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Abstract

This study examines the large-sample behavior of an ordinary least squares (OLS) estimator within a
correctly specified nonlinear autoregressive distributed lag (NARDL) model for nonstationary data. Al-
though the OLS estimator suffers from an asymptotically singular matrix problem, it remains consistent
for unknown model parameters and asymptotically follows a mixed normal distribution. Additionally, we
examine the large-sample behavior of the standard Wald test, as defined by the OLS estimator, for asym-
metries in long- and short-run NARDL parameters, and enhance this analysis with a super-consistent
long-run parameter estimator so that parameters targeted by the OLS and the two-step NARDL estima-
tors can be estimated at the same convergence rate. We then confirm the theory on the Wald test using
Monte Carlo simulations. Finally, using U.S. GDP and exogenous fiscal shock data, we demonstrate
use of the OLS estimator and show statistical evidence of long- and short-run symmetries between the
effects of tax increases and decreases on U.S. GDP.
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1 Introduction

The nonlinear autoregressive distributed lag (NARDL) model is widely used to estimate the asymmetric
cointegrating relationship between nonstationary variables. Since Shin, Yu, and Greenwood-Nimmo (2014)
introduced the NARDL model, researchers have revisited many long-run relationships, and modified lin-
ear ones using different slope coefficients based on the signs of the variables. For example, Borenstein,
Cameron, and Gilbert (1997) identified the so-called rockets and feathers in gasoline prices, showing that
upward cost shocks in crude oil prices pass through faster than downward shocks, thus affecting other eco-
nomic variables asymmetrically. Chesnes (2016) empirically confirms this feature using the NARDL model.

Despite its popularity, estimating the NARDL model using ordinary least squares (OLS) lacks theoretical
foundation. Cho, Greenwood-Nimmo, and Shin (2024) noted that OLS suffers from an asymptotically
singular matrix problem, and since then, no theoretical justification has emerged for estimating the NARDL
parameter using OLS. Currently, many empirical studies continue to estimate the unknown parameter using
OLS, without an established theory.

In this study, we revisit OLS and provide its large-sample theory. Although OLS suffers from the
problem of an asymptotically singular matrix, we find that it consistently estimates the unknown parameter.
Furthermore, we establish a theoretical basis for applying the Wald test principle to OLS by deriving its
asymptotic distribution, which allows us to test for the NARDL hypothesis. OLS asymptotically follows a
mixed normal distribution under some mild regularity conditions, validating the use of OLS for empirical
data analysis asymptotically.

This study addresses a gap in the literature concerning NARDL model estimation, although it is not
the first to address the asymptotically singular matrix problem associated with NARDL. Cho et al. (2024)
explained and resolved this problem by using a two-step procedure for estimating the NARDL parameter,
termed two-step NARDL (2SNARDL). They separately estimate the long- and short-run parameters, fol-
lowing the method used by Engle and Granger (1987), which avoids the asymptotically singular matrix
problem. They show that the long-run parameter estimator in 2SNARDL is super-consistent. We provide
theoretical grounds to compare these two estimators by deriving the limit distribution of OLS and show-
ing that the parameters targeted by both estimators are estimated at the same convergence rate despite the
asymptotic singular matrix problem. As a result, OLS estimates the targeted parameter with an asymptot-
ically negligible bias, whereas 2SNARDL removes it by first estimating the asymptotic covariance matrix
between the differenced regressor and cointegration error. From this feature, if the sample size is sufficiently
large, OLS can more straightforwardly estimate the parameter. If the sample size is small but the covariance

matrix estimator successfully removes the bias, 2SNARDL can be useful for practical purposes.



Singular matrices are common in econometric asymptotics, particularly in multivariate regressions, and
do not necessarily indicate the absence of a limit theory; rather, they lead to significant changes in that theory.
In time-series analysis involving deterministic trends and nonstationary cointegrated regressors, researchers
typically resolve singularity issues by applying multiple rates of convergence in various directions (see
Phillips, 1995, and his subsequent works for early demonstrations). Similarly, the issue of singular matrices
emerges in the context of maximum-likelihood (ML) and nonlinear least squares (NLS) estimations. In these
cases, researchers find the limit distributions using higher-order approximations of the nonlinear model or
likelihood. This slows the convergence rate of the estimator compared to the standard case (e.g., Terdsvirta,
1994; Cho and White, 2007, 2010; Cho and Phillips, 2018).

In the current study’s OLS analysis, applying a higher-order approximation to its limit distribution is
necessary, but challenging. Unlike ML and NLS, the model is linear, which means the higher-order expan-
sion should directly apply to OLS, rather than the model itself. This task is particularly challenging, because
it involves applying the higher-order expansion to the inverse matrix within OLS. Because the dimension of
the matrix is arbitrary, approximating it using a higher-order expansion is not straightforward.

We address this issue by indirectly obtaining the asymptotic distribution of OLS. First, we represent
OLS as a transformation of other primitive estimators that do not suffer from a singular matrix problem,
and then we derive their weak limits to achieve the desired limit distribution. Using this process, we isolate
the singular matrix problem from the transformation form and show that the parameter targeted by OLS is
estimated by the estimator implied by 2SNARDL at the same convergence rate as OLS.

The indirectly obtained limit distribution is useful for inferring the NARDL parameter. We can develop
a test methodology using this limit distribution. In addition, using the limit distributions of the primitive
estimators, we can establish an additional Wald test to compensate for the slower convergence rate of OLS.
The primitive estimators prove to be super-consistent for the long-run parameter, which is also the same
convergence rate as the long-run estimator in 2SNARDL.

The limit theory of OLS guides proper empirical data analysis. In this demonstration, we analyze the
empirical data provided by Romer and Romer (2010) to examine the long- and short-run relationships be-
tween U.S. GDP and fiscal exogenous shocks. Romer and Romer (2010) measure legislated exogenous
tax changes related to the U.S. GDP using narrative records such as presidential speeches and Congres-
sional reports. By applying the NARDL model, we determine the long- and short-run relationships between
tax increases and decreases in relation to the U.S. GDP. This empirical project also serves to illustrate our
methodology in a standard setting.

We conduct the empirical project not only for demonstration, but also to identify how the long- and short-

run relationships between U.S. GDP and tax decreases differ from those with tax increases. According to



Romer and Romer (2010), exogenous tax changes are classified into those aimed at deficit reduction and
those intended for long-run growth. All tax changes for deficit reduction relate to tax increases, while most
changes for long-run growth involve tax decreases. The NARDL model, which we use, separates shocks
into negative and positive ones and estimates their possibly different effects on the dependent variable. By
applying the NARDL model, we analyze the long- and short-run relationships between the tax changes for
deficit reduction and those for long-run growth in terms of U.S. GDP. Our investigation shows that the long-
and short-run parameters are indeed symmetric, meaning that the tax changes for deficit reduction and those
for long-run growth affect the U.S. GDP symmetrically. Moreover, our findings show that a 1% exogenous
GDP tax decrease increases the log real GDP by about 3% in the long run, which aligns closely with the
estimates by Romer and Romer (2010) and confirms their findings. Here, we illustrate our methodology
using both OLS and 2SNARDL.

The remainder of this paper is structured as follows. Section 2 provides an overview of the NARDL
model and discusses the asymptotically singular matrix problem associated with OLS. Section 3 defines
primitive estimators and presents OLS as a bilinear transform of other primitive estimators. Section 4
discusses the limit distribution of an OLS estimator, which varies depending on parameter values and specific
conditions for limit distributions. Section 5 examines the large-sample properties of the standard Wald test
for the NARDL hypothesis, and discusses another Wald test for supplementary purposes. Section 6 presents
Monte Carlo simulations for the Wald tests, and Section 7 presents the empirical illustration. Finally, Section
8 concludes the paper. All mathematical proofs are available in the Online Supplement, in which we also
provide other simulation evidence for OLS.

Before moving to the next section, we present the notation used throughout this paper. We provide
the weak limit of an estimator by a stochastic integral. Denoting the weak limit by [ % or [ d9 means

fol 9% (u)du or fol d%(u), respectively, where () is a Brownian motion.

2 Motivation and the NARDL Model in the Literature

This section briefly summarizes NARDL and motivates the current study by relating OLS to the asymptoti-
cally singular matrix problem.

We consider a NARDL(p, q) process augmented by a time trend:

P q
o= aoe +Et+ Y G+ ) (O e+ 0]z ) + e, (1)
j:l j:O



where z; € R¥ (k € N),

x) = Z Aacj, T, = Zt: Az}, Az = max[0, Az;], Az; := min[0, Ax,],
j=1 j=1
{es, F1} is a martingale difference array (MDA), and F, is the smallest o-algebra driven by {y;_1, :c;" , Ty,
Yi—2, T, |, T, 4,...} such that Az, is a stationary process, and A denotes the differencing operator, so
that Az, := x; — x;—;. Here, the max and min operators applied to a vector operate element-wise. The
NARDL process in (1) is defined by introducing the asymmetric effect to the autoregressive distributed
lag (ARDL) process proposed by Pesaran and Shin (1998). By supposing that the response of dependent
variable y; to the positive and negative parts of x; is possibly different, the NARDL process generalizes the
ARDL process. If 0;.: = Oj_* for each j, the NARDL process reduces to the ARDL process. In addition,
the NARDL process is more general than those defined by Shin et al. (2014) and Cho, Greenwood-Nimmo,
and Shin (2023b), because the latter do not allow for a time trend on the right side. If £, = 0, the NARDL
process in (1) reduces to their definition.

