mean-
squared error and mean absolute error are commonly used objectives for optimizing mean and median
regressions, respectively, we utilize CQF as the objective for the modal regression. This approach provides
a clear understanding of the role and effectiveness of modal regression in forecasting. Second, we specify
an autoregressive model to capture the serial correlation in the COVID-19 data for the four countries listed
in Table 1. We then apply modal regression to generate forecasts and compare them with the forecasts
obtained using mean and median regressions. Our analysis reveals that the modal regression outperforms
the mean and median regressions in forecasting outliers. This finding underscores the superior performance
of modal regression in handling the unique characteristics and challenges of COVID-19 data. Overall, this
study’s contributions lie in the introduction of CQF as a novel evaluation metric for modal regression and the
empirical demonstration of its superior forecasting capabilities compared to mean and median regressions,
particularly when dealing with outliers.

The methodology employed in this study involves a simulation approach. The implementation of the
modal regression method relies on estimating the conditional density function, which is highly sensitive to
factors such as the selection of bandwidth or the shape of the density function, as pointed out by Ullah et al.
(2022). Consequently, the valuable theoretical results regarding modal regression are often challenging to
validate using empirical data owing to the presence of irregular data patterns. To address this challenge, we
adopt an extensive simulation approach that allows us to examine the characteristics of modal regression
using finite samples. We conduct Monte Carlo simulations using both cross-sectional and time-series data
to evaluate the performance of mean, median, and modal regressions. Additionally, we compare the per-
formance of different bandwidths utilized in the modal regression estimation. Furthermore, we apply the
modal regression method to forecast the cumulative confirmed COVID-19 cases in the four countries men-
tioned earlier. Through this empirical application, we demonstrate that the modal regression-based forecast
achieves a superior CQF compared with other forecasting methods. By combining simulation studies and

empirical analysis, we assess the performance of modal regression under various scenarios, investigate the



impact of different bandwidth choices, and highlight the advantages of modal regression in forecasting
COVID-19 cases.

The remainder of this paper is organized as follows. In Section 2, we present a comprehensive review
of the relevant literature related to the subject of this study, highlighting the motivation behind our research.
Section 3 focuses on formalizing the modal regression problem. We propose the CQF metric and provide
an overview of the existing modal regression methods. The simulation results are presented in Section
4, in which various simulations are conducted to evaluate the performance of mean, median, and modal
regressions. Section 5 discusses the empirical analysis applied to COVID-19 data. We apply the modal
regression method to forecast the cumulative confirmed COVID-19 cases for the four countries mentioned
earlier and compare the results with those of other forecasting approaches. Finally, in Section 6, we conclude
the study by summarizing the key findings and discussing the implications and potential future directions of

research in this field.

2 Literature Review and Motivation

Numerous studies have focused on analyzing and predicting the trends of COVID-19. This section provides
a brief overview of some of the methodologies employed in these studies.

One common approach is to develop empirical prediction models using machine learning methods. For
example, Car, Baressi gegota, Andeli¢, Lorencin, and Mrzljak (2020) train a multilayer perceptron (MLP)
artificial neural network to create a global model for forecasting the maximum number of patients across
various locations over time. Similarly, Mollalo, Rivera, and Vahedi (2020) utilize MLP to forecast the
cumulative COVID-19 incidence rates, specifically in the U.S. Chakraborty and Ghosh (2020) propose a
hybrid approach that combines integrated autoregressive moving average models with wavelet-based fore-
casting models to predict the number of daily confirmed cases in the short term. Other prediction models for
confirmed cases include the gradient boosting regression model, the generalized waring regression model,
and various other machine learning approaches (see also Gumaei, Al-Rakhami, Al Rahhal, Albogamy,
Al Maghayreh, and AlSalman, 2021; Gning et al., 2022, for more examples using machine learning meth-
ods). These studies highlight the versatility of machine learning methods in capturing the complex dynamics
of COVID-19 data and providing accurate predictions. By leveraging various machine learning algorithms,
researchers have made significant strides in understanding and forecasting the spread of the virus.

In addition to machine learning methods, evolutionary computing algorithms have been employed to

develop epidemiological models that capture biological evolution through processes such as reproduction,



mutation, recombination, and selection. For instance, Salgotra, Gandomi, and Gandomi (2020a) utilize gene
expression programming (GEP) based on evolutionary data analysis to specify a model for the potential im-
pact of COVID-19 on the 15 most affected countries. Similarly, in another study by Salgotra, Gandomi, and
Gandomi (2020b), a robust and reliable variant of the GEP method is developed to model the confirmed cases
and deaths caused by COVID-19 in India. Other examples include the work by Yousefpour, Jahanshahi, and
Bekiros (2020), who propose an effective and efficient multi-objective genetic algorithm for designing gov-
ernment strategies to address the disease. Zivkovic, Bacanin, Djordjevic, Antonijevic, Strumberger, Rashid
et al. (2021) employ a hybrid model combining an adaptive neuro-fuzzy inference system and an enhanced
genetic algorithm to predict the number of confirmed cases in China. These studies demonstrate the applica-
tion of evolutionary computing algorithms in modeling the dynamics of the COVID-19 pandemic, providing
valuable insights and predictions. By incorporating evolutionary principles, these approaches offer unique
perspectives and the potential to optimize strategies for mitigating the impact of the virus.

Several studies have focused on analyzing the COVID-19 trend from an economic perspective and as-
sessing its impact on the economy. They provide valuable insights into various economic implications of the
pandemic. For example, Almeshal et al. (2020) investigate the effectiveness of non-pharmaceutical interven-
tion measures in forecasting the size of the COVID-19 pandemic in Kuwait. They employ deterministic and
stochastic modeling approaches to estimate the scale of confirmed COVID-19 cases and identify the ending
phase of the pandemic. Their findings highlight the efficacy of non-pharmaceutical interventions, particu-
larly when infection rates and personal contact patterns change over time. Other studies examine specific
economic impacts of COVID-19. Ajide, Ibrahim, and Alimi (2020) analyze the impact of the lockdown
policy implementation on confirmed COVID-19 cases in Nigeria. Azimli (2020) investigate the impact of
COVID-19 on the degree and dependence structure of risky asset returns in the U.S. Béland, Brodeur, and
Wright (2023), Gupta, Montenovo, Nguyen, Lozano-Rojas, Schmutte, Simon, Weinberg, and Wing (2023),
and Rojas, Jiang, Montenovo, Simon, Weinberg, and Wing (2020) examine the effects of COVID-19 on the
labor market. Furthermore, Lu, Nie, and Qian (2021), Hamermesh (2020), Béland, Brodeur, Mikola, and
Wright (2022), and Tubadji, Boy, and Webber (2020) explore the impact of COVID-19 on mental health and
well-being, while Olmstead and Tertilt (2020) delves into a detailed examination of the impact of COVID-19
on gender inequality. Studies by Andrée (2020), He, Pan, and Tanaka (2020), Brodeur, Cook, and Wright
(2021), and Almond, Du, and Zhang (2020) investigate the environmental effects of COVID-19. These
studies provide valuable insights into the multifaceted economic consequences of COVID-19 and the cor-
responding government responses. They shed light on the impact on sectors such as labor markets, mental

health, gender equality, and the environment. For a comprehensive review of the economic consequences of



COVID-19 and government responses, Brodeur et al. (2021) provide a recent survey.

Despite the extensive research conducted on COVID-19 and its analysis, there are variations in the
generated forecasts, and they may not be directly applicable to forecasting economic activities. Existing
literature often predicts the COVID-19 trend using mean and median regressions. For example, Rojas et al.
(2020) and Hamermesh (2020) employ mean regression to forecast the impact of COVID-19, whereas Lu
et al. (2021) delve deeper into mean-based forecasts using a median regression. Additionally, Béland et al.
(2022), Gupta et al. (2023), Tubadji et al. (2020), and He et al. (2020) apply the difference-in-differences
approach to evaluate the COVID-19 policies. However, forecasting the peak of the pandemic could be
more relevant when it comes to forecasting the economic environment affected by the pandemic. Economic
activities before and after the peak are likely to differ significantly, making it important to accurately forecast
the peak. Mean and median regressions may not be suitable for this purpose because they assume the central
tendency of the conditional distribution through mean and median estimations, respectively. Moreover, the
mean regression is most efficient when the conditional distribution is Gaussian or sub-Gaussian, whereas the
median regression becomes a robust estimator when the distribution is light-tailed. Unless the distribution
of confirmed cases is unimodal and symmetric, the mean and median regressions struggle to capture the
most likely value of the conditional distribution—a challenging characteristic often observed in real-world
data. Real-world data are more likely to exhibit multimodal, skewed, or fat-tailed distributions. Studies by
Krief (2017) and Ullah, Wang, and Yao (2021) demonstrate that mean and median regressions lose their
robustness and/or efficiency when time-series datasets contain multiple outliers and/or skewed distributions.

This aspect serves as the motivation to forecast the peak by estimating the mode of the conditional dis-
tribution. To achieve this, we use modal regression, which is specifically designed to estimate the mode of
a conditional distribution. In addition to estimating the same quantities as in the mean and median regres-
sions, under the assumption of a unimodal and symmetric conditional distribution, modal regression offers
several additional properties. First, modal regression is more robust to outliers than the mean and median
estimators because it utilizes the mode as a representation of the central tendency of the conditional distribu-
tion. Second, modal regression yields narrower forecasting intervals than other estimations. This is because
the interval around the conditional mode contains more observations than that around the conditional mean
and/or median for the same interval size. Finally, for data drawn from a multimodal conditional distribution,
modal regression captures a central tendency that is different from the mean and/or median. This enables
the exploration of different aspects of the conditional distribution. In this study, we apply modal regression
to forecast confirmed COVID-19 cases in Canada, Japan, South Korea, and the U.S. Subsequently, we com-

pare these forecasts with those obtained through mean and median regressions to assess the performance



and advantages of the modal regression approach.

