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Abstract
This study examines the large sample behavior of an ordinary least squares (OLS) estimator when a
nonlinear autoregressive distributed lag (NARDL) model is correctly specified for nonstationary data.
Although the OLS estimator suffers from an asymptotically singular matrix problem, it is consistent for
unknown model parameters, and follows a mixed normal distribution asymptotically. We also examine
the large sample behavior of the standard Wald test defined by the OLS estimator for asymmetries in
long- and short-run NARDL parameters, and further supplement it by noting that the long-run parameter
estimator is not super-consistent. Using Monte Carlo simulations, we then affirm the theory on the Wald
test. Finally, using the U.S. GDP and exogenous fiscal shock data provided by Romer and Romer (2010,
American Economic Review), we find statistical evidence for long-and short-run symmetries between tax
increase and decrease in relation to the U.S. GDP.
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1 Introduction

The nonlinear autoregressive distributed lag (NARDL) model is popularly applied to estimate the asym-

metric cointegrating relationship between nonstationary variables. After the NARDL model was introduced

by Shin, Yu, and Greenwood-Nimmo (2014), many long-run relationships have been revisited, and linear

ones have been modified using different slope coefficients depending on the variables’ signs. For example,

Borenstein, Cameron, and Gilbert (1997) identified the so-called rockets and feathers in gasoline prices,

showing that upward cost shocks in crude oil prices pass through faster than downward shocks, affecting the

other economic variables asymmetrically. Chesnes (2016) empirically affirms this feature using the NARDL

model.

Despite its popularity, estimating the NARDL model by ordinary least squares (OLS) has not yet been

theoretically established. Cho, Greenwood-Nimmo, and Shin (2023c) point out that the OLS method suffers

from an asymptotically singular matrix problem, although many empirical studies estimate unknown pa-

rameters by OLS and compare the standard Wald test using critical values obtained from mixed chi-squared

distribution, ignoring the asymptotically singular matrix problem.

This study mainly proposes to revisit the OLS estimator and provide its large sample theory. Although

the estimator suffers from the asymptotically singular matrix problem, we find that it provides consistent

estimation results for unknown parameters, thus enabling us to derive its asymptotic distribution and present

a theoretical ground to apply the Wald test principle to OLS for the NARDL hypothesis. Indeed, the OLS

estimator follows a mixed normal distribution under some mild regularity conditions. Although the long-

run parameter estimator is not super-consistent, this feature asymptotically validates the popular use of the

standard Wald test for empirical data.

Furthermore, we demonstrate the proper use of OLS estimation for NARDL by using empirical data

provided by Romer and Romer (2010) and examining the long- and short-run relationships between the

U.S. GDP and fiscal exogenous shocks. Romer and Romer (2010) use narrative records such as presidential

speeches and Congressional reports to measure legislated exogenous tax changes pertaining to the U.S.

GDP. Using the NARDL model, we infer the long- and short-run relationships between tax increase and

decrease in relation to the U.S. GDP. This serves the additional purpose of illustrating our method in a

standard setting.

This study bridges the gap in the NARDL model estimation literature. Indeed, this is not the first

work to overcome the asymptotically singular matrix problem associated with NARDL. Cho et al. (2023c)

explain the asymptotically singular matrix problem and overcome it by estimating the NARDL parame-

ters using a two-step procedure. They estimate the long- and short-run parameters separately as in En-
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gle and Granger (1987), avoiding the asymptotically singular matrix problem. Referring to this procedure

as two-step NARDL (2SNARDL) estimation, they demonstrate that the long-run parameter estimator is

super-consistent. Thus, the current study provides a platform to compare the OLS method with 2SNARDL

estimation, while resolving the methodological issues related to OLS.

The problem of asymptotically singular matrix may be difficult to resolve through higher-order ex-

pansion. Note that the problem may be related to an unidentified model problem. As for the maximum-

likelihood (ML) and nonlinear least squares (NLS) estimations, the lack of model identification can be

tackled through higher-order model expansion, as in the literature (e.g., Teräsvirta, 1994; Cho and White,

2007, 2010; Cho, Ishida, and White, 2011; Cho and Ishida, 2012; Baek, Cho, and Phillips, 2015; Cho and

Phillips, 2018; White and Cho, 2012; Seong, Cho, and Teräsvirta, 2022, among others). However, applying

higher-order expansion directly to NARDL for OLS estimation can be challenging. The model already as-

sumes linearity, unlike ML or NLS estimators, which means that higher-order expansion has to be applied

to the estimator itself, and not to the model. This is particularly challenging because higher-order expansion

has to be applied to the inverse matrix determinant associated with OLS, given that the dimension of the

inverse matrix can be arbitrary.

We address this by obtaining the asymptotic distribution of the OLS estimator indirectly as follows.

We first represent the OLS estimator as a transform of other primitive estimators that do not suffer from

the asymptotically singular matrix problem, and then derive their weak limits, to obtain the desired limit

distribution. Through this limit distribution, the OLS convergence rate becomes lower than that without the

singular matrix problem, not letting the long-run parameter estimator become super-consistent. This lower

convergence rate typically occurs when higher-order expansion is used to derive the asymptotic distribution

of an estimator.

The limit distribution thus obtained indirectly can be used to infer the unknown parameter. We can also

use it to examine the large sample behavior of the Wald test as defined by OLS, and further supplement

this by noting that the OLS estimator has a lower convergence rate. As discussed below, the primitive

estimator used for long-run parameter estimation is super-consistent, implying that we can define another

Wald statistic to test a long-run parameter.

The empirical illustration of this study presents a suitable environment to apply NARDL. We are pri-

marily interested in identifying how the long- and short-run relationships between the U.S. GDP and tax

decreases differ from those between the U.S. GDP and tax increases. Romer and Romer (2010) classify the

legislated tax changes into exogenous and endogenous ones in terms of GDP based on narrative data. The

literature presents two types of exogenous tax changes: those for deficit reduction, and those for long-run

growth. All tax changes for deficit reduction are related to tax increases, while most tax changes for long-
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run growth are related to tax decreases. Thus, by applying the NARDL model, we can infer the long- and

short-run relationships between the tax changes for deficit reduction and those for long-run growth in terms

of U.S. GDP. This investigation provides statistical evidence that long- and short-run parameters are sym-

metrical. That is, the tax changes for deficit reduction and those for long-run growth affect the U.S. GDP

similarly. Moreover, our findings indicate that a 1% exogenous GDP tax decrease increases the log real

GDP by about 3% in the long run. This is close to the estimation results in Romer and Romer (2010). While

drawing this evidence, we illustrate our methodology using OLS along with 2SNARDL for comparison.

This study is structured as follows. Section 2 overviews the NARDL model and discusses the asymp-

totically singular matrix problem associated with OLS. Section 3 defines primitive estimators and presents

the OLS estimator as a bilinear transform of other estimators. Section 4 discusses the limit distribution of

an OLS estimator with different distributions depending on parameter values and the specific conditions for

limit distributions. Section 5 examines the large sample properties of the standard Wald test for the NARDL

hypothesis. This section also discusses another Wald test for supplementary purposes, examining its large

sample behavior. Section 6 conducts Monte Carlo simulations for the Wald tests, while Section 7 presents

the empirical illustration. Finally, the concluding remarks are presented in Section 8. All mathematical

proofs are provided in the Online Supplement.

Before concluding this section, we present the notation used throughout the study. We provide the weak

limit of an estimator by a stochastic integral. Denoting the weak limit by
∫
B or

∫
dB means

∫ 1
0 B(u)du

or
∫ 1
0 dB(u), respectively, where B(·) is a Brownian motion.

2 Motivation and the NARDL Model in the Literature

This section briefly summarizes NARDL and motivates the current study by relating OLS to the asymptoti-

cally singular matrix problem. In addition, the study relates the problem to the literature by associating the

singular matrix problem with an unidentified model.

Consider a NARDL(p, q) process augmented by a time drift:

yt = α∗ + ξ∗t+

p∑
j=1

ϕj∗yt−j +

q∑
j=0

(θ+′
j∗x

+
t−j + θ−′

j∗x
−
t−j) + et, (1)

where xt ∈ Rk, x+
t :=

∑t
j=1∆x+

j , x−
t :=

∑t
j=1∆x−

j , ∆x+
t := max[0,∆xt], ∆x−

t := min[0,∆xt],

{et,Ft} is a martingale difference array (MDA), and Ft is the smallest σ-algebra driven by {yt−1,x
+
t ,x

−
t ,

yt−2,x
+
t−1,x

−
t−1, . . .} such that ∆xt is a stationary process. The NARDL process in (1) is more general

than thpse defined by Shin et al. (2014) and Cho, Greenwood-Nimmo, and Shin (2023b), because the latter
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ones do not allow for a time trend on the right-hand side.

Note that (1) can be rewritten in the error-correction form as follows:

∆yt = ρ∗yt−1+θ+′
∗ x+

t−1+θ−′
∗ x−

t−1+ξ∗(t−1)+α∗+

p−1∑
j=1

φj∗∆yt−j+

q−1∑
j=0

(
π+′
j∗∆x+

t−j + π−′
j∗∆x−

t−j

)
+et,

(2)

by letting ρ∗, θ+
∗ , θ−

∗ , φj∗ (j = 1, 2, . . . , p − 1), π+
j∗, and π−

j∗ (j = 0, 1, . . . , q − 1) be such that ρ∗ :=∑p
k=1 ϕj∗ − 1, θ+

∗ :=
∑q

j=0 θ
+
j∗, θ−

∗ :=
∑q

j=0 θ
−
j∗, π+

0∗ := θ+
0∗, π−

0∗ := θ−
0∗, and for ℓ = 1, 2, . . . , p − 1

and j = 1, 2, . . . , q − 1, φℓ∗ := −
∑p

i=ℓ+1 ϕi∗, π+
j∗ := −

∑q
i=j+1 θ

+
i∗, and π−

j∗ := −
∑q

i=j+1 θ
−
i∗. If yt is

cointegrated with (x+′
t ,x

−′
t )′, we may rewrite (2) as

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

φj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x+

t−j + π−′
j∗∆x−

t−j

)
+ et (3)

such that the cointegration error ut−1 can be defined as ut−1 := yt−1−β+′
∗ x+

t−1−β−′
∗ x−

t−1−ζ∗(t−1)−ν∗
with β+

∗ := −(θ+
∗ /ρ∗), β

−
∗ := −(θ−

∗ /ρ∗), and ζ∗ := −(ξ∗/ρ∗), where γ∗ := α∗ + ξ∗ + ρ∗ν∗. Here, we

introduce ν∗ such that E[ut] = 0, and let ut be a stationary process that can be correlated with ∆xt.

The NARDL process captures an asymmetric cointegrating relationship between nonstationary pro-

cesses. If µ+
∗ := E[∆x+

t ] and µ−
∗ := E[∆x−

t ], then µ+
∗ + µ−

∗ ≡ E[∆xt] by construction, as ∆xt ≡

∆x+
t +∆x−

t . Therefore, if further s+t := ∆x+
t − µ+

∗ and s−t := ∆x−
t − µ−

∗ , then it follows that

x+
t = µ+

∗ t+m+
t and x−

t = µ−
∗ t+m−

t by letting m+
t :=

t∑
j=1

s+j and m−
t :=

t∑
j=1

s−j . (4)

From (4), it is clear that x+
t and x−

t are unit-root processes with non-zero time drifts. Moreover, ∆yt is not

necessarily distributed around zero even when xt is a unit-root process. From (3), we obtain

δ∗ := E[∆yt] =
1

ϱ∗

γ∗ + q−1∑
j=0

π+′
j∗µ

+
∗ +

q−1∑
j=0

π−′
j∗µ

−
∗

 , where ϱ∗ := 1−
p−1∑
j=1

φj∗,

such that if dt := ∆yt − δ∗, then

yt = δ∗t+

t∑
j=1

dj . (5)

This implies that yt is a unit-root process with deterministic time drift. These findings indicate that (3) can

capture a cointegrating relationship between yt and (x+′
t ,x

−′
t )′.

OLS estimation of the unknown parameters in (2) is not straightforward, although this approach is
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popular in the empirical literature. This is mainly because it suffers from an asymptotically singular matrix

problem. For the examination of this issue and notational simplicity, we first assume that

zt := [ z′
1t z′

2t
]′

:= [ yt−1 x+′
t−1 x−′

t−1 (t− 1) 1 ∆y′
t−1 ∆x+′

t . . . ∆x+′
t−q+1 ∆x−′

t . . . ∆x−′
t−q+1

]′,

where ∆yt−1 := [∆yt−1,∆yt−2, . . . ,∆yt−p+1]
′. Note that zt ∈ R2+p+2k(1+q) is partitioned into two

variables, z1t and z2t, such that z1t ∈ R3+2k and z2t ∈ Rp+2kq−1. Here, z1t and z2t collect the variables

in the long- and short-run equations, respectively. Furthermore, we also assume that

α∗ := [ α′
1∗ α′

2∗ ]′ := [ ρ∗ θ+′
∗ θ−′

∗ ξ∗ α∗ φ′
∗ π+′

∗ π−′
∗ ]′,

where φ∗ := [φ1∗, φ2∗, . . . , φp−1∗]
′, π+

∗ := [π+′
0∗ ,π

+′
1∗ , . . . ,π

+′
q−1∗]

′, and π−
∗ := [π−′

0∗ ,π
−′
1∗ , . . . ,π

−′
q−1∗]

′.

From this, we can rewrite the OLS estimator as

α̂T := [ ρ̂T θ̂
+′
T θ̂

−′
T ξ̂T α̂T φ̂′

T π̂+′
T π̂−′

T
]′ :=

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

zt∆yt

)
.

To discuss the asymptotically singular matrix problem related to OLS estimation, we first introduce

some mild regularity conditions for the data:

Assumption 1. (i) {(∆x′
t, ut, et)

′ ∈ Rk+2 : t = . . . ,−1, 0, 1, . . .} is a strictly stationary mixing process

of size −r/(2(r − 1)) or α of size −r/(r − 2) and r > 2;

(ii) E[|∆xti|r] <∞ (i = 1, 2, . . . , k), E[|ut|r] <∞, E[|et|2] <∞, and δ∗ ̸= 0, where xti is the i-th row

element of xt;

(iii) Σ∗ := limT→∞ var[T−1/2
∑T

t=1wt] is positive definite, where

wt := [ w′
1t w′

2t
] := [ s+′

t−1 s−′
t−1 ut−1 et etut−1 etz

′
2t

]′;

(iv) for some α∗ with ρ∗ < 0, ∆yt is generated by (2) such that |L∗| > 1, where 1−
∑p

j=1 ϕj∗L
j
∗ ≡ 0;

(v) {et,Ft} is an MDA. □

Remarks. (a) Assumptions 1 (i and ii) assume mixing and moment conditions to apply the functional

central limit theorem (FCLT) to partial-sum data process. FCLT is popularly applied to derive the

limit distribution of the OLS estimator applied to estimate a cointegrating relationship (e.g., Phillips

and Hansen, 1990; Phillips, 1991; White, 2001, chapter 7).
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(b) Assumption 1 (iii) assumes a positive-definite matrix condition for the OLS limit distribution.

(c) Assumption 1 (iv) assumes ρ∗ < 0 for a cointegrating relationship between yt and (x+
t ,x

−
t ). If we

let β+
∗ = β−

∗ = 0 and ζ∗ = 0, then from (3) it follows that

yt = α∗ +

p∑
j=1

ϕj∗yt−j +

q−1∑
j=0

(
π+′
j∗∆x+

t−j + π−′
j∗∆x−

t−j

)
+ et,

while Assumption 1 (iv) implies that yt is a stationary process, contradicting the assumption that yt is

a unit-root process, indicating that we need to assume that ρ∗ = 0 for β+
∗ = β−

∗ = 0 and ζ∗ = 0. In

this study, we do not consider this, but focus on the limit behavior of the OLS estimator to estimate

the cointegration system. Pesaran, Shin, and Smith (2001) and Banerjee, Dolado, and Mestre (1998)

examine the F -test and t-test for ρ∗ = 0.

(d) Assumption 1 (v) is a standard condition for the error term in the autoregressive distributed lag

(ARDL) and NARDL processes (e.g., Pesaran and Shin, 1998; Pesaran et al., 2001; Shin et al., 2014;

Cho et al., 2023c). □

Next, we examine the asymptotically singular matrix problem. For this, we need the following lemma.

Lemma 1. Under Assumption 1,

(i) if D1 := diag[T 3/2I2+2k, T
1/2], D−1

1

(∑T
t=1 z1tz

′
1t

)
D−1

1
P→ M11, where

M11 :=



1
3δ

2
∗

1
3δ∗µ

+′
∗

1
3δ∗µ

−′
∗

1
3δ∗

1
2δ∗

1
3δ∗µ

+
∗

1
3µ

+
∗ µ

+′
∗

1
3µ

+
∗ µ

−′
∗

1
3µ

+
∗

1
2µ

+
∗

1
3δ∗µ

−
∗

1
3µ

−
∗ µ

+′
∗

1
3µ

−
∗ µ

−′
∗

1
3µ

−
∗

1
2µ

−
∗

1
3δ∗

1
3µ

+′
∗

1
3δ∗µ

−′
∗

1
3

1
2

1
2δ∗

1
2µ

+′
∗

1
2µ

−′
∗

1
2 1


;

(ii) if D2 := diag[T 1/2Ip+2kq−1], D−1
2

(∑T
t=1 z2tz

′
2t

)
D−1

2
P→ M22 := E[z2tz

′
2t];

(iii) D−1
2

(∑T
t=1 z2tz

′
1t

)
D−1

1
P→ M21, where

M21 :=


1
2δ

2
∗ιp−1

1
2δ∗ιp−1µ

+′
∗

1
2δ∗ιp−1µ

−′
∗

1
2δ∗ιp−1 δ∗ιp−1

1
2δ∗ιq ⊗ µ+

∗
1
2ιq ⊗ µ+

∗ µ
+′
∗

1
2ιq ⊗ µ+

∗ µ
−′
∗

1
2ιq ⊗ µ+

∗ ιq ⊗ µ+
∗

1
2δ∗ιq ⊗ µ−

∗
1
2ιq ⊗ µ+

∗
1
2µ

−′
∗

1
2ιq ⊗ µ−

∗ µ
−′
∗

1
2ιq ⊗ µ−

∗ ιq ⊗ µ−
∗

 ;
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(iv) if D := diag[D1,D2] and M12 := M′
21, D−1

(∑T
t=1 ztz

′
t

)
D−1 P→ M, where

M :=

 M11 M12

M21 M22

 ,
which is singular. □

Note that M is singular because its first (1 + 2k) columns are proportional to the (2 + 2k)-th column.

The proof of Lemma 1 is provided in the Online Supplement by extending lemma 1 of Cho et al. (2023c),

demonstrating another singular matrix problem when there is no time trend in (1). Augmenting the time

trend on the right-hand side does not eliminate the asymptotically singular matrix problem.

The asymptotically singular matrix problem implies not the absence of OLS estimator limit distribution,

but the fact that the limit distribution has to be obtained differently from the standard case. For ML and

NLS estimations, the limit distribution is typically obtained by applying higher-order approximation to the

nonlinear model, bringing the convergence rate of the estimator lower than the standard case (e.g., Teräsvirta,

1994; Cho and White, 2007, 2010; Cho et al., 2011; Baek et al., 2015; Cho and Phillips, 2018; White and

Cho, 2012; Seong et al., 2022).

Applying higher-order expansion theory to the OLS estimator is not straightforward here. This is mainly

because the expansion involves higher-order approximation of the determinant of (
∑T

t=1 ztz
′
t), which is

challenging because its dimension is determined by k, p, and q, and these can be arbitrarily given.

3 An Alternative Representation of the OLS Estimator

Owing to the complexity of higher-order expansion, we obtain the desired limit distribution using a different

approach compared to the standard case. Representing the OLS estimator as a bilinear transformation of

other primitive estimators that do not suffer from an asymptotic singularity problem, we obtain the OLS

limit distribution from their limit distributions. This brings the OLS convergence rate lower than that of D.

We proceed with our following discussions in three steps. First, we estimate the long-run parameters

using OLS. That is,

υ̂T := (β̂
+′
T , β̂

−′
T , ζ̂T , ν̂T )

′ := argmin
β+, β−, ζ, ν

T∑
t=1

(yt−1 − β+′x+
t−1 − β−′x−

t−1 − ζ(t− 1)− ν)2 and

υ̂T =

(
T∑
t=1

r̃t−1r̃
′
t−1

)−1( T∑
t=1

r̃t−1yt−1

)
,
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where r̃t := [x+′
t ,x

−′
t , t, 1]

′. We then assume that ût := yt− r̃′tυ̂T . Here, we obtain υ̂T from the following

equation,

yt = β+′
∗ x+

t + β−′
∗ x−

t + ζ∗t+ ν∗ + ut. (6)

When υ∗ := [β+′
∗ ,β

−′
∗ , ζ∗, ν∗]

′, υ̂T estimates υ∗.

In the second step, we specify model

∆yt = ρ∗ut−1 + η+′
∗ x+

t−1 + η−′
∗ x−

t−1 + ψ∗(t− 1) + γ∗

+

p−1∑
j=1

φj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x+

t−j + π−′
j∗∆x−

t−j

)
+ et (7)

by combining (2) and (6), where η+
∗ := θ+

∗ + ρ∗β∗, η−
∗ := θ−

∗ + ρ∗β
−
∗ , and ψ∗ := ξ∗ + ρ∗ζ∗ for OLS

estimation of the parameters in (7):

ω̃T :=

(
T∑
t=1

z̃tz̃
′
t

)−1( T∑
t=1

z̃t∆yt

)
.