The NARDL process is closely related to an error-correction representation. We first rewrite (1) as

follows:
p—1 q—1

Ay = payr 1407z +0 @, & (t— 1)+a*+z gaj*Ayt,j+Z (ﬁﬁ/Amj_j + W;Am;_j> +ey,
=1 j=0

where p,, 0F, 6, v« g = L,2,...,p— 1), 7r;;, and w; (j = 0,1,...,¢ — 1) are defined by the
parameters in (1), as given in Cho et al. (2023b), and a, := g« + &«. At the end of Section A.1 in the
Online Supplement, we represent the parameters in the above equations using the parameters in (1). For

notational simplicity, we further rewrite this as
Ay = psyp—1 + 0,81 + &t — 1) + o + 9, Ay, + T AT + ¢ (2)
by letting

0.:=101,0"1, @ :=[z", 2],

!/
Y

Go = [P1as 205 s Pp—14]s DAYy = [Ay1, Ao, AY_py1]

L +7 —1/ + . +r 4 +r - - __—/ -1

= [w, w.], w5 = [ﬂ'o*,ﬂ'l*,...,ﬂ'q_l*] . T, =Ty, T, ,wq_l*] ,
~ ~+4/ ~—// ~+ +7/ +7 / ~— -1 —1 I
Az, =A% A%, Az = [Aal L A ), and AT = [Axy L Ax ]



Here, y¢—1, &;—1 and (¢ — 1) on the right side of (2) can be used to describe the long-run relationship. If

y4—1 is further cointegrated with a;_1, (2) can be rewritten into the following error-correction form:
Ays = paup—1 + Y + QLAY g + AT + e, 3)
such that the cointegration error is defined as u;_1 := ys—1 — B.&—1 — C(t — 1) — vy, with

B.=B,8.1, B =-(0]/p), By :=—(0./ps), and o= —(&/ps).

Here, the intercept v, is introduced so that E[u;] = 0, and u; is assumed to be stationary and possibly
correlated with Ay,_; and Az,. Therefore, it follows that 7, := . + psVs.
The NARDL process captures an asymmetric cointegrating relationship between nonstationary pro-

cesses. If we let
poo= [ ws wl =E[Az] and pg=E[Az; ], then pf +p; = E[Az],

by construction, because Az; = Az + Az, . Therefore, if we further let s; := Az — pf and
s; = Az, — p,, it follows that

t

¢
& = p,t +my; byletting m;:= [m;”, m;”’), m/ = Zsj and m, := Zs]_ 4

Jj=1 J=1

From (4), &; is clearly a unit-root process with nonzero time trends. Moreover, Ay; is not necessarily
distributed around zero, even when x; is a unit-root process without a time trend. From (3) and by noting

that E[u;] = 0 and E[e;] = 0, we have

—1 p—1

1 q
8 = E[Ay] = — |74 + Z‘rrj*p,* ., where mj, = [ﬂ;;',ﬂ'j_*']’ and o, :=1-— Zcpj*,
Ox = =
so that if d; := Ay; — J4, then
t
yo=0ut + Y dj. )
j=1

This fact implies that y; is a unit-root process with a deterministic time trend. This cointegrating relationship
is more general than that assumed by a linear cointegration. By imposing 3} = 3, , the error-correction
form in (3) reduces to the linear cointegrating relationship between y; and x;.

The time trend in the dependent variable y; has further implications in the model specification. As (5)



implies, if we suppose that x; is an integrated series without a time trend, the NADL model can capture a
cointegrating relationship between the variable without time trend a; and the variable with time trend ;.
This means that a time trend has to be assumed by the NARDL structure for the dependent variable as given
in (5). This also addresses another possibility that the NARDL model may not fully explain the time trend in
yt, and the specification in (2) is provided for such a case. By including (¢ — 1) as an additional explanatory
variable, we estimate its coefficient. If the estimated coefficient of (¢ — 1) is significant, it signals that the
NARDL structure cannot be regarded as the single source of the trend in y;.

Despite the popularity in the empirical literature of estimating the unknown parameters in (2) by OLS,
there is no theoretical foundation for doing so. This is mainly attributed to the asymptotically singular matrix

problem. For this examination, we first let

ze: = 2y | 2y |

=y 72 ]

=y @y (-1 1Ay, Az,

so that r;_y = [, |, (t — 1),1]. Here, z; € R>**P*+2k(149) i5 partitioned into two variables such that
z1; € R3T2F and z9; € RPH2k4—1 collect the variables in the long- and short-run equations, respectively.

Next, we let

‘ /!
Ay = { 0 0, g Oy ! (p/ 7l/ ] .
From this, the OLS estimator iS Written as

_1T

T
ar = [ pr ng & ar! oy wpl= (Z th::) ZZtAyt-
‘ t=1 t=1

s ~ . A~ PR . .
For later purposes, we partition 87 and 77 into [0 ,0, | and [75/, 7], respectively. Even under mild
regularity conditions, the OLS estimator suffers from an asymptotically singular matrix problem. For this

discussion, we impose the following conditions, which are standard in the literature:

Assumption 1. (i) {(Ay;, Axb,w) € RF2 .t = .. —1,0,1,...} is a strictly stationary mixing
process with ¢ of size —r/(2(r — 1)) or « of size —r/(r — 2) and r > 2;
(ii) E[|Azy|"] < oo (i =1,2,...,k), E[lu"] < oo, El|es|?] < 00, and 8, # 0, where xy; is the i-th row

element of x;;



(iii)

Y. = limr_ o var[T_l/2 > thl wy] is positive definite, where
— / ‘ / — / ‘ 1
wy = | wyy | Wy = Spo1 Ut—1 '€t EflUp—1  €1Zy ]
R s - 7.
and si—1 :=[s;",8,1];

(iv) for some o, with p, < 0, Ay, is generated by (2) such that |L,| > 1, where 1 — Z§:1 qu*Li =0;

(v)

{et, F1} is an MDA. O

Remarks. (a) Under the same assumption, we investigate the limit behavior of the OLS estimator below.

(b)

(c)

(d)

(e)

Assumptions 1 (i and ii) assume mixing and moment conditions to apply the functional central limit
theorem (FCLT) to a partial-sum data process. The FCLT is popular for deriving the limit distribution
of the OLS applied to estimate a cointegrating relationship (e.g., Phillips and Hansen, 1990; Phillips,
1991; White, 2001, chapter 7).

Assumption 1 (iv) assumes p, < 0 for a cointegrating relationship between y; and &;. If no cointe-

grating relationship exists, so that if 3, = 0 and (. = 0, then from (3), it follows that

P
Yt = s + Z Gjsyi—j + TLAZ, + €.
j=1

Assumption 1 (iv) applied to this equation implies that ¥, is a stationary process, which contradicts the
assumption that y; is a unit-root process. Therefore, it is necessary to assume p, = 0 for (3,,¢.) =
0. In this study, we assume the cointegrating relationship established by (3) and examine the limit
behavior of OLS.

Although it is not our main interest, Pesaran, Shin, and Smith (2001) and Banerjee, Dolado, and
Mestre (1998) have previously examined estimating the unknown parameter by OLS under p, = 0.
They assumed a linear model and developed a testing methodology for p, = 0. Their methodology is
applicable even in the context of NARDL, because assuming no cointegration under the condition of
linearity is equivalent to assuming 3, = 0 and (, = 0.

Assumption 1 (v) is a standard condition for the error term in the ARDL and NARDL processes (e.g.,
Pesaran and Shin, 1998; Pesaran et al., 2001; Shin et al., 2014; Cho et al., 2024). OJ

We now show how the asymptotically singular matrix problem is associated with OLS. For this, we

provide the following lemma.

Lemma 1. Under Assumption 1,



(i)

T N
30 | 20
d P i R
_ — Bty 2 Hox
D' (Z thz,lt) D' = My = 1 04, 15, 1] | L ;
t=1 3 \ 2
|
Loz SRR
where D1 := diag[T3/212+2k, Tl/Q];
.. _ 1 P
(ii) D, 1 (Zthl z2tz’2t> D, L2 My, = E[zo125,], where Dy := T1/21p+2kq_1;
(iii)
T 16,0, ! L6,
D2_1 (Z z2t2/1t> D1_1 ﬂ M21 = 2 p-l [(5*,[1;7 1] 12 12 p-l s
t=1 alq & oy ! 3lq & oy
where for each { € N, 1o := [1,1,...,1] € R,
(iv)
T
M M
D! (Z ztzt> D' LM = H .
t=1 My Mao
which is singular, where D := diag[D1, D2] and M5 := MJ,. O

Although the OLS estimator ap := (Zle z2p) 7! Ethl z¢Ay, is popular for empirical analyses,
Lemma 1 now clearly shows that its theoretical foundation cannot be established without tackling the asymp-
totic singular matrix problem. Note that we obtain M by employing different rates of convergence for each
element, and it is singular because its first (1 4+ 2k) columns are proportional to the (2 + 2k)-th column.