3 Method of Modal Regression

In this section, we discuss the methodology of modal regression and the models used for forecasting. Addi-
tionally, we provide a comprehensive explanation of the criteria used to evaluate the forecasts generated by

the modal regression.

3.1 Modal Regression

First, we discuss the limitations of the mean regression for forecasting and compare its characteristics with
those of the modal regression. To begin, let ¥ C R? and ) C R represent the spaces of regressors and
the dependent variable, respectively. We consider a dataset S = {(x,Y;) € X x Y : ¢t = 1,2,...,n}

consisting of independent and identically distributed random samples.'

Given this setup, we define the
conditional mode function f(z) as the mode of the conditional probability density function py-|x (-), which

represents the density of Y € ) conditioned on X € &X'. Mathematically, we have
f(z) :=mode(Y|X = ) := argmaxpy|x(y|X = 7).
y

Additionally, we introduce the variable U, defined as the difference between Y and f(X), that is, U :=
Y — f(X). Under the assumption that py;| x (-|X = z) is continuous and bounded for any X = = € X, the
conditional mode of U given X = 1 is denoted as mode(U|X = =), which satisfies arg max,, pyx (y| X =
r) = 0. We assume that the conditional density function py|x(-|X = z) has a unique maximum with a
probability of 1, ensuring that f(x) is well-defined for any x € X. This assumption guarantees the existence
and uniqueness of the global mode of f(-).” Furthermore, maximizing the conditional density py|x (:|X =
x) is equivalent to maximizing the joint density px y (X = z,Y = -) because p(y|z) = p(z,y)/p(x) for
afixed x € X. Therefore, the conditional mode can also be expressed as arg max, p(y, x), indicating that
the estimation of the conditional mode is related to the estimation of the density function of the random
variables.

We explore this aspect by representing the conditional mode using a parametric model. Specifically,

't is important to note that COVID-19 data are non-stationary and typically exhibit serial correlation in the error terms, which
violates the assumption of independence and identical distribution. We will address this issue later by specifying a model for serial
correlation.

This type of conditional mode function is known as the unimodal regression function (e.g., Chen, 2018), while Chen et al.
(2016) relaxes the uniqueness condition in a nonparametric model regression context. In this study, we focus on the unimodal case.



we let M = {m(X,60) : 6 € ©} be a parametric model for the conditional mode such that for a unique
0, € ©, mode(Y|X) = m(X,0,), where O is a compact parameter space in RP, and for each § € ©,
m(+, 6) is a measurable function. Given this parametric model assumption, we estimate 6, by maximizing

the kernel-based objective function:
Qn h\" Z¢h Y;f Xt, )) )

where for each u € R, ¢y, (u) = h~'¢(u/h) such that ¢(-) is a kernel density function symmetric around
zero and [ ¢(u)du = 1, and h is the bandwidth. The commonly used kernel functions include Gaussian,
Epanechnikov, uniform, and triangular functions. For the remainder of this paper, we assume that ¢(-) is
the standard normal density function for simplicity. By maximizing the objective function @, 4(-), we can
estimate the value of 8, corresponding to the conditional mode. This approach allows us to represent the
conditional mode using a parametric model and estimate the associated parameters.

The maximization of @, ,(-) requires a numerical optimization procedure because its maximum has no
closed-form expression. Various numerical optimization algorithms can be employed to maximize @y, 4 (+)
such as the modal expectation and maximization (MEM), Newton-type, and mean-shift algorithms (see Yao
and Li, 2014; Khardani and Yao, 2017; Chen et al., 2016, respectively). Among these optimization meth-
ods, the MEM algorithm has exhibited robust performance, as demonstrated in the simulations outlined in
Section 4. Therefore, for our empirical applications, we utilize the MEM algorithm as the chosen numerical
optimization procedure to maximize @, »(-) and estimate the parameters associated with the conditional
mode.

The MEM algorithm proposed by Li, Ray, and Lindsay (2007) extends the EM algorithm proposed by
Dempster, Laird, and Rubin (1977) to the modal regression context. While the EM algorithm assumes the
presence of latent variables in the likelihood function, the MEM algorithm considers their presence in the
density function and estimates the unknown parameters using the E- and M-steps. Specifically, the E-step
involves computing the weight of each observation. Given an initial parameter #(?), for each observation

(Y, X/)', we calculate
on(Ye —m(X;;00))
>y En(Ye — m(Xy;0)))

Next, the M-step maximizes the objective function:

(00 .=

o) —argmaxZ{ (t160©) log ¢y, (YV; — (Xt;ﬂ))}.
bco



Using the updated parameter o), we compute 77(t|0(1)) for each ¢ and repeat the maximization process,
replacing 6() in the objective function. We iterate the E- and M-steps until the maximizing parameters
converge. Denoting the converged parameter as §n, it maximizes the objective function @, 4(-) since
each iteration progressively maximizes ), ,(-). In the Appendix, we prove that for any positive integer
k, Quu(0%)) — Q,n(0%) > 0. Therefore, as k tends to infinity, the maximum value of @, (-) is
reached. This proof remains valid even when m(Xy; -) is nonlinear, thereby generalizing the proof in Yao
and Li (2014), which assumes a linear model of the conditional mode.

The MEM algorithm relies on estimating the objective function using the kernel density function esti-
mation, which is influenced by the choice of bandwidth h. However, as highlighted by Ullah et al. (2022)
and confirmed by our Monte Carlo simulations in Section 4, the convergence of c/9\n to the unknown true
parameter depends critically on the bandwidth selection. Among various bandwidth selection methods, the
bandwidth suggested by Sheather and Jones (1991), referred to as SJ, generally produces robust estimation
results along with other bandwidths such as those selected by Scott’s (1979) and Silverman’s (1986) rule
of thumb. The SJ’s bandwidth denoted as h” is given as follows. Suppose z1, 22, . . ., z, represents the

sample points of a random variable Z. Then,

ho! = ( J R (u)du >é7

nad [ 1 () du

where o), is the standard deviation estimated using the sample points, k(-) is a kernel function used to weigh
the sample points, and f/(-) := n%g S L (%) estimates f”(-), the second derivative of the density
function f(-) of Z. Here, hy is the bandwidth, and L(-) is the kernel function used to estimate f(-). SJ
suggests the use of a simple rule of thumb for hg. In addition to SJ’s bandwidth, two other commonly used

Scott’s and Silverman’s bandwidths are as follows:
hC :=1.066,n"% and SV :=0.9min[G,, IQR,/1.34]n '/,

respectively, where IQ) R,, represents the interquartile range of the sample points, that is, the distance be-
tween the second and third quartiles.

When applying the MEM algorithm, we combine it with least squares estimation to first estimate the
density function. Here is the procedure we follow when using SJ’s bandwidth as an example: first, we begin
by estimating the standard deviation, denoted as 8;1), using the residuals obtained from the least squares

estimation. Next, we apply the MEM algorithm to the density function estimated with SJ’s bandwidth



(1)

using 5y, ’, and obtain the first-step MEM estimator, denoted as #()). Using (1), we compute different

residuals to estimate the standard deviation, denoted as 37(12), and estimate the density function using 3,(12).

Subsequently, we maximize this new density function and obtain the second-step MEM estimator, denoted as
(k)

6(2). We continue this iterative process, estimating 5, and obtaining the k-th step MEM estimator 6(*) until
convergence is reached, and obtain §n We propose estimating 8%1) using least-squares estimation because
it is not straightforward to estimate &,, directly using the MEM algorithm when the data are nonstationary.
In such cases, it is useful to first estimate the conditional mean using a unit-root process, as demonstrated
by the simulation in Section 4.2.

The main objective of modal regression differs from that of mean and median regressions. Although
the mean squared error (MSE) and mean absolute error (MAE) are typically used as target metrics for
optimizing mean and median regressions, respectively, these metrics do not align with the objective of the
conditional mode function (see, e.g., Buhai, 2005; Porter, 2015). Therefore, for modal regression, a different
target metric is required. Given that the conditional mode reflects the density in the vicinity of f(x) directly,
we can define a natural objective metric based on the number of observations around the estimator. In this

context, the CQF can serve as an appropriate objective metric for modal regression. Specifically, for a given

7 € (0,1), if x is the quantity satisfying the equality
EI([Y —g(X)| < k)] =,

where () is the indicator function and ¢g(X) is a quantity defined by X, we can characterize the behavior
of the conditional mode using . Intuitively, as x decreases, g(X) should approach the conditional mode
f(X), indicating that for a fixed 7, we can estimate ~ to measure the extent to which the conditional density

of Y| X is concentrated around g(X). Therefore, we define the sample analog for the CQF as:

n
LS - (X < w) =
i=1
where g, (X}) is a generic estimator. This equation allows us to determine + that satisfies the equality,
providing a measure of how well the estimator captures the concentration of the conditional density around
g(X). For the empirical applications discussed in Section 5, we set 7 = 0.50, meaning that the interval
around g(X) with a distance of 2x covers half the observations in the dataset. When g,,(X;) estimates the

conditional mode, we can expect the interval characterized by « to be narrower than that those characterized
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by the conditional mean or median.’