Here, we assume that z̃t := [ ût−1 z̃′
1t z̃′

2t ]′ := [ ût−1 r̃′t−1 z′
2t

]′. Note that we replace ut−1 by

ût−1, and from the definitions of β+
∗ , β−

∗ , and ζ∗, we have η∗ = 0, η−
∗ = 0, and ψ∗ = 0, but their

corresponding variables included as auxiliary regressors, namely, x+
t−1, xt−1, and t − 1. By this inclusion,

we relate ω̃T to α̂T , that is,

α̂T = RT ω̃T , where RT :=

 R11
T 0

0 Ip+2kq−1

 , and R11
T :=

 1 01×(2+2k)

−υ̂T I2+2k

 . (8)

Now, α̂T is a bilinear transformation of υ̂T and ω̃T . We obtain this by applying Supplement Lemma A.1 to

(7) by letting yt, xt, and zt of Lemma A.1 be ∆yt, yt−1, and [r̃′t−1, z
′
2t]

′, respectively. Here, v̂t in Lemma

A.1 can be identified as ût−1.

As the final step, we represent υ̂T and ω̃T using other primitive estimators having no asymptotically

singular matrix problem. This step is essential because both υ̂T and ω̃T also suffer from asymptotically sin-

gular matrix problems as Supplement Lemma A.3 demonstrates. We therefore represent them as estimators

defined by other estimators not suffering from a singularity problem. Note that (4) and (6) imply that

yt = β+′
∗ m+

t + β−′
∗ m−

t + ϑ∗t+ ν∗ + ut, (9)

where ϑ∗ := β+′
∗ µ+

∗ + β−′
∗ µ−

∗ + ζ∗. Therefore, we can estimate the coefficients in (9), when yt is re-
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gressed against m+
t , m−

t , t, and 1. However, as m+
t and m−

t are not observable, we estimate them

by regressing x+
t and x−

t against t according to (4): µ̂+
T :=

(∑T−1
t=1 t

2
)−1 (∑T−1

t=1 tx
+
t

)
and µ̂−

T :=(∑T−1
t=1 t

2
)−1 (∑T−1

t=1 tx
−
t

)
, to obtain the regression residual by m̂+

t := x+
t − tµ̂+

T and m̂−
t := x−

t − tµ̂−
T .

We then assume that ṙt := [m̂+′
t , m̂

−′
t , t, 1]

′, and regress yt against ṙt, to obtain

υ̃T := [β̃
+′
T , β̃

−′
T , ϑ̃T , ν̃T ]

′ :=

(
T∑
t=1

ṙt−1ṙ
′
t−1

)−1( T∑
t=1

ṙt−1yt−1

)

by estimating the coefficients in (9), namely, ῡ∗ := [β+′
∗ ,β

−′
∗ , ϑ∗, ν∗]

′. From now, for notational simplicity,

we let mt := [m+′
t ,m

−′
t ]′, xt := [x+′

t ,x
−′
t ]′, β := [β+′,β−′]′, θ := [θ+′,θ−′]′, η := [η+′,η−′]′, and

µ := [µ+′,µ−′]′.

This estimator υ̃T is specifically related to υ̂T as follows:

υ̂T := [β̂
+′
T , β̂

−′
T , ζ̂T , ν̂T ]

′ = PT υ̃T = [β̃
+′
T , β̃

−′
T , ϑ̃T − µ̂′

T β̃T , ν̃T ]
′, (10)

where

PT :=

 I2k 0

P21
T I2

 and P21
T :=

 −µ̂′
T

01×2k

 .
We establish this by once again applying Supplement Lemma A.2 . If we let (x+′

t−1,x
−′
t−1)

′, (t − 1), and 1

be xt, zt, and wt of Lemma A.2, respectively, then (10) follows. We employ both µ̂+
T and υ̃T to represent

υ̂T in the form given in (10). The primary purpose of this is to exploit the fact that the limit behaviors

of primitive estimators on the right-hand side of (10) do not suffer from an asymptotically singular matrix

problem, which we verify in Lemma 2 below.

Furthermore, we represent ω̃T using other primitive estimators not suffering from asymptotically singu-

lar matrix problem. We first combine (4) and (7) to obtain

∆yt = ρ∗ut−1 + η′
∗mt−1 + ς∗(t− 1) + γ∗ +

p−1∑
j=1

φj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x+

t−j + π−′
j∗∆x−

t−j

)
+ et, (11)

where ς∗ := µ′
∗η∗+ψ∗, and then we regress ∆yt against żt := [ ût−1 ż′

1t ż′
2t

]′ := [ ût−1 ṙ′t−1 z′
2t

]′

to obtain τ̇T :=
(∑T

t=1 żtż
′
t

)−1 (∑T
t=1 żt∆yt

)
, estimating the coefficients in (11). Note that we replaced

mt−1 with m̂t−1 as earlier. For notational simplicity, we partition τ̇T as follows:

[ ρ̇T η̇′
T ς̇T γ̇T τ̇ ′

2T
]′ := [ ρ̇T τ̇ ′

1T τ̇ ′
2T

]′ := τ̇T ,

9



estimating τ ∗ := [ ρ∗ τ ′
1∗ τ ′

2∗ ]′ := [ ρ∗ η′
∗ ς∗ γ∗ φ′

∗ π+′
∗ π−′

∗ ]′. Here, we separately esti-

mate ψ∗ by ψ̇T := −µ̂′
T η̇T + ς̇T , from the definition of ς∗. Using these definitions, we relate τ̇T to ω̃T as

follows:

ω̃T = QT τ̇T , (12)

where

QT :=

 I1+2k 0

Q21
T I2kq+1

 and Q21
T :=

 0 −µ̂′
T

0(p+2kq)×1 0(p+2kq)×2k

 .
This representation is based on Supplement Lemma A.2. By letting (x+′

t−1,x
−′
t−1)

′, (t − 1), and [ût−1, 1,

z′
2t]

′ be xt, zt, and wt of Lemma A.2, respectively, we obtain the desired representation. From Lemma 2

below, τ̇T does not suffer from an asymptotically singular matrix problem. Here, QT τ̇T is almost identical

to τ̇T , with the only difference in the (2+2k)-th rows between QT τ̇T and τ̇T . The (2+2k)-th row element

of QT τ̇T is equal to ψ̇T := −µ̂′
T η̇T + ς̇T , whereas the corresponding element of τ̇T is ς̇T . In addition, (12)

implies that ψ̃T = ψ̇T , where ψ̃T denotes the (2 + 2k)-th row of ω̃T .

Using these alternative forms for υ̂T and ω̃T , we represent α̂T as a bilinear transform of the other

primitive OLS estimators. That is, when we combine (8) and (12), we obtain

α̂T = TT τ̇T , where TT := RTQT . (13)

Here, TT is specifically structured as

RTQT = TT :=

 T11
T 0

T21
T Ip+2kq+1

 ,
where

T11
T :=

 1 01×2k

−β̂T I2k

 and T21
T :=


−ζ̂T −µ̂′

T

−ν̂T 01×2k

0(p+2kq−1)×1 0(p+2kq−1)×2k

 .
Thus, we obtain the OLS estimator as follows:

α̂T =
[
ρ̇T ,−ρ̇T β̂

′
T + η̇′

T ,−ρ̇T ζ̂T − µ̂′
T η̇T + ς̇T ,−ρ̇T ν̂T + γ̇T , τ̇

′
2T

]′
. (14)

Remarks. (a) The OLS estimator is consistent owing to the consistency of the primitive estimators. If

10



υ̂T and τ̇T are consistent for υ∗ and τ ∗, respectively, then

α̂T
P→
[
ρ∗,−ρ∗β′

∗ + η′
∗,−ρ∗ζ∗ − µ′

∗η∗ + ς∗,−ρ∗ν∗ + γ∗, τ
′
2∗
]′

=
[
ρ∗,−ρ∗β′

∗,−ρ∗ζ∗ + ς∗,−ρ∗ν∗ + γ∗, τ
′
2∗
]′ (15)

because η∗ = 0. Also note that the final limit is identical to [ρ∗,θ
′
∗, ξ∗, α∗,φ

′
∗,π

+′
∗ ,π

−′
∗ ]′ by the

definitions of θ∗, ξ∗, α∗, and τ 2∗. That is, α̂T is consistent owing to the consistency of υ̂T and τ̇T .

(b) We can represent the limit distribution of α̂T as the weak limits of the primitive estimators. Theorem

1 demonstrates this below.

(c) As the convergence rates of the primitive estimators are not identical in terms of the parameters, we

can demonstrate that the convergence rate of α̂T is lower than D. This is the same effect anticipated

when applying higher-order expansion to the estimator. For example, from (14), we have θ̂T =

−ρ̇T β̂T + η̇T , while Lemmas 3 and 4 given below detail the conditions for the convergence rates of

ρ̇T and (β̂T , η̇T ) to be T 1/2 and T , respectively. From this, the convergence rate of θ̂T is determined

as T 1/2, because the limit distribution of θ̂T is determined by an estimator with lower convergence

rate. This argument also applies to the other estimators in α̂T , making the convergence rate lower

than D. Thus, we can obtain the limit distribution of α̂T without employing higher-order expansion

for the OLS estimator. □

Next, we discuss why υ̂T and τ̇T do not suffer from an asymptotically singular matrix problem. We

first define the notation needed for an efficient provision for them. We assume

B(·) := [Bm(·)′,Bu(·),Be(·),Bue(·),Bze(·)′]′ := Σ
1/2
∗ W(·),

where W(·) is a vector of (2+p+2k(1+ q)) independent standard Wiener processes, and Σ∗ is the global

covariance matrix provided in Assumption 1. Here, B(·) is the Brownian motion obtained by applying

FCLT to BT (·) := T−1/2
∑⌊(·)T ⌋

t=1 wt; Lemma B.1 establishes this in the Online Supplement. For later

purpose, we also partition BT (·) similarly to B(·):

BT (·) := [BmT (·)′, BuT (·), BeT (·), BueT (·),BzeT (·)′]′ :=
1√
T

⌊(·)T ⌋∑
t=1

[s′t−1, ut−1, et, ut−1et, z
′
2tet]

′

by noting that wt := [ s′t−1 ut−1 et ut−1et z′
2tet ]′, where st := [s+′

t , s
−′
t ]′.

The following lemma examines the asymptotic behaviors of statistics constituting τ̇T and υ̃T .

Lemma 2. Given Assumption 1,

11



(i) if Ḋ1 := diag[T I2k, T 3/2, T 1/2], T−1/2
(∑T

t=1 ût−1ż1t

)
Ḋ−1

1 ⇒ Ṁ1u := 0(2k+2)×1;

(ii) Ḋ−1
1

(∑T
t=1 ż1tż

′
1t

)
Ḋ−1

1 ⇒ Ṁ11, where

Ṁ11 :=


∫
B̄mB̄′

m 0k×1

∫
B̄m

01×k
1
3

1
2∫

B̄′
m

1
2 1


and B̄m(·) := Bm(·)− 3(·)

∫
rBm;

(iii) if Ḋ2 := T 1/2Ip+2kq−1, T−1/2
(∑T

t=1 ût−1ż2t

)
Ḋ−1

2
P→ Ṁ2u := E[ut−1z2t];

(iv) Ḋ−1
2

(∑T
t=1 ż2tż

′
1t

)
Ḋ−1

1 ⇒ Ṁ21, where

Ṁ21 :=

 δ∗ιp−1

∫
B̄′

m
1
2δ∗ιp−1 δ∗ιp−1

ιq ⊗ µ∗
∫
B̄′

m
1
2ιq ⊗ µ∗ ιq ⊗ µ∗

 ;

(v) Ḋ−1
2

(∑T
t=1 ż2tż

′
2t

)
Ḋ−1

2
P→ Ṁ22 := M22;

(vi) if Ḋ := diag[T 1/2, Ḋ1, Ḋ2], Ḋ−1
(∑T

t=1 żtż
′
t

)
Ḋ−1 ⇒ Ṁ, where

Ṁ :=


σ2u Ṁu1 Ṁu2

Ṁ1u Ṁ11 Ṁ12

Ṁ2u Ṁ21 Ṁ22

 ,

Ṁ12 := Ṁ′
21, Ṁu1 := Ṁ′

1u, Ṁu2 := Ṁ′
2u, and σ2u := E[u2t ]; and

(vii) Ḋ−1
1

(∑T
t=1 ṙt−1ṙ

′
t−1

)
Ḋ−1

1 ⇒ Ṁ11. □

Note that τ̇T and υ̃T can be defined by (
∑T

t=1 żtż
′
t)
−1 and (

∑T
t=1 ṙt−1ṙ

′
t−1)

−1, respectively, while Lem-

mas 2 (vi and vii) confirm that their respective weak limits are obtained without involving the asymptotically

singular matrix problem. This implies that the asymptotic singular matrix problem is not due to τ̇T and υ̃T .

4 Limit Distribution of OLS

In this section, we derive the limit distribution of α̂T using the weak limits of primitive estimators. We

further show the consistency of (υ̂T , τ̇T ) for (υ∗, τ ∗), from which the consistency of α̂T follows.

We first examine the limit distribution of υ̂T . For this, we note that υ̂T = PT υ̃T from (10). The limit

distribution of υ̂T is then determined by each element on the right-hand side. If we let P be the limit of PT ,

12



that is,

P :=

 I2k 0

P21 I2

 and P21 :=

 −µ′
∗

01×2k

 ,
its consistency follows from the consistency of µ̂T for µ∗. Next, to obtain the limit distribution of υ̃T , we

first note that mt = m̂t + (µ̂T − µ∗)t from the definitions of m̂t and µ̂T . If we rewrite (9) as

yt = β′
∗m̂t + ϑT∗t+ ν∗ + ut, (16)

where ϑT∗ := β′
∗(µ̂T − µ∗) + ϑ∗, it follows that

υ̃T :=

(
T∑
t=1

ṙt−1ṙ
′
t−1

)−1( T∑
t=1

ṙt−1yt−1

)
= ῡT∗ +

(
T∑
t=1

ṙt−1ṙ
′
t−1

)−1( T∑
t=1

ṙt−1ut−1

)
, (17)

where ῡT∗ := [β′
∗, ϑT∗, ν∗]

′. By exploiting this arrangement, we can obtain the limit distributions of υ̃T

and υ̂T , which are contained in the following lemma:

Lemma 3. Let ϱm∗ := limT→∞ T−1
∑T

t=1

∑t−1
τ=1 E[sτut]. Given Assumption 1,

(i) Ḋ1(υ̃T − ῡT∗) ⇒ [L̇′
11, L̇

′
12, L̇13, L̇14]

′ := L̇1 := Ṁ−1
11 Ṡ1, where

Ṡ1 :=


Ṡ11

Ṡ12

Ṡ13

Ṡ14

 :=


∫
BmdBu − 3

∫
rBm

∫
rdBu + ϱm∗∫

rdBu∫
dBu



such that L̇11, L̇12, Ṡ11, and Ṡ12 ∈ Rk; and

(ii) Ḋ†(υ̂T − υ∗) ⇒ [L̇′
11, L̇

′
12,−µ+′

∗ L̇11 − µ−′
∗ L̇12, L̇14]

′, where Ḋ† := diag[T I2k, T, T 1/2]. □

Remarks. (a) We prove Lemma 3 (i) as follows. From (17), it follows that Ḋ1(υ̃T−ῡT∗) = (Ḋ−1
1

∑T
t=1

ṙt−1ṙ
′
t−1Ḋ

−1
1 )−1Ḋ−1

1

∑T
t=1 ṙt−1ut−1. We focus on deriving the weak limit of Ḋ−1

1

∑T
t=1 ṙt−1ut−1,

because Lemma 2 (vii) already provides the weak limit of the inverse matrix. To prove Lemma 3 (ii),

we note that υ̂T −υ∗ = (PT −P)(υ̃T − ῡT∗)+P(υ̃T − ῡT∗)+ (PT −P)(ῡT∗ − ῡ∗)+P(ῡT∗ −

ῡ∗) + (PT −P)ῡ∗ and derive the weak limit of each component on the right-hand side.

(b) From Lemma 3, the consistency of parameter estimators follows. Lemmas 3 (i and ii) imply that

υ̃T −ῡT∗
P→ 0 and υ̂T

P→ υ∗, respectively. We also have ῡT∗
P→ ῡ∗, as ϑT∗ := β′

∗(µ̂T −µ∗)+ϑ∗
P→

ϑ∗, because µ̂T = µ∗+OP(T
−1/2), as established by Supplement Lemma B.7. This also implies that

PT
P→ P, so that υ̂T = PT υ̃T → Pῡ∗, which is identical to υ∗. From this, it follows that υ̂T

P→ υ∗.

13



(c) The weak limit of υ̂T in Lemma 3 (ii) implies that β̃T and ϑ̃T are linearly correlated asymptotically.

Specifically, their weak limits are obtained as (L̇11, L̇12) and −µ+′
∗ L̇11−µ−′

∗ L̇12, respectively. By

this, υ̂T suffers from the asymptotically singular matrix problem, although υ̃T does not. Supplement

Lemma A.3 also examines the asymptotic behavior of
∑T

t=1 z̃tz̃
′
t and confirm the asymptotic singular

matrix problem. □

We next examine the limit behavior of τ̇T . We first note that

ut = ût + (β̃T − β∗)
′m̂t + (ϑ̃T − (β′

∗µ̂T + ζ∗))t+ (ν̃T − ν∗)

from (16) because ût := yt − r̃′tυ̂T = yt − ṙ′tυ̃T . Therefore, from (11), we have ∆yt = τ ′
T∗żt + et,

assuming that τT∗ := [ρ∗, τ
′
1T , τ

′
2∗]

′ and

τ 1T := [(η∗ + ρ∗(β̃T − β∗))
′, ψ∗ + η′

∗µ̂T + ρ∗(ϑ̃T − ϑT∗), γ∗ + ρ∗(ν̃T − ν∗)]
′.

From this, we have

τ̇T :=

(
T∑
t=1

żtż
′
t

)−1( T∑
t=1

żt∆yt

)
= τT∗ +

(
T∑
t=1

żtż
′
t

)−1( T∑
t=1

żtet

)
. (18)

We present the limit distribution of τ̇T in the following lemma:

Lemma 4. Given Assumption 1,

(i) Ḋ(τ̇T − τT∗) ⇒ [L̇1, L̇
′
2, L̇

′
3, L̇4, L̇5, L̇

′
6]
′ := L̇ := Ṁ−1Ṡ, where

Ṡ :=
[
Ṡ1 Ṡ′

2 Ṡ′
3 Ṡ4 Ṡ5 Ṡ′

6

]′
:=
[ ∫

dBue

∫
B̄′

mdBe

∫
rdBe

∫
dBe

∫
dB′

ze

]′
such that L̇2, L̇3, Ṡ2, and Ṡ3 ∈ Rk; and

(ii) Ḋ(τ̇T − τ ∗) ⇒ L̇ + ρ∗[0, L̇
′
11, L̇

′
12, L̇13, L̇14,0

′]′. □

Remarks. (a) From the definition of L̇, Ḋ(τ̇T − τT∗) asymptotically follows a mixed normal distribu-

tion.

(b) To prove Lemma 4, we examine the limit behavior of each component on the right-hand side of

equation (18). First, we note that Ḋ(τ̇T − τT∗) = (Ḋ−1
∑T

t=1 żtż
′
tḊ

−1)−1Ḋ−1
∑T

t=1 żtet. As

Lemma 2 (vi) already shows that Ḋ−1(
∑T

t=1 żtż
′
t)Ḋ

−1 ⇒ Ṁ, we focus on deriving the weak limit

of Ḋ−1
∑T

t=1 żtet. Noting that Ḋ(τ̇T −τT∗) = Ḋ(τ̇T −τ ∗)+[0,−ρ∗T (β̃T −β∗)
′,−ρ∗T 3/2(ϑ̃T −

ϑT∗),−ρ∗T 1/2(ν̃T − ν∗),0
′]′, we exploit Lemmas 3 (ii) and 4 (i), to obtain the weak limit of the
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right-hand side.

(c) We derive Lemma 4 assuming that ρ∗ < 0. Therefore, we cannot use Lemma 4 (ii) to obtain the null

limit distribution of the t-statistic testing ρ∗ = 0. □

We finally provide the limit distribution of α̂T . We note that (14) and (15) imply that

(α̂T −α∗) = (TT −T)τ ∗ +T(τ̇T − τ ∗) + (TT −T)(τ̇T − τ ∗), (19)

where T is the probability limit of TT , namely,

T :=

 T11 0

T21 Ip+2kq+1

 , T11 :=

 1 01×2k

−β∗ I2k

 ,
and

T21 :=


−ζ∗ −µ′

∗

−ν∗ 01×2k

0(p+2kq−1)×1 0(p+2kq−1)×2k

 ,
from which we obtain that

√
T (α̂T − α∗) = c∗

√
T (ρ̇T − ρ∗) +

√
TdT + oP(1), where c∗ := [1,−β′

∗,

−ζ∗,−ν∗,0′]′ and dT := [0,0′2k×1, 0, {(γ̇T − γ∗) − ρ∗(ν̃T − ν∗)}, (τ̇ 2T − τ 2∗)
′]′. We next provide the

weak limit of α̂T using the weak limits of
√
T (ρ̇T − ρ∗) and

√
TdT in the following theorem.