The singular matrix can be verified by conducting simple Monte Carlo simulations. By denoting the
model and data-generating process (DGP) conditions for Tables 3 and 5 given below as independent and
serially correlated cases, respectively, we compute the trace and determinant of D1 (Zthl ziz,) D™ for
T =50, 100, 200, 300, 400, and 500. After iterating 10000 independent experiments, the scatter diagram
between 1" and the average of the 10000 traces is drawn for both cases in Figure 1 (a). From this, the trace
converges to a finite number for both cases as 7 increases, indicating that D_l(ZtT:1 zz,) D7 = Op(1).
Meanwhile, the scatter diagram between 7" and the average of the 10000 determinants x 10'? in Figure 1
(b) shows that the determinant converges to zero. This implies that D! (Zthl z:2,)D~ ! is asymptotically
singular as Lemma 1 indicates.

We provide the proof of Lemma 1 in the Online Supplement by extending lemma 1 of Cho et al. (2024).
Their lemma demonstrates another singular matrix problem by supposing no time trend in (1). Lemma 1
verifies that augmenting the time trend on the right side is not helpful in eliminating the asymptotically

singular matrix problem.



The singular matrix problem arises from the deterministic time trend in the integrated series. More
specifically, (5) shows that E[Ay;_1] # 0, so that y;_; is an integrated series with a time trend. Similarly,
E[AZ;, ;] and E[AZ, ] differ from zero by construction, so that both ;" , and x; , are also integrated
series with time trends, meaning that all of y;_1, &;—1, and (¢ — 1) on the right side of (2) are driven by the
time trend (¢ — 1), and estimating their coefficients suffers from the singular matrix problem. This aspect
is evident from Lemma 1, showing that the first (2 + 2k) columns of M are proportional to each other, and
they are involved with y;_1, &;—1, and (¢ — 1). Cho et al. (2024) note this aspect and estimate the unknown
long-run parameters by first removing the trends from y;_; and &;_, proposing the 2SNARDL estimation.

Singular matrices often appear in econometric asymptotics, especially in multivariate regressions. These
matrices do not necessarily indicate the absence of a limit theory; rather, they typically lead to significant
changes in that theory. In time-series analysis, when dealing with deterministic trends and nonstationary
cointegrated regressors, researchers use multiple rates of convergence in different directions to address this
issue (e.g., Phillips, 1995, and his subsequent works). In the cases of ML and NLS estimations, researchers
obtain the limit distribution by applying higher-order approximations to the nonlinear model or likelihood,
which results in a slower convergence rate compared to the standard case (e.g., Terdsvirta, 1994; Cho and
White, 2007, 2010; Cho and Phillips, 2018).

In the current context, it is not straightforward to apply a higher-order expansion to OLS. The model is
already linear, unlike ML and NLS. This means that it is necessary to apply the higher-order expansion to
OLS itself. However, given that the dimension of (Zg‘rzl z,2,) 7! is determined by k, p, and ¢, and they can

be given arbitrarily, the task becomes challenging.

3 An Alternative Representation of the OLS Estimator

Owing to the complexity of the higher-order expansion, we use a different approach to obtain the desired
limit distribution. We represent the OLS estimator as a transformation of other primitive estimators that do
not suffer from an asymptotic singularity problem, and we express its limit distribution through those of
the primitive estimators. This method shows that the type of transformation is the source of the singularity
problem.

We achieve the alternative representation in three steps. First, we estimate the long-run parameters using
OLS. Second, we provide a short-run parameter estimator, allowing the OLS estimator ap to be expressed
as a bilinear transformation of the long- and short-run primitive estimators. Finally, we express the long-
and short-run primitive estimators as other bilinear transformations of further primitive estimators that do

not suffer from a singular matrix problem, enabling cur to be rewritten as a transformation of these primitive



estimators.

First Step We estimate the long-run parameter using OLS. That is, after specifying the long-run equation

!
Yt—1 = T3_1Ux + U1

=B&1+G0E—1) + v+ u (6)
by letting v, := [3, (x, V4], we let the long-run parameter estimator be

T

~ -

vr = [Br, (71, VT]/ = <§ 7’t—17“£1> E Tt—1Yt—1-
t=1 t=1

~ - L =t =
For later purposes, we let @;_1 := y;—1 — 7,_; U7 and partition B such that B, = [ﬁT/, BT/]’ )
Second Step We let w, := [ps, 0k, Vs, Vs, Pk, 7], such that n, := 0, + p. 3, and ¥, := & + p.(y, and

Z¢ := [ug—1,7;_;, 2] to specify the error-correction model

Ay = ,'zl’tw* + et

= PxlUt—1 + 77;531:—1 + %(t - 1) + Ve + QO*Ayt—l + W;Ait + et @)

by combining (2) and (6). Then, we estimate the parameters in (7) by

T —Lop
o = [prs e b, A, Py, ] = ( “z’fz“é) ZEtAyt, where Z; 1= [up—1,7,_q, 25,
t=1 t=1
estimating the short-run parameter w,. Note that wp is obtained by replacing w1 in 24 with u;_1. For
later purposes, we also partition 7, into [17;”, 17;]".

The long- and short-run parameter estimators have a regular relationship in terms of the OLS estimator
ar. From the definitions of the long-run and trend coefficients, 3, and (., we must have 17, = 0 and
1, = 0. Even so, we estimate them through the short-run parameter estimator w by including ;1 as an

auxiliary regressor. The purpose of this inclusion is given in the following proposition:

Proposition 1. Under Assumption 1, o = Rpwr, where

R 0 1 0
Rp=| 7 . and R .= 1x(2+2hk)

0 T,iok0-1 —vr  Ioyo

10



That is, by including the regressor in the first step, 7:_1, as an auxiliary regressor, we can represent the OLS
estimator ar as a bilinear transformation between the long- and short-run primitive estimators v7 and wr.

From Proposition 1, it follows that
o~ ~ o~ ~/ o~ o~ -~ -~ ~ ~ ~ ~ o~
ar = [pr, —prBr + M. —prlr + Yr, —prir + 1, P15 TP
Note that if both U7 and Wy are consistent for v, and w,, respectively,

~ P

ar — [P*a =P+, + 77;7 — PG + Vs, —Puls + Vs, ‘P/*a 77;]/ = [P*a 0., &, au, ‘me 7"/*]/‘
by noting that 7, = 0 and v, = 0. Proposition 1 follows by applying Lemma A.1 in the Online Supplement.
By letting y;, @, and z; of Lemma A.l be Ay, y;—1, and [r,_;, 25,]" of (7), respectively, Proposition 1

follows. Here, we can let v; in Lemma A.1 be ;1.

Third Step Although Proposition 1 represents cvp as a bilinear transformation between the long- and
short-run primitive estimators, both v and w suffer from an asymptotically singular matrix problem; see
Lemma A.3 in the Online Supplement. Again, the asymptotic singular matrix problem arises because the
regressors for v and wr are driven by the time trend (¢t — 1). That is, &;—; and (¢ — 1) in 74— and 2,
are asymptotically correlated, producing singular matrix problems as before. Therefore, we again represent
both primitive estimators using other primitive estimators that do not suffer from an asymptotically singular
matrix problem.

We first represent the long-run parameter estimator ©p using other estimators. Note that both (4) and

(6) imply that

/
Yt—1 = Ty 1UVx + U1

=Bmy_1 +0.(t—1)+ v +u_1, where 9, := g8, p, + (. (8)

This representation is obtained by collecting the deterministic time trend as a single regressor (¢ — 1) and
the remaining term my_ of &;_1 as another regressor, so that the coefficient of (¢t — 1), ¥, is now defined
by those of &;_; and (¢ — 1). If m,_; is observed, we can estimate the coefficients in (8) by regressing
y¢—1 against [m}_,, (¢t — 1), 1]". However, m;_; is not. We instead predict m;_ first, so that we can use its

predictor as a regressor. For this, we estimate the unknown parameters g, in (4) by

T -1
jip = (Z(t — 1)2> > (t—1)i 1, obtaining iy =& 1 — (t — 1)jir.

t=1 t=1

11



We use my;_; as a regressor to estimate the coefficients in (8). That is, we let
;r.'t—l = [1’.1:1:5,17 (t - 1)7 1]/

and regress y;—1 against 7;_1, to obtain

T
op = By, Op, ip] = (Zm_lﬁg_1> D # iy, estimating o, = [BL, 0., 1],
t=1

t=1

Note that this primitive estimator U is obtained by first removing the time trend from &;_; to predict m;_;
so that the asymptotic singular matrix problem can be avoided and we can estimate the long-run parameter
consistently. For later purposes, we partition 3 such that 8 = [B7, B7']’ and let ii;—1 := ys_1 —i_, V7.