3.2 Extension of the Modal Regression

In this section, we extend the application of modal regression to time-series data. This is necessary because
the data assumption made in the previous section does not account for the presence of a serial correlation
in the cumulative confirmed COVID-19 cases. To address this issue, we introduce time-series models that
explicitly capture the serial correlation structure.

In this section, we focus on specifying models for trend and serial correlation separately. The first-step
procedure involves modeling the trend component, whereas the second-step procedure focuses on modeling
the stationary and non-stationary processes, which capture the serial correlation. The first-step procedure
is necessary because COVID-19 data typically do not follow a linear deterministic time trend. Instead,
the mode of each observation is represented as a function of the time index. The empirical analysis in
Section 5.1 demonstrates that the nonlinearity of the COVID-19 trend is more complex than a simple linear
trend process. The second-step procedure aims to transform the COVID-19 data into a stationary process
with serial correlation. By accounting for the serial correlation, we can capture the temporal dependencies
present in the data and ensure that modal regression analysis is applicable. By separately specifying models
for trend and serial correlation, we can effectively capture the characteristics of time-series data and enhance
the accuracy of the modal regression analysis of COVID-19 data.

In the first-step procedure, we focus on specifying the nonlinear trend component. We employ three
estimation methods. The first is the B-spline modal regression (BMR) proposed by Yu et al. (2020). To
implement the BMR, we utilize B-splines, which are a type of basis function. We define £ as the set of
the knots of the expected B-spline that partitions the unit interval [0, 1]. Each ¢; € [0, 1] corresponds to
a knot, and we construct the linear spline space using (k — ¢) B-spline basis functions of order ¢. Here,
the unit interval represents the time index space obtained by dividing the time by the sample size n; that
12 n—1

=2, 1. The basis functions are defined as follows: fori = 0,1,...,k — £ —1,

1S, P S R

1, ift; <7< tit1

Bio(T) =

)

0, otherwise,

31t is also possible to interpret this association in the opposite manner: for a fixed &, if g(X) = f(X), the interval around the
conditional mode can cover more samples than any other quantity g(X) # f(X). This implies that 7 increases as g(X ) approaches

f(X).

11



and

r—1 iverr =7 g

B, (1) :=
ie(7) Liver1 — tiv1

B (1) + it 1,0—1(7),

tive —ti
where B; ¢(-) represents the i-th basis function of order ¢. For simplicity, we denote B; ¢(-) as B;(-), and the
B-spline basis function is denoted as B(-) = Bo(-), B1(:), - -, B(x—¢—1)(*). In this setup, we assume that
the conditional mode is a linear function of B(7), that is, m(7,0) = 6’ B(7), and estimate the parameter
vector § = (0o, ...,0k_¢_1.) using modal regression. Note that the choice of (£,¢) has a deterministic
effect on the shape of the spline function. The selection of ¢ determines the positioning of control points,
whereas ¢ determines the number of coefficients in each piece of the piecewise polynomial representation.

Different types of B-splines can be defined by choosing (&, £) in various ways. Examples of well-known
B-splines are as follows. First, for the nonperiodic B-spline, the first and last m knots are fixed at 0 and 1,
respectively, where 2m < k + 1. For instance, if we choose £ = {0,0,0,0.3,0.6,1, 1, 1}, it corresponds to
the nonperiodic B-spline knots. Second, the uniform B-spline assumes equally spaced knots. For example,
if we select £ = {0,0.25,0.5,0.75,1}, it represents the uniform B-spline knots. Third, Bezier knot lets
k = 1 such that the knots are set as £ = {0, 1}.

The choice of (&, /) is typically determined empirically based on the data characteristics. For example,
if the data exhibit a curve resembling a quadratic function, the non-periodic B-spline can be employed by
setting the first and last /41 knots to 0 and 1, respectively, and placing £ knots in the middle. Yu et al. (2020)
demonstrate that the BMR is robust against outliers or heavy-tailed error distributions. Moreover, they show
that BMR performs no worse than least squares estimation when the errors are normally distributed.

Second, the local polynomial modal regression (LPMR) method, as examined by Xiang and Yao (2022),
can be employed as a second estimation method to estimate the modal function. The LPMR involves the
application of a p-th order Taylor expansion for the conditional mode around a reference value of 7 € [0, 1],

specifically % to approximate f (7). This approximation can be expressed as

P () (L i P i
G (1) - ().
i=0
where 0;, = f (L)/il, and f (@) (.) represents the i-th order derivative of f(-). Similar to the B-spline
modal regression, the parameter vector #, can be estimated by applying modal regression. In the LPMR
method, the optimal order p can be selected by minimizing the CQF with respect to the degree of the poly-
nomial. Xiang and Yao (2022) demonstrate through simulation that the LPMR method complements the

conventional nonparametric mean and median regressions, particularly in the presence of outliers. Further-
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more, they show that LPMR exhibits better prediction performance for skewed data than mean and median
regressions.
Finally, we apply the linear modal regression (MR) using the approach described in Yao and Li (2014).

This method assumes a linear model for f (%) as m(%,

0.) = 0o+ 91*%, where 0, := (6, 01.)" is estimated
through modal regression. Importantly, this linear model is not suitable for representing COVID-19 data.
However, we utilize it as a benchmark model to contrast its linearity against a process with a linear trend.

In addition to these methods, Zhou and Huang (2019) propose the mean shift modal regression (MSMR)
method for nonparametric trend prediction. However, the forecasting error of MSMR is greater than that of
the first two methods (BMR and LPMR). As a result, we focus on the BMR, LPMR, and MR methods to
predict the trends in our analysis.

As the second step in specifying a correlation model, we apply an autoregressive (AR) model. The AR

model is defined as follows: ,

Vi =+ Y BuYii+Ui, Q)
=1

where . and §;, are the estimated parameters and U; is the error term. We distinguish between the two
versions of the AR model based on the type of error term. First, we use a mean autoregressive (MEAR)
process that assumes that U; follows a white noise process with zero mean and constant variance. This is
the conventional AR process. However, for modal regression, we assume that Uy is a white noise process
with a zero conditional mode, given F;, where F; is the sigma-algebra generated by Y;_1, Y;_o, and so on.
We refer to this version as the modal autoregressive (MAR) process.

If the series Y; is not stationary, we apply differencing to obtain a stationary process. In this case,
we replace Y; and Y;_; in (1) with AY; and AY;_;, respectively, and estimate the parameters 0, :=
(s, B1xy - - -, Bex)' using modal regression. If AY; is still nonstationary, we repeat the differencing pro-
cess until we obtain a stationary process. The MAR model for a differenced process of order d can be
expressed as:

‘
A, =ity Bl + U
i=1
The lag order ¢ is determined by applying the Bayesian information criterion (BIC), which is commonly
used to estimate the MEAR process. As U; is determined by the conditional distribution of A?Y;, given
A%, _; (i=1,2,...), the BIC can effectively assist in estimating the lag order of the MAR process.
Before moving to the next section, we note that the forecasting methodology by modal regression for

integrated series has not yet been fully developed in the literature. The methodology has to be developed
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by estimating the cointegrating relationship between the integrated series, that distinguishes between the
long-run and short-run relationships. Nevertheless, the current literature does not provide a methodology
for this to our best knowledge. Due to this fact, we limit our interest to forecasting the future observations

by the lagged dependent variables and leave developing the methodology as a future research topic.

4 Evaluation of the Modal Regression by Simulation

In this section, we perform Monte Carlo simulations to examine the application of modal regression and
evaluate its effectiveness compared with other estimation methods. We consider two types of data generating
processes (DGPs): cross-sectional and time-series data. Through these Monte Carlo simulations, we aim to
gain a comprehensive understanding of the capabilities and limitations of modal regression, particularly in

comparison with alternative estimation approaches, in both cross-sectional and time-series settings.

4.1 Simulation Using Cross-Sectional Data

We demonstrate the application of modal regression by comparing it with mean and median regressions.
First, we generate a set of identically and independently distributed (IID) observations {(X¢,Y;) : t =
1,...,n} according to the following formula: Y; = au + 5. X; + U;. In this case, we set a, = 0, [, = 2,
X; ~iig U[0,1], and Uy ~yiq 0.5N(—2,3%) + 0.5N (2, 12) to ensure that X; and U; are independent. We
refer to this data generating process as DGP1. The left panel of Figure 1 displays the density function of
Uy, where we observe the expected value E(U;) = 0, median median(U;) = 1, and mode mode(U;) = 2.

Consequently, the following relationships hold:
E (Y;g | Xt) = 15 + ﬁl*Xt = 2Xt, median (Y;g | Xt) = (o4 + ﬂQ*Xt =1 + 2Xt, and

mode (Y; ‘ Xt) = a3« + 3. Xt = 2+ 2X,.