Theorem 1. Given Assumption 1,

(i) if for each j = 1, 2, . . . , k, β+j∗ ̸= 0, β−j∗ ̸= 0, and ζ∗ ̸= 0, then
√
T (α̂T − α∗) ⇒ c∗L̇1 +

[0,0′k×1,0
′
k×1, 0, L̇5, L̇

′
6]
′, where β+j∗ and β−j∗ are the j-th row element of β+

∗ and β−
∗ , respectively;

(ii) if β+
∗ = 0, but for each j = 1, 2, . . . , k, β−j∗ ̸= 0, and ζ∗ ̸= 0, then Ḋ+(α̂T − α∗) ⇒ [L̇1, L̇

′
2,

−β−′
∗ L̇1,−ζ∗L̇1, L̇5 − ν∗L̇1, L̇

′
6]
′, where Ḋ+ := diag[T 1/2, T Ik, T

1/2Ik+2, Ḋ2];

(iii) if β−
∗ = 0, but for each j = 1, 2, . . . , k, β+j∗ ̸= 0, and ζ∗ ̸= 0, then Ḋ−(α̂T −α∗) ⇒ [L̇1,−β+′

∗ L̇1,

L̇′
3,−ζ∗L̇1, L̇5 − ν∗L̇1, L̇

′
6]
′, where Ḋ− := diag[T 1/2Ik+1, T Ik, T

1/2I2, Ḋ2]; and

(iv) if for each j = 1, 2, . . . , k, β+j∗ ̸= 0, β−j∗ ̸= 0, but ζ∗ = 0, Ḋ⊙(α̂T −α∗) ⇒ [L̇1,−β+′
∗ L̇1,−β−′

∗ L̇1,

−µ+′
∗ L̇2 − µ−′

∗ L̇3, L̇5 − ν∗L̇1, L̇
′
6]
′, where Ḋ⊙ := diag[T 1/2I2k+1, T, T

1/2, Ḋ2]. □

Remarks. (a) Although the time trend and nonstationary regressors are included as regressors on the

right-hand side, the convergence rate of α̂T is slower than D by Theorem 1 (i).

(b) In the Online Supplement, we prove Theorem 1 (i) by deriving the weak limit of each component on

the right-hand side of (19). Note that the limit distribution of α̂T differs from the parameter estimation

for ARDL models without an asymptotically singular matrix problem. For example, if we focus on
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θ̂T , as shown in the Online Supplement,

(θ̂T − θ∗) = −β∗(ρ̇T − ρ∗) + (η̇T − η∗)− ρ∗(β̃T − β∗), (20)

where (ρ̇T − ρ∗) = OP(T
−1/2), and η̇T − η∗ − ρ∗(β̃T − β∗) = OP(T

−1), and so Lemmas 3 and 4,

it follows that
√
T (θ̂T − θ∗) ⇒ −β∗L̇1, leading to Theorem 1 (i).

(c) By Theorem 1 (i), the weak limit of [ρ̂T , θ̂
′
T , ξ̂T ]

′ is [1,β′
∗,−ζ∗]′L̇1, indicating that the estimates are

linearly correlated at the limit. This result highlights how the asymptotically singular matrix problem

affects the convergence rate of α̂T . Although L̇1 is not associated with an asymptotically singular

matrix problem, its bilinear transform affects α̂T owing to the problem.

(d) Despite the asymptotic singularity problem associated with α̂T , its weak limit given in Theorem 1

(i) is determined by L̇1, L̇5, and L̇6. This implies the following. First, α̂T follows a mixed normal

distribution by Lemma 4. Therefore, if the standard t-test applies to α̂T , it follows a mixed normal

distribution under the null hypothesis and the condition in Theorem 1 (i). Second, both L̇1 and L̇6

are weak limits of the last two OLS estimators obtained by regressing ∆yt against (1, ut−1, z
′
2t)

′.

Furthermore, they are also weak limits of the corresponding OLS estimators obtained by replacing

the regressor with (1, ût−1, z
′
2t)

′. Therefore, the null weak limit of the t-statistic testing ρ∗ < 0 is

equivalent to the weak limits of t-statistics testing long-run parameters β+
∗ , β−

∗ , and ξ∗ under their

respective null hypotheses.

(e) If the zero coefficient condition in Theorem 1 (ii) holds, the limit distribution of α̂T is determined by

the next-order term in (19). For instance, if β+
∗ = 0, then (20) implies that

T (θ̂
+

T − θ+
∗ ) = T{(η̇+

T − η+
∗ )− ρ∗(β̃

+

T − β+
∗ )} ⇒ L̇2

by Lemma 4 (i). In parallel, if β−
∗ = 0, then T (θ̂

−
T −θ−

∗ ) = T{(η̇−
T −η−

∗ )− ρ∗(β̃
−
T −β−

∗ )} ⇒ L̇3;

and if ζ∗ = 0, then T (ξ̂T − ξ∗) = −µ′
∗T{(η̇T − η∗)− ρ∗(β̃T − β∗)}+OP(T

−1/2) ⇒ −µ+′
∗ L̇2 −

µ−′
∗ L̇3. Note that the weak limits of θ̂

+

T , θ̂
−
T , and ξ̂T are determined by L̇2 and L̇3 that follow

mixed normal distributions centered at zero. This implies that if the standard t-test applies to θ̂
−
T or

ξ̂T , its null weak limit is a mixed normal distribution centered at zero.

(f) Caution is required for Theorems 1 (ii, iii, and iv). If β+
∗ = β−

∗ = 0 and ζ∗ = 0, then ρ∗ = 0 by the

remark given below Assumption 1, contradicting the assumption that ρ∗ < 0. Theorems 1 (ii, iii, and

iv) assume an environment where all of β+
∗ , β−

∗ and ζ∗ are not zero. As mentioned in (e), Theorems

1 (iii and iv) also determine the OLS estimator limit distribution by next-order approximation. This

implies that the null limit distribution of t-test testing the zero coefficient of β+
∗ , β−

∗ , or ζ∗ has to be
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determined by the limit distributions in Theorems 1 (ii, iii, and iv).

(g) Pesaran et al. (2001) and Banerjee et al. (1998) provide the asymptotic critical values of the F - and

t-statistics testing ρ∗ = 0, showing that their null limit distributions cannot be approximated by a

mixed normal distribution. □

5 Hypotheses Testing

In this section, we examine testing hypotheses associated with NARDL by applying the Wald test principle.

In particular, we suppose that a cointegrating relationship holds between yt and (x+
t ,x

−
t ) under Assumption

1 because θ+
∗ ̸= 0 and/or θ−

∗ ̸= 0.

The NARDL process reduces to the ARDL process when θ+
∗ = θ−

∗ and π+
∗ = π−

∗ . Therefore, under

these conditions, it would be inefficient to estimate the parameters by NARDL, making it necessary to test

the symmetry conditions. For this, we specify the following three hypothesis systems:

H′
0 : θ+

∗ = θ−
∗ vs. H′

1 : θ+
∗ ̸= θ−

∗ ;

H′′
0 : π+

∗ = π−
∗ vs. H′′

1 : π+
∗ ̸= π−

∗ ;

H′′′
0 : θ+

∗ = θ−
∗ and π+

∗ = π−
∗ vs. H′′′

1 : θ+
∗ ̸= θ−

∗ or π+
∗ ̸= π−

∗ .

We examine testing of each hypothesis. We first apply the Wald test principle to testingH′
0 . The standard

Wald test applied to OLS is defined as follows:

W
(1)
T := α̂′

T Ṙ
′
1

(
Ẇ

(1)
T

)−1
Ṙ1α̂T , where Ẇ

(1)
T := σ̇2e,T Ṙ1

(
T∑
t=1

ztz
′
t

)−1

Ṙ′
1

and Ṙ1 := [0k×1, Ik,−Ik,0k×(1+p+2kq)]. Note that Ṙ1α̂T = (θ̂
+

T − θ̂
−
T ), so that

√
T (θ̂

+

T − θ̂
−
T ) ⇒

(β−
∗ − β+

∗ )L̇1, which is equal to 0 under H′
0 by noting that H′

0 implies that β−
∗ = β+

∗ . Thus, the limit

distribution in Theorem 1 (i) is not useful to obtain the null limit distribution of the Wald test. The null

limit behavior has to be obtained by the next order term of (θ̂
+

T − θ̂
−
T ). Specifically, (14) implies that

(θ̂
+

T −θ̂
−
T ) = (η̇+

T −η̇−
T )−ρ̇T (β̂

+

T −β̂
−
T ) = (η̇+

T −η̇−
T )−(η+

∗ −η−
∗ )−ρ∗(β̂

+

T −β̂
−
T )−(ρ̇T−ρ∗)(β̂

+

T −β̂
−
T ) =

(η̇+
T −η̇−

T )−(η+
T∗−η−

T∗)+oP(T
−1) under H′

0 , where (η+′
T∗,η

−′
T∗)

′ denotes the vector formed by the first 2k-

row elements of τ 1T . That is, the null limit distribution of W (1)
T has to be determined not by Theorem 1, but

by Lemma 4. Therefore, (θ̂
+

T − θ̂
−
T ) = OP(T

−1). However, the alternative behavior of Ṙ1α̂T = (θ̂
+

T − θ̂
−
T )

is determined by OP(T
−1/2) terms.
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We supplement the unbalanced convergence rates under the two hypotheses by further applying the Wald

test principle to the primitive estimator υ̃T . This is mainly because υ̃T enables us to define the Wald test

using the next-order terms. Note that because testing H′
0 is equivalent to testing H′

0 : β+
∗ − β−

∗ = 0, we

can test H′
0 by further applying the Wald test principle to the estimator for β∗. If R̈1 := [Ik,−Ik,0k×2],

R̈1ῡT∗ = β+
∗ − β−

∗ , we can estimate it ῡT∗ by β̂
+

T − β̂
−
T , which is R̈1υ̃T . Next, we assume that

W
(1)
T := υ̃′

T Ḋ1R̈
′
1(Ẅ

(1)
T )−1R̈1Ḋ1υ̃T , where Ẅ

(1)
T := σ̂2u,T R̈1Ḋ1

(
T∑
t=1

ṙt−1ṙ
′
t−1

)−1

Ḋ1R̈
′
1.

Note that W(1)
T is the standard Wald test obtained from (9) because R̈1Ḋ1υ̃T = T (β̃

+

T − β̃
−
T ). Here,

(β̃
+

T −β̃
−
T ) is not exactly the same as (θ̂

+

T − θ̂
−
T ). The main difference between the two test bases is captured

by (η̇T − η̇T ) and β∗(ρ̇T − ρ∗), and they do not contribute to power. The Wald test W(1)
T is defined only

by the test base with power, while the limit behaviors of the test are determined by the OP(T
−1) term under

both hypotheses.

We next apply the Wald test principle to test H′′
0 . The standard Wald test applied to OLS is as follows:

W
(2)
T := α̂′

T Ṙ
′
2(Ẇ

(2)
T )−1Ṙ2α̂T , where Ẇ

(2)
T := σ̇2e,T Ṙ2

(
T∑
t=1

ztz
′
t

)−1

Ṙ′
2

and Ṙ2 := [0kq×(2+p+2k), Ikq,−Ikq]. We also define another supplementary Wald test using the primitive

estimator. From (13), it follows that (φ̂′
T , π̂

+′
T , π̂

−′
T )′ = (φ̇′

T , π̇
+′
T , π̇

−′
T )′ := τ̇ 2T , implying that we can test

H′′
0 by using τ̇T . Note that τ̇T is not associated with an asymptotically singular matrix problem as Lemma

2 (vi) affirms. From this, we define the following Wald test:

W
(2)
T := τ̇ ′

T ḊR̈′
2(Ẅ

(2)
T )−1R̈2Ḋτ̇T , where Ẅ

(2)
T := σ̇2e,T R̈2Ḋ

(
T∑
t=1

żtż
′
t

)−1

ḊR̈′
2

and R̈2 := Ṙ2. Note that W(2)
T is defined by applying the Wald test principle to (11) because R̈2Ḋτ̇T =

√
T (π̇+

T − π̇−
T ). Although the test base

√
T (π̇+

T − π̇−
T ) is identical to

√
T (π̂+

T − π̂−
T ), the weighting matrix

Ẅ
(2)
T is constructed from τ̇T , defining W

(2)
T directly. The supplementary Wald test also has a balanced

convergence rate under both hypotheses.

Finally, we apply the Wald test principle to test H′′′
0 . For this, we define the following test:

W
(3)
T := α̂′

T Ṙ
′
3(Ẇ

(3)
T )−1Ṙ3α̂T , where Ẇ

(3)
T := σ̇2e,T Ṙ3

(
T∑
t=1

ztz
′
t

)−1

Ṙ′
3
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and Ṙ3 := Ṙ3 := diag[Ṙ1, Ṙ2]. We also reformulate H′′′
0 against H′′′

1 into H′′′
0 : β+

∗ = β−
∗ and π+

∗ = π−
∗

against H′′′
1 : β+

∗ ̸= β−1
∗ or π+

∗ ̸= π−
∗ , and define the following supplementary Wald test:

W
(3)
T := δ̈′T D̄R̈′

3(Ẅ
(3)
T )−1R̈3D̄δ̈T ,

where δ̈T := (υ̃′
T , τ̇

′
T )

′, D̄ := diag[Ḋ1, Ḋ], R̈3 := diag[R̈1, R̈2], and Ẅ
(3)
T := diag[Ẅ(1)

T ,Ẅ
(2)
T ]. Note

that W(3)
T is defined by applying the Wald test principle to both υ̃T and τ̇T , and by noting that R̈3D̄δ̈T =

(T (β̃
+

T −β̃
−1

T )′,
√
T (π̇+

T −π̇−
T )

′)′. We can easily confirm that W(3)
T = W

(1)
T +W

(2)
T because Ẅ(3)

T is block-

diagonal. For notational simplicity, we further partition H′′′
0 into H′′′

01 : β+
∗ = β−

∗ and H′′′
02 : π+

∗ = π−
∗ .

In parallel, we also partition H′′′
1 into H′′′

11 : β+
∗ = β−

∗ and H′′′
12 : π+

∗ ̸= π−
∗ . These sub-hypotheses are

separately defined because the test power depends on them.

We obtain the limit behaviors of the Wald tests from the limit behaviors of υ̃T and τ̇T , which are

already given in Lemmas 3 and 4. We summarize their limit behaviors in the following theorem, assuming

that σ2e := E[e2t ]:

Theorem 2. Given Assumption 1, if θ+
∗ ̸= 0 and/or θ−

∗ ̸= 0,

(i) (a) W (1)
T ⇒ L̇′R′

1(σ
2
eR1Ṁ

−1R′
1)

−1R1L̇ underH′
0 , where R1 := [0k×1, Ik,−Ik,0k×(1+p+2kq)];

(b) W (2)
T ⇒ L̇′Ṙ′

2(σ
2
eṘ2Ṁ

−1Ṙ′
2)

−1Ṙ2L̇ under H′′
0 ;

(c) W (3)
T ⇒ L̇′R′

3(σ
2
eR3Ṁ

−1R′
3)

−1R3L̇ under H′′′
0 , where R3 := diag[R1, Ṙ2];

(ii) (a) for any c′T = o(T ), limT→∞ P(W (1)
T > cT ) = 0 under H′

1;

(b) for any c′T = o(T ), limT→∞ P(W (2)
T > c′T ) = 0 under H′′

1 ;

(c) for any c′T = o(T ), limT→∞ P(W (3)
T > c′T ) = 0 under H′′′

1 ;

(iii) (a) W
(1)
T ⇒ L̇′

1R̈
′
1(σ

2
uR̈1Ṁ

−1
11 R̈

′
1)

−1R̈1L̇1 under H′
0;

(b) W
(2)
T ⇒ L̇′R̈′

2(σ
2
eR̈2Ṁ

−1R̈′
2)

−1R̈2L̇ under H′′
0 ;

(c) W
(3)
T ⇒ L̇′

1R̈
′
1(σ

2
uR̈1Ṁ

−1
11 R̈

′
1)

−1R̈1L̇1 + L̇′R̈′
2(σ

2
eR̈2Ṁ

−1R̈′
2)

−1R̈2L̇ under H′′′
0 ; and

(iv) (a) for any cT = o(T 2), limT→∞ P(W(1)
T > cT ) = 0 under H′

1;

(b) for any c′T = o(T ), limT→∞ P(W(2)
T > c′T ) = 0 under H′′

1 ;

(c) for any cT = o(T 2) and c′T = o(T ), limT→∞ P(W(3)
T > cT ) = 0 under H′′′

11

⋂
H′′′

02; limT→∞ P(

W
(3)
T > c′T ) = 0 under H′′′

01

⋂
H′′′

12; and limT→∞ P(W(3)
T > cT ) = 0 under H′′′

11

⋂
H′′′

12. □

Remarks. (a) The asymptotic behaviors of W (1)
T , W (2)

T , and W (3)
T are determined by (τ̇T − τT∗). For

example, note that (θ̂
+

T − θ̂
−
T ) = (θ+

∗ − θ−
∗ )− (ρ̇T − ρ∗)(β

+
∗ −β−

∗ ) + (η̇+
T − η+

T∗)− (η̇−
T − η−

T∗) +

oP(T
−1). Thus, it follows that (θ̂

+

T − θ̂
−
T ) = (η̇+

T −η+
T∗)−(η̇−

T −η−
T∗)+oP(T

−1) under H′
0 , namely,

Ṙ1α̂T = R1(τ̇T − τT∗) + oP(T
−1). We can determine the null limit distribution of W (1)

T from

that of (τ̇T − τT∗). Theorem 2 (i.a) reports the null limit distribution obtained from this. However,
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(θ̂
+

T −θ̂
−
T ) = (θ+

∗ −θ−
∗ )−(ρ̇T−ρ∗)(β+

∗ −β−
∗ )+oP(T

−1/2) underH′
1 , where (ρ̇T−ρ∗) = OP(T

−1/2).

Theorem 2 (ii.a) reports the consequence of this. Similar arguments apply to W (2)
T and W (3)

T .

(b) From R̈1L̇1 = L̇11−L̇12, the null weak limit in Theorem 2 (iii.a) is given as (L̇11−L̇12)
′(σ2uR̈1

Ṁ−1
11 R̈

′
1)

−1(L̇11 − L̇12). In parallel, if we assume that [L̇′
61, L̇

′
62, L̇

′
63]

′ := L̇6 such that L̇61 ∈

Rp−1, L̇62 ∈ Rkq, and L̇63 ∈ Rkq, then R̈2L̇ = L̇62−L̇63, and so the weak the limit in Theorem

2 (iii.b) can be rewritten as (L̇62 − L̇63)
′(σ2eR̈2Ṁ

−1R̈′
2)

−1(L̇62 − L̇63).

(c) The null limit distributions of W(1)
T , W(2)

T , and W
(3)
T critically depend on the null hypotheses. We

can rewrite the null weak of W(1)
T as Ṡ′

1Ṁ
−1
11 R̈

′
1(σ

2
uR̈1Ṁ

−1
11 R̈

′
1)

−1R̈1Ṁ
−1
11 Ṡ1 using the definition

of L̇1. Similarly, the null weak limit of W(2)
T becomes Ṡ′Ṁ−1R̈′

1(σ
2
eR̈1Ṁ

−1R̈′
1)

−1R̈1Ṁ
−1Ṡ.

Note that the null weak limit of W(2)
T is a mixed chi-squared distribution from the definition of Ṡ.

However, W(1)
T and W

(3)
T do not follow a mixed chi-squared distribution under the null because Ṡ1

does not follow a mixed normal distribution. Instead, we can use the bootstrap method to obtain their

critical values. We demonstrate this in Section 6. □

6 Monte Carlo Simulations

In this section, we conduct simulations to examine the finite sample properties of the Wald tests.

For our simulation, we assume the following data-generating process (DGP) condition:

yt−1 = ν∗ + β+∗ x
+
t−1 + β−∗ x

−
t−1 + ζ∗(t− 1) + ut−1 and

∆yt = α∗ + ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x
+
t + π−∗ ∆x

−
t + et,

where ∆xt = vt, and (et, vt)
′ ∼ IIDN(02, I2). We also set (ν∗, ζ∗, α∗, ρ∗, φ∗) = (0, 0, 0,−1/2, 0) through-

out the simulation, but adjust the value of (β+∗ , β
−
∗ , π

+
∗ , π

−
∗ ), depending on the hypotheses of interest. Ac-

cording to the NARDL condition, it must hold that θ+∗ = −ρ∗β+∗ and θ−∗ = −ρ∗β−∗ .

We follow the next procedure to define the Wald tests. First, we estimate the unknown parameters using

primitive parameter estimators. For this, we estimate ῡT∗ and τT∗ separately by specifying the following

models:

yt = β+m̂+
t + β−m̂−

t + ϑt+ ν + ut and

∆yt = ρût−1 + η+m̂+
t−1 + η−m̂−

t−1 + ς(t− 1) + γ + φ∆yt−1 + π+∆x+t + π−∆x−t + et,

where we set m̂+
t := x+t −tµ̂

+
T , m̂−

t := x−t −tµ̂
−
T , and ût := yt−r̃′tυ̂T with µ̂+T := (

∑T−1
t=1 t

2)−1
∑T−1

t=1 tx
+
t ,

µ̂−T := (
∑T−1

t=1 t
2)−1

∑T−1
t=1 tx

−
t , υ̂T := (

∑T
t=1 r̃t−1r̃

′
t−1)

−1
∑T

t=1 r̃t−1yt−1, and r̃t := [x+t , x
−
t , t, 1]

′.
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Second, we specify the following hypothesis systems:

H′
0 : θ+∗ = θ−∗ vs. H′

1 : θ+∗ ̸= θ−∗ ; H′′
0 : π+∗ = π−∗ vs. H′′

1 : π+∗ ̸= π−∗ ;

H′′′
0 : θ+∗ = θ−∗ and π+∗ = π−∗ vs. H′′′

1 : θ+∗ ̸= θ−∗ or π+∗ ̸= π−∗ ;

H′
0 : β∗ = 0 vs. H′

1 : β∗ ̸= 0; and H′′′
0 : β∗ = 0 and π+∗ = π−∗ vs. H′′′

1 : β∗ ̸= 0 or π+∗ ̸= π−∗ .

Finally, we compute the Wald tests W(1)
T , W(2)

T , W(3)
T , W (1)

T , W (2)
T , and W (3)

T as stated in Section 5.