The interrelationship between the long-run parameter and primitive estimators, ¥ and ¥, is stated in

the following proposition:

Proposition 2. Given Assumption I, O = [,B/T, ZT, vr) = Pror = [,B’T, I — jl’TBT, vp]', where

Lo o
Pr=| = and PP .= | HT 0
P I, 0152k

That is, the long-run parameter estimator v is represented as a bilinear transformation between the prim-
itive estimators, [t and ©p. This representation is particularly useful, because neither fi17 nor ¥ suffers
from an asymptotically singular matrix problem, as Lemma 2 verifies below. Further, 4,1 = ;1 using the

definition of my_; := &1 — (t — 1) jip, and if both fi and 7 are consistent for p, and v., respectively,
~ o r s ey P
Or = By, O — 1By, i)’ = (B, 9s — piBy, v = B, G, v =1 s

by noting that 9, := B, u, + (., leading to the consistency of ¥ for v,. Proposition 2 is established by
applying Lemma A.2 in the Online Supplement. If we let &, ,, (t—1), and 1 be x4, z;, and wy, respectively,
in Lemma A.2, then Proposition 2 follows.

Next, we represent the short-run parameter estimator w1 as a bilinear transformation between two other
estimators that do not suffer from an asymptotically singular matrix problem. This representation is parallel
to the one for the long-run parameter estimator. Both &;_; and (¢ — 1) on the right side of (7) are driven by

the deterministic trend. We first collect the deterministic time trends in &;_; and (¢ — 1) as a single regressor
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and reparameterize the right side. Specifically, we combine (4) and (7), obtaining
Ay = peug—1 +nimy_1 + G (t — 1) + v + LAy, + T AT + e, where o, = pln, + .. (9)

Here, the coefficient of (¢ — 1) is obtained as , by collecting the coefficients of the time trends in &;_; and
(t — 1), but the coefficient of m;_; keeps the same as that of &;_; on the right side of (7) from the fact that
m;_1 is the remainder of &;_; obtained by removing the trend. Furthermore, ¢, must be 0 from the fact that
n, = 0and ¢, = 0, but m;_; and (¢ — 1) are included as auxiliary regressors to apply Lemma A.2 in the

Online Supplement again. That is, by regressing Ay; against

2t = [ Q.:Lt_l ‘ T;f—l j z/2t }/7

we estimate the unknown parameters in (9) by OLS. For this, u;—1 and m;_; in (9) are replaced with ;1
and m,_;, respectively as both u;_; and m;_; are unobservable. The parameter estimator is denoted as
follows:

-1
T T
1= pr ! T '=1pr Vi S Ar ! Thp | = (Z Zﬂ%) ZétAytv estimating
=1 t=1

o=l i=loornl oo el L

Here, for later purposes, we partitioned the parameter 7, and its estimator 77 into the smaller sets, and we
let iy = [0, 7] and 7p = [7t1, 4], such that 77 is the vector formed by the last 2kq elements of
#o7. In addition, we separately estimate 1, by ¢y := — it + S by applying the plug-in principle to
Ge 1= MM F s

The interrelationship between the short-run parameter and primitive estimators, w7 and 77, is stated in

the following proposition:

Proposition 3. Given Assumption 1, wp = QpTr, where

I 0 0 — i
Qr = 2k and .= Hr . O

21
Q7 ILpiokgn Opr2kg)x1  O(prarg)x2k

That is, by including 1,7 and (¢t — 1) as auxiliary regressors for ¥, we represent the short-run primitive

estimator wy as a bilinear transformation between fi, and 77. From Proposition 3, it follows that

[“V}T = [pTa TI’IT7 _y’,TnT + §T7 &T’ T,QT],

13



Therefore, Q71 and 77 are almost identical. The only difference between them is in the coefficient of
(t — 1). The estimated coefficient of (¢t — 1) in Q¥ is equal to —ji/-7)p + ¢, whereas the corresponding

estimator in T is ¢7. If both fi and 77 are consistent for pt, and 7., respectively, it follows that

~ P
wr — [,0*, "7:«; _N;TI* + S Vo 7/2*]1 = [P*, 77;7 (1 BET 7-/2*]/ = Wx

by noting that ¢, := p’.m, + 1., and the last equality holds by the definition of w,. Furthermore, none
of [1r and 77 suffers from an asymptotically singular matrix problem, as Lemma 2 shows below, meaning
that w1 is represented using further primitive estimators without an asymptotically singular matrix problem.
Proposition 3 is again established by Lemma A.2 in the Online Supplement. By letting &;_1, (¢t — 1), and
[ti—1,1, 25,)" be @, z;, and wy, respectively, of Lemma A.2, Proposition 3 follows.

Using these alternative forms for the long- and short-run parameter estimators, v and W7, we now

represent the OLS estimator ap as a transform of the further primitive estimators: iy, U, and 7.

Proposition 4. Given Assumption 1, aop = Tr7 1, where Tr := Ry Qr such that

T 0 1 0
RrQr =Ty := ; , TlT1 = » L2k and
T7  Lpyorg —Br Lo
—(r — iy
TF = —vr 012k . u

O(pr2kg—1)x1  O(pt2rg—1)x2k

Proposition 4 follows simply by combining Propositions 1 and 3, in which we demonstrated that ap =
Ryrwr and wr = Q7 r, respectively. The individual elements of the OLS estimator cvy can be rewritten
as follows:

~ . Al ./ . q Y- AT I o e . ./ /

ar = |pr, —prBr + Ny, —pr(Ir — ipBr) — friiy + v, —prir + 41, Tor (10)
by using Proposition 2: [,B/T, Cr, op) = B, U — jin By, r)’. Note that the OLS estimator & is now
represented using the primitive estimators i, U, and 7.
Remarks. (a) If fi7, U7 and 77 are consistent for u,, v, and 7, respectively, then

~ P
ar = [pe, —puB My =piCe = oM + o, —patie + 7, T,

/
= [p*7_p*5ik7_p*c*7_p*y* +'Y*a7'/2*] ) 1D

14



(b)

(c)

because (, = VU, — p,B,, n, = 0 and ¢, = 0. In addition, the final limit is identical to o, :=
(05, O, &y i, P, ] by the definitions of 3,, («, V4, and To.. From this, the OLS estimator is
consistent for its target parameter a,. This fact implies that the consistence of the OLS estimator aur
can be revealed through the consistence of fir, U7 and 7.

By Proposition 4, the weak limit of the OLS estimator ap can also be represented using the weak
limits of the primitive estimators: fip, U7, and 77; see Theorem 1.

The convergence rate of the OLS estimator ap is slower than D in Lemma 1. For example, for
the long-run OLS estimator éT, we have §T = — ﬁT,éT + 1) from (10), and the convergence rates
of pr and (BT,ﬁT) are T'/2 and T, respectively, by Lemmas 3 and 4 given below. From this,
the convergence rate of 7 is determined as 7"*/2, which is slower than 73/2 given in D. Similar
arguments apply to the other elements of the OLS estimator vy, making its convergence rate slower
than D. This slower convergence rate is the same effect as expected when the asymptotic distribution
of an estimator is obtained by a higher-order expansion (e.g., Terdsvirta, 1994; Cho and White, 2007,
2010; Cho and Phillips, 2018). 0

We now show that the primitive estimators 77 and ¥ do not suffer from an asymptotically singular

matrix problem. First, we let

B() = [Bi(), Bu(-), Be(-), Bue ), Bae ()] = S W (),

where %/ (-) is a vector of (24 p+ 2k(1+ ¢)) independent standard Wiener processes, and 3, is the global

covariance matrix given in Assumption 1. Here, 98(-) is the Brownian motion obtained by applying FCLT

to Bp(-) = T-1/2 Ztl(:)lﬂ w;; see Lemma B.1 in the Online Supplement. For later purposes, we also

partition B (+) in parallel to S (-):

1 7]

Br(-) = [Bur("), Bur ("), Ber (), Buer (-), Baer ()] 1= —= Y [8t_1, ts—1, er, w1y, Zyser]

3

t=

[y

- pp— / / /
by noting that wy := [s]_1, w1, s, ur—1€¢, 25e¢]'.

The following lemma shows that neither 77 nor U7 suffers from an asymptotically singular matrix prob-

lem. As such, the long- and short-run parameter estimators, v and w7, become bilinear transformations of

the primitive estimators that do not suffer from this problem.