This implies that the conditional mean, median, and mode functions are associated with different parameter
values. The left panel of Figure 2 illustrates the three functions represented by the blue, orange, and red lines,
respectively. Additionally, 200 observations randomly drawn from DGP1 are presented. We can see that
more observations align with the red line, indicating an asymmetric conditional distribution. The forecast
band encompasses a higher concentration of observations around the conditional mode function than around
the other functions. To estimate these three functions, we utilize the mean regression (MER), linear quantile

regression (LQR) with a quantile level of 0.5, and MR, respectively.
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<Insert Figures 1 and 2 around here>

As highlighted by Ullah et al. (2022), the choice of bandwidth is crucial for the estimation results
when using the MR method. In our simulations, we explore different bandwidth values and observe that
the results are comparable when the SJ’s, Scott’s, and Silverman’s bandwidth selection methods are used.
Therefore, we discuss the simulation results by focusing on the three density function estimations. We use
a two-step approach to estimate the density function. First, we employ a least squares estimation to obtain
conditional residuals. Subsequently, we optimize the conditional density function using the MEM algorithm,
as described in Section 3.1. This enables us to obtain reliable estimates of the density function.

We present the simulation results in the first panel of Table 2. We conduct 1,000 independent experi-
ments for different sample sizes (n = 100, 200, 300, 500, and 1,000) and report the MSEs of the estimated
coefficients. The MSE provides a measure of the average squared difference between the estimated and true

coefficients across the simulation experiments.
<Insert Table 2 around here>

The simulation results are summarized as follows:

(a) The MER, LQR, and MR methods consistently estimate the unknown parameters. As the sample size
n increases, the MSEs decrease for all three methods, indicating an improved estimation accuracy
with larger sample sizes.

(b) The MSEs obtained by the MR method are generally similar among the different density function
estimation methods. However, a regular rank relationship is observed among the MR methods. In
particular, the MSEs obtained using SJ’s bandwidth tend to be smaller than those obtained using the
other methods. However, there is no consistent rank relationship between the MSEs obtained using
Scott’s and Silverman’s bandwidths. This suggests that SJ’s bandwidth tends to provide more accurate
estimation results in terms of MSE for the MR method, whereas the relative performance of Scott’s
and Silverman’s bandwidths may vary depending on the specific data and model conditions.

(c) We also examine the distribution of the estimated coefficients. The upper panels of Figure 3 show
the estimated probability density functions of &, and Bn obtained by the MER method using SJ’s
bandwidth. It can be observed that the empirical distributions of the estimated coefficients are close
to a bell-shaped distribution. This indicates that the estimated coefficients tend to be centered around

their true values and the variability around the mean is relatively symmetric. U

<Insert Figure 3 around here>
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Using DGP1, we verify that the MEM algorithm consistently estimates the conditional mode, whereas the
MER and LQR estimations estimate the conditional mean and median, respectively.

We further explore the modal regression by considering a different DGP condition, DGP2. In DGP2,
we assume another distribution for the error term instead of the mixture normal distribution. Similar to
DGPI1, we have Y; = au + B« X; + Uy, where aie = 0, B = 1, Xy ~yiq U[0,1], and Uy ~jiq X2 — 3
with X; L Uy, indicating that U, follows a chi-squared distribution with three degrees of freedom shifted
by three. The right panel of Figure 1 shows the density function of U; for DGP2. We specifically examine
DGP2 to investigate the performance of the modal regression when the error distribution has fat tails. The
density function of U; exhibits an extreme left fat tail owing to the truncation at the border from the left, and
the right tail is fatter than that of a normal distribution by construction. Consequently, we anticipate that the
modal regression will perform relatively poorly compared to DGP1, as more observations are required to
estimate the density function accurately. Note that E(U;) = 0, median(U;) = —0.63, and mode(U;) = —2.

Consequently, we have
E(Y: | Xt) = cuas + 1 Xy = Xy, median (Y; | Xy) = ase + 5. Xt = —0.63 + X4, and

mode (Y; | X) = ags + Box Xt = —2 + X

The right panel of Figure 2 displays the three different functions along with 200 observations randomly
drawn from DGP2. Similar to DGP1, more observations are distributed along the conditional mode function.

Using the observations generated from DGP2, we perform independent experiments following the same
procedure as that for DGP1, and the results are presented in the second panel of Table 2. The simulation
results are summarized as follows:

(a) As for DGP1, the MER, LQR, and MR methods consistently estimate the unknown parameters for
DGP2. Similar to DGP1, we observe that the MSEs decrease as the sample size n increases for
all three estimation methods. While the MSEs obtained using the MR methods are generally larger
than those obtained using the MER and LQR methods, we can confirm that the MR methods provide
consistent MR estimators. For brevity, we do not report the detailed simulation results. However,
notably, as the sample size increases to 2,000, the MR estimators become very close to the true
unknown parameters.

(b) When comparing the MSEs obtained by the MR methods for DGP2, we find that they are similar in
general. However, this is consistent with the observations for DGP1 that the MSE obtained by SJ’s

method is smaller than those obtained by Scott’s and Silverman’s methods. This suggests that SJ’s
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bandwidth selection method tends to yield more accurate results in terms of MSE than the other two
methods.

(¢) The lower panels of Figure 3 depict the empirical density functions of &, and Bn obtained by the
MER method using SJ’s bandwidth for DGP2. While the empirical distributions are not perfectly
bell-shaped, they gradually converge to a normal distribution. However, this convergence is slower
than that in DGP1 owing to the presence of fat tails in the error distribution. The fat tails contribute
to deviations from perfect normality in the empirical density functions. O

From the additional simulation using DGP2, we observe that the modal regression effectively estimates the
conditional mode. Despite the presence of fat tails in the error distribution, estimating the density function
using SJ’s bandwidth remains more efficient than using the other methods. This result suggests that SJ’s
bandwidth selection is robust and effective in capturing the characteristics of conditional mode, even in the
presence of non-normal and fat-tailed error distributions.

In addition to the simulations presented in this study, other simulations were conducted by assuming
different error distributions and consistent results were obtained. For instance, when considering an asym-
metric beta distribution for Uy, the parameter estimators obtained through modal regression exhibited faster
convergence to the unknown parameters. This further supports the effectiveness and robustness of the modal

regression under various error distribution scenarios.

4.2 Simulation Using Time Series Data

We further extend our simulation by considering serially correlated time-series data. As an extreme case,

we first examine the unit-root process given by
5/;5 = o5 + B*Y;f—l + Ut7

where a, = 0.3, B, = 1, and U; ~jig I'(3,1) — 3 with Y;_; L Uy, indicating that U, follows a gamma
distribution. Note that E(U;) = 0, median(U;) = —0.3, and mode(U;) = —1. Consequently, the following

equations are derived:
E(Y: | Yio1) = ars + BrYi—1 = =03 +Y; 1, median (Y; | Y1) = ags + Bg«Ys—1 = Y1, and

mode (Y; | Yi—1) = ags + BouYio1 = —0.7 + V1.
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We conduct simulations to examine the behavior of the estimators in terms of MSE. The experimental results

are presented in the first panel of Table 3, obtained by performing 1,000 independent experiments. Similar

to previous simulations, we estimate the bandwidth components used in the density function estimation by

first estimating the conditional mean. The simulation results are summarized as follows:

(a)

(b)

(c)

For all the cases considered in our simulations, we observe a consistent decrease in MSE as the sample
size n increases. This indicates that the MER, LQR, and MR methods are consistent in estimating
the unknown parameters. Moreover, the decreasing trend of MSEs as n increases suggests that modal
regression is an effective estimation method, even for the unit-root process.

When comparing the MSEs obtained by the MR methods, we consistently observe that the MSE
obtained by SJ’s method is overall smaller than those obtained by the other two methods, as we have
previously observed in the cross-sectional data simulations. This suggests that SJ’s method performs
better in terms of MSE when estimating the density function in the modal regression framework,
regardless of the data generating process.

Figure 4 displays the estimated probability density functions using &, and B\n obtained by the MAR
method using SJ’s bandwidth. The figure shows that the empirical density functions exhibit shapes
that are close to a normal distribution. However, a more thorough investigation is required to fully
understand the influence of the unit-root process on the asymptotic distribution. In particular, be-
cause the mean and median regressions do not produce asymptotically normally distributed estima-
tors, it would be interesting to examine the behavior of the asymptotic distribution under the modal
regression framework. Although the current study does not conduct a detailed analysis, the empirical
density functions obtained from the simulation results appear to resemble a bell-shaped distribution
as the sample size increases. Investigating the asymptotic distribution in the presence of a unit-root
process is a promising avenue for future research. This analysis would shed light on the behavior and
properties of the estimators obtained through the modal regression, providing a more comprehensive

understanding of their performance in the context of unit-root processes. U

<Insert Table 3 and Figure 4 around here>

We extend our investigation of modal regression by examining an alternative DGP condition for station-

ary time-series data, namely, DGP4. In DGP4, we assume stationary series instead of a unit-root process.

Similar to DGP3, our model is defined as Y; = a. + B.Y;—1 + U, where a, = 0.3, 8, = 0.5, and

Up ~iiqa T'(3,1) — 3 with Y; 1 L U;. We conduct a specific examination of DGP4 to investigate the perfor-
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mance of modal regression using stationary data. Consequently, we have
E(Y; | Yi—1) = a10+ + B10+Ys—1 = —0.3+0.5Y;_1, median (Y; | Y;—1) = a114+ f11+Y;—1 = 0.5Y;_1,and

mode (Y; | Yi—1) = a1« + Br2+Yi—1 = —0.7 4+ 0.5Y;_;1.

Using the observations generated from DGP4, we perform independent experiments following the same
procedure as that for DGP3, and the results are presented in the second panel of Table 3. The simulation
results are summarized as follows:

(a) Regarding DGP4, the MER, LQR, and MR methods consistently estimate the unknown parameters.
Similar to DGP3, we observe a decrease in the MSEs as the sample size n increases for all three
estimation methods.