We conduct simulations under the following two DGP conditions. First, we set β+∗ = β−∗ = 1 and

π+∗ = π−∗ = 1/2 to generate data. Note that this parameter condition satisfies the ARDL condition. From

this, we examine the finite sample properties of Wald tests under the null. Second, we set β+∗ = 1/4,

β−∗ = −1/4, π+∗ = 1/8, and π−∗ = −1/8, and use this to examine the power.

A bootstrap method can be used for the testing. Note that the null limit distributions of W(1)
T and W

(3)
T

are not standard, as Theorem 2 reveals. We apply the following residual bootstrap method.

S1: After computing the Wald tests, we estimate the ARDL model by regressing ∆yt against yt−1, xt−1,

(t − 1), 1, ∆yt−1 and ∆xt. We let the estimated linear coefficient be (ρ̂T , θ̂T , ξ̂T , α̂T , φ̂T , π̂T ). We

also let the residual be êt := ∆yt − ρ̂T yt−1 − θ̂Txt−1 − ξ̂T (t− 1)− α̂T − φ̂T∆yt−1 − π̂T∆xt.

S2: We construct resampled series as follows. First, we resample êt with replacement and denote it as ebt .

Next, we let

∆ybt := ρ̂T y
b
t−1 + θ̂Txt−1 + ξ̂T (t− 1) + α̂T + φ̂T∆y

b
t−1 + π̂T∆xt + ebt ,

where ybt is the cumulative sum of ∆ybt . Note that we do not resample ∆xt. Using the resampled

series, we compute the Wald tests. For example, we let W(1),b
T denote the bootstrapped W

(1)
T .

S3: We iterate the second stepB times in total and compute the empirical p-value of the test. For example,

we let the empirical p-value be p(1)T := B−1
∑B

b=1 1{W
(1),b
T > W

(1)
T } for W(1)

T . If p(1)T is less than

the significance level, we reject the null hypothesis. □

The bootstrap procedure is applicable even when the Wald test null limit distribution is mixed chi-squared.

Our simulation follows the above procedure. Assuming that B = 500, we independently iterate the

above experiment 5,000 times for T = 100, 200, 300, 400, and 500. The simulation results are reported in

Tables 1 and 2. We also evaluate the Wald tests by mixed chi-squared distributions and report the empirical

rejection rates. The simulation results are summarized as follows:

(a) Table 1 shows the empirical Wald test rejection rates using the null DGP condition allowing β+∗ =

β−∗ = 1 and π+∗ = π−∗ = 1/2. The left-hand side panel shows the empirical rejection rates obtained
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using the residual bootstrap method. The rejection rates on the right-hand side are based on the mixed

chi-squared distribution. In sum, first, when using the bootstrap method, for each T , the empirical

rejection rates are very close to the nominal significance levels. This implies that this method effec-

tively controls the test levels. Second, when considering the asymptotic critical values from mixed

chi-squared distribution, we find no significant level distortion for W(2)
T , although W

(1)
T and W

(3)
T

experience level distortions. For the current DGP, W(1)
T and W

(3)
T reject H′

0 and H′′′
0 more often than

the significance levels. This confirms that the null behaviors of W(1)
T and W

(3)
T differ from mixed

chi-squared distribution. However, W(2)
T does not suffer from level distortions, indicating that π̇+T and

π̇−T follow mixed normal distributions, as Lemma 4 (i) establishes. Finally, W (1)
T , W (2)

T , and W (3)
T

suffer no level distortions when using the mixed chi-squared distribution method.

(b) Table 2 shows the empirical Wald test rejection rates under the alternative DGP. The summary results

are as follows. First, with the bootstrap method, the empirical rejection rates of W(1)
T , W(2)

T , and

W
(3)
T tend toward 100% as T increases, implying their consistency against H′

1, H′′
1 , and H′′′

1 , respec-

tively. Second, when applying the critical values obtained from the mixed chi-squared distribution,

the empirical rejection rates of W(1)
T , W(2)

T , and W
(3)
T also converge toward 100% as T increases.

However, it is difficult to control their sizes, as Table 1 describes. Third, the standard Wald tests are

also consistently powerful. Fourth, as for the bootstrap method, W(1)
T and W

(3)
T are more powerful

than W (1)
T and W (3)

T , respectively, for small T , but this relationship is reversed as T increases. In

contrast, both W
(2)
T and W (2)

T show similar power patterns. □

We conduct another simulation assuming that ∆xt is serially correlated. Instead of ∆xt = vt, we set

∆xt = κ∗∆xt−1 + vt, and apply the residual bootstrap method as earlier. Then, assuming κ∗ = 1/2, we

conduct simulation by settingB = 500 and independently iterating the experiment 5,000 times for T = 100,

200, 300, 400, and 500. The simulation results are presented in Tables 3 and 4 in the same format used in

Tables 1 and 2, respectively. The simulation results are summarized as follows:

(a) Table 3 presents the empirical Wald test rejection rates obtained using the null DGP condition. The

left-hand side panel gives the empirical rejection rates obtained using the residual bootstrap method,

while the right-hand side panel shows the values obtained using the mixed chi-squared distribution

method. For each value of T , the empirical rejection rates are very close to the nominal significance

levels obtained with the residual bootstrap method. In contrast, the asymptotic critical values obtained

using mixed chi-squared distribution introduce level distortions for W(1)
T and W

(3)
T , as observed ear-

lier. These simulation results are overall similar to those in Table 1.

(b) Table 4 presents the empirical Wald test rejection rates obtained using the alternative DGP condition.

The results are as follows. First, when the residual bootstrap method is used, the empirical rejection
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rates of W(1)
T , W(2)

T , and W
(3)
T tend toward 100% as T increases, implying their consistency against

H′
1, H′′

1 , and H′′′
1 , respectively. Second, when the asymptotic critical values obtained from the mixed

chi-squared distribution are used, the empirical rejection rates also converge toward 100% with the

increase in T , although the level distortions are difficult to control for W(1)
T and W

(3)
T under the null.

Third, standard Wald tests also exhibit consistent power. As T increases, W (1)
T , W (2)

T , and W (3)
T

reject the null with rejection rates tending toward 100% with the increase in T . Finally, W(1)
T and

W
(3)
T are more powerful than W (1)

T and W (3)
T , respectively, for small T . Meanwhile, both W

(2)
T and

W
(2)
T exhibit similar power patterns. □

7 Empirical Application

This section examines the empirical data provided by Romer and Romer (2010) when measuring exogenous

fiscal shocks with respect to the U.S. GDP. We review the literature and apply the NARDL model to examine

the long- and short-run symmetries in data.

7.1 Literature Review and Empirical Motivation

Estimating the fiscal policy impact on output is challenging because many fiscal factors leading to tax

changes are correlated with the output, causing the OLS estimator to suffer from the endogenous bias prob-

lem. Although not all fiscal factors are endogenous in terms of output growth, using all tax changes to

regress GDP growth can lead to biased OLS estimates. Blanchard and Perotti (2002) address this problem

by using structural vector autoregression (SVAR). They assume that policymakers do not respond to shocks

contemporaneously, but use information on the elasticity of revenue to create cyclically adjusted revenues.

This implies that the effect of a tax cut on GDP in the U.S. is around 1%. However, Romer and Romer

(2010) and Cloyne (2013) argue that the structural assumptions used in the SVAR model may be unrealistic

in estimating the impact of fiscal policy on output.

Romer and Romer (2010) try to disentangle the problem of effects of tax changes correlated with GDP

differently. Performing a narrative analysis, they identify the motivations behind each tax change from

1945 to 2007. Using sources such as the Economic Report of the President and the Congressional Record,

they classify legislated tax changes, which changed tax liabilities from one quarter to the next, into four

categories: (i) tax changes to counteract changes in government spending, (ii) tax changes to offset other

factors affecting near-term output, (iii) tax changes to address inherited budget deficits, and (iv) tax changes

to promote long-term growth. This classification is based on the motivations behind the tax changes, with

the first two categories considered countercyclical and motivated by restoring the output growth reduced by
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other factors. This feature makes it difficult to categorize the first two tax changes as purely exogenous. In

contrast, the last two categories are based on policymakers’ perceptions of prudent fiscal policies or focus on

increasing long-term growth, and hence may be classified as exogenous. In consequence, they identified 54

exogenous tax changes through narrative analysis during the same period. Using exogenous fiscal shocks,

they developed a time-series model and estimated that the GDP will increase by approximately 3% over three

years following a tax cut of 1% of GDP. This estimate differs significantly from the estimate of Blanchard

and Perotti (2002).

Narrative analysis is a popular methodology for uncovering the impact of fiscal shocks on GDP. For

example, Cloyne (2013) applies narrative analysis to U.K. legislation and estimates the impact of exogenous

fiscal shocks on GDP. The study finds that a 1% tax cut, as a percentage of GDP, raises output by nearly

2.5% over the next three years, as in the U.S. Mertens and Olea (2018) use narrative analysis to estimate

the short-run tax elasticity of income as about 1.2% in the U.S. by measuring the exogenous variations in

marginal tax rate. Gunter, Riera-Crichton, Vegh, and Vuletin (2021) extend narrative analysis to estimate

the value-added-tax multipliers for 51 countries, to find that the effect of tax changes on output is highly

nonlinear.

Narrative analysis is also used to specialize the time-series model in Romer and Romer (2010) for

specific models under different economic environments. For instance, Mertens and Ravn (2012) distinguish

between surprise and anticipated tax changes to examine the dynamic effect of tax change on GDP, and

report that anticipated tax cuts lead to contraction in GDP. Demirel (2021) and Ghassibe and Zanetti (2021)

examine the state-dependent impact of exogenous tax changes on GDP, allowing for different tax multiplier

estimations in recessions and expansions. Narrative analysis on the effect of tax change on GDP is widely

applied to other fields, allowing for comparison with the outcomes obtained by conventional analyses.

The standpoint of the current studies motivates the extension of the estimation beyond short-run rela-

tionships to focus on estimating the long-run relationship between GDP and fiscal shocks. Studies have

primarily focused on the short-term effects of fiscal policy. For example, one of the models specified by

Romer and Romer (2010) is given as

∆yt = γ∗ +

q−1∑
j=0

πj∗∆τt−i +

p−1∑
j=1

φj∗∆yt−j + et (21)

to examine how GDP responds to exogenous tax changes, where yt is the logarithm of real GDP and ∆τt is

the exogenous log tax change.

As both yt and τt are observable, we can estimate their long-run relationship by applying cointegration

analysis, but to our knowledge, no prior work has used this approach for narrative data. We, therefore,
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augment the cointegration error on the right-hand side of (21) as follows:

∆yt = γ∗ + ρ∗ut−1 +

q−1∑
j=0

πj∗∆τt−i +

p−1∑
j=1

φj∗∆yt−j + et, (22)

where ut := yt − β∗τt − ζ∗t − ν∗. Note that the long-run relationship between yt and τt can be found by

estimating β∗, and the short-run relationship can be further revealed by estimating the coefficients of πj∗

and φj∗. We can also convert (22) into

∆yt = α∗ + ρ∗yt−1 + θ∗τt−1 + ξ∗t+

q−1∑
j=0

πj∗∆τt−i +

p−1∑
j=1

φj∗∆yt−j + et (23)

and estimate the unknown parameters in (23) by OLS.

For this estimation, we first examine the partial sum processes of exogenous tax changes used in our

empirical analysis. Figure 1 illustrates the partial sum processes due to exogenous tax changes.1 The solid

and dashed lines represent the partial sum processes of tax changes for deficit reduction (τ1t) and long-run

growth (τ2t), respectively, while the dotted line represents the partial sum process of their sum (τt).2

Exogenous tax changes exhibit characteristics suitable for NARDL analysis. We explain these charac-

teristics one by one. First, as tax changes for budget deficit always lead to tax increases, ∆τ1t is always

positive. Second, most tax changes for long-run economic growth are related to tax decreases. Out of 31

legislated tax changes for long-run growth, only 6 result in tax increases. This means that the partial sum

processes for deficit reduction and long-run growth remain in positive and negative regions, respectively.

Although the NARDL model assumptions do not perfectly align with the characteristics of exogenous fis-

cal shocks, we use the approximation of ∆τ+t := max[0,∆τt] for tax changes due to budget deficit and

∆τ−t := min[0,∆τt] for tax changes due to long-run growth.

For this purpose, we specify the following NARDL model and estimate the long- and short-run param-

eters using the methodology of the current study:

∆yt = γ∗ + ρ∗ut−1 +

q−1∑
j=0

(
π+j∗∆τ

+
t−i + π−j∗∆τ

−
t−i

)
+

p−1∑
j=1

φj∗∆yt−j + et, (24)

1Data can be obtained from the following URL: https://eml.berkeley.edu/˜cromer/ (Accessed: Feb. 10, 2023).
2We obtain the partial sum processes by first converting the nominal tax changes into consistent values over the period 1947Q1

to 2007Q4. For this, we first discount the nominal values with price index implied by the nominal GDP and the quantity index for
GDP in the data set, and then apply a log transformation. We find that ∆τt = ∆τ1t +∆τ2t, ∆τ1t := sgn(∆T1t) log(|∆T1t|/pt),
∆τ2t := sgn(∆T2t) log(|∆T2t|/pt), and pt := NYt/Yt, where ∆T1t and ∆T2t represent the nominal tax changes for budget
deficit and long-run growth, respectively, and NYt and Yt represent the nominal GDP and quantity GDP index, respectively. In
case ∆T1t = 0 or ∆T2t = 0, we let ∆τ1t = 0 or ∆τ2t = 0, respectively. The partial sum processes in Figure 1 represent τt, τ1t,
and τ2t.
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where ut := yt − β+∗ τ
+
t − β−∗ τ

−
t − ζ∗t− ν∗. This can be rewritten as

∆yt = α∗ + ρ∗yt−1 + θ+∗ τ
+
t−1 + θ−∗ τ

−
t−1 + ξ∗t+

q−1∑
j=0

(
π+j∗∆τ

+
t−i + π−j∗∆τ

−
t−i

)
+

p−1∑
j=1

φj∗∆yt−j + et, (25)

which we estimate by OLS. If β+∗ = β−∗ (or θ+∗ = θ−∗ ) and π+j∗ = π−j∗, (24) reduces to (22), which

economically implies that the relationship between tax changes aimed at deficit reduction and long-run

growth in real GDP is roughly symmetrical in both the long and short run. We can use the Wald tests

defined in Section 5 for this inference.

7.2 Empirical Results

This section presents the estimation and inference results. Our discussion is divided into two parts. The first

part presents the estimation results obtained using the tax change data outlined in the previous section. The

second part uses the tax change data utilized by Romer and Romer (2010). We have reduced the sample

period to 1947Q1–2007Q4 by excluding missing observations.

7.2.1 Tax Changes Measured by Log Transformation of Tax

Before presenting the estimation and inference results, we provide the basic statistical characteristics of the

data. The logarithm of GDP quantity index multiplied by 100 is represented by yt, while τt, τ1,t, and τ2,t are

defined as in footnote 2. The descriptive statistics of ∆yt, ∆τ1t, ∆τ2t, and ∆τt can be found in Supplement

Table A.1. Furthermore, our unit-root test on yt, τ1t, τ2t, and τt follows the method of Phillips and Perron

(1988), including or excluding the time trend. The test results indicate that we cannot reject the unit-root

hypothesis for the series.

We report the estimation results in Table 5. Columns marked “Exo” give the parameter estimates ob-

tained by OLS for NARDL and ARDL models. In other words, the unknown parameters in equations (25)

and (23) are estimated by OLS. Orders for the NARDL model are based on the Akaike information cri-

terion (AIC), with p = 3 and q = 1 for both the NARDL and ARDL models. Standard errors are listed

in parentheses below the parameter estimates. Except for the coefficient of yt−1, we use the asymptotic

critical values from mixed normal distribution for t-tests. For t-test on the coefficient of yt−1, we use the

asymptotic critical values provided by Banerjee et al. (1998). Furthermore, we test whether all coefficients

of yt−1, τ+t−1, and τ−t−1 are equal to zero by applying the F -test from Pesaran et al. (2001). Finally, we

test the hypotheses of symmetry between long-run parameters, short-run parameters, or both using the Wald

tests defined in Section 5. The results are presented in the two bottom panels. We summarize the results in
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Table 5 as follows:

(a) The coefficient of yt−1 in the t-test is significant at the 10% and 5% levels for the NARDL and ARDL

models, respectively. Although the hypothesis of no cointegration cannot be rejected by the F -test

for the NARDL model, it is significant at the 10% level for the ARDL model. Our analysis using

the 2SNARDL model detailed below suggests that we can reasonably conclude that a cointegrating

relationship exists between the log real GDP and exogenous log tax shock.

(b) The NARDL model estimation results indicate that an increase in exogenous tax shock measured

by τ+t−1 reduces the log real GDP. In contrast, a decrease in exogenous tax shock measured by τ−t−1

increases the log of real GDP. The ARDL model also reveals the same relationship between exogenous

log tax shock and log real GDP.

(c) The estimated coefficients of τ+t−1 and τ−t−1 are almost equal in magnitude, suggesting no long-run

asymmetry between log real GDP and exogenous log tax shock. This conclusion is further confirmed

by the Wald test. Both W
(1)
T and W (1)

T provide p-values that make it difficult to reject the symmetry

hypothesis.

(d) Short-run symmetry is confirmed by W
(2)
T and W (2)

T as they do not reject the symmetry hypothesis.

Moreover, both the long-run and short-run symmetry hypotheses are not challenged by either W(3)
T or

W
(3)
T . From this, we can conclude that the ARDL model is appropriate for studying the relationship

between log real GDP and exogenous log tax shock.

(e) We present the estimation results for endogenous log tax shock, calculated in the same way as for

exogenous log tax shock. Columns labeled “Endo” give the estimation and inference results obtained

using the endogenous log tax shock data in Romer and Romer (2010). Similarly, the columns labeled

“Sum” display the estimation and inference results obtained using both exogenous and endogenous

log tax shocks. The estimated signs of τ+t−1, τ−t−1, and τt−1 are inconsistent with economic theory

for endogenous log tax shock. As for using both exogenous and endogenous log tax shocks jointly,

there is little evidence of cointegration. These estimation results indicate that only exogenous log

tax shocks reveal the impact on fiscal shock GDP, with the coefficients having signs consistent with

economic theory. □

Next, we estimate the NARDL and ARDL models using the 2SNARDL method proposed by Cho,

Greenwood-Nimmo, and Shin (2023a). For the ARDL model, we apply 2SNARDL estimation by imposing

the short- and long-run parameter symmetry conditions. The results are presented in Table 6, structured in

parallel to Table 5. This is to validate the inference results in Table 5. We summarize the results in Table 6.

(a) The NARDL and ARDL models estimated using 2SNARDL show that the coefficient of ut−1 for

exogenous tax shock is significant. The significance levels are 10% and 5% for the NARDL and
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ARDL models, respectively. Moreover, we use a unit root test as in Phillips and Perron (1988) to test

the cointegration residuals obtained from both models. The results reject the unit root hypothesis. The

p-values are 10.19% and 2.58% for the NARDL and ARDL models, respectively. This confirms the

cointegrating relationship between log real GDP and exogenous log tax shock.

(b) As regards exogenous log tax shock, the NARDL model indicates that the long-run log real GDP co-

efficient for log tax increase is -0.4329%, while that for log tax decrease is -0.3202%. These signs are

consistent with economic theory, and both are significant at the 1% and 10% levels, respectively. For

the ARDL model, the long-run coefficient for log tax increase is -0.2328%. This sign is also consistent

with economic theory, and the estimated coefficient is significant at the 1% level. Despite difference

in numerical estimates compared to Table 5, the findings have the same qualitative implications.

(c) Our findings for endogenous and aggregate log tax shocks align with the previous results in Table

5. Specifically, the coefficients of τ+t−1, τ−t−1, and τt−1 for endogenous log tax shock are statistically

significant, but their signs are inconsistent with economic theory. However, for aggregate log tax

shock, none of these coefficients are significant. Moreover, the coefficient of ut−1 is insignificant

owing to the asymptotic critical values provided by Banerjee et al. (1998). □

The results in Tables 5 and 6 suggest that by using exogenous log tax shocks for model estimation, we

can properly identify the relationship between log real GDP and fiscal shock. The findings indicate limited

statistical support for asymmetry between tax shock for deficit reduction and long-run growth. Moreover,

OLS and 2SNARDL estimations produce qualitatively similar results.

7.2.2 Tax Changes Measured by Tax to GDP Ratio

This section extends Romer and Romer (2010) to investigate the long- and short-run relationships be-

tween fiscal shock and real GDP. Rather than the tax change logarithm (τt), we employ ∆rt := (∆T1t +

∆T2t)/NYt, which represents the tax change to nominal GDP ratio, to specify the models corresponding

to (22), (23), (24), and (25). As with Tables 5 and 6, we estimate the models using OLS and 2SNARDL.

The estimation and inference results are presented in Tables 7 and 8, respectively. We summarize them as

follows:

(a) For exogenous tax change, we find the coefficient of yt−1 in the t-test of Table 7 significant at the 25%

level for the NARDL and ARDL models. TheF -test does not reject the hypothesis of no cointegration.

However, the coefficient of ut−1 in the t-test of Table 8 is significant at the 25% and 10% levels for the

NARDL and ARDL models, respectively. The inference results in Table 8 have more weight since the

2SNARDL estimation has a faster convergence rate than OLS estimation. Neither of the Wald tests

W
(1)
T and W (1)

T rejects the symmetry hypothesis in long-run parameters, indicating that the ARDL
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model is more relevant to the data, and that a cointegrating relationship exists between yt and rt.