Lemma 2. Given Assumption 1,

(i)

T71/2 (Z?:l ut—l%t—l) Dl_l = Mlu = 0(2k+2)><1: where ]jl = diag[TIzk, T3/2, Tl/Q};
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(ii)

T f@m'%;n 02k><1 f@m
D! (Z aat_lf;_1> D'= = 01 2% 1 1 ,
t=1 5/ 1
f‘%m 2 1

where B (-) == B () = 3(-) [ B
ey TN . . P ..
(iii) D, 1 (Zthl ut_1z2t> D, L My, = E[ui—129¢], where Dy := Tl/QIp_,_qu_l;
(iv)
N1 d o/ 1 5*Lp_1 f!@lrn %(5*11;)_1 5*Lp_1
D2 ZZQtTt—l Dl = Mo = _, ) ;
t=1 LQ®“*I'%m §l’q®/*l’* Lqg @ My
o T P
(v) Dy ! (Zle ZQtZIQt) D, L2 Moo, and
(vi)
T 02 My My
D™ (Z ztz2> D' = | My, M M |
t=1
My, Mo My

where D := diag[T"/?, D1, Ds), M5 := M)y, M1 := M}, My := Mb,, and 02 := E[u?]. O

Both weak limits %1, and J given in Lemmas 2 (ii and vi) are nonsingular almost surely, meaning that
the weak limits of (D72 3.7 # 14 D7)~ and (D131, 2,2/ D) ! are obtained as ;' and
M1, respectively, where the inverse matrices are those within the long- and short-run parameter estimators,
Op = (O i ) T S Py and T o= (1 2625) 7 01| 24 Ay, From this, neither i

nor 7 suffers from an asymptotically singular matrix problem.

4 Limit Distribution of the OLS Estimator

In this section, we derive the limit distribution of the OLS estimator cvy using the weak limits of the primitive
estimators. In addition, we establish the consistency of the long-run parameter and primitive estimators
(O, ) for their target parameters (., T), from which the consistency of ar follows.

We proceed in three steps. First, we derive the weak limit of the long-run parameter estimator v and
show its consistency. Second, we conduct the same procedure for the primitive estimator 7. Finally, we

derive the weak limit of the OLS estimator avp using the first two results.

First Step We derive the weak limit of the long-run parameter estimators ©7 and ©. For this, note that

v = Ppop, from Proposition 2. The weak limit of the long-run parameter estimator v is then determined
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by each element on the right side. If we let P be the limit of P, that is,

I, 0 ol
p.—| * with P2 .= H

P2 1, 0152k

its consistency follows from the consistency of ji1 for p,. Next, we obtain the limit distribution of the

primitive estimator ¥ by noting that m; 1 = ;1 + (fip — ., )(t — 1). If we rewrite (8) as

.., —
Yi—1 = T3 10T + Up—1

= By +I7.(t — 1) + vi + up—1, where Oy = B}, I7s, Vi) (12)

with 97, 1= B, (jip — p,) + Vs, it follows that

T -1 7 T -1 7

o o Y . _ o Vi o

O = g Tt 1T 4 § Ti—1Yt—1 = UT« + E Te—1T11 E :Tt—lut—1~ (13)
t=1 t=1 =1 t=1

Using this arrangement, we provide the weak limit of the primitive estimator ¥ in the following lemma:

Lemma 3. Let 9, := limy oo T~1 S0 S22 Bls,u4). Given Assumption 1,

(i) ]jl(i}T — @T*) = = [ ,1,552,553]/ = .ﬂl_llc?, where
S [ BdBy — 3 [ 1By, [ 1d By + O
=] & | = [ rds, ,
83 fd@u

such that &1 and 81 € R ; and
(ii) Di(Or — vi) = (L, — . L1, L)', where Dy .= diag[Tly, T, TV, O

Remarks. (a) By Lemma 3, none of (0 — v7,) and (U7 — v, ) follows a mixed normal distribution.
Further, &5 is influenced by the asymptotic bias g,,,,. This asymptotic bias corresponds to that arising
when estimating a cointegrating relationship by OLS (e.g., Engle and Granger, 1987; Phillips and
Hansen, 1990).

(b) In the Online Supplement, we prove Lemma 3 (i) by noting that bl(i}T —Upy) = (]':')1_1 ZtT:1 i1
%271]':')1_1)_1]31_1 Z;‘Ll 7:_1u;—1. We focus on deriving the weak limit of ]':')1_1 Z;le T 1Ui—1,
because Lemma 2 (ii) already provides the weak limit of (D> 321 # 14 D71~ Next, we
note that vr — v, = (Pr — P)(0r — O14) + P(V7 — O14) + (P — P)(01s — 04) + P(O7. —

Uy) + (Pp — P)v,, and prove Lemma 3 (ii) by examining the limit of each component on the right
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side and showing that o7 — v, = P(7 — O7y) + Op(T~3/2) and Dy (01 — 01s) = Op(1).

(c) The consistency of the estimators follows from Lemma 3: ¥ — U7, ﬂ 0 and v ﬂ v,. We also have
D1y o Dy = [B, 04, 1], because Oy = BL(jip — p,) + s — Uy, from jip = p, + Op(T~Y/2).
This implies that Py L P, so that v = Prvr — P, = v,, by the definition of v, := [B,, (s, v4]
in (8).

(d) Lemma 3 (i) implies that the weak limits of EIT and ET are linearly correlated, because they are
obtained as &1 and —p! &1, respectively. This feature confirms how the long parameter estimator
v suffers from the asymptotically singular matrix problem, although ¥ does not.

(e) 2SNARDL estimates the long- and short-run parameters separately, and the convergence rate of the
long-run 2SNARDL estimator for 3, is T, which is also the convergence rate of BT in ©7. That is, the
same convergence rate is shared by the long-run parameter estimators in the primitive and 2SNARDL
estimators. As we detail below, the convergence rate of the OLS estimator for 6, is v/T, but ¥
estimates the long-run parameter in the long-run equation with a faster convergence rate. We use this

feature for inference by defining a Wald test based on ¥7; see Section 5. U
Second Step We derive the weak limit of the primitive estimator 7. We first rewrite (9) as

] e
Ay = Tr, 2t + et

= puiit—1 4 (M + pe(Br — B)) 11 + (s + nlfiq + pu(Dr — O1.)) (¢ — 1)

+ (3 + pu (i1 — 1)) + QLAY + AT + ey

where
L / JART
TTx ‘= [p*a T1iTs 7-2*] and

717 o= [ + p«(Br — B)) s Vs + Moty + pu (97 — O74), 75 + pa (01 — 1))

This equality is established by noting that

up-1 = fig—1 + (Br — Bu) 11 + (I — (BLivy + ¢))(t = 1) + (r — v,
which follows from (12) because u;—1 := y;—1 — 7}_1 O = tiy—1 := yi—1 — 7,1 Op. Using this represen-
tation, we again decompose the primitive estimator 77 into 77, and a remainder:

T T -7
Fro= (Z é#;) Y EB Ay =T+ (Z 2t2;> D zey (14)
t=1 t=1 t=1

t=1
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We now provide the weak limit of the primitive estimator 77 in the following lemma:

Lemma 4. Given Assumption I,
(i) ]f)(ﬁ"T —Tre) = D = [D1,9D,, D3, Dy, Dy) = M E, where F = [fdz%’ue,f.@;nd%e,
[rdBe, [ dBe, [ dRB",.]';
(i) D(Fr — 7.) = D — p.[0, 2L, 07 O

Remarks. (a) From the definition of &, the primitive estimator ]f)(ﬁ"T — T14) asymptotically follows
a mixed normal distribution, but the asymptotic distribution of D(#7 — 7,) differs from the mixed
normal distribution. Lemma 2 (i) already shows that the weak limit & does not follow a mixed normal
distribution and the limit distribution of ]5(7"'T — 7,) is formed by both & and &.

(b) In the Online Supplement, we prove Lemma 4 by examining the limit behavior of each component
on the right side of (14). Because Lemma 2 (vi) already shows that D—? (Z?zl 2t2;)f)_1 = M, we
focus on showing that D! Zle 2.4 = F. In addition, we note that ]j(ﬁ;T — Trs) = ]j(%T —
7))+ [0, —puT(By — B.), —p« T3/ 2 (97 — O14), —p T2 (0 — 1), 0], and exploit Lemmas 3 (if)
and 4 (i) to prove Lemma 4 (ii).

(¢) Unlike the weak limit of the long-run parameter estimator U given in Lemma 3 (i), the weak limit
of D(#1 — 7.) cannot be written as a linear combination of other weak limits. This confirms that the
primitive estimator 71 does not suffer from an asymptotic singular matrix problem.

(d) Because Lemma 4 assumes that p,. < 0, the weak limit in Lemma 4 (ii) cannot be used to derive the

null limit distribution of the ¢-statistic testing p, = 0. U

Third Step We finally derive the weak limit of the OLS estimator cxy. For this derivation, we first note
that
(ar —a.) = (Tr = T)7 + T(¥7 — 7)) + (T — T)(F1 — 74), (15)

by (10) and (11), where T is the probability limit of T7. That is,

_ _ /
Tl 0 . 1 0yuon " o He
T := , T = , T = — Vs 01x2k

’]:‘21 Ip+2kq+1 _B* I2k
0(p+2kq—1)><1 O(p+2k;q—1)><2k:
Here, the weak limits of Tr and 71 are already provided in Lemmas 3 and 4, respectively. Using these
weak limits, we derive the weak limit of the OLS estimator cr.