(b) When comparing the MSEs obtained by the MR methods for DGP4, we observe a general similarity,
aligning with the findings for DGP3. That is, the MSE obtained through SJ’s method is smaller than
those obtained through Scott’s and Silverman’s methods. This suggests that SJ’s bandwidth selection
method tends to outperform the other two alternatives, even in stationary series.

(c) The lower panels of Figure 4 depict the empirical density functions of &, and En obtained by the MR
method using SJ’s bandwidth for DGP4. The empirical distributions are also bell-shaped, and they
gradually converge to normal distributions. ([l

In the additional simulation employing DGP4, it becomes evident that modal regression effectively estimates
the conditional mode for time-series data. This outcome implies that SJ’s bandwidth selection is robust and
proficient in capturing the characteristics of the conditional mode in dealing with stationary or non-stationary

data.

S Empirical Analysis

In this section, we analyze the trends in COVID-19 processes in Canada, Japan, South Korea, and the U.S.
using the modal regression approach to forecast the COVID-19 confirmed cases. To conduct this analysis,
we utilize the official data on COVID-19 provided by the Johns Hopkins University Center for Systems
Science and Engineering (JHU-CSSE). This data collection incorporates information from various sources,
such as the WHO, national governments, and local media reports, enabling comprehensive tracking of the
disease. Starting from January 22, 2020, JHU-CSSE has been updating and publishing daily data on the

cumulative number of confirmed COVID-19 cases, deaths, and recoveries for each country and territory.
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These datasets serve as the basis for our analysis, allowing us to examine the patterns and dynamics of the
COVID-19 pandemic in Canada, Japan, South Korea, and the U.S. from the modal regression perspective.*
The goal of this section is in forecasting the confirmed cases. As we detail below, the processes of the
confirmed cases are not stationary, exhibiting trends as Figure 5 demonstrates.

We are particularly interested in forecasting the future confirmed cases by basing on their past values and
by modal regression. As we mentioned above, the cointegration methodology for forecasting the confirmed
cases by associating them with other integrated series via modal regression is not yet fully developed in
the literature. We, therefore, limit our interest to forecasting the future confirmed cases based on their past

values.

5.1 Forecasting the Confirmed COVID-19 Cases by Trend Fitting

Using the daily data for cuamulative confirmed COVID-19 cases from February 8, 2022, to April 8, 2022, we
apply various nonlinear trend estimation methods, including BMR, LPMR, and MR, in addition to the MER
and LQR methods. Each country’s dataset consists of 60 observations, which we split into two parts. The
first 50 observations are used as the training set for trend estimation to represent our in-sample measures.
The remaining 10 observations serve as the test set for evaluating the performance of each method, reflecting
our out-of-sample measures. To assess the performance of each method, we use three evaluation metrics:
RMSE, MAE, and CQF. These metrics provide measures of accuracy and reliability for comparing the
estimated trends across different methods and countries.

In the empirical applications, we follow a three-step process. First, min-max normalization was applied
to standardize the data. The transformed data are denoted as Y}’ and are calculated as

Yi—Yo
Y/ .=
t <YO—}/0>7

where YO := max;—12,.n Ys and Yy := ming—y 2 ., Y;. This normalization converts a large number of
confirmed cases to a range between zero and one. Additionally, we adjust the time index ¢ to be within
the unit interval by rescaling it to % Consequently, Y/ is readjusted to Y/, where 7 = %, %, ..., 1. This
adjustment allows us to fit the trend of Y(’ ) In the second step, we assume that Y(’ ) follows a linear trend
and estimate the intercept and linear coefficient using the MER, LQR, and MR methods. Subsequently,
we compute the RMSE, MAE, and CQF using both the training and test sets. Finally, we consider the

possibility of Y(’ ) having a nonlinear trend and estimate the trend using the BMR and LPMR methods.

“The data are available at the following URL: https://github.com/CSSEGISandData/COVID-19
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For the BMR method, we set the B-spline order ¢ to 3, following Yu et al. (2020), and select 11 knots,
denoted as ¢ = {0,0,0,0,0.2,0.4,0.6,1,1,1,1}. These knots are selected based on the observation that
the empirical curves resemble quadratic functions. For the LPMR method, we determine the polynomial
degree by minimizing the CQF. We also compute the RMSE, MAE, and CQF using the training and test

sets, similar to the linear trend case.
<Insert Table 4 and Figure 5 around here>

We present the estimation and prediction results in Figure 5 and Table 4. Figure 5 shows the scatter plots
of all data observations considered, along with the regression lines obtained from the different regression
methods. To convert the predicted values Y(’ ) back to the original scale, we use the formula }/}(,) = }/}(’ ) (YO—
Yy) + Yo, where l?(’ ) represents the series predicted by each regression method. Table 4 presents the RMSE,
MAE, and CQF for the four countries. Based on the results, we summarize the estimation and forecast
results as follows:

(a) The MER, LQR, and MR methods demonstrate superior performance in terms of RMSE, MAE, and
CQYF, respectively. This finding aligns with the characteristics of these estimators and their relation-
ships with the respective objective functions.

(b) In the training set, the modal regression methods, particularly the LPMR and BMR methods, exhibit
superior performance compared with the mean and median regression methods for all four countries.
In the test set, the LPMR and BMR methods continue to outperform the other regression methods for
Japan and the U.S., whereas the MR method outperforms the other regression methods for Canada
and South Korea. This trend is illustrated in Figure 5. Moreover, the LPMR method consistently
outperforms the other modal regression methods. The optimal value of p is chosen by minimizing
the CQF. Additionally, Table 4 illustrates that the LPMR method achieves lower RMSE and MAE
values than the BMR method in most cases. In terms of CQF, both the LPMR and BMR methods
offer competitive performance.

(c) Although estimating a linear modal trend is straightforward, its performance, as measured by the
CQEF, is consistently surpassed by the BMR and LPMR methods. This indicates that the COVID-19
confirmed cases in the four countries do not conform to a linear trend.

(d) For the test sets of South Korea and the U.S., the forecast lines generated by the MR method are closer
to the actual values compared with those produced by the MER and LQR methods. This indicates that
the MR method performs better in forecasting the highest and lowest values of confirmed cases in

South Korea and the U.S., respectively. This implies that if the South Korean government relies
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solely on the mean and median regression perspectives to formulate health policies, there is a risk

that healthcare systems will be overwhelmed by the actual number of confirmed cases, surpassing

the forecasts based on mean and median regressions. Similarly, implementing health policies in the

U.S. without considering the conditional mode forecast may lead to the misallocation of financial and
human resources. U

By comparing the different regression methods, we find that modal regression outperforms mean and
median regressions in both the training and test sets for all four countries, especially in terms of the CQF.
This observation confirms that the modal regression methods, which emphasize the conditional mode, yield
narrower forecast intervals than traditional approaches that primarily focus on the characteristics of the con-
ditional mean and median to achieve better RMSE or MAE scores, respectively. The superior performance
of modal regression suggests that considering the conditional mode can lead to more accurate and precise

predictions in the context of COVID-19 trend analysis.

5.2 Forecasting the Confirmed COVID-19 Cases by Modal Autoregression

Using the MAR method, we analyze the transformed COVID-19 cases Y(’ ) from Canada, Japan, South
Korea, and the U.S. for forecasting purposes. Before applying the MAR method, we perform the augmented
Dickey-Fuller (ADF) test to examine the presence of a unit root in the series. If the unit-root hypothesis
cannot be rejected, we take the first difference of the series and repeat the ADF test. This procedure is
repeated until we obtain evidence rejecting the unit-root hypothesis. This iterative process allows us to
identify the appropriate order of differencing required for the time-series data. By ensuring stationarity in
the data, we can effectively apply the MAR method to forecast COVID-19 cases.

Table 5 presents the results of the ADF test conducted on the original series and the series that has
undergone three levels of differencing. The p-values obtained from the ADF test for the original series
are all greater than 1%, indicating that we cannot reject the null hypothesis of a unit root for these series.
However, for the three-times differenced series, the p-values are all less than 1%, providing evidence to reject
the unit-root hypothesis. Based on these results, we specify the MAR model for the three-times differenced
data and estimate the unknown parameters using the modal regression approach. Table A.1 in the Appendix
provides the descriptive statistics of the three-times differenced data for each country. The MAR order is
determined by minimizing the BIC, as described in Section 3.2. In this case, we find that a MAR order of 6

is selected for all four countries.

<Insert Table 5 around here>
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We assess the performance of the forecasts obtained from the MAR model estimation by comparing
them with the forecasts obtained from the MEAR and LQAR models. To evaluate the forecasts on the
training data, we compare the forecasts with the actual observations and compute the RMSE, MAE, and
CQF. We employ two approaches to evaluate the forecasts on the test data. First, we forecast the future
values sequentially, using the recent forecasts as inputs (non-teacher-forcing method). Second, we forecast
the future values by utilizing the recent realizations from the test data as inputs (teacher-forcing method).
The teacher-forcing method is expected to produce more accurate forecasts than the non-teacher-forcing
method because forecast errors tend to accumulate over the forecasting period. In the context of COVID-
19 forecasting, this can lead to compounded errors over time. For instance, if the model underestimates
cases in one period, this underestimation carries forward and can result in a consistently lower projection
in subsequent periods. However, in situations where we may not have access to accurate future COVID-
19 observational data, the non-teacher-forcing method holds a distinct advantage. By employing these
evaluation methods, we can assess the precision and accuracy of the MAR model forecasts and compare
them with those of the MEAR and LQAR models.