(b) The ARDL model results indicate that an increase in exogenous tax shock measured by rt−1 reduces

the long-run log real GDP by about 3%. This is remarkably close to the overall estimation results in

Romer and Romer (2010), estimating that the GDP would increase by approximately 3% over three

years following a tax cut of 1% of GDP.

(c) The Wald tests W(2)
T and W (2)

T do not reject the hypothesis of symmetric short-run parameters. Fur-

thermore, neither of the Wald tests W(3)
T and W (3)

T rejects the hypothesis of long- and short-run sym-

metry. This confirms that the ARDL model is appropriate for the long- and short-run relationships

between yt and rt.

(d) As for endogenous and aggregate tax changes, there is negligible evidence of cointegration between

the real GDP and tax changes. Neither of the t- and F -tests in Table 7 rejects the hypothesis of

no cointegration. Furthermore, none of the coefficient of ut−1 in Table 8 is statistically significant.

Specifically for aggregate tax change, we cannot confirm that rt is nonstationary from the unit root test

in the Online Supplement. From this, we can estimate the long- and short-run relationships properly

only by using exogenous tax change. □

In summary, the empirical results obtained with the specification in Romer and Romer (2010) provide

qualitatively the same results as in Section 7.2.1. In particular, the long-run relationship between yt and rt

captured by the cointegration coefficient is close to their estimate.

8 Conclusion

OLS estimation suffers from an asymptotically singular matrix problem when performed with the NARDL

model. Although the limit behavior of OLS is unknown, it is popularly used in the empirical literature.

This study investigates the large sample behavior of the OLS estimator by addressing the asymptotically

singular matrix problem. Specifically, we find the OLS estimator consistent for unknown NARDL param-

eters, following a mixed normal distribution asymptotically under some mild regularity conditions. This

implies that the standard t- and Wald test principles can be applied to the OLS estimator as if no asymp-

totically singular matrix problem existed. For this, we first derive the large sample distribution of the OLS

estimator by representing it as a bilinear transform of other primitive estimators that do not suffer from the

asymptotically singular matrix problem. This representation would make the application of higher-order

expansion to OLS unnecessary for limit distribution.

Furthermore, we examine the large sample behavior of the Wald tests for the NARDL hypothesis. Be-

sides the standard Wald tests defined by OLS, we develop other supplementary Wald tests using primitive
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estimators to test for asymmetric long- and/or short-run parameters. The null limit distributions of the stan-

dard Wald tests are mixed chi-squared, but the supplementary Wald tests have different ones when testing

for asymmetry in long-run parameters. Applying the residual bootstrap method here, we find through Monte

Carlo simulation that the supplementary Wald tests perform better than the standard Wald tests overall.

Finally, we illustrate the proper use of the NARDL model by estimating the long- and short-run relation-

ships between GDP and exogenous fiscal shocks due to deficit reduction and long-run growth. For this, we

use the empirical data provided by Romer and Romer (2010). As all tax changes for deficit reduction rep-

resent tax increases and most tax changes for long-run growth are tax decreases, we estimate the NARDL

model and examine whether the long- and short-run relationships between tax increase and decrease are

symmetric. Consequently, we find no evidence of asymmetric long- and short-run relationships between tax

increase and decrease. We also find that a 1% exogenous GDP tax increase reduces the log real GDP by

about 3% in the long run. This is consistent overall with the estimation result in Romer and Romer (2010).
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Wald test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 10.70 10.78 10.80 9.58 10.54 38.16 40.26 40.48 40.24 41.02

W
(1)
T 5% 5.52 5.48 5.38 4.68 5.12 30.38 31.30 32.50 31.52 32.46

1% 1.28 1.00 0.94 1.12 0.98 17.46 18.38 19.48 18.34 19.24
10% 9.46 10.26 9.94 9.46 10.26 11.12 11.24 10.58 9.96 10.52

W
(2)
T 5% 4.74 5.10 5.00 4.90 4.94 5.80 5.68 5.38 5.20 5.36

1% 1.00 1.02 1.06 0.98 1.04 1.44 1.28 1.26 0.94 1.02
10% 10.26 11.02 10.54 9.84 10.80 33.96 35.14 36.18 35.62 36.64

W
(3)
T 5% 5.40 5.62 4.98 4.62 5.44 26.32 27.08 27.90 26.74 27.94

1% 1.24 1.04 1.00 1.00 1.04 14.28 14.92 15.84 14.28 15.70
10% 10.94 9.90 10.18 9.74 10.44 14.98 12.14 11.48 10.68 11.36

W
(1)
T 5% 5.18 4.84 4.98 4.86 4.96 8.70 6.24 5.92 5.46 5.68

1% 0.88 0.82 1.14 0.84 0.86 2.18 1.42 1.44 1.16 1.04
10% 10.74 9.16 9.58 9.22 10.02 12.68 10.04 10.10 9.60 10.62

W
(2)
T 5% 5.06 4.62 5.02 4.58 5.14 6.86 5.20 5.28 4.96 5.28

1% 1.06 0.96 1.20 1.08 1.14 1.80 1.24 1.30 1.12 1.22
10% 10.78 8.92 9.80 9.42 10.06 14.92 11.46 11.04 10.52 10.90

W
(3)
T 5% 4.98 4.46 4.82 4.92 4.94 8.36 5.82 5.64 5.48 5.44

1% 0.98 0.90 1.16 0.90 1.20 2.42 1.52 1.42 1.24 1.46

Table 1: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5,000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et, ut = yt − β+∗ x

+
t − β−∗ x

−
t , ∆xt = vt, and (et, vt)

′ ∼ IID N(02, I2)

with (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (−1/2, 1/2, 1/2, 1, 1). Here, W(1)

T , W(2)
T , and W

(3)
T denote the Wald tests in

Section 5, and W (1)
T , W (2)

T , and W (3)
T are the standard Wald tests.
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Wald test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 49.52 88.04 97.98 99.88 99.96 70.78 96.20 99.48 99.96 100.0

W
(1)
T 5% 37.34 81.12 96.62 99.60 99.92 65.14 94.50 99.30 99.96 99.98

1% 15.54 61.22 90.30 98.22 99.64 52.50 90.24 98.64 99.88 99.98
10% 17.62 25.96 33.14 40.40 48.24 20.18 27.28 34.70 41.24 48.94

W
(2)
T 5% 10.58 17.32 21.98 28.90 36.24 12.70 18.60 23.42 30.02 37.34

1% 2.96 6.00 8.44 11.88 16.30 4.60 6.98 9.44 12.96 17.54
10% 47.82 86.70 97.84 99.84 99.96 67.46 94.86 99.22 99.96 99.98

W
(3)
T 5% 35.50 80.26 96.38 99.54 99.92 60.74 92.78 99.00 99.96 99.98

1% 15.22 59.92 89.70 97.98 99.62 48.80 87.72 97.88 99.86 99.96
10% 44.88 86.62 98.28 99.62 99.98 53.84 89.18 98.54 99.68 99.98

W
(1)
T 5% 33.16 79.72 96.54 99.42 99.94 43.76 83.78 97.32 99.56 99.98

1% 14.12 59.88 90.36 98.16 99.76 25.30 68.94 92.64 98.56 99.80
10% 17.06 24.66 33.86 40.02 48.20 19.80 26.00 34.62 41.44 48.92

W
(2)
T 5% 9.66 15.64 22.94 28.38 35.82 11.72 17.24 24.26 29.34 37.16

1% 2.90 4.74 8.90 11.78 16.50 4.18 6.04 10.06 13.12 17.64
10% 39.80 82.48 97.08 99.42 99.98 48.72 85.30 97.70 99.50 99.98

W
(3)
T 5% 28.60 74.36 94.76 99.02 99.94 38.42 78.44 95.74 99.08 99.94

1% 11.76 53.86 86.66 97.42 99.52 20.60 61.92 89.80 97.94 99.66

Table 2: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5,000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1+π+∗ ∆x

+
t +π−∗ ∆x

−
t + et, ut = yt−β+∗ x

+
t −β−∗ x

−
t , ∆xt = vt, and (et, vt)

′ ∼ IID N(02, I2) with
(ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (−1/2, 1/8,−1/8, 1/4,−1/4). Here, W(1)

T , W(2)
T , and W

(3)
T denote the Wald tests

in Section 5, and W (1)
T , W (2)

T , and W (3)
T are the standard Wald tests.
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Wald test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 10.72 10.98 10.44 10.24 9.58 50.64 53.24 52.44 52.16 51.76

W
(1)
T 5% 5.72 6.04 5.20 5.16 4.80 42.80 45.64 44.82 45.54 44.54

1% 1.00 1.14 0.90 0.86 1.16 29.24 32.36 32.20 32.72 31.04
10% 10.18 10.30 10.04 9.90 10.38 12.70 11.16 10.86 10.62 10.90

W
(2)
T 5% 4.84 5.36 4.88 4.76 5.12 6.78 6.22 5.42 5.26 5.48

1% 0.84 1.08 0.92 0.84 1.04 1.70 1.44 1.12 0.98 1.10
10% 10.26 11.12 9.98 10.12 9.20 47.14 49.32 48.42 48.74 47.70

W
(3)
T 5% 5.40 5.78 5.28 5.28 4.62 38.56 41.22 40.00 41.20 39.10

1% 0.94 1.00 0.86 0.80 1.26 25.36 28.38 27.32 27.82 26.70
10% 9.76 9.70 9.48 9.62 9.78 14.04 11.92 10.68 10.82 10.46

W
(1)
T 5% 4.82 5.02 4.78 4.60 5.14 8.08 6.66 5.46 5.50 5.90

1% 1.08 0.98 0.74 1.08 0.98 2.36 1.54 1.20 1.32 1.20
10% 10.14 10.04 9.96 10.26 9.80 12.80 11.56 10.76 10.82 10.12

W
(2)
T 5% 5.36 5.08 4.88 5.12 5.14 7.14 6.04 5.78 5.54 5.34

1% 1.20 1.00 0.92 0.88 0.86 1.96 1.30 1.18 1.16 1.12
10% 10.48 10.14 9.92 9.64 9.96 15.02 12.58 11.18 10.72 11.12

W
(3)
T 5% 5.10 4.72 4.90 5.04 4.82 9.14 6.48 6.00 5.98 5.58

1% 0.90 0.96 0.84 0.92 0.84 2.44 1.46 1.34 1.24 1.00

Table 3: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5,000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et, ut = yt − β+∗ x

+
t − β−∗ x

−
t , ∆xt = κ∗∆xt−1 + vt, and (et, vt)

′ ∼
IID N(02, I2) with (κ∗, ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (1/2,−1/2, 1/2, 1/2, 1, 1). Here, W(1)

T , W(2)
T , and W

(3)
T

denote the Wald tests in Section 5, and W (1)
T , W (2)

T , and W (3)
T are the standard Wald tests.
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Wald test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 70.42 98.08 99.96 100.0 100.0 86.72 99.54 100.0 100.0 100.0

W
(1)
T 5% 58.52 96.24 99.94 99.96 100.0 83.04 99.36 100.0 100.0 100.0

1% 31.88 88.28 99.36 99.92 99.98 74.30 98.56 99.98 100.0 100.0
10% 19.34 31.56 42.16 51.48 60.40 23.44 34.30 43.90 53.00 62.24

W
(2)
T 5% 11.94 21.60 30.82 38.88 48.20 15.34 24.10 33.22 41.02 49.90

1% 4.06 7.56 12.20 18.60 25.84 6.20 9.86 14.74 21.34 28.06
10% 68.38 97.80 99.96 99.98 100.0 83.84 99.40 100.0 100.0 100.0

W
(3)
T 5% 56.20 95.96 99.94 99.96 100.0 79.80 99.00 100.0 100.0 100.0

1% 30.42 87.80 99.34 99.90 99.98 70.72 97.96 99.98 99.96 100.0
10% 68.52 97.96 99.92 100.0 100.0 76.54 98.62 99.94 100.0 100.0

W
(1)
T 5% 56.32 95.98 99.80 100.0 100.0 68.12 97.34 99.90 100.0 100.0

1% 32.50 89.18 99.38 100.0 99.98 48.98 92.80 99.62 100.0 100.0
10% 19.96 31.52 41.64 51.20 60.28 23.56 33.88 43.52 52.62 61.46

W
(2)
T 5% 12.58 21.60 30.30 39.14 48.26 15.88 24.22 32.42 41.20 49.70

1% 3.98 8.30 13.18 18.26 25.12 6.28 10.00 15.90 21.02 27.66
10% 61.92 96.50 99.86 100.0 100.0 70.90 97.36 99.90 100.0 100.0

W
(3)
T 5% 49.76 94.32 99.74 100.0 100.0 62.10 95.48 99.82 100.0 100.0

1% 27.10 85.10 99.14 100.0 99.96 42.90 89.64 99.44 100.0 99.98

Table 4: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5,000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et, ut = yt − β+∗ x

+
t − β−∗ x

−
t , ∆xt = κ∗∆xt−1 + vt, and (et, vt)

′ ∼ IID
N(02, I2) with (κ∗, ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (1/2,−1/2, 1/8,−1/8, 1/4,−1/4). Here, W(1)

T , W(2)
T , and

W
(3)
T denote the Wald tests in Section 5, and W (1)

T , W (2)
T , and W (3)

T are the standard Wald tests.

36



NARDL Model ARDL Model
Variables \ Tax Exo. Endo. Sum. Variables \ Tax Exo. Endo. Sum.
yt−1 -0.0683 -0.0817 -0.0497 yt−1 -0.070 -0.0755 -0.0404

(0.0191) (0.0223) (0.0158) (0.0185) (0.0220) (0.0148)
τ+t−1 -0.0123 0.0158∗∗ 0.0016 τt−1 -0.0139 0.0142 -0.0053

(0.0078) (0.0078) (0.0093) (0.0060) (0.0077) (0.0074)
τ−t−1 -0.0123 0.0149 -0.0093

(0.0083) (0.0176) (0.0090)
Trend 0.0549∗∗∗ 0.0631∗∗∗ 0.0324∗∗ Trend 0.0570∗∗∗ 0.0584∗∗∗ 0.0333∗∗∗

(0.0177) (0.0176) (0.0127) (0.0151) (0.0169) (0.0120)
Constant 0.7588∗∗∗ 0.6974∗∗∗ 0.8357∗∗∗ Constant 0.7826∗∗∗ 0.7542∗∗∗ 0.8543∗∗∗

(0.1874) (0.1644) (0.1744) (0.1539) (0.1604) (0.1561)
∆yt−1 0.3129∗∗∗ 0.3118∗∗∗ 0.3135∗∗∗ ∆yt−1 0.3091∗∗∗ 0.3035∗∗∗ 0.3031∗∗∗

(0.0633) (0.0658) (0.0646) (0.0630) (0.0657) (0.0648)
∆yt−2 0.1265∗ 0.1446∗∗ 0.1190∗ ∆yt−2 0.1304∗∗ 0.1331∗∗ 0.1091∗

(0.0646) (0.0658) (0.0645) (0.0643) (0.0653) (0.0647)
∆τ+t -0.0029 0.0890∗ 0.03984 ∆τt -0.0444 0.0434 -0.0122

(0.0435) (0.0465) (0.0341) (0.0272) (0.0362) (0.0226)
∆τ−t -0.0780∗ -0.0302 -0.0683∗

(0.0391) (0.0598) (0.0347)
AIC -6.5459 -6.5372 -6.5332 AIC -6.5561 -6.5434 -6.5284
BIC -6.4225 -6.4099 -6.5332 BIC -6.4602 -6.4475 -6.4378
t-test -3.5680∗ -3.6519∗ -3.1308† t-test -3.8220∗∗ -3.4319∗ -2.7229
F -test 4.5387 4.9164 3.8509 F -test 7.3222∗ 6.5583∗ 4.7046
W

(1)
T 9.8862 0.0048 9.8910

(0.4344) (0.9696) (0.5000)
W

(2)
T 1.4822 3.8085 5.2908

(0.7472) (0.1902) (0.6567)
W

(3)
T 30.9528 1.4114 32.3642

(0.2737) (0.2659) (0.2718)
W

(1)
T 0.0000 0.0039 1.0285

(0.9982) (0.9604) (0.4485)
W

(2)
T 1.5426 2.5180 4.4950

(0.2265) (0.1259) (0.0398)
W

(3)
T 1.5527 2.5326 5.2070

(0.5474) (0.3706) (0.1525)

Table 5: OLS ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the OLS esti-
mation using quarterly data from Romer and Romer (2010). The left and right panels display estimated
parameters for (25) and (23), respectively. Figures in parentheses indicate standard errors of the OLS esti-
mates. At the bottom of the top panels, AIC, BIC, t-test, and Pesaran et al.’s (2001) F -test are reported. †,
∗, ∗∗, and ∗∗∗ indicate significance at 25%, 10%, 5%, and 1% levels, respectively. Wald tests in the last two
bottom panels show the Wald tests in Section 5 and the standard Wald tests. Figures in parentheses below
the Wald tests show p-values. They are obtained from 100,000 bootstrap iterations.
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NARDL Model ARDL Model
Variables \ Tax Exo. Endo. Sum. Variables \ Tax Exo. Endo. Sum.

Long-Run Constant 4.2360 3.7413∗∗∗ 4.9730∗∗ Constant 6.0785∗∗∗ 4.8528∗∗∗ 5.8407∗∗

(2.5919) (1.2787) (2.3861) (0.0709) (1.3852) (2.8526)
τ+t−1 -0.4329∗∗∗ 0.2715∗∗∗ 0.2759 τt−1 -0.2328∗∗∗ 0.2523∗∗∗ 0.1564

(0.13189) (0.0546) (0.1723) (0.0709) (0.0591) (0.1716)
τ−t−1 -0.3202∗ 0.3276∗ 0.2598

(0.1722) (0.1757) (0.1826)
Trend 0.8340∗∗∗ 0.8461∗∗∗ 0.8436∗∗∗ Trend 0.8261∗∗∗ 0.8367∗∗∗ 0.8287∗∗∗

(0.0184) (0.0090) (0.0169) (0.0127) (0.0098) (0.0202)
Short-Run ut−1 -0.0683∗ -0.0817∗ -0.0497† ut−1 -0.0708∗∗ -0.0755∗ -0.0404

(0.0191) (0.0223) (0.0158) (0.0185) (0.0220) (0.0148)
Constant 0.6734∗∗∗ 0.6918∗∗∗ 0.5683∗∗∗ Constant 0.5752∗∗∗ 0.6590∗∗∗ 0.6295∗∗∗

(0.1424) (0.1458) (0.1472) (0.5752) (0.1392) (0.1404)
∆yt−1 0.3129∗∗∗ 0.3118∗∗∗ 0.3135∗∗∗ ∆yt−1 0.3091∗∗∗ 0.3035∗∗∗ 0.3031∗∗∗

(0.0633) (0.0658) (0.0646) (0.0630) (0.0657) (0.0648)
∆yt−2 0.1265∗ 0.1446∗∗ 0.1190∗ ∆yt−2 0.1304∗∗ 0.1331∗∗ 0.1091∗

(0.0646) (0.0658) (0.0645) (0.0643) (0.0653) (0.0647)
∆τ+t -0.0029 0.0890∗ 0.0398 ∆τt -0.0444 0.0434 -0.0122

(0.0435) (0.0465) (0.0341) (0.0272) (0.0362) (0.0226)
∆τ−t -0.0780∗∗ -0.0302 -0.0683∗

(0.0391) (0.0598) (0.0347)

Table 6: 2SNARDL ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the
2SNARDL estimation using the quarterly data from Romer and Romer (2010). The left and right pan-
els display estimated parameters for (24) and (22), respectively. †, ∗, ∗∗, and ∗∗∗ imply that the tests are
significant at 25%, 10%, 5%, and 1%, respectively.
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NARDL Model ARDL Model
Variables \ Tax Exo. ratio Endo. ratio Sum. ratio Variables \ Tax Exo. ratio Endo. ratio Sum. ratio
yt−1 -0.0609 -0.0633 -0.0460 yt−1 -0.0552 -0.0658 -0.0400

(0.0184) (0.0251) (0.0177) (0.0163) (0.0247) (0.0160)
r+t−1 -0.1992 0.0850 0.0037 rt−1 -0.1125 0.1003 -0.0351

(0.1349) (0.0954) (0.0789) (0.0743) (0.0925) (0.0618)
r−t−1 -0.0970 0.0401 -0.0566

(0.0801) (0.1345) (0.0645)
Trend 0.0499∗∗∗ 0.0488∗∗ 0.0324∗∗ Trend 0.0419∗∗∗ 0.0520∗∗∗ 0.0317∗∗∗

(0.0173) (0.0200) (0.0136) (0.0127) (0.0194) (0.0135)
Constant 0.2683 0.3673 0.3685∗ Constant 0.4054∗∗ 0.4700∗∗∗ 0.5261∗∗∗

(0.2363) (0.2380) (0.2047) (0.1787) (0.1663) (0.1543)
∆yt−1 0.3095∗∗∗ 0.3144∗∗∗ 0.3049∗∗∗ ∆yt−1 0.3042∗∗∗ 0.3115∗∗∗ 0.2921∗∗∗

(0.0639) (0.0672) (0.0657) (0.0636) (0.0660) (0.0650)
∆yt−2 0.1223∗ 0.1265∗∗ 0.1139∗ ∆yt−2 0.1168∗ 0.1242∗ 0.1073∗

(0.0652) (0.0660) (0.0651) (0.0644) (0.0657) (0.0648)
∆r+t 0.1638 0.2465 0.1778 ∆rt 0.1725 0.2553 0.1467

(0.6215) (0.2788) (0.2621) (0.618)0 (0.2776) (0.2609)
∆r−t -0.2706 -0.1477 -0.2350

(0.2734) (0.3051) (0.2087)
AIC 2.6831 2.6925 2.6895 AIC 2.6739 2.6780 2.6814
BIC 2.8133 2.8226 2.8196 BIC 2.7751 2.7792 2.7826
t-test -3.3087† -2.5198 -2.5917 t-test -3.3867† -2.6602 -2.4960
F -test 3.9276 3.5933 3.4873 F -test 5.7417 5.2684 4.8210
W

(1)
T 52.7574 2.1358 48.9740

(0.1294) (0.7290) (0.2581)
W

(2)
T 0.0722 0.8121 0.4782

(0.8015) (0.4021) (0.4981)
W

(3)
T 52.8296 2.9480 49.4522

(0.1340) (0.7595) (0.2610)
W

(1)
T 0.5384 0.3344 0.8601

(0.5697) (0.6463) (0.5035)
W

(2)
T 0.4079 0.9926 1.5118

(0.5278) (0.3177) (0.2279)
W

(3)
T 1.0869 1.2200 2.1652

(0.6618) (0.6150) (0.4681)

Table 7: OLS ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the OLS esti-
mation using quarterly data from Romer and Romer (2010). The left and right panels display estimated
parameters for (25) and (23) using rt instead of τt, respectively. Figures in parentheses indicate standard
errors of the OLS estimates. At the bottom of the top panels, AIC, BIC, t-test, and Pesaran et al.’s (2001) F -
test are reported. †, ∗, ∗∗, and ∗∗∗ indicate significance at 25%, 10%, 5%, and 1% levels, respectively. Wald
tests in the last two bottom panels show the Wald tests in Section 5 and the standard Wald tests. Figures in
parentheses below the Wald tests show p-values. They are obtained from 100,000 bootstrap iterations.
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NARDL Model ARDL Model

Variables \ Tax
Exo. Endo. Sum.