Before providing the weak limit, we note that different weak limits are obtained under different parame-

ter value conditions. For example, if B;[k #0, ﬁj; #0,and {, # 0, foreach j = 1,2,..., k, we can rewrite
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(15) as
VT(ar — a,) = e.NT(pr — ps) + VTdr + op(1), (16)

where ¢, := [1,—0,, —Cs, =14, 0" and dp := [0,04,..1,0, {(57 — 1) — p«(0p — vs)}, (Far — T24)"]".
This representation implies that the weak limit of the OLS estimator cp is determined by the weak limits
of pr and dr. However, if 3, or (, is zero, we cannot use (16) to find the weak limit, because the estimator
corresponding to 3, or (, is asymptotically negligible. That is, \/T@T —0,) =op(l) or ﬁ(ET — &) =
op(1), respectively. For such a case, the next-order terms have to be used to derive the weak limit of
(ar — ). These examples demonstrate that the weak limit of the OLS estimator &y depends on the
parameter value condition on 3, and (..

In the following theorem, we provide the weak limits of the OLS estimator &7 under various parameter

conditions. For notational simplicity, we let @2 = [P, D;’]'. Recall that D, is the weak limit of

Aip — (N, + p(Br — B.))-

Theorem 1. Given Assumption I,
(i) if for each j = 1,2,...,k, B}; # 0, B, # 0, and (. # 0, then VT(ar — o) = ¢ D) +

0, 041, 0, 1, D4

(ii) if BF = 0, but for each j = 1,2,...,k, Bi. # 0, and (. # 0, then D, (ar — o) = (91, D7,
—B7'D1, — D1, Dy — v. D1, D], where D = diag[T'/?, TT;,, T'/?1; 15, Dy);

(iii) if B, = 0, but foreach j = 1,2,...,k, ﬁ;; #£0, and ¢, # 0, then D_(ar — o) = (D1, —B' D1,
D5 D1, Dy — v D1, DL, where D_ := diag[T"/?1}, ., TT;,, T'/?1y, Dy]; and

(iv) if for each j = 1,2,....k B, # 0, 8;, # 0, but {x = 0, De(ar — o) = (21, -B.D1,
— 1. Dy, Dy — v, D, DL, where Do, := diag[T"/* 1oy, T, T"/? D). O

Remarks. (a) The limit distribution of the OLS estimator cvr is determined by & under all the param-
eter value conditions in Theorem 1, so that it asymptotically follows a mixed normal distribution
by Lemma 4. The OLS estimator is formed by the primitive estimators v and 77, none of which
follows a mixed normal distribution asymptotically, but iy follows a mixed normal distribution.

(b) Although the time trend and nonstationary regressors are included as regressors, the convergence
rate of the OLS estimator a7 in Theorem 1 (i) is slower than D in Lemma 1. Again, this slower
convergence rate is the same effect as expected when the asymptotic distribution of an estimator is
obtained by a higher-order expansion (e.g., Terdsvirta, 1994; Cho and White, 2007, 2010; Cho and
Phillips, 2018).

(c) In the Online Supplement, we prove Theorem 1 (i) by deriving the weak limit of each component on
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(a)

(e)

()

(&

the right side of (15). For example, we first derive the following for the long-run OLS estimator 5T:

(01 — 0.) = —B.(pr — pu) + (iiy — m,) — p«(Br — B,). (17)

Lemmas 3 and 4 verify that (jr — p.) = Op(T~Y?) and (i) — 1) — p«(Br — B,) = Op(T™1),
respectively. Using these, we derive that /T (ET -0, = —-3.9:.

By Theorem 1 (iv), the 2SNARDL estimator has the same convergence rate as the OLS estimator when
it is properly transformed to estimate the parameter targeted by OLS. Specifically, 2SNARDL esti-
mates v, and 7, separately, and Cho, Greenwood-Nimmo, and Shin (2023a) show that the 2SNARDL
estimator for 3, and p,, has convergence rate T and /T, respectively. By this feature, if we multiply
the two estimators, 6, can be estimated by 2SNARDL and its convergence rate becomes v/T. We
also note that this convergence rate is identical to that of ET, meaning that the OLS and 2SNARDL
estimators converges to 6, at the same convergence rate. In Section A.4.1 of the Online Supplement,
we confirm this by simulation.

By Theorem 1 (i), the weak limit of (pr, 5;, ET)’ is (1, B, —¢.)'D1, indicating that the estimates are
linearly correlated at the limit. This result highlights how the asymptotically singular matrix problem
arises and affects the convergence rate of the OLS estimator axp. Although 27 is not associated
with an asymptotically singular matrix problem, the type of the transformation means that the OLS
estimator a suffers from the singularity problem.

Despite the asymptotic singularity problem associated with the OLS estimator a, its weak limit
given in Theorem 1 (i) is determined by 91, 94, and D5. This implies the following. First, the OLS
estimator ar follows a mixed normal distribution as pointed out above. Therefore, if the standard ¢-
test applies to the OLS estimator aur, it follows a mixed normal distribution under the null hypothesis
and the condition in Theorem 1 (7). We verify this feature by simulation in the Online Supplement; see
Section A.4.2. Second, both & and D5 are the weak limits of the last two OLS estimators obtained
by regressing Ay; against (1, u;—1, z5,) or (1, i1, z5,)". Thus, the null weak limit of the ¢-statistic
testing p. (< 0) is equivalent to those of the ¢-statistics testing the long-run parameters 3, and &,.
estimator restricted by the zero condition is determined by the next-order term in (15) as mentioned
above. If 37 = 0, (17) implies that T(/G\;r —07) = T{(iit —nf) — p(BF — B} = D3 by
Lemma 4 (i). In parallel, if 3, = 0, then T(/O\; -0,)=T{(; —n;) — p*(ﬁ; -B.)} = 95
and if ¢, = 0, then T(&r — &) = —plT{(iy = m.) — pe(Br — B} + Op(TV/?) = —p. Do,

meaning that the weak limits of éT and ET are determined by &,. Given that &, follows a mixed
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normal distribution, if the standard ¢-test applies to §T or ET, its null weak limit also follows a mixed
normal distribution.

(h) There is a caveat to Theorems 1 (i, ii, iii, and iv). If 3, = 0 and {, = 0 simultaneously, then p, = 0,
by the remark below Assumption 1, which contradicts the assumption that p, < 0. Theorems 1 (i, ii,
iii, and iv) assume an environment in which at least one of 3, 3, , and ¢, is nonzero.

(i) As a remark relevant to (h), Pesaran et al. (2001) and Banerjee et al. (1998) provide the asymptotic
critical values of the F- and ¢-statistics testing p, = 0, showing that their null limit distributions
cannot be approximated by a mixed normal distribution. This also implies that the limit distributions
of the OLS estimator aur are different from those under 3, = 0 and (, = 0 under the parameter value
conditions in Theorem 1.

(j) For empirical application, we recommend the following procedure. First, it is necessary to test p, = 0
using Pesaran et al.’s (2001) F'-test or Banerjee et al.’s (1998) t-test as a preliminary procedure. Next,
if p, turns out to be negative, we can estimate the unknown coefficients by OLS. As the OLS estimator
is asymptotically mixed normal, the null limit distribution of the ¢-test is also mixed normal for each
parameter except for the ¢-statistic testing p, = 0. This aspect further implies that the asymptotic
critical values of the t-test can be obtained from the standard normal distribution table. Third, when
a joint hypothesis is tested, we can apply the standard Wald test principle to the OLS estimator. By
Theorem 1, the standard Wald test defined by OLS is asymptotically mixed chi-squared unless the
joint hypothesis is involved with testing p, = 0. Therefore, its asymptotic critical values can be
obtained from the chi-square distribution table. Note that the second and third steps are exactly the
same procedure as for a standard regression analysis. Finally, when estimating the long-run parameter

in the long-run equation, using the primitive estimator ¥ or 2SNARDL is recommended. g

Before closing this section, we briefly discuss applying other estimations to the NARDL model as a
future research topic. Phillips and Hansen (1990) examine estimating unknown cointegrating relationships
by instrumental variable (IV) estimation. The IV or generalized method of moments (GMM) estimation
can be applied to NARDL estimation, but its asymptotic distribution needs to be obtained by overcoming
asymptotic singular matrix problems similarly to OLS. Alternatively, the IV or GMM estimator has to be
defined to reflect the orthogonality condition properly to avoid asymptotic singular matrix problems under

the NARDL framework. We leave this as a future research topic.
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S Hypotheses Testing

In this section, we develop a testing methodology by applying the Wald test principle to NARDL. In particu-
lar, we suppose that a cointegrating relationship holds between y; and @;, under Assumption 1, by supposing
that 8 # 0 and/or @, # 0, and develop the testing methodology. In addition to the standard Wald test, we
apply the Wald test principle to the primitive estimators introduced in Sections 3 and 4.