We present the qualitative forecasting results obtained from the MAR model using the teacher-forcing
method. The four upper panels of Figure 6 show the results. The MAR coefficients are estimated using
modal regression with the bandwidth selected as SJ’s bandwidth. It is evident that the MEAR, LQAR, and
MAR models exhibit impressive forecasting performance in capturing the trend of the cumulative confirmed
COVID-19 cases. Furthermore, the lower four panels of Figure 6 show the forecasting results obtained using
the non-teacher-forcing method. These results demonstrate a pattern similar to that of the forecasting results

shown in the upper panels.
<Insert Figure 6 around here>

We provide a visual comparison of the daily forecasts of the cumulative confirmed COVID-19 cases in
Figure 6. It is important to note that differencing the cumulative confirmed cases results in the forecast of
daily confirmed cases. To visualize the daily forecast, we present Figure 7, which displays the daily forecast
for the four countries. The results are summarized as follows:

(a) For both the teacher-forcing and non-teacher-forcing methods, we observe that the MAR method
accurately captures the trends and autocorrelation patterns in the daily confirmed cases. Specifically,
for the U.S., the series exhibits a declining trend with oscillation, whereas the series for Japan shows
an initial decline followed by a rebound. These patterns are accurately captured by the MAR model,

demonstrating its superior performance compared with the MEAR and LQAR models.
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(b)

(c)

(d)

For both the teacher-forcing and non-teacher-forcing methods, we observe that the MAR method
outperforms the MAR and MEAR models in forecasting outliers. In Figure 7, the MAR forecasts
show wider variations than the LQAR and MEAR forecasts. This indicates that the MAR forecasts
are better able to capture the cyclical peaks and bottoms of the daily confirmed cases. This trend is
particularly evident in Canada and Japan.

The forecast error on the test set tends to be larger in the non-teacher-forcing method compared to
the teacher-forcing method. This is because the prediction errors in the non-teacher-forcing method
accumulate as the last-period forecast is used as a covariate for the next-period forecast. This can lead
to compounding errors and potentially larger forecasting errors over time. However, in the teacher-
forcing method, the use of actual realizations in the test data as inputs for forecasting helps mitigate
the accumulation of errors, resulting in generally more accurate forecasts.

The forecast results obtained from the MAR, LQAR, and MEAR models show that governments
can be better prepared when forecasting daily confirmed cases using the MAR model compared to
the LQAR and MEAR models. The MAR model demonstrates better performance in capturing the
trends, autocorrelation patterns, and outliers in the daily confirmed cases. This implies that the MAR
model for forecasting can provide governments with more accurate and reliable information to make

informed decisions and take appropriate measures in response to the COVID-19 pandemic. g

<Insert Figure 7 around here>

The qualitative prediction outcomes for daily confirmed cases using the MAR model estimated by modal

regression with Scott’s and Silverman’s bandwidths are shown in Figures 8 and 9. They exhibit similar

performance to the forecasts obtained using SJ’s bandwidth. However, there are significant differences in

the quantitative evaluations.

<Insert Table 6 and Figures 8 and 9 around here>

The quantitative results using the three different bandwidths are presented in Tables 6 and 7. Table 6

reports the RMSEs between the forecasts and the actual values obtained using the teacher-forcing method. In

addition, Table 6 displays the estimated parameters obtained using SJ’s, Scott’s, and Silverman’s bandwidths

for the MAR model, whereas Table 7 presents the performance measures of the MEAR, LQAR, and MAR

models, including the RMSE, MAE, and CQF obtained by the teacher-forcing and non-teacher-forcing

methods. Here, SJ’s bandwidth is used for the MAR models. The quantitative results are summarized as

follows:
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(a)

(b)

(c)

Table 6 shows that SJ’s bandwidth outperforms the other two methods (Scott’s and Silverman’s) in
terms of RMSE for Canada, Japan, South Korea, and the U.S., which is consistent with the findings
in Section 4. The estimated coefficients are generally similar across the different bandwidths for
Canada, South Korea, and the U.S., whereas Japan exhibits notable differences among the different
bandwidths.

Table 7 indicates that for the training sets of the four countries, the CQF for the MAR model con-
sistently has the smallest value. For the test set and for both teacher-forcing and non-teacher-forcing
methods, the MAR model most often performs better than the MEAR and LQAR models in terms
of the CQF. Although we do not report here, the same result is also obtained when applying Scott’s
and Silverman’s bandwidths, and this can be easily inferred from the forecast results in Figures 7, 8,
and 9. Furthermore, the MAR model sometimes achieves even the best RMSE and MAE. This can
be attributed to the robustness of the modal regression approach in handling unexpected noise and
outliers in the differenced data.

The results obtained by the teacher-forcing method consistently outperform the forecast obtained by
the non-teacher-forcing method. This validates our earlier discussion on the difference between these
two methods, highlighting that the non-teacher-forcing method tends to accumulate forecast errors

over the forecast horizon, leading to less accurate predictions than the teacher-forcing method. g

<Insert Table 7 around here>

When comparing the performances of the different bandwidths for the four countries, it is evident that

SJ’s bandwidth consistently yields smaller RMSE values, indicating its superiority in forecasting confirmed

COVID-19 cases using the MAR method. Additionally, the smaller CQF values obtained by the MAR

method compared with those obtained by the MEAR and LQAR methods demonstrate that the MAER and

LQAR methods are more sensitive to outliers and tend to accumulate forecasting errors gradually over time,

thereby affecting the overall forecast accuracy.

6 Conclusion

Since the outbreak of COVID-19, there has been a growing interest in analyzing its trend in the scientific

literature. Over the years, our understanding of the disease and its development has improved as we have

accumulated more data and gained more experience. In this context, the modal regression method has

emerged as a valuable statistical tool for handling noisy and skewed data to predict and analyze the COVID-
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19 trend. This allows us to account for the characteristics and fluctuations in the data, leading to more
accurate predictions and insights into the dynamics of the disease.

This study analyzes the confirmed COVID-19 cases using the modal regression approach, which in-
volves four main steps. First, an objective function is formulated to evaluate the different forecasts for a
series, considering the estimation of conditional mean, median, and mode. The forecasts are evaluated based
on RMSE, MAE, and CQF metrics. Modal regression aims to optimize the CQF, whereas conditional mean
and median regressions optimize the RMSE and MAE, respectively. The CQF measures the probability of
a random variable falling within a forecasted interval, making the conditional mode function suitable for
optimizing the CQF. Second, the prediction models available in the literature are reviewed, focusing on their
application in modal regression. Two types of models for time-trend and unit-root processes are examined
for their suitability in the modal regression framework. Third, simulations are performed to investigate the
properties of the modal regression. The simulations involve cross-sectional, stationary, and unit-root data,
and the consistency of the modal regression is examined. It is discovered that the performance of the modal
regression critically depends on the choice of bandwidth used to estimate the density function. Notably, the
results demonstrate that SJ’s bandwidth, along with Scott’s and Silverman’s bandwidths, provides robust
estimation outcomes. Finally, the modal regression approach is applied to analyze the confirmed COVID-
19 cases in Canada, Japan, South Korea, and the U.S. The empirical analysis aims to forecast and analyze
the trends in COVID-19 cases using the modal regression framework, considering the characteristics and
dynamics of the data for these countries.

Several key findings emerged from our empirical analysis. First, the MR method consistently outper-
forms the other methods in terms of the CQF for the cumulative confirmed COVID-19 case data, regardless
of whether time-trend or unit-root models are considered. For all four countries (Canada, Japan, South
Korea, and the U.S.), the CQF achieved through modal regression is consistently smaller than that of the
other methods, indicating better performance in terms of capturing the forecast uncertainty. Second, the
forecasts obtained through modal regression demonstrate superior capability in capturing the cyclical peaks
and bottoms of daily confirmed COVID-19 cases compared with those obtained through mean and median
regressions. This is attributed to the wider variation in the modal regression forecasts, which align more
closely with the actual cyclical patterns. In contrast, the forecasts from the mean and median regressions
tend to underestimate and overestimate the cyclical peaks and bottoms, respectively. This finding has impor-
tant economic implications, suggesting that modal forecasting can help governments avoid high risks when
formulating health policies related to COVID-19.

The research methodology employed in this study can be extended to analyze data from other countries
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or explore other infectious diseases. The methodology does not assume specific characteristics of the data
from the four countries considered in this study and is established based on methodological considerations
related to modal regression. Therefore, it can be used to analyze various time-series data.

However, we also emphasize that the current study focuses on forecasting the future observations of
a single series using its past observations when it is nonstationary. It does not examine the interrelation-
ship between two or more nonstationary processes. For instance, in the case of nonstationary data such as
confirmed COVID-19 cases, it would be invaluable to investigate the cointegrating relationships with other
variables in the quantile autoregressive distributed lag model framework (e.g., Cho, Kim, and Shin, 2015).