Variables \ Tax
Exo. Endo. Sum.

ratio ratio ratio ratio ratio ratio
Long-Run Constant -2.5602 -2.5888∗∗ -2.9531 Constant -0.3468 -2.2311∗ -1.0492

(2.4603) (1.1990) (2.5202) (2.3897) (1.2927) (2.8199)
r+t−1 -6.7407∗∗∗ 4.2616∗∗∗ 4.5455∗∗∗ rt−1 -3.0752∗∗ 3.3960∗∗∗ 2.2608∗

(2.0794) (0.5100) (1.2686) (1.2428) (0.5463) (1.2356)
r−t−1 -2.8360∗ 5.1176∗∗∗ 2.762∗∗3

(1.5211) (0.9583) (1.2373)
Trend 0.8364∗∗∗ 0.8391∗∗∗ 0.8435∗∗∗ Trend 0.8242∗∗∗ 0.8370∗∗∗ 0.8295∗∗∗

(0.0166) (0.0081) (0.0170) (0.0161) (0.0087) (0.0190)
Short-Run ut−1 -0.0609† -0.0633 -0.0460 ut−1 -0.0558∗ -0.0627 -0.0378

(0.0184) (0.0251) (0.0177) (0.0162) (0.0248) (0.0160)
Constant 0.6763∗∗∗ 0.6693∗∗∗ 0.6719∗∗∗ Constant 0.5730∗∗∗ 0.6828∗∗∗ 0.6517∗∗∗

(0.1484) (0.1510) (0.1534) (0.1470) (0.1468) (0.1464)
∆yt−1 0.3095∗∗∗ 0.3144∗∗∗ 0.3049∗∗∗ ∆yt−1 0.3038∗∗∗ 0.3127∗∗∗ 0.3007∗∗∗

(0.0639) (0.0672) (0.0657) (0.0635) (0.0669) (0.0656)
∆yt−2 0.1223∗ 0.1265∗ 0.1139∗ ∆yt−2 0.1149∗ 0.1220∗ 0.1070

(0.0652) (0.0660) (0.0651) (0.0644) (0.0658) (0.0648)
∆r+t 0.1638 0.2465 0.1778 ∆rt -0.2094 0.0801 -0.0737

(0.6215) (0.2788) (0.2621) (0.2435) (0.2087) (0.1596)
∆r−t -0.2706 -0.1477 -0.2350

(0.2734) (0.3051) (0.2087)

Table 8: 2SNARDL ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the
2SNARDL estimation using the quarterly data from Romer and Romer (2010). The left and right pan-
els display estimated parameters for (24) and (22), respectively. †, ∗, ∗∗, and ∗∗∗ imply that the tests are
significant at 25%, 10%, 5%, and 1%, respectively.
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Figure 1: PARTIAL SUM PROCESSES FORMED BY EXOGENOUS FISCAL SHOCKS. The solid line repre-
sents real earnings and the dashed line real dividends. Both series are measured in U.S. Dollars at January
2022 prices. We convert from the original monthly sampling frequency to quarterly frequency by taking the
end-of-period value.
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This Online Supplement is an Appendix that provides proofs of all the results in the paper,

including the lemmas.

A Supplements

A.1 Supplementary Lemmas

Before proving the main claims in the text, we first provide some preliminary lemmas to prove the main

claims efficiently.

The following two lemmas provide alternative representations of the OLS estimators, which we define

under different environments. We first suppose that yt ∈ R is a dependent variable and (x′
t, z

′
t)
′ ∈ R(s+k)

is an explanatory variable, and the OLS estimator is obtained by regressing yt against (x′
t, z

′
t)
′. Given this,

we provide alternative forms of the OLS estimator in the following lemmas:

Lemma A.1. Suppose that {(yt,x′
t, z

′
t)
′ ∈ R1+s+k : t = 1, 2, . . . , T}. If the OLS estimators are obtained

as follows: for j = 1, 2, . . . , s,

(β̂T , γ̂T ) := argmin
β,γ

T∑
t=1

(
yt − xtβ − z′

tγ
)2
, ϕ̂jT := argmin

ϕj

T∑
t=1

(
xjt − z′

tϕj

)2
, and

(ξ̂T , δ̂T ) := argmin
ξ,δ

T∑
t=1

(
yt − v̂′

tξ − z′
tδ
)2
,

where for each t, v̂t := xt − ϕ̂
′
Tzt and ϕ̂T := (ϕ̂1T , . . . , ϕ̂sT ), then β̂T = ξ̂T and γ̂T = δ̂T − ϕ̂T ξ̂T . □

1The author has benefited from discussions with Matthew Grrnwood-Nimmo and Yoncheol Shin. Cho acknowledges the re-
search grant provided by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea
(NRF2020S1A5A2A01040235).
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Therefore, we can obtain the OLS estimator (β̂T , γ̂T ) by combining the two OLS estimators ϕ̂T and

(ξ̂T , δ̂T ) obtained from the first- and second-step OLS estimators, respectively.

The following lemma considers a different environment. We let the OLS estimator be obtained by

regressing yt against (xt, z
′
t,w

′
t)
′ ∈ Rs+k+d and provide an alternative form of the OLS estimator:

Lemma A.2. Suppose that {(yt,x′
t, z

′
t,w

′
t)
′ ∈ R1+s+k+d : t = 1, 2, . . . , T}. If the OLS estimators are

obtained as follows: for j = 1, 2, . . . , s,

(β̂T , γ̂T , α̂T ) := argmin
β,γ,α

T∑
t=1

(
yt − x′

tβ − z′
tγ −w′

tα
)2
, ϕ̂jT := argmin

ϕ

T∑
t=1

(
xjt − z′

tϕj

)2
, and

(ξ̂T , δ̂T , θ̂T ) := argmin
ξ,δ,θ

T∑
t=1

(
yt − v̂′

tξ − z′
tδ −w′

tθ
)2
,

where for each t, v̂t := xt − ϕ̂
′
Tzt and ϕ̂T := (ϕ̂1T , . . . , ϕ̂sT ), then β̂T = ξ̂T , γ̂T = δ̂T − ϕ̂T ξ̂T , and

α̂T = θ̂T . □

Note that wt is added as an additional regressor to the regressors given in Lemma A.1 and that the nuisance

parameter estimator α̂T is the same as the nuisance parameter estimator θ̂T obtained in the second step.

We now prove Lemmas A.1 and A.2. For notational simplicity, we let

Y := [y1, y2, . . . , yT ]
′, X := [x1,x2, . . . ,xT ]

′, Z := [z1, z2, . . . ,zT ]
′, V̂ := [v̂1, v̂2, . . . , v̂T ]

′,

and W := [w1,w2, . . . ,wT ]
′.

Proof of Lemma A.1. From the definition of (β̂T , γ̂T ), we first note that

 β̂T

γ̂T

 =

 X′X X′Z

Z′X Z′Z

−1  X′Y

Z′Y

 =

 (X′QX)−1X′QY

(Z′Z)−1Z′[I−X(X′QX)−1X′Q]Y

 , (A.1)

where Q := I− Z(Z′Z)−1Z′. Next, we note that

V̂ = X− Zϕ̂T = X− Z(Z′Z)−1Z′X = QX. (A.2)

Therefore, Z′V̂ = 0 by noting that Z′Q = 0. Third, we note that

 ξ̂T

δ̂T

 =

 V̂′V̂ V̂′Z

Z′V̂ Z′Z

−1  V̂′Y

Z′Y

 =

 (V̂′V̂)−1V̂′Y

(Z′Z)−1Z′Y


2



using the fact that Z′V̂ = 0. Therefore,

ξ̂T = (V̂′V̂)−1V̂′Y = (X′QX)−1X′QY (A.3)

using (A.2). This shows that β̂T = ξ̂T . Finally, we note that

δ̂T − ϕ̂T ξ̂T = (Z′Z)−1Z′Y− (Z′Z)−1Z′X(V̂′V̂)−1V̂′Y = (Z′Z)−1Z′[I−X(X′QX)−1X′Q]Y = γ̂T ,

which follows from (A.1), where the second equality follows from (A.3). Thus, δ̂T − ϕ̂T ξ̂T = γ̂T . This

completes the proof. ■

Proof of Lemma A.2. To prove the claim, we represent the OLS estimators in different forms. If we let

(β̂T (α), γ̂T (α)) := argmin
β,γ

T∑
t=1

(
yt − x′

tβ − z′
tγ −w′

tα
)2
,

then

α̂T = argmin
α

T∑
t=1

(
yt − xtβ̂T (α)− z′

tγ̂T (α)−w′
tα
)2
,

and (β̂T (α̂T ), γ̂T (α̂T )) = (β̂T , γ̂T ). Likewise, if we let

(ξ̂T (θ), δ̂T (θ)) := argmin
ξ,δ

T∑
t=1

(
yt − v̂′

tξ − z′
tδ −w′

tθ
)2
,

then

θ̂T = argmin
θ

T∑
t=1

(
yt − v̂′

tξ̂T (θ)− z′
tδ̂T (θ)−w′

tθ
)2
,

and (ξ̂T (θ̂T ), δ̂T (θ̂T )) = (ξ̂T , δ̂T ).

Here, for each α, if we let yt(α) := yt −w′
tα,

(β̂T (·), γ̂T (·)) := argmin
β,γ

T∑
t=1

(
yt(·)− x′

tβ − z′
tγ
)2
, and

(ξ̂T (·), δ̂T (·)) := argmin
ξ,δ

T∑
t=1

(
yt(·)− v̂′

tξ − z′
tδ
)2
,
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so that Lemma A.1 implies that β̂T (·) = ξ̂T (·) and γ̂T (·) = δ̂T (·)− ϕ̂T ξ̂T (·). Therefore,

T∑
t=1

(
yt(·)− v̂′

tξ̂T (·)− z′
tδ̂T (·)

)2
=

T∑
t=1

(
yt(·)− (xt − ϕ̂

′
Tzt)

′ξ̂T (·)− z′
tδ̂T (·)

)2
=

T∑
t=1

(
yt(·)− x′

tξ̂T (·)− z′
t(δ̂T (·)− ϕ̂T ξ̂T (·))

)2
=

T∑
t=1

(
yt(·)− x′

tβ̂T (·)− z′
tγ̂T (·)

)2
,

implying that

argmin
α

T∑
t=1

(
yt(α)− v̂′

tξ̂T (α)− z′
tδ̂T (α)

)2
= argmin

θ

T∑
t=1

(
yt(θ)− x′

tβ̂T (θ)− z′
tγ̂T (θ)

)2
,

viz., α̂T = θ̂T . Thus, it follows that β̂T (α̂T ) = ξ̂T (θ̂T ) and γ̂T (α̂T ) = δ̂T (θ̂T ) − ϕ̂T ξ̂T (θ̂T ). That is,

β̂T = ξ̂T and γ̂T = δ̂T − ϕ̂T ξ̂T . This completes the proof. ■

The following lemma shows that υ̂T and ω̃T defined in Section 3 suffer from asymptotically singular

matrix problems.

Lemma A.3. Given Assumption 1,

(i) T−1
∑T

t=1 û
2
t−1

P→ σ2u := E[u2t ];

(ii) if we let D̃1 := diag[T 3/2I2k, T
3/2, T 1/2], T−1/2

(∑T
t=1 ût−1z̃1t

)
D̃−1

1 ⇒ M̃1u := 01×(2k+2);

(iii) D̃−1
1

(∑T
t=1 z̃1tz̃

′
1t

)
D̃−1

1 ⇒ M̃11, where

M̃11 :=


1
3µ∗µ

′
∗

1
3µ∗

1
2µ∗

1
3µ

′
∗

1
3

1
2

1
2µ

′
∗

1
2 1

 ;

(iv) if we let D̃2 := diag[T 1/2Ip+2kq−1], T−1/2
(∑T

t=1 ût−1z̃2t

)
D̃−1

2
P→ M̃2u := E[ut−1z2t];

(v) D̃−1
2

(∑T
t=1 z̃2tz̃

′
1t

)
D̃−1

1 ⇒ M̃21, where

M̃21 :=

 1
2δ∗ιp−1µ

′
∗

1
2δ∗ιp−1 δ∗ιp−1

1
2ιq ⊗ µ∗µ

′
∗

1
2ιq ⊗ µ∗ ιq ⊗ µ∗

 ;

(vi) D̃−1
2

(∑T
t=1 z̃2tz̃

′
2t

)
D̃−1

2
P→ M̃22 := M22;
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(vii) if we let D̃ := diag[T 1/2, D̃1, D̃2], D̃−1
(∑T

t=1 z̃tz̃
′
t

)
D̃−1 ⇒ M̃, where

M̃ :=


σ2u M̃u1 M̃u2

M̃1u M̃11 M̃12

M̃2u M̃21 M̃22

 ,

which is singular, M̃12 := M̃
′
21, M̃u1 := M̃′

1u, and M̃u2 := M̃′
2u; and

(viii) D̃−1
1

(∑T
t=1 r̃t−1r̃

′
t−1

)
D̃−1

1
P→ M̃11, which is singular. □

Both υ̂T and ω̃T suffer from the asymptotically singular matrix problem by Lemma A.3 (vii and viii).

Specifically, every column from the second to (1 + k)-th columns of M̃ is proportional to the (2 + 2k)-th

column. Likewise, every column from the first to k-th columns in M̃11 is proportional to the (1 + 2k)-th

column of M̃11.

We now prove Lemma A.3.

Proof of Lemma A.3. (i) This follows from Lemma B.6 (iv) given in Section A.2.

(ii) This follows from Lemmas B.3 (v), B.4 (v), and B.5 (iv) given in Section A.2.

(iii) This follows from Lemmas B.3 (i, ii), B.4 (i, ii), and B.5 (i) given in Section A.2.

(iv) This follows from Lemma B.2 (vii) given in Section A.2.

(v) This follows from Lemma B.2 (ii, iii, and iv) given in Section A.2.

(vi) This follows from Lemma B.2 (i) given in Section A.2.

(vii) The given weak convergence follows from Lemma A.3 (i, ii, iii, iv, v, and vi) given in Section A.2,

and the singularity follows from the structure of M̃.

(viii) This follows from the definition of r̃t−1 := z̃1t and Lemma A.3 (iii) given in Section A.2. ■

A.2 Preliminary Lemmas

We next provide preliminary lemmas to prove the main claims efficiently.

Lemma B.1. Given Assumption 1, BT (·) := T−1/2
∑⌊(·)T ⌋

t=1 wt ⇒ B(·). □

Lemma B.2. Given Assumption 1,

(i) T−1
∑T

t=1 z2tz
′
2t

P→ E[z2tz
′
2t];

(ii) T−1
∑T

t=1 z2t
P→ [δ∗ι

′
p−1, ι

′
q ⊗ µ′

∗]
′;

(iii) T−2
∑T

t=1(t− 1)z2t
P→ [12δ∗ι

′
p−1,

1
2ι

′
q ⊗ µ′

∗]
′;

(iv) T−2
∑T

t=1 xt−1z
′
2t

P→ [12δ∗µ∗ι
′
p−1,

1
2µ∗ι

′
q ⊗ µ′

∗]
′;
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(v) T−3/2
∑T

t=1 m̂t−1z
′
2t ⇒ [δ∗

∫
B̄mι′p−1,

∫
B̄mι′q ⊗ µ′

∗]
′;

(vi) T−2
∑T

t=1 yt−1z
′
2t

P→ [12δ
2
∗ι

′
p−1,

1
2δ∗ι

′
q ⊗ µ′

∗]
′;

(vii) T−1
∑T

t=1 ût−1z2t
P→ E[ut−1z2t]. □

Lemma B.3. Given Assumption 1,

(i) T−2
∑T

t=1 t→
1
2 ;

(ii) T−2
∑T

t=1 xt
P→ 1

2µ∗;

(iii) T−3/2
∑T

t=1 m̂t ⇒
∫
B̄m;

(iv) T−2
∑T

t=1 yt
P→ 1

2δ∗;

(v)
∑T

t=1 ût−1 ≡ 0. □

Lemma B.4. Given Assumption 1,

(i) T−3
∑T

t=1 t
2 → 1

3 ;

(ii) T−3
∑T

t=1 txt
P→ 1

3µ∗;

(iii)
∑T

t=1(t− 1)m̂t−1 ≡ 0;

(iv) T−3
∑T

t=1 tyt
P→ 1

3δ∗;

(v)
∑T

t=1(t− 1)ût−1 ≡ 0. □

Lemma B.5. Given Assumption 1,

(i) T−3
∑T

t=1 xtx
′
t

P→ 1
3µ∗µ

′
∗;

(ii) T−2
∑T

t=1 xt−1m̂
′
t−1 ⇒

∫
BmB̄′

m;

(iii) T−3
∑T

t=1 xtyt
P→ 1

3δ∗µ∗;

(iv)
∑T

t=1 xt−1ût−1 ≡ 0. □

Remark.
∫
BmB̄′

m =
∫
B̄mB̄′

m =
∫
BmB′

m − 3
∫
rBm

∫
rB′

m from the definition of B̄m(s) =

Bm(s)− 3s
∫
rBm. □

Lemma B.6. Given Assumption 1,

(i) T−2
∑T

t=1 m̂t−1m̂
′
t−1 ⇒

∫
BmB̄′

m;

(ii)
∑T

t=1 m̂t−1ût−1 ≡ 0;

(iii) T−3
∑T

t=1 y
2
t

P→ 1
3δ

2
∗;

(iv) σ̂2u,T := T−1
∑T

t=1 û
2
t

P→ σ2u := E[u2t ]. □

Lemma B.7. Let ϱm∗ := limT→∞
1
T

∑T
t=1

∑t−1
τ=1 E[s+τ ut]. Given Assumption 1,

(i)
√
T (µ̂T − µ∗) ⇒ 3

∫
rBm;

(ii) for every t, r̃′tυ̂T = ṙ′tυ̃T ;

(iii) T−1
∑T

t=1mt−1ut ⇒
∫
BmdBu + ϱm∗;

(iv) T−1
∑T

t=1mt−1et ⇒
∫
BmdBe;

(v) σ̇2e,T := T−1
∑T

t=1(∆yt − ż′
tτ̇T )

2 P→ σ2e :=

E[e2t ]. □
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We now prove the preliminary Lemmas B.1 to B.7.

Proof of Lemma B.1. This trivially follows theorem 7.30 of White (2001). ■

Proof of Lemma B.2. (i) It holds by the ergodic theorem.

(ii) It holds by the ergodic theorem and the fact that E[z2t] = [δ∗ι
′
p−1, ι

′
q ⊗ µ′

∗]
′ because δ∗ιp−1 =

E[∆yt−], ι
′
q ⊗ µ+′

∗ = E[(∆x+′
t , . . . ,∆x+′

t−q+1)], and ι′q ⊗ µ−′
∗ = E[(∆x−′

t , . . . ,∆x−′
t−q+1)].

(iii) We note that T−2
∑T

t=1(t − 1)z2t = T−1
∑T

t=1((t − 1)/T )z2t, and we let st := ((t − 1)/T )z2t

for notational simplicity, which is a heterogeneous process. Therefore, T−1
∑T

t=1(st − E[st])
P→ 0. In

addition, T−1
∑T

t=1 E[st] = T−2
∑T

t=1(t − 1)E[z2t] → 1
2E[z2t], implying that T−1

∑T
t=1 st

P→ 1
2E[z2t]

by White (2001, theorem 3.47), given the DGP condition in Assumption 1. We further note that E[z2t] =

[δ∗ι
′
p−1, ι

′
q ⊗ µ′

∗]
′, leading to the desired result.

(iv) We first note that xt−1 = µ∗(t − 1) +mt−1. Therefore,
∑T

t=1 xt−1z
′
2t =

∑T
t=1µ∗(t − 1)z′

2t +∑T
t=1mt−1z

′
2t. The proof of Lemma B.2 (iii) already shows that T−2

∑T
t=1(t − 1)z2t

P→ 1
2E[z2t]. Fur-

thermore,
∑T

t=1mt−1z
′
2t = OP(T

3/2) as shown in the proof of Lemma B.2 (v). Therefore, it follows that

T−2
∑T

t=1 xt−1z
′
2t

P→ 1
2µ∗E[z2t], as desired.