Our main interest is in testing the symmetry conditions. The NARDL process reduces to the ARDL
process if @7 = @, and m} = w,. Under the ARDL process condition, it is inefficient to estimate the
parameters using NARDL, making it necessary to test the parameter symmetry conditions. We specify the

following three hypothesis systems:
Xy 05 =0, vs. H| 07 +0,;

) nl=n vs. | wl A7

*

and 7f =w, vs. #/" .07 #6, or n £ 7.

*

X0 =6;

Here, 7 and %' are provided to test the long- and short-run symmetries, respectively, and %" hypothe-

sizes both symmetries simultaneously.

Testing 7 versus %] We first apply the Wald test principle to test %;. The standard Wald test applied to
OLS is defined as follows:

T -1
~ —~ -1 < —~ ~ ~
wd = &, R, (W(T”) Riar, where Wi :=52,R, <§ mg) a
t=1

oy =171 ST (Ay — zjar)? and Ry = [Opy, I, —Ig, O (14p+2kg))- As We are presuming that
0F +# 0 and/or @, # 0, we cannot suppose the environment assumed in Theorems 1 (ii or iii) to obtain
the null limit distribution of the Wald test. In addition to this, we cannot directly apply the limit distribution
of the OLS estimator in Theorems 1 (i and iv) to obtain the null limit distribution. Note that f{laT =
(5; - 5;), so that \/T(E; - 5;) = (By — B))D. Thus, the weak limit in Theorem 1 (i or iv) does not
help us to obtain the null limit distribution of the Wald test, because 3, = 3, under the null, meaning that

VT (gJTr — 5;) is asymptotically negligible. The null limit behavior has to be obtained by the next-order
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term of (EJTr - 5;) Specifically, (10) implies that

(67 — 67) = (i1 —irg) — pr(Br — Br) (18)
(iF —i17) — (nF —m5) — pe(Br — Br) — (pr — p2)(Br — Br)

= (3 —0p) — (f, —np,) +op(T )

under ], where we let 9, := 1, + p. (,BT — B,) denote the vector formed by the first 2k-row elements
of 717, and (18) is established by letting n, := [0+, n;.] and noting that B = Bp. Therefore, the null
limit distribution of the Wald test W:(Fl) is determined not by Theorem 1 (i or iv), but by Lemma 4. All these
imply (07 —07) = Op(T~1), so that if we let Ry := [0x1, T, — g, Opx (14 ps0kq)> T(07 — 07) = Ry D
under #; by Lemma 4. However, its alternative behavior is different. From Riar = (5; - 5;), its
divergence rate is determined by Theorem 1 (i or iv), meaning that f{laT = Op(T -1/ 2). That is, the
convergence and divergence rates of the test basis are unbalanced between #{; and %, respectively.

We supplement the unbalanced convergence and divergence rates by applying the Wald test principle to
the primitive estimator ©7. This is mainly because the primitive estimator ©)7 enables us to define another

Wald test using the next-order terms. Because testing % is equivalent to testing
H6 : B*-‘r - 16*_ =0,

we apply the Wald test principle to the primitive estimator ,BT If we let Rl := [T, —Ik, Ogx2), RlﬁT* =
BF — B3, , which we can estimate by ,BJTF — B; = Rio7. Using this feature, we define the following

supplementary Wald test:

T -1
ngl) = ’U/TDlRll(Wgwl))flRlDlvT, where Wg}) = &g’TR1b1 (Z i;t_li*;/l) DlRll
t=1

and 57 7 :=T"! S°L 7. Here, (B4 — B7) is not the same as (5; — 67). Their difference is caused by

(i) —#)7) and jir, as implied by (18) and the fact that (,B; —Br) = (B+ — B7). Here, the Wald test %/T(,l)
is defined only by the test basis with power. Neither (n% — 7)) nor pr is capable of contributing to the
power of the test. Furthermore, (ﬁ; - [3}) = Op(T~1) under both hypotheses. From this, the convergence

and divergence rates of the Wald test are the same under both %] and 7.

24



Testing 7' versus %/ We next apply the Wald test principle to test %;;’. The Wald test principle applied

to the OLS estimator a7 delivers the following test:
-1
W:(F2) = an{;(VAV(T)) 'Ryay, where W( TRQ (Z ztzt> R),

and ﬁg = [qux(2+p+2k),lkq, —I},], so that it follows that ﬁgaT = 7??{ — 7 and \/Tﬁga;p = ﬁg@
using the limit distribution in Theorem 1.

We define another supplementary Wald test using the primitive estimator, as in the earlier case. From
Proposition 4, it follows that (@7, 74, ®7)" = (@h, 74, 77)" := For. That is, the short-run OLS and
primitive estimators are the same, implying that we can test %’ by using ¥7. Lemma 2 (vi) implies that
the primitive estimator 7 is not associated with an asymptotically singular matrix problem. From this, we

define the following Wald test:

T -1
%/T(Q) = %’Tbﬁé(wg))_lfigﬁ%p where Wg,?) = 367Tf{2b (Z ztz2> DR).
t=1
That is, WT@) is defined by applying the Wald test principle to the primitive estimator 7, estimating the
parameters in (9) by noting that ﬁg]f)ﬁ"T =T (71'}_ — 7t). Although the test basis of the Wald test ‘WT(Q)
is the same as that of Wj(?), from ﬂ}_ — Ty = ﬁ}“ — %}, their weight matrices are different. The Wald test

WT(Q) is defined using the weight matrix Wg? ). This weight matrix is more relevant to the test basis, because

77 is obtained by regressing 2; against Ay;.

Testing %" versus #,” Finally, we apply the Wald test principle to test #,". As before, we cannot
suppose the environment in Theorems 1 (i and iii) under %}”". We apply the Wald test principle to the OLS

estimator acr as follows:
-1
W}3) = aTﬁg(VV(T)) 'Rsay, where W( TR3 (Z ztzt> R}

and R := diag[R1, Ry), so that Rgaiy = (5;/—§T , 7' —72") . Here, the null limit distribution of Rsar
is obtained by combining the results given above. Thatis, T’ (OT—O;) = Ri1Dand VT (7} -77) = R,
under 9. Therefore, if we further let Rg := diag[Ry, Ro], it follows that (T(@;I — 5;/), VT (7F —

77)) = RsD under #". However, Rsar = Op(T~'/2) under %" because (5;/ —0,) = Op(T1/2)

under %" as discussed above.
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(3)

We also define another supplementary Wald test and overcome the unbalanced convergence rate of W,

under ;" and %/". For this, we first reformulate %" against ;" into
Hy :Bf =B, and wf =m, vs. H{:8f#8, or =l #m,,
and define the following supplementary Wald test:
7" = S DRy (W)~ Ry Dér,

where 07 := (¥, #)/, D := diag[D1, D], R3 := diag[R1, Ry), and V'Vg) = diag[Wg}),Wg)]. Note
that the Wald test ‘7/T( ) is defined by applying the Wald test principle to both primitive estimators, U
and 77, and by noting that RyDdr = (T(BF — B7), VT (74 — 75)). It straightforwardly follows
that %723) = WT(D + qu ) from the fact that W( ) is block- -diagonal, so that its null and alternative limit
behaviors are determined by those of ‘WT( ) and WT( ),

We now provide the limit behaviors of the Wald tests under the null and alternative using the weak limits
of the primitive estimators, 7 and #7. For notational simplicity, we partition H{j" into H{} : 8 = 3 and
H{ : w7 = w, . In parallel, we also partition H into HY{} : B # 85 and HY} : w7 # 7. We introduce

this partition because the power behavior of the Wald test 7/T(3)

depends on the sub-hypotheses from the
fact that the convergence rate of (,@} - ﬁ;) differs from that of (7} — 7). We also let 02 := E[e7]. We

summarize their limit behaviors in the following theorem:

Theorem 2. Given Assumption 1, if 0 # 0 and/or 0, # 0,
(i) (a) Wi = 'R} (02R1 M R)) R D under 7}, where Ry := [0px1, I, —T, O (1 pi 2k )3
(b) W = D'RY (2Rl 'RY) "RoD under 7';
() W) = D'RY(02Rall 'Ry R3D under ", where Ry := diag[Ry, Ry);

limp_ oo P (Wg) > dp) = 1 under #{';

imp_yoo P (W(g) > dp) = 1 under /",

°R
(ii) (a) forany cp = o(T), limp_,o0 P (W:(Fl) > cr) = 1 under #/{;
(b) for any . = o(T),
(c) forany c/n = o(T )
(iii)) (a) WV = LR, (02R M7 R,) 1R, L under H);
(b) WP = DR (02 Roll 'RS) 'Ry D under I';
(¢) WP = LR (2R M R))RP + D'RY(02Roll 'R RoD under HY'; and
(iv) (a) for any c = o(T?), imp_o IP’(WT(U > cr) = 1 under HY;
(b) for any . = o(T'), imp 00 IP’(‘WT(Q) > ) = 1 under #{';