Exploring these interrelationships could be a potential direction for future research.
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Hospital Beds  Health Expenditure Growth ~Cumulative Vaccinations

per 1,000 People between 2019 and 2020 per 100 People (ai?gzci%t;z)
(as of 2020) (as % of GDP) (as of Dec. 2022) ’
Canada 2.79 1.99% pt. 247.84 1.1% (48,349)
Japan 12.63 0.15% pt. 285.44 0.2% (50,827)
Korea 12.65 0.22% pt. 250.19 0.1% (30,975)
U.S. 2.80 2.14% pt. 197.37 1.1% (1,083,362)

Table 1: MEDICAL STATISTICS ON COVID-19 FOR THE FOUR COUNTRIES. The data on Hospital
Beds is sourced from Trading Economics (https://tradingeconomics.com/country—1list/
hospital-beds). The data on Health Expenditure is sourced from The World Bank (https://data.
worldbank.org/indicator). The data on cumulative vaccinations and fatality rate are sourced from
Our World in Data (https://ourworldindata.org/covid-vaccinations).

Method Parameter \ n 100 200 300 500 1,000
VER . 03381 0.1625  0.1074 _ 0.0661 _ 0.0311

B1. 1.0970 05511 03604 02270  0.1035

LoR . 03677 0.0735  0.1259 00717 0.0346

Bos 12485 06062 04221 02450  0.1170

i 04563 03721 03721 0.1467  0.0923

DGPT MR &S] B 09167  0.8285 07511 05574  0.2566
i 04662 03792 03784  0.1462  0.0914

MR & Scott Ba. 09257 08849 07663  0.5667 02673

. e 05047 04511 04200  0.1531 _ 0.1008

MR & Silverman Bas 11022 1.0236  0.8921  0.6430  0.2592
VER e 02541 0.1167 00791 0.0467 _ 0.0231

Bus 07455 03613 02357  0.331  0.0725

LOR e 02818 0.1340  0.0918 00536 0.0271

Bs. 0.8637 03867 02764  0.1669  0.0805

on 19091 17029 13450 13166 12781

DGP2 - MR &S] Be. 28691 25467 21244 20269  1.8912
on 19723 17681 14101 14293 1.2901

MR & Scott B 27920 25719 22965 22910  1.9801

. on 20121 17921 13771 13491 13291

MR & Silverman Box 2.8812 27021 23103 21310  1.9004

Table 2: THE MSES USING THE CROSS-SECTIONAL DATA SIMULATIONS. DGPI is generated by sim-
ulating IID samples {(X¢,Y;),i =1,...,n} such that Y; = au + . Xy + Uy, where o, = 0, By = 2,
and U; ~ 0.5N(—2,32%) + 0.5N (2, 12), from which E (V; | X;) = 2X;, median (Y; | X;) = 2X; + 1, and
mode (Y; | X;) = 2X; + 2. DGP2 is generated by simulating IID samples such that Y; = «, + 8. X; + Uy,
where a, = 0, B, = 1, and Uy ~ X2 — 3, from which E (Y; | X;) = X;, median (V; | X;) = X; — 0.63,
and mode (Y; | X;) = X; — 2. The simulation results are obtained by conducting 1,000 replications.
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Method Parameter\n 100 200 300 500 1000

VEAR P 0.0989 00391 00209 0.0046  0.0015
Bre 0.0008  0.0001  0.0000  0.0000  0.0000

LOAR o 0.0844 00300 00154  0.0065 _ 0.0005

B 0.0005  0.0001  0.0000  0.0000  0.0000

on 04282 02647 02121  0.1895  0.0810

DGP3 — MAR &S] Bos 0.0008  0.0001  0.0000  0.0000  0.0000
on 04833 02693 02177 0.1932  0.0821

MAR & Scott Box 0.0006  0.0001  0.0000  0.0000  0.0000

. alon 06093 03722 03112 02069  0.1293

MAR & Silverman Bo. 0.0008  0.0001  0.0000  0.0000  0.0000

VEAR 10+ 0.0001 __0.0000 _ 0.0000 _ 0.0000 _ 0.0000

Bios 0.0007 00001  0.0001  0.0000  0.0000

LOAR arre 0.0004 00001 0.0000 _ 0.0000 _ 0.0000

B 0.0002 00001  0.0001  0.0000  0.0000

12e 02108 0.1123 01112 0.0925  0.0581

DGP4— MAR &SI B2 0.0004  0.0000  0.0000  0.0000  0.0000
12e 02495 01164 01142 00919  0.0628

MAR & Seott Bias 0.0014 00000  0.0000  0.0000  0.0000

. Q120 03030 0.1348 01339 0.112 00725

MAR & Silverman Bia 0.0004 00000 00000  0.0000  0.0000

Table 3: THE MSES USING THE TIME-SERIES DATA SIMULATIONS. This table compares the per-
formances from different estimations: MEAR, LQAR, and MAR methods based upon the SJ’s, Scott’s,
and Silverman’s bandwidths. The first simulated dataset {Y; : ¢t = 1,...,n} is obtained from the follow-
ing DGP3: Y; = ax + 5:Yi—1 + Uy, where o, = 0.3, B = 1, and U; ~ T'(3,1) — 3. From this,
E(Y;|Yi—1) =0.34+Y;_1, median (Y; | Y;—1) = Yi—1, and mode (Y; | Y;—1) = —0.7 4+ Y;_1. The second
simulated dataset {Y; : t =1,...,n} is obtained from the following DGP4: Y; = «, + (B.Y;—1 + Uy,
where o, = 0.3, B = 0.5, and U; ~ TI'(3,1) — 3. From this, E (Y; | Y;—1) = 0.3 + 0.5Y;_1,
median (Y; | Y;—1) = 0.5Y;_1, and mode (Y; | Y;—1) = —0.7 + 0.5Y;_1.
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Training Set Test Set

Country Method

RMSE MAE CQF RMSE MAE CQF
MER 0.0148 0.0118 0.0103 0.0318 0.0304 0.0298
LQR 0.0152 0.0111 0.0085 0.0354 0.0342 0.0332
Canada MR 0.0148 0.0117 0.0102 0.0319 0.0306 0.0299
BMR 0.0063 0.0051 0.0038 0.0709 0.0531 0.0466
LPMR 0.0063 0.0052 0.0043 0.0171 0.0146 0.0124
MER 0.0303 0.0267 0.0275 0.0756 0.0749 0.0755
LQR 0.0326 0.0250 0.0168 0.0838 0.0832 0.0838
Japan MR 0.0303 0.0265 0.0165 0.0758 0.0750 0.0757
BMR 0.0033 0.0027 0.0024 0.0083 0.0069 0.0045
LPMR 0.0031 0.0025 0.0023 0.0125 0.0115 0.0103
MER 0.0621 0.0551 0.0583 0.0961 0.0960 0.0958
LQR 0.0644 0.0543 0.0537 0.0643 0.0639 0.0619
Korea MR 0.0706 0.0555 0.0496 0.0550 0.0541 0.0517
BMR 0.0043 0.0028 0.0014 0.0823 0.0690 0.0532
LPMR 0.0036 0.0026 0.0018 0.0870 0.0605 0.0399
MER 0.0646 0.0531 0.0490 0.1238 0.1221 0.1295
LQR 0.0722 0.0486 0.0332 0.0912 0.0898 0.0947
U.S. MR 0.0749 0.0489 0.0336 0.0779 0.0765 0.0805
BMR 0.0072 0.0049 0.0035 0.0283 0.0221 0.0147
LPMR 0.0070 0.0047 0.0030 0.0251 0.0204 0.0147

Table 4: THE QUANTITATIVE RESULTS OF DIFFERENT ESTIMATION METHODS. This table evaluates
the efficacy of different regression methods for forecasting the cumulative confirmed COVID-19 cases from
February 8, 2022, to April 8, 2022. The results are measured by RMSE, MAE, and CQF.

Country . Before ' . After '
Dickey-Fuller p-value Reject Dickey-Fuller p-value Reject
Canada -3.0538 0.1516 No -6.4527 <0.01 Yes
Japan -0.9009 0.9447 No -5.4706 <0.01 Yes
Korea -1.9200 0.6064 No -5.5924 <0.01 Yes
U.S. -4.0388 0.0151 No -5.8077 <0.01 Yes

Table 5: THE ADF TEST RESULTS BEFORE AND AFTER DIFFERENCING THE ACCUMULATED CON-
FIRMED COVID-19 CASES. The considered dataset ranges from February 8, 2022, to April 8, 2022, and
the ADF test significance level is set to 0.01. To ensure the stationarity of the time series, we set the differ-
ence order as 3.
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Method Canada Japan Korea U.S.