(v) Note that m̂t−1 = mt−1 − (µ̂T − µ∗)(t − 1). Therefore,
∑T

t=1 m̂t−1z
′
2t =

∑T
t=1mt−1z

′
2t −

(µ̂T − µ∗)
∑T

t=1(t − 1)z′
2t. We here note that

∑T
t=1mt−1z

′
2t =

∑T
t=1mt−1E[z′

2t] +
∑T

t=1mt−1(z
′
2t −

E[z′
2t]). The proof of Lemma A.3 (iv) implies that T−3/2

∑T
t=1mt−1 ⇒

∫
Bm, and

∑T
t=1mt−1(z

′
2t −

E[z′
2t]) = oP(T

3/2) by noting that mt−1 = OP(T
1/2) and

∑T
t=1(z

′
2t − E[z′

2t]) = OP(T
1/2). Therefore,

T−3/2
∑T

t=1mt−1z
′
2t ⇒

∫
BmE[z′

2t]. Next, (µ̂T −µ∗)
∑T

t=1(t− 1)z′
2t =

√
T (µ̂T −µ∗)T

−2
∑T

t=1(t−

1)z′
2t, and Lemma B.7 (i) implies that

√
T (µ̂T − µ∗) ⇒ 3

∫
rBm. In addition to this, Lemma B.2 (iii)

shows that T−2
∑T

t=1(t − 1)z′
2t

P→ 1
2E[z

′
2t]. Therefore, T−3/2(µ̂T − µ∗)

∑T
t=1(t − 1)z′

2t ⇒ 3
2

∫
rBm.

Hence, if we combine all these, it follows that
∑T

t=1 m̂t−1z
′
2t ⇒ (

∫
Bm−3

2

∫
rBm)E[z′

2t] =
∫
B̄mE[z′

2t].

(vi) Note that yt−1 = δ∗(t − 1) +
∑t−1

j=1 dj . Therefore,
∑T

t=1 yt−1z
′
2t =

∑T
t=1 δ∗(t − 1)z′

2t +∑T
t=1(

∑t−1
j=1 dj)z

′
2t. The proof of Lemma B.2 (iii) already showed that T−2

∑T
t=1(t − 1)z2t

P→ 1
2E[z2t].

Furthermore, we note that
∑T

t=1(
∑t−1

j=1 dj)z
′
2t = OP(T

3/2). Therefore, T−2
∑T

t=1 yt−1z
′
2t

P→ 1
2δ∗E[z2t],

as desired.

(vii) In the proof of Lemma B.6 (iv), we show that ût = ut + OP(T
−1/2). Therefore, it follows that

T−1
∑T

t=1 ût−1z2t = T−1
∑T

t=1 ut−1z2t + oP(1)
P→ E[ut−1z2t] by the ergodic theorem. This completes

the proof. ■

Proof of Lemma B.3. (i)
∑T

t=1 t = T (T + 1)/2, leading to the desired result.

(ii) Note that xt = µ∗t + mt, so that
∑T

t=1 xt = µ∗
∑T

t=1 t +
∑T

t=1mt. Here, T−2
∑T

t=1 t → 1
2
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by Lemma B.3 (i), and Lemma B.1 implies that T−3/2
∑T

t=1mt = T−1
∑T

t=1
1√
T
mt =

∫
Bm(r)dr ⇒∫

Bm. Therefore, T−3/2
∑T

t=1 xt = µ∗T
−3/2

∑T
t=1 t+ oP(1)

P→ 1
2µ

+
∗ .

(iii) Note that m̂t = mt + (µ̂T − µ∗)t. Thus, T−3/2
∑T

t=1 m̂t = T−3/2
∑T

t=1mt +
√
T (µ̂T −

µ∗)T
−2
∑T

t=1 t. Lemma B.7 (i) implies that
√
T (µ̂T − µ∗) ⇒ 3

∫
rBm. Lemma B.3 (i) implies that

T−2
∑T

t=1 t → 1
2 . In addition to these, T−3/2

∑T
t=1mt = T−1

∑T
t=1

1√
T
mt =

∫
Bm(r)dr ⇒

∫
Bm

by Lemma B.1. Thus, T−3/2
∑T

t=1 m̂t ⇒
∫
Bm(r) − 3

∫
rdr

∫
sBm(s)ds =

∫
B̄m by the definition of

B̄m(·), viz., B̄m(·) = Bm(·)− 3(·)
∫
sBm(s)ds.

(iv) From (5), T−2
∑T

t=1 yt = δ∗T
−2
∑T

t=1 t+ T−2
∑T

t=1

∑t
j=1 dj =

1
2δ∗ + oP(1).

(v) We note that ût−1 := yt−1 − r̃′t−1υ̂T , so that
∑T

t=1 ût−1r̃t−1 ≡ 0. We here note that r̃t−1 :=

[x′
t−1, (t− 1), 1]′. This completes the proof. ■

Proof of Lemma B.4. (i)
∑T

t=1 t
2 = T (T + 1)(2T + 1)/6, leading to the desired result.

(ii) T−3
∑T

t=1 txt = µ∗T
−3
∑T

t=1 t
2 + T−3

∑T
t=1 tmt. Here, it follows that T−3

∑T
t=1 t

2 → 1
3 and

T−5/2
∑T

t=1 tmt = T−1
∑T

t=1(
t
T )

1√
T
mt =

∫
rBmT (r)dr ⇒

∫
rBm. Therefore, T−3

∑T
t=1 txt =

1
3µ∗ + oP(1).

(iii) Note that m̂t = xt − tµ̂T and µ̂T = (
∑T−1

t=1 t
2)−1

∑T−1
t=1 txt. Therefore,

∑T
t=1(t− 1)m̂t−1 ≡ 0.

(iv) From (5), T−3
∑T

t=1 tyt = δ∗T
−3
∑T

t=1 t
2 + T−3

∑T
t=1 t

∑t
j=1 dj =

1
3δ∗ + oP(1).

(v) The proof of Lemma B.3 (v) already shows the given claim. ■

Proof of Lemma B.5. (i) Using the fact that xt = µ∗t+mt,
∑T

t=1 xtx
′
t =

∑T
t=1(µ∗t+mt)(µ∗t+mt)

′ =∑T
t=1µ∗µ

′
∗t

2 +
∑T

t=1µ∗m
′
tt +

∑T
t=1mtµ

′
∗t +

∑T
t=1mtm

′
t. Here, T−3

∑T
t=1µ∗µ

′
∗t

2 → 1
3µ∗µ

′
∗ by

Lemma B.4 (i), and T−5/2
∑T

t=1µ∗m
′
tt ⇒ µ∗

∫
rBm as shown in the proof of Lemma B.4 (ii). Fur-

thermore, T−2
∑T

t=1mtm
′
t = T−1

∑T
t=1

1√
T
mt

1√
T
m′

t =
∫
BmT (r)BmT (r)

′dr ⇒
∫
BnB

′
m. Thus,

T−3
∑T

t=1 xtx
′
t

P→ 1
3µ∗µ

′
∗.

(ii) We first note that
∑T

t=1 xt−1m̂
′
t−1 =

∑T
t=1(µ∗(t − 1) +mt−1)m̂

′
t−1 = µ∗

∑T
t=1(t − 1)m̂′

t−1 +∑T
t=1mt−1m̂

′
t−1 =

∑T
t=1mt−1m̂

′
t−1 by Lemma B.4 (iii). We further note that

∑T
t=1mt−1m̂

′
t−1 =∑T

t=1mt−1(mt−1 − (µ̂T − µ∗)(t − 1))′ using the fact that m̂t = mt − (µ̂T − µ∗)t. Here, we note that

T−2
∑T

t=1mtm
′
t ⇒

∫
BmB′

m as shown in the proof of Lemma B.5 (i), and T−2
∑T

t=1 tmt(µ̂T −µ∗)
′ =

T−5/2
∑T

t=1 tmt

√
T (µ̂T −µ∗)

′ ⇒ 3
∫
rBm

∫
rBm by Lemma B.7 (ii) and the fact that T−5/2

∑T
t=1 tmt

= T−1
∑T

t=1
t
T

1√
T
mt =

∫
rBm(r)dr ⇒

∫
rBm as shown in the proof of Lemma B.4 (ii). Therefore,

T−2
∑T

t=1 xt−1m̂
′
t−1 ⇒

∫
Bm(Bm − 3r

∫
sBm)′ =

∫
BmB̄′

m. We further note that
∫
BmB̄′

m =∫
B̄mB̄′

m by the definition of BmB̄m and the fact that
∫
r2 = 1

3 .

(iii) Using the fact that xt = µ∗t + mt and yt = δ∗t +
∑t

j=1 dj ,
∑T

t=1 xtyt = µ∗δ∗
∑T

t=1 t
2 +

δ∗
∑T

t=1 tmt + µ∗
∑T

t=1 t
∑t

j=1 dj +
∑T

t=1mt
∑T

j=1 dj . Here, T−3
∑T

t=1 t
2 → 1

3 by Lemma B.4 (i),
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and T−5/2
∑T

t=1 tmt ⇒
∫
rBm as shown in the proof of Lemma B.4 (ii). Furthermore, we note that∑T

t=1 t
∑t

j=1 dj = OP(T
5/2) and

∑T
t=1mt

∑T
j=1 dj = OP(T

2). Therefore, T−3
∑T

t=1 xtyt
P→ 1

3δ∗µ∗.

(iv) The proof of Lemma B.3 (v) already shows the given claim. ■

Proof of Lemma B.6. (i) We first note that
∑T

t=1 m̂t−1m̂
′
t−1 =

∑T
t=1(mt−1 − (µ̂T −µ∗)(t− 1))m̂′

t−1 =∑T
t=1mt−1m̂

′
t−1 − (µ̂T − µ∗)

∑T
t=1(t − 1)m̂′

t−1 =
∑T

t=1mt−1m̂
′
t−1 by Lemma B.4 (iii). We next note

that
∑T

t=1mt−1m̂
′
t−1 =

∑T
t=1mt−1(mt−1−(µ̂T −µ∗)(t−1))′ using the fact that m̂t = mt−(µ̂T −µ∗)t.

Here, T−2
∑T

t=1mtm
′
t ⇒

∫
BmB′

m as shown in the proof of Lemma B.5 (i), and T−2
∑T

t=1 tmt(µ̂T −

µ∗)
′ ⇒ 3

∫
rBm

∫
rBm as shown in the proof of Lemma B.5 (ii). Therefore, T−2

∑T
t=1 m̂t−1m̂

′
t−1 ⇒∫

Bm(Bm − 3r
∫
sBm)′ =

∫
BmB̄′

m.

(ii) As Lemma B.7 (iii) shows, for each t, r̃′tυ̂T = ṙ′tυ̃T , so that ût := yt − r̃′tυ̂T = yt − ṙ′tυ̃T . We

further note that υ̃T := (
∑T

t=1 ṙt−1ṙ
′
t−1)

−1
∑T

t=1 ṙt−1yt−1, so that
∑T

t=1 ṙt−1ût−1 = 0. We now note

that ṙt−1 := [m̂′
t−1, (t− 1), 1]′, leading to that

∑T
t=1 m̂t−1ût−1 = 0.

(iii) From (5), yt = δ∗t +
∑t

j=1 dj . We here note that
∑T

t=1 y
2
t =

∑T
t=1(δ∗t +

∑t
j=1 dj)

2 =∑T
t=1 δ

2
∗t

2 + 2
∑T

t=1 δ∗t
∑t

j=1 dj +
∑T

t=1(
∑t

j=1 dj)
2. Furthermore, T−3

∑T
t=1 t

2 → 1
3 by Lemma B.4

(i),
∑T

t=1 δ∗t
∑t

j=1 dj = OP(T
5/2), and

∑T
t=1(

∑t
j=1 dj)

2 = OP(T
2), implying that T−3

∑T
t=1 y

2
t

P→ 1
3δ

2
∗ .

(iv) Note that ût := yt − r̃′tυ̂T , and r̃′tυ̂T = x′
tβ̂T + tζ̂T + ν̂T with xt = m̂t + µ̂T t. Furthermore,

yt = β′
∗(m̂t+ µ̂T t)+ ζ∗t+ν∗+ut using (6). Hence, ût = ut− (β̃T −β∗)

′m̂t− (ϑ̃T −ϑT∗)t− (ν̃T −ν∗).

We now note that Lemma 3, m̂t = OP(T
1/2), and t = O(T ) imply that ût = ut + OP(T

−1/2). Therefore,

T−1
∑T

t=1 û
2
t = T−1

∑T
t=1 u

2
t + oP(1), and T−1

∑T
t=1 u

2
t

P→ E[u2t ] by the ergodic theorem, implying that

T−1
∑T

t=1 û
2
t

P→ σ2u := E[u2t ]. ■

Proof of Lemma B.7. (i) Note that µ̂T = (
∑T−1

t=1 t
2)−1

∑T−1
t=1 txt and xt = µ∗t + mt. Therefore,

µ̂T − µ∗ = (
∑T−1

t=1 t
2)−1

∑T−1
t=1 tmt, so that

√
T (µ̂T − µ∗) = (T−3

∑T−1
t=1 t

2)−1T−5/2
∑T−1

t=1 tmt.

Lemma B.4 (i) implies that T−3
∑T

t=1 t
2 → 1

3 . Furthermore, T−5/2
∑T−1

t=1 tmt = T−1
∑T−1

t=1
t
T

1√
T
mt =∫

rBmT (r)dr ⇒
∫
rBm. Hence,

√
T (µ̂T − µ∗) ⇒ 3

∫
rBm.

(ii) Note that r̃′tυ̂T = x′
tβ̂T + tζ̂T + ν̂T with xt = m̂t + µ̂T t. Therefore, r̃′tυ̂T = m̂′

tβ̂T + t(µ̂′
T β̂T +

ζ̂T ) + ν̂T = m̂′
tβ̃T + tϑ̃T + ν̃T = ṙ′tυ̃T , where the second last equality holds by (10), and the last equality

follows from the definition of ṙt.

(iii) Note that T−1
∑T

t=1mt−1ut = T−1
∑T

t=1 T
−1/2mt−1

√
T (BuT (t/T ) − BuT ((t − 1)/T )) =∫

BmT (r)dBuT (r). We here note that
∫
BmT (r)dBuT (r) ⇒

∫
BmdBu + ϱm∗ by applying theorem

4 of de Jong and Davidson (2000).

(iv) We first note that T−1
∑T

t=1mt−1et = T−1
∑T

t=1 T
−1/2mt−1

√
T (BeT (t/T )−BeT ((t−1)/T )) =∫

BmT (r)dBeT (r). Note that
∫
BmT (r)dBeT (r) ⇒

∫
BmdBe by applying theorem 4 of de Jong and
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Davidson (2000) and noting that E[sτet] = 0 for each τ < t.

(v) Note that if we let ėt := ∆yt − żtτ̇T , it follows that ėt = −ż′
t(τ̇T − τT∗) + et from the fact that

∆yt = ż′
tτT∗ + et, implying that

T∑
t=1

ė2t = (τ̇T −τT∗)
′Ḋ

(
Ḋ−1

T∑
t=1

żtż
′
tḊ

−1

)
Ḋ(τ̇T −τT∗)−2

(
T∑
t=1

etżt

)
Ḋ−1Ḋ(τ̇T −τT∗)+

T∑
t=1

e2t .

We examine the asymptotic behavior of each element on the right-hand side. First, Lemmas 3 (vi) and 4 (i)

imply that Ḋ(τ̇T − τT∗) = OP(1) and Ḋ−1
∑T

t=1 żtż
′
tḊ

−1 = OP(1). Second, from the definitions of żt

and Ḋ,
∑T

t=1 etżtḊ
−1 = [T−1/2

∑T
t=1 etût−1, T

−1
∑T

t=1 etm̂
′
t−1, T

−3/2
∑T

t=1 et(t− 1), T−1/2
∑T

t=1 et,

T−1/2
∑T

t=1 etz
′
2t]

′. We verify that each element on the right-hand side is OP(1). We first note that

T−3/2
∑T

t=1 et(t − 1) = OP(1), T−1/2
∑T

t=1 et = OP(1), and T−1/2
∑T

t=1 etz2t = OP(1) by the mar-

tingale difference CLT based upon the fact that {et,Ft} is an MDA. In addition, T−1
∑T

t=1 etm̂t−1 =

T−1
∑T

t=1 etmt−1 − (µ̂T − µ∗)T
−1
∑T

t=1 et(t− 1) by noting that m̂t−1 = mt−1 − (µ̂T − µ∗)(t− 1) as

given in the proof of Lemma B.6(i). Here, Lemmas B.7 (i and iv) imply that (µ̂T − µ∗) = OP(T
−1/2) and

T−1
∑T

t=1 etmt−1 = OP(1), respectively, so that T−1
∑T

t=1 etm̂t−1 = OP(1). Finally, T−1/2
∑T

t=1 etût−1

= T−1/2
∑T

t=1 etut−1 + oP(1) using the fact that ût−1 = ut−1 + OP(T
−1/2) as given in the proof of

Lemma B.6 (iv). All these facts imply that
∑T

t=1 etżtḊ
−1 = OP(1). By these two facts, it follows that∑T

t=1 ė
2
t =

∑T
t=1 e

2
t + OP(1), implying that σ̇2e,T := T−1

∑T
t=1 ė

2
t = T−1

∑T
t=1 e

2
t + OP(T

−1). The

desired result follows from the ergodic theorem, and this completes the proof. ■

A.3 Proofs

Proof of Lemma 1. (i) This follows from Lemmas B.3 (i, ii, iv), B.4 (i, ii, iv), B.5 (i, iii), B.6 (iii), and the

remarks below Lemmas B.3, B.4, and B.5.

(ii) This follows from Lemma B.2 (i).

(iii) This follows from Lemmas B.2 (ii, iii, iv, vi) and the remark below Lemma B.2.

(iv) This follows from Lemmas 1 (i, ii, iii) and the structure of M. ■

Proof of Lemma 2. (i) This follows from Lemmas B.3 (v), B.4 (v), and B.6 (ii).

(ii) This follows from Lemmas B.3 (i, ii, iii), B.4 (i, ii, iii), and B.6 (i).

(iii) This follows from Lemma B.2 (vii).

(iv) This follows from Lemmas B.2 (ii, iii, iv, and vi).

(v) This follows from Lemma B.2 (i).

(vi) This follows from Lemma A.3 (i) and Lemmas 2 (i, ii, iii, iv, v).
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(vii) This follows from the definition of ż1t := ṙt−1 and Lemma 2 (ii). ■

Proof of Lemma 3. (i) We note that Ḋ1(υ̃T − ῡT∗) = (Ḋ−1
1

∑T
t=1 ṙt−1ṙ

′
t−1Ḋ

−1
1 )−1Ḋ−1

1

∑T
t=1 ṙt−1ut−1

from (17), and Lemma 2 (vii) implies that Ḋ−1
1 (
∑T

t=1 ṙt−1ṙ
′
t−1)Ḋ

−1
1 ⇒ Ṁ11. We therefore focus on the

limit distribution of Ḋ−1
1

∑T
t=1 ṙt−1ut−1. Note that

Ḋ−1
1

T∑
t=1

ṙt−1ut−1 =

[
T−1

T∑
t=1

m̂′
t−1ut−1, T

−3/2
T∑
t=1

(t− 1)ut−1, T
−1/2

T∑
t=1

ut−1

]′
.

We now examine the asymptotic behavior of each element on the right-hand side. First, we note

that m̂t−1 = mt−1 − (µ̂T − µ∗)(t − 1). Therefore, T−1
∑T

t=1 m̂t−1ut−1 = T−1
∑T

t=1mt−2ut−1 +

T−1
∑T

t=1 st−1ut−1 − (µ̂T − µ∗)T
−1
∑T

t=1(t − 1)ut−1. We here note that T−1
∑T

t=1mt−2ut−1 ⇒∫
BmdBu + +ϱm∗ by Lemma B.7 (iii), and

√
T (µ̂T − µ∗) ⇒ 3

∫
rBm by Lemma B.7 (i). In ad-

dition to this, T−3/2
∑T

t=1(t − 1)ut−1 = T−1
∑T

t=1
(t−1)
T

√
T (BuT ((t − 1)/T ) − BuT ((t − 2)/T )) =∫

rdBuT (r) ⇒
∫
rdBu. Hence, it follows that T−1

∑T
t=1 m̂t−1ut−1 ⇒ (Ṡ′

11, Ṡ
′
12)

′ :=
∫
BmdBu +

ϱm∗ − 3
∫
rBm

∫
rdBu. Next, it is already showed that T−3/2

∑T
t=1(t − 1)ut−1 ⇒ Ṡ13 :=

∫
rdBu.

Third, note that T−1/2
∑T

t=1 ut−1 = T−1
∑T

t=1

√
T (BuT ((t−1)/T )−BuT ((t−2)/T )) =

∫
rdBuT (r) ⇒

Ṡ14 :=
∫
dBu. We now combine the first to third facts to obtain that Ḋ−1

1

∑T
t=1 ṙt−1ut−1 ⇒ Ṡ1, leading

to that Ḋ1(υ̃T − ῡT∗) ⇒ Ṁ−1
11 Ṡ1, as desired.