RMSE Training Set 0.1764 0.1350 0.1085 0.0355

Test Set 0.2857 0.0699 0.0701 0.0307

Qv -0.0236 -0.0044 0.0000 0.0029

B1x -0.5224 -0.9021 -0.8679 -0.5925

SJ Bax -0.3358 -0.8722 -1.0773 -0.6856
Coef B3 -0.6016 -0.8328 -1.3416 -0.7422

Bax -1.1054 -0.7654 -1.3734 -0.8425

B -1.3693 -0.8430 -1.4871 -0.9307

Bex -1.3588 -0.7832 -1.2355 -0.9529

RMSE Training Set 0.1779 0.1450 0.1279 0.0355

Test Set 0.2889 0.1044 0.0929 0.0308

v -0.0234 0.0526 0.0035 0.0029

B« -0.5289 -0.4999 -1.1798 -0.5953

Scott Bax -0.3329 -0.9829 -1.0942 -0.6893
Coef B34 -0.6020 -1.0668 -1.2720 -0.7473

Bax -1.1118 -1.1104 -1.1384 -0.8464

B -1.3744 -1.0587 -1.3406 -0.9316

B -1.3638 -0.9479 -1.0740 -0.9527

RMSE Training Set 0.1799 0.1506 0.1093 0.0354

Test Set 0.2907 0.1069 0.0806 0.0308

0 -0.0235 0.0509 -0.0088 0.0025

B« -0.5364 -0.4543 -0.5419 -0.5885

Silverman B2 -0.3288 -0.9954 -0.6828 -0.6800
Coef B34 -0.5997 -1.1023 -0.9043 -0.7340

B -1.1199 -1.1617 -0.7628 -0.8361

B -1.3785 -1.0871 -1.1533 -0.9277

Be« -1.3723 -0.9580 -0.9320 -0.9529

Table 6: THE QUANTITATIVE RESULTS OF DIFFERENT BANDWIDTH SELECTION METHODS FOR
COVID-19. The RMSE is computed by comparing the forecasts with the realized confirmed cases. Here,
a, denotes the intercept; and the lag coefficients are denoted as B, 52x, B3+, Bax, O5%, and Bgsx.
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Test Set Test Set
(Teacher Forcing) (Non-teacher Forcing)
RMSE MAE CQF RMSE MAE CQF RMSE MAE CQF
MEAR  0.1443 0.1145 0.1043  0.2206 0.1968 0.1784 0.2745 0.2243 0.1991
Canada LQAR 0.1487 0.1120 0.0930 0.2494 0.2124 0.1898  0.2373 0.2004 0.1893
MAR 0.1764 0.1256 0.0664 0.2857 0.2338 0.1855 0.1981 0.1794 0.1855
MEAR  0.1151 0.0906 0.0656 0.0625 0.0535 0.0492 0.2359 0.2185 0.2776
Japan LQAR 0.1201 0.0834 0.0510 0.0609 0.0487 0.0416  0.3254 0.3039 0.2822
MAR 0.1350 0.0883 0.0404 0.0699 0.0538 0.0396 0.3796 0.3574 0.2541
MEAR  0.1027 0.0647 0.0348 0.0757 0.0593 0.0400 0.0675 0.0532 0.0748
Korea LQAR 0.1059 0.0624 0.0349 0.0967 0.0791 0.0806  0.0835 0.0707 0.0819
MAR 0.1085 0.0654 0.0217 0.0701 0.0506 0.0360 0.0781 0.0653 0.0654
MEAR  0.0342 0.0256 0.0197 0.0303 0.0211 0.0136  0.0302 0.0225 0.0135
U.S. LQAR 0.0348 0.0247 0.0189 0.0315 0.0219 0.0168 0.0463 0.0295 0.0180
MAR 0.0355 0.0251 0.0157 0.0307 0.0198 0.0133 0.0291 0.0212 0.0141

Country ~ Method Training Set

Table 7: THE QUANTITATIVE RESULTS OF THE FORECAST METHODS. This table compares the perfor-
mances of the MEAR, LQAR, and MAR methods applied to the cumulative confirmed COVID-19 cases.
The MAR model utilizes SJ’s bandwidth. The data range from February 8, 2022, to April 8, 2022. For the
test dataset, the teacher-forcing and non-teacher-forcing methods are separately applied.
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Figure 1: THE PROBABILITY DENSITY FUNCTION OF THE ERROR DISTRIBUTION IN THE DGPS. The
skewed error of DGP1 is generated from U; ~ 0.5N(—2,32) 4+ 0.5N(2,12). The skewed error of DGP2 is
generated from U; ~ é\,’32 - 3.
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Figure 2: THE SCATTER PLOT AND REGRESSION LINES. 200 data points are generated from DGP1:
Y; = au + B Xy + Uy, where o, = 0, B, = 2 and U; ~ 0.5N(—2,3%) + 0.5N(2,12). The red, orange, and
blue lines represent the conditional mode, median, and mean functions, respectively. Other 200 data points
are generated from DGP2: Y; = «a, + 84 X + Uy, where o, = 0, B, = 1 and U; ~ X32 — 3. The red, orange,
and blue lines represent the modal, median, and mean regressions, respectively.
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Figure 3: EMPIRICAL DENSITY OF THE MODAL REGRESSION COEFFICIENTS FROM THE CROSS-
SECTIONAL DATA. The four figures separately display the probability densities of the estimated coefficients
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O, and Bn using the cross-sectional data described as DGP 1 and DGP2.
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Figure 4: EMPIRICAL DENSITY OF THE MODAL REGRESSION COEFFICIENTS FROM THE TIME-SERIES
DATA. The four figures separately display the probability densities of the estimated coefficients &, and (3,
using the time-series data described as DGP 3 and DGP 4.
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Figure 5: THE SCATTER PLOT OF ALL DATA POINTS AND THE REGRESSION LINES FROM THE DIF-
FERENT REGRESSION METHODS. This figure shows different forecasts from the five regression meth-
ods: MER, LQR, MR, BMR, and LPMR. The vertical axis denotes the cumulative confirmed COVID-19
cases. The real observations, in-sample and out-of-sample forecasts are denoted by circles, ‘PREDICT’ and
‘TRAIN’, respectively. Different colors are used to indicate different regression methods.
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Figure 6: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS
ON THE ACCUMULATED CONFIRMED CASES. The real observations, in-sample and out-of-sample fore-
casts are denoted by circles, ‘PREDICT’ and ‘TRAIN’, respectively. Different colors are used to indicate
different methods. The red, orange, and blue lines represent the forecasting made by the MEAR, LQAR,
and MAR methods, respectively.
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Figure 7: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS
ON THE DAILY CONFIRMED CASES. The real observations, in-sample and out-of-sample forecasts are
denoted by circles, ‘PREDICT’ and ‘TRAIN’, respectively. Different colors are used to indicate different
methods. The blue, red, and orange lines represent the forecasting made by the MEAR, LQAR, and MAR
methods, respectively. SJ’s bandwidth is used.
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Figure 8: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS
ON THE DAILY CONFIRMED CASES. The real observations, in-sample and out-of-sample forecasts are
denoted by circles, ‘PREDICT’ and ‘TRAIN’, respectively. Different colors are used to indicate different
methods. The blue, red, and orange lines represent the forecasting made by the MEAR, LQAR, and MAR
methods, respectively. Scott’s bandwidth is used.
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Figure 9: THE QUALITATIVE FORECASTING RESULTS OF THE MEAR, LQAR, AND MAR METHODS
ON THE DAILY CONFIRMED CASES. The real observations, in-sample and out-of-sample forecasts are
denoted by circles, ‘PREDICT’ and ‘TRAIN’, respectively. Different colors are used to indicate different
methods. The blue, red, and orange lines represent the forecasting made by the MEAR, LQAR, and MAR
methods, respectively. Silverman’s bandwidth is used.
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In the current Appendix, we prove that Q,, ,(0%+1)) > Q,, ,(6®)) and provide the descriptive

statistics of the confirmed COVID-19 cases.
A Appendix

Proof of Q,, ,(0%**1)) > Q,,1,(6"%)): For each iteration of the MEM algorithm described in Section 3.1,
the optimized objective function outcome gradually increases. In other words, for any positive integer k,

Q. (0% D)) > @, 1, (0%)). The proof is as follows: we note that

log Qus (0741 = log Qun (0
=log )" an (Yo = m(Xe,04+1))) ~log Y o (¥i — m(X,,6%))
t=1 t=1
. on (Yt Xt’(g(kJrl ) ]
)

Lt= 123 1 h (Y m(XJaH( ))

1o Zn: on (Y —m(Xy, 0F)) ¢, (Yo — m(Xy, 0FFD))
B2 S on (Y= m(X0, 060)) g (¥; — m( X, 60))

n on (Y —m(Xy, 04+D))
B (k)
= log _; m(t]6°) on (Yy — m(Xy, 0())

= log

by noting that
¢h (}/t (Xt7 e(k)))
Zt 1 Qbh (Yt (Xhe(k))) '

m(t]o®)) =
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From this, we obtain

. on (Yo — m(Xy, 0%+1))
(k+1)Y _
log Qp, (0 k+1> loth< ) tzlwtlﬂ { on (Vi —m(X;,00))

by applying Jensen’s inequality. If we further apply the definition of #(**1) from the M-step,
n n
> w(t]0%)log {¢h (Yz (Xt,H("““)))} >3 w(t | 6%)log {¢>h (Yt —m(X, 9<k>>)} ,
t=1 t=1
implying that

o {00 (99)] -t ()} 20

This completes the proof. U

We next provide Table A.1 containing the descriptive statistics of the three-times differenced confirmed
COVID-19 cases for Canada, Japan, South Korea, and the U.S. The confirmed cases are transformed ac-

cording to the min-max normalization.

Country Mean Median Max Min Std Skewness Kurtosis n
Canada -0.0173 0.0483 0.9223 -1.0378 0.3863 -0.31323 -0.1602 60
Japan 0.0040 -0.0476 0.6807 -0.4512 0.2319 0.9643 0.5565 60
Korea -0.0006 -0.0049 0.4967 -0.7421 0.1947 -0.3592 2.9991 60
U.S. -0.0116 0.0021 0.4792 -1.1445 0.2382 -1.9729 7.1857 60

Table A.1: DESCRIPTIVE STATISTICS OF THE THREE-TIMES DIFFERENCED CONFIRMED COVID-19
CASES FOR CANADA, JAPAN, SOUTH KOREA, AND THE U.S. Descriptive statistics are computed over
60 days from February 8, 2022, to April 8, 2022. The data are available at the following URL: https:
//github.com/CSSEGISandData/COVID-109.
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