(ii) We first note that υ̂T − υ∗ = PT υ̃T − Pῡ∗. Therefore, υ̂T − υ∗ = (PT − P)(υ̃T − ῡT∗) +

P(υ̃T − ῡT∗) + (PT − P)(ῡT∗ − ῡ∗) + P(ῡT∗ − ῡ∗) + (PT − P)ῡ∗. From the definition of PT and

Lemma 3 (i), we note that (PT −P) = OP(T
−1/2), (υ̃T − ῡT∗) = OP(Ḋ

−1), and (PT −P)(ῡT∗− ῡ∗) =

0. Furthermore, P(ῡT∗ − ῡ∗) = [0′,0′, (ϑT∗ − ϑ∗), 0]
′ such that (ϑT∗ − ϑ∗) = β′

∗(µ̂T − µ∗), and

(PT −P)ῡ∗ = [0,0,−β′
∗(µ̂T −µ∗), 0]

′, so that P(ῡT∗ − ῡ∗)+ (PT −P)ῡ∗ = 0. Hence, it now follows

that υ̂T − υ∗ = (PT −P)(υ̃T − ῡT∗) +P(υ̃T − ῡT∗) = P(υ̃T − ῡT∗) +OP(T
−3/2), so that

Ḋ†(υ̂T − υ∗) = [ T (β̃T − β∗)
′ −µ′

∗T (β̃T − β∗)
√
T (ν̃T − ν∗) ]′ + oP(1)

⇒ [ L̇′
11 L̇′

12 −µ+′
∗ L̇′

11 − µ−′
∗ L̇′

12 L̇14 ]′

by Lemma 3 (i). ■

Proof of Lemma 4. (i) We first note that Ḋ(τ̇T − τT∗) = (Ḋ−1
∑T

t=1 żtż
′
tḊ

−1)−1Ḋ−1
∑T

t=1 żtet from

(18), and Lemma 2 (vi) implies that Ḋ−1(
∑T

t=1 żtż
′
t)Ḋ

−1 ⇒ Ṁ. We therefore focus on the limit distribu-

tion of Ḋ−1
∑T

t=1 żtet. We note that Ḋ−1
∑T

t=1 żtet = Ḋ−1
∑T

t=1[ût−1er, m̂
′
t−1et, (t− 1)et, et, z

′
2tet]

′.

We now investigate the asymptotic behavior of each element on the right-hand side. First, we already
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showed in the proof of Lemma B.6 (iv) that ût = ut + OP(T
−1/2). Therefore, T−1/2

∑T
t=1 ût−1et =

T−1/2
∑T

t=1 ut−1et + oP(1). In addition, T−1/2
∑T

t=1 ut−1et = T−1
∑T

t=1

√
T (BueT (t/T ) − BueT ((t −

1)/T )) =
∫
rdBueT (r) ⇒ Ṡ1 :=

∫
dBue. Second, we note that m̂t−1 = mt−1 − (µ̂T − µ∗)(t −

1). Therefore, T−1
∑T

t=1 m̂t−1et = T−1
∑T

t=1mt−1et − (µ̂T − µ∗)T
−1
∑T

t=1(t − 1)et. We here note

that T−1
∑T

t=1mt−1et ⇒
∫
BmdBe by Lemma B.7 (iv) and

√
T (µ̂T − µ∗) ⇒ 3

∫
rBm by Lemma

B.7 (i). In addition to this, T−3/2
∑T

t=1(t − 1)et = T−1
∑T

t=1
(t−1)
T

√
T (BeT ((t − 1)/T ) − BeT ((t −

2)/T )) =
∫
rdBeT (r) ⇒

∫
rdBe. Hence, it follows that T−1

∑T
t=1 m̂t−1et ⇒ (Ṡ′

2, Ṡ
′
3)

′ :=
∫
BmdBe−

3
∫
rBm

∫
rdBu =

∫
B̄mdBe. Third, it is already showed that T−3/2

∑T
t=1(t−1)et−1 ⇒ Ṡ4 :=

∫
rdBe.

Fourth, we note that T−1/2
∑T

t=1 et = T−1
∑T

t=1

√
T (BeT (t/T ) − BeT ((t − 1)/T )) =

∫
dBeT (r) ⇒

Ṡ5 :=
∫
dBe. Fifth, note that T−1/2

∑T
t=1 z2tet = T−1

∑T
t=1

√
T (BzeT (t/T ) − BzeT ((t − 1)/T )) =∫

dBzeT (r) ⇒ Ṡ6 :=
∫
dBze. We next combine the first to fifth facts to obtain that Ḋ−1

∑T
t=1 żtet ⇒ Ṡ,

leading to that Ḋ(τ̇T − τT∗) ⇒ Ṁ−1Ṡ, as desired.

(ii) From the definitions of τT∗ := [ρ∗, τ
′
1T , τ

′
2∗]

′ and τ 1T := [(η∗ + ρ∗(β̃T − β∗))
′, ς∗ + η′

∗(µ̂T −

µ∗) + ρ∗(ϑ̃T − ϑT∗), γ∗ + ρ∗(ν̃T − ν∗)]
′, we obtain that Ḋ(τ̇T − τT∗) = Ḋ(τ̇T − τ ∗) + [0,−ρ∗T (β̃T −

β∗)
′,−ρ∗T 3/2(ϑ̃T − ϑT∗),−ρ∗T 1/2(ν̃T − ν∗),0

′]′ ⇒ L̇ by Lemma 4 (i) and noting that η∗ = 0.

In addition, Lemma 3 implies that T (β̃T − β∗) ⇒ (L̇′
11, L̇

′
12)

′, and T 1/2(ν̃T − ν∗) ⇒ L̇14. Fur-

thermore, the proof of Lemma 3 (i) shows that T 3/2(ϑ̃T − ϑT∗) ⇒ L̇13. Therefore, Ḋ(τ̇T − τ ∗) ⇒

L̇ + ρ∗[0, L̇
′
11, L̇

′
12, L̇13, L̇14,0

′]′. This completes the proof. ■

Proof of Theorem 1. (i) We note that (α̂T −α∗) = (TT −T)τ ∗+T(τ̇T − τ ∗)+ (TT −T)(τ̇T − τ ∗) =

(TT −T)τ ∗ +T(τ̇T − τ ∗) + oP(TT −T) using (14) and (15). We further note that

(TT −T)τ ∗ +T(τ̇T − τ ∗)

=



(ρ̇T − ρ∗)

−β∗(ρ̇T − ρ∗) + (η̇T − η∗)− ρ∗(β̃T − β∗)

(ς̇T − ς∗)− µ′
∗(η̇T − η∗)− ζ∗(ρ̇T − ρ∗)− ρ∗(ζ̂T − ζ∗)− η′

∗(µ̂T − µ∗)

(γ̇T − γ∗)− ρ∗(ν̂T − ν∗)− ν∗(ρ̇T − ρ∗)

(τ̇ 2T − τ ∗2)


and the fact that β̂T = β̃T , ζ̂T = −µ̂′

T β̃T + ϑ̃T and ζ∗ = −µ′
∗β∗ + ϑ∗, so that (ζ̂T − ζ∗) = (ϑ̃T − ϑT∗)−

µ′
∗(β̃T − β∗) − (µ̂T − µ∗)

′(β̂T − β∗), where (ϑ̃T − ϑT∗) = OP(T
−3/2) and (µ̂T − µ∗)

′(β̂T − β∗) =

12



OP(T
−3/2) by Lemmas 4 (i), B.7 (i), and 3 (ii). Therefore, it now follows that

(TT −T)τ ∗+T(τ̇T − τ ∗)

= (τ̇T − τT∗)− (ρ̇T − ρ∗)



0

β∗

ζ∗

ν∗

0


+



0

0

−µ′
∗{(η̇T − η∗)− ρ∗(β̃T − β∗)}+OP(T

−3/2)

0

0


. (A.4)

We here use the fact that η∗ = 0. We further note that
√
T (τ̇T − τT∗) ⇒ [L̇1,0

′,0′, 0, L̇5, L̇6]
′ by

Lemma 4 (i) and −
√
T (ρ̇T − ρ∗)

[
0,β′

∗, ζ∗, ν∗,0
′] ⇒ −L̇1

[
0,β′

∗, ζ∗, ν∗,0
′]. In addition, we note that

−µ′
∗
√
T{(η̇T − η∗) − ρ∗(β̃T − β∗)} + OP(T

−1) = oP(1) because
√
T{(η̇T − η∗) − ρ∗(β̃T − β∗)} =

OP(T
−1/2) by Lemma 4 (i). Therefore, it follows that

√
T (α̂T −α∗) ⇒ [L̇1,−β′

∗L̇1,−ζ∗L̇1, L̇5,−ν∗L̇1,

L̇′
6]
′. We finally note that the derived weak limit is identical to c∗L̇1 + [0,0′,0′, 0, L̇5, L̇

′
6]
′.

(ii, iii, and iv) We prove (ii, iii, and iv) together by supposing that β+
∗ = β−

∗ = 0 and ζ∗ = 0. If so, it

follows from (A.4) that

(α̂T −α∗) = (TT −T)τ ∗ +T(τ̇T − τ ∗) + oP(TT −T)

= (τ̇T − τT∗) +



0

0

−µ′
∗{(η̇T − η∗)− ρ∗(β̃T − β∗)}+OP(T

−3/2)

−ν∗(ρ̇T − ρ∗)

0


+ oP(TT −T).

Here, Lemma 4 (i) implies that D̈(τ̇T − τT∗) ⇒ [L̇1, L̇
′
2, L̇

′
3, 0, L̇5, L̇6]

′ and T{(η̇T − η∗)− ρ∗(β̃T −

β∗)} ⇒ (L̇′
2, L̇

′
3)

′, so that D̈(α̂T −α∗) ⇒ [L̇1, L̇
′
2, L̇

′
3,−µ+′

∗ L̇2 −µ−′
∗ L̇3, L̇5 − ν∗L̇1, L̇

′
6]
′, where

D̈ := diag[
√
T , T I2k+1,

√
T , Ḋ2]. From this result, (ii, iii, and iv) follow. ■

Proof of Theorem 2. (i) We show the null limit distribution of each test using Lemma 4.

(i.a) Note that (θ̂
+

T − θ̂
−
T ) = (θ+

∗ −θ−
∗ )− (ρ̇T −ρ∗)(β+

∗ −β−
∗ )+(η̇+

T −η+
T∗)− (η̇−

T −η−
T∗)+oP(T

−1),

so that it follows that (θ̂
+

T − θ̂
−
T ) = (η̇+

T − η+
T∗)− (η̇−

T − η−
T∗) + oP(T

−1) under H′
0 . Therefore, Ṙ1α̂T =

13



R1(τ̇T − τT∗) + oP(T
−1), and it follows that

W
(1)
T = (τ̇T − τT∗)

′ḊR′
1

σ̂2e,TR1

(
Ḋ−1

T∑
t=1

żtż
′
tḊ

−1

)−1

R′
1

−1

R1Ḋ(τ̇T − τT∗) + oP(1)

⇒ L̇′R′
1

(
σ2eR1Ṁ

−1R′
1

)−1
R1L̇

by Lemmas 4 (i) and B.7 (v).

(i.b) We note that (π̂+
T , π̂

−
T ) = (π̇+

T , π̇
−
T ). Therefore, it follows that

W
(2)
T = (τ̇T − τT∗)

′ḊṘ′
2

σ̂2e,T Ṙ2

(
Ḋ−1

T∑
t=1

żtż
′
tḊ

−1

)−1

Ṙ′
2

−1

Ṙ2Ḋ(τ̇T − τT∗) + oP(1)

⇒ L̇′Ṙ′
2

(
σ2eṘ2Ṁ

−1Ṙ′
2

)−1
Ṙ2L̇

by Lemmas 4 (i) and B.7 (v).

(i.c) From the notice given in the proofs of (i.a and i.b), it follows that

W
(3)
T = (τ̇T − τT∗)

′ḊR′
3

σ̂2e,TR3

(
Ḋ−1

T∑
t=1

żtż
′
tḊ

−1

)−1

R′
3

−1

R3Ḋ(τ̇T − τT∗) + oP(1)

⇒ L̇′R′
3

(
σ2eR3Ṁ

−1R′
3

)−1
R3L̇

by Lemmas 4 (i) and B.7 (v).

(ii) We show the power behavior of each test using Lemma 4.

(ii.a) We show thatW (1)
T = OP(T ). Note that (θ̂

+

T−θ̂
−
T ) = (θ+

∗ −θ−
∗ )−(ρ̇T−ρ∗)(β+

∗ −β−
∗ )+oP(T

−1/2)

under H′
1 and (ρ̇T − ρ∗) = OP(T

−1/2), so that (θ̂
+

T − θ̂
−
T ) − (θ+

∗ − θ−
∗ ) = OP(T

−1/2). Therefore,

(θ̂
+

T − θ̂
−
T ) = OP(T

1/2), and this implies that W (1)
T = OP(T ).

(ii.b) We show that W (2)
T = OP(T ). Note that Lemma 4 (i) implies that π̇+

T − π̇−
T = π+

∗ − π−
∗ +

OP(T
−1/2). Therefore, π̇+

T − π̇−
T = OP(T

1/2), implying that W 2
T = OP(T ).

(ii.c) From the proofs of (ii.a) and (ii.b), (θ̂
+

T − θ̂
−
T ) = OP(T

1/2) and (π̇+
T − π̇−

T ) = OP(T
1/2).

Therefore, it trivially follows that W (3)
T = OP(T ).

(iii) We show the null limit distribution of each test using Lemmas 3 and 4.

(iii.a) First, Lemma B.6 (iv) implies that σ̂2u,T
P→ σ2u, and Ḋ−1

1

∑T
t=1 ṙt−1ṙ

′
t−1Ḋ

−1
1 ⇒ Ṁ11 from

Lemma 2 (vii). Therefore, Ẅ(1)
T ⇒ σ2uR̈1Ṁ

−1
11 R̈

′
1. Second, H′

0 implies that R̈1Ḋ1υ̃T = T (β̃
+

T − β+
∗ ) ⇒

(L̇11−L̇12). If we combine these two facts, it follows that W(1)
T ⇒ (L̇11−L̇12)

′(σ2uR̈1Ṁ
−1
11 R̈

′
1)

−1(L̇11

14



−L̇12) that is identical to the given weak limit by the definitions of R̈1 and L̇1.

(iii.b) First, Lemma B.7 (v) implies that σ̂2e,T
P→ σ2e , and Ḋ−1

∑T
t=1 żtż

′
tḊ

−1 ⇒ Ṁ from Lemma 2

(vi). Therefore, Ẅ(2)
T ⇒ σ2eR̈2Ṁ

−1R̈′
2. Second, R̈2Ḋτ̇T =

√
T (π̇+

T − π̇−
T ) ⇒ L̇62 − L̇63 = R̈2L̇. If

we combine these two facts, it follows that W(2)
T ⇒ L̇′R̈′

2(σ
2
2R̈2Ṁ

−1R̈′
2)

−1R̈2L̇.

(iii.c) We note that from the definition of W(3)
T , it follows that W(3)

T = W
(1)
T + W

(2)
T , and it follows

from (i.a and i.b) that W(3)
T ⇒ L̇′

1R̈
′
1(σ

2
uR̈1Ṁ

−1
11 R̈

′
1)

−1R̈1L̇1 + L̇′R̈′
2(σ

2
2R̈2Ṁ

−1R̈′
2)

−1R̈2L̇ under

H′′′
0 .

(iv) We next show the power behavior of each test.

(iv.a) To show the claim, we show that W(1)
T = OP(T

2) under H′
1. Given that Ẅ(1)

T ⇒ σ2uR̈1Ṁ
−1
11 R̈

′
1,

we focus on the limit behavior of R̈1Ḋ1υ̃T . Note that R̈1Ḋ1(υ̃T − ῡT∗) ⇒ (L̇11 − L̇12) by Lemma 3 (i)

and R̈1Ḋ1ῡT∗ = Tβ∗ = O(T ). Therefore, R̈1Ḋ1υ̃T = OP(T ), implying that W(1)
T = OP(T

2), leading

to the desired result.

(iv.b) We show that W(2)
T = OP(T ) under H′′

1 . Given that Ẅ(2)
T ⇒ σ2eR̈2Ṁ

−1R̈′
2, we focus on the

limit behavior of R̈2Ḋτ̇T . We note that R̈2Ḋ(τ̇T − τT∗) =
√
T [(π̇+

T − π̇−
T )− (π+

∗ − π−
∗ )] ⇒ R̈2L̇ by

Lemma 4 (i) and R̈2ḊτT∗ =
√
T (π+

∗ − π−
∗ ) = O(T 1/2). Therefore, R̈2Ḋτ̇T = OP(T

1/2), implying that

W
(2)
T = OP(T ).

(iv.c) We show that W(3)
T = OP(T

2) under H′′′
1 . Note that W(3)

T = W
(1)
T + W

(2)
T , and W

(1)
T and

W
(2)
T are OP(T

2) and OP(T ) by (ii.a) and (ii.b), respectively. Therefore, W(3)
T = OP(T

2) under H′′′
11 and

W
(3)
T = OP(T ) under H′′′

01

⋂
H′′′

12. This completes the proof. ■

A.4 Additional Empirical Supplements

In this section, we provide additional empirical supplements.

Two tables are provided. First, Table A.1 provides the descriptive statistics of the variables examined in

Sections 7.2.1 and 7.2.2. The sample period is from 1947Q1 to 2007:Q4.

Second, Table A.2 provides the testing results using Phillips and Perron’s (1988) unit root test applied

to the partial sum processes for Tables 5 and 7. As we apply the unit-root testing by including both constant

and trend or including only constant, two testing results are provided for each variable. Except rt, the test

results show that nonstationary data analysis has to be conducted for the other variables.
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∆yt
Exo. Endo. Sum.

∆τ1t ∆τ2t ∆τt ∆τ1t ∆τ2t ∆τt ∆τ1t ∆τ2t ∆τt
Mean 0.8256 0.4240 -0.4704 -0.0464 0.3773 -0.1841 0.1932 0.7564 -0.6228 0.1336
Median 0.7876 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 4.0198 6.4312 0.0000 6.4312 6.7617 0.0000 6.7617 6.7617 0.0000 6.7617
Minimum -2.7525 0.0000 -7.0965 -7.0965 0.0000 -7.1122 -7.1122 0.0000 -7.1122 -7.1122
Std. Dev. 0.9780 1.3755 1.5073 2.1364 1.3317 1.0117 1.7136 1.7775 1.7316 2.6653
Skewness -0.0501 3.0654 -3.0598 -0.2762 3.4094 -5.4276 0.4394 2.0432 -2.5281 -0.1450
Kurtosis 4.3614 10.8514 10.8759 6.3787 13.2115 31.1514 10.4245 5.4941 7.7131 4.1776
Obs. 243 243 243 243 243 243 243 243 243 243

∆yt
Exo. ratio Endo. ratio Sum. ratio

∆r1t ∆r2t ∆rt ∆r1t ∆r2t ∆rt ∆r1t ∆r2t ∆rt
Mean 0.8256 0.0246 -0.0517 -0.0271 0.0471 -0.0260 0.0211 0.0679 -0.0738 -0.0059
Median 0.7876 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 4.0198 0.6977 0.0000 0.6977 1.9542 0.0000 1.9542 1.9542 0.0000 1.9542
Minimum -2.7525 0.0000 -1.8706 -1.8706 0.0000 -2.8214 -2.8214 0.0000 -2.8214 -2.8214
Std. Dev. 0.9780 0.0963 0.2171 0.2428 0.2245 0.2028 0.3066 0.2351 0.2876 0.3847
Skewness -0.0501 4.6231 -5.3926 -3.7013 6.0062 -11.5395 -1.0526 5.1164 -5.9045 -1.3783
Kurtosis 4.3614 25.4621 35.2975 25.0905 41.7414 152.4675 44.1557 33.0743 45.6366 21.6860
Obs. 243 243 243 243 243 243 243 243 243 243

Table A.1: DESCRIPTIVE STATISTICS. This table shows the descriptive statistics used in Sections 7.2.1 and
7.2.2.

PP test yt
Exo. Endo. Sum.

τ1t τ2t τt τ1t τ2t τt τ1t τ2t τt
PP test w/o trend -1.4767 0.7551 -0.7188 -1.6243 -2.4701 -0.3499 -2.2743 -1.3064 -0.4173 -2.0303
p-value 0.5439 0.9931 0.8387 0.4686 0.1241 0.9140 0.1812 0.6270 0.9028 0.2738
PP test w/ trend -2.3488 -1.8278 -1.3653 -1.3483 -0.7094 -2.2995 -0.8156 -0.9285 -2.0326 -2.7414
p-value 0.4056 0.6883 0.8686 0.8732 0.9707 0.4322 0.9618 0.9500 0.5801 0.2210

PP test yt
Exo. ratio Endo. ratio Sum. ratio

r1t r2t rt r1t r2t rt r1t r2t rt
PP test w/o trend -1.4767 0.7288 -0.7859 -1.7004 -2.5409 -0.9379 -3.0710 -1.7735 -1.8303 -2.9448
p-value 0.5439 0.9926 0.8210 0.4299 0.1071 0.7749 0.0301 0.3932 0.3652 0.0418
PP test w/ trend -2.3488 -1.8466 -2.3558 -2.2056 -1.5667 -2.0336 -2.6499 -1.3375 -2.3690 -3.4114
p-value 0.4056 0.6790 0.4019 0.4840 0.8033 0.5796 0.2587 0.8761 0.3949 0.0521

Table A.2: PHILLIPS AND PERRON’S (1988) UNIT-ROOT TESTS APPLIED TO THE QUARTERLY DATA

IN ROMER AND ROMER (2010). Two Phillips and Perron’s test statistics are computed using the data in
Table A.1 by including the time trend and/or the constant. The lag lengths are selected by BIC.

16


	Introduction
	Motivation and the NARDL Model in the Literature
	An Alternative Representation of the OLS Estimator
	Limit Distribution of OLS
	Hypotheses Testing
	Monte Carlo Simulations
	Empirical Application
	Literature Review and Empirical Motivation
	Empirical Results
	Tax Changes Measured by Log Transformation of Tax
	Tax Changes Measured by Tax to GDP Ratio


	Conclusion
	Supplements
	Supplementary Lemmas
	Preliminary Lemmas
	Proofs
	Additional Empirical Supplements