(c) forany cr = o(T?) and cy. = o(T),

2
u
2
e
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(1) Mg oo P71 > er) = 1 under HY{ (Y Hf;
(2) limp_, o0 P( WT(g) > ) = 1 under Hjjy (N HY5, and
(3) limy oo (7Y > er) = 1 under HY (Y. O

Remarks. (a) The asymptotic behaviors of the Wald tests W(l), Wf), and W;g) are determined by the

(b)

(c)

(d)

weak limit of the primitive estimator (77 — 77+ ). For example, it follows from (18) that (5; - 5;) =
(0 —67)— (pr— p.) (B — B7)+ (if —mp,) — (g —nz,) +0p(T~"). Therefore, if we impose %,
(5;—5;) = (F—nt,)—(liz—n7,)+op(T ). Inother words, Ry&ir = Ry (Fr—77.)+op(T ).
This fact implies that the null weak limit of the Wald test Wj(}) is determined by that of (77 — T74),
which is given in Lemma 4. Theorem 2 (i.a) reports the weak limit obtained in this way. Here, we
note that the test basis has a different weak limit under ;. From (18), it follows that (5; — 5;) =
(0 —0,)— (pr—p:)(BF —B7)+op(T~/2) and (j1 — ps) = Op(T~'/?). Theorem 2 (ii.a) reports
the power behavior of the test implied by this representation. By applying similar arguments to the
other Wald tests, W}Q) and W}g), we provide their limit behaviors in Theorem 2 (i.b, i.c, ii.b, and
ii.c). Consequently, the Wald tests W}l), }2), and Wj@) asymptotically follow mixed chi-squared
distributions under the null hypotheses, because all they have the null limit distributions characterized
by 9D following a mixed normal distribution.

If we partition &; such that £ = (£, Z7"), Ri& = & — Z7, so that the null weak limit
in Theorem 2 (iii.a) is given as (Z] — Z7) (02R1M 'R}~ 1(Z] — £7). In parallel, if we
let D5 = [9;’, 9;', gg’]’, such that 9;, 9;, and 9D are the weak limits of ¢, 7'%%, and 7.,
respectively, then f{QQZ =9 ;r — 95, and so the weak the limit in Theorem 2 (iii.b) can be rewritten
as (D7 — D5 ) (PRl ' RY) (DT — D).

The testing methodology of using the supplementary tests depends on the hypotheses. We can rewrite
the null weak limit of the Wald test %;\") as &' 7' R} (02 Ry M ' R)) "Ry M ]S using the def-
inition of & := J 'S, meaning that the Wald test ‘WT(I) does not follow a mixed chi-squared
distribution. This is mainly because the weak limit & does not follow a mixed normal distribution and
is also influenced by the asymptotic bias g,,,,. The same result holds for the Wald test ‘WT(?’) from the
fact that ‘7/T(3) = ‘7/T(1) + %/T@). However, the null weak limit of the Wald test WT@) is characterized
by &, meaning that its null weak limit follows a mixed chi-squared distribution. Therefore, tabulated
asymptotic critical values are available for the Wald test quz). For both Wald tests, ngl) and %/753),
we can apply a resampling method; see Section 6.

The divergence speed of the Wald test WT(?’) depends on the alternative hypothesis. If H{’ is negated
only because of the asymmetric long-run parameters: 3] # 3., the divergence speed is 72. In

contrast, if only the short-run parameters are asymmetric: 7] # 7., its divergence speed is T'. If

27



both the long- and short-run parameters are asymmetric, the divergence speed is determined by 7°2.

Theorem 2 (iv.c) summarizes these results. ]

Before moving to the next section, we summarize the use of the Wald tests introduced in this section.
Table 1 provides their summary. We contain the formulas of the Wald tests along with their null hypotheses
and null limit distributions. In case the null limit distribution is mixed chi-squared, the researcher can obtain
the asymptotic critical values from the chi-square distribution table. Otherwise, the residual bootstrap can

apply. Section 6 details the residual bootstrap procedure applied to the Wald test.

6 Monte Carlo Simulations

In this section, we conduct simulations and examine the finite-sample properties of the Wald tests.

For our simulation, we assume the following DGP condition:
Y1 =ve+ Bral 4B e+ G(t—1) 4wy and

Ayt = O t+ PxU—1 + @*Aytfl + ﬂ-:—Al‘j + ﬂ'*_Al‘; + €,

where Az; = 1/2 + v, and (e4, v)" ~ IIDN (02, Iz). By this DGP condition, both y; and z; are integrated
series with time trends. We also set (vy, (i, i, ps, ©«) = (0,0,0,—1/2,0) throughout the simulation, but
adjust the value of (3;, B, , 7, 7, ), depending on the hypotheses of interest. According to the NARDL
condition, it must hold that ;7 = —p, 3} and 0, = —p.53; .

The next procedure applies to define the Wald tests. First, we estimate the unknown parameters using
the primitive parameter estimators. Specifically, we estimate U7, and 77, separately by specifying the
following models:

ye = BTm; + B m; +9t+v-+u and
Ayy = pg—1 + 0wy 0w (= 1)+ Ay + A 1T Az ey,

~t b o~ ~ )~ e~ T—1 ,9\— T—1
where we set iy, := x) —tfif, My = x; —tlip, and Uy := y—rior, with i == (3, 371>, taf,

~ T—1 9v-15T-1, — =~ T 1T -
fip = (= )7 0ty O o= (D meariy) T 2y re— s and ey o= [y 2y, (T
1),1]’. Second, we specify the following hypothesis systems:

Hy 05 =0, vs. 07 #0,;

"o+ - ", _+ —.
Hy Tl =m. ovs. Hy m FE
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m. o+ _ - +_ - " . n+ - + —.
xy 07 =0, and w] =m_ vs. H| 0] #0, or w F7w_;

Hy:B.=0vs. H : 3. #0; and H{ : 8, =0 and 7 =7, vs. H{": 8. #0 or 7 # 7.
Note that these hypotheses correspond to those in Section 5. Finally, we compute the Wald tests %/(1),

WQSQ), WJES) , W}l), Wj(?), and Wq(ﬂg), as stated in Section 5.

We conduct simulations under the following two DGP conditions. First, we set 57 = 5, = 1 and
w5 = m, = 1/2 to generate data. This parameter condition satisfies the ARDL condition. From this,
we examine the finite-sample properties of the Wald tests under the null. Second, we set 87 = 1/4,
By =—1/4,mf =1/8,and m; = —1/8, and use this to examine the power of the tests.

A bootstrap method is used for the testing. Theorem 2 shows that the null limit distributions of the Wald
tests ‘ijgl) and ‘7/T(3) are not mixed chi-squared. We apply the following residual bootstrap procedure.

S1: After computing the Wald tests, we estimate the ARDL model by regressing Ay; against y;—1, T¢—1,
(t—1), 1, Ay—1, and Az,. We let the estimated linear coefficient be (pr, @\T, ET, ar, pr,mr). We
also let the residual be ¢; := Ay, — prys—1 — 67T:vt_1 — ET(t —1)—ar — prAy1 — TrAxy.

S2: We construct a resampled series as follows. First, we resample ¢; with replacement and denote it as

e, Next, we let
A?Jf = ﬁTy?_l +0rxi1 +E&p(t—1)+ar + @Tﬁyf_l + Az + elt)a

where %? is the cumulative sum of Ay?. Note that we do not resample Ax; here. Using the resampled
series, we compute the Wald tests and denote them using the superscript b. For example, we let %/T(l)’b
denote the bootstrapped WT(D.

S3: We iterate the second step B times in total and compute the empirical p-value of the test. For example,
we let the empirical p-value be pg}) = B 17 IL{WT(l)’b > ngl)} for WT(U. If pg}) is less than
the significance level, we reject the null hypothesis. ([l

This bootstrap procedure can apply even when the null weak limit of the Wald test follows a mixed chi-
squared distribution.

We conducted our simulation following the above residual bootstrap procedure. Assuming that B =
500, we independently iterate the above experiment 5000 times for 7' = 100, 200, 300, 400, and 500. The
simulation results are reported in Tables 2 and 3. We also evaluated the Wald tests by mixed chi-squared
distributions and reported the empirical rejection rates. The simulation results are summarized as follows:

(a) Table 2 shows the empirical Wald test rejection rates using the null DGP condition allowing 8,7 =

By = land 7} = 7, = 1/2. The left side panel shows the empirical rejection rates obtained
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(b)

by the residual bootstrap method. The rejection rates on the right side are based on the mixed chi-
squared distributions. In summary, first, when using the bootstrap method, for each 7', the empirical
rejection rates are very close to the nominal significance levels. This implies that the bootstrap method
effectively controls the test levels. Second, when considering the asymptotic critical values from the
mixed chi-squared distribution, we find no significant level distortion for the Wald test WT(Q), but
both Wald tests WT(I) and ‘WT(?’) do experience level distortions. For the current DGP, the Wald tests
"WT(U and ‘WT(S) reject HY, and H’ more often than the significance levels. This confirms that the
Wald tests ‘WT(U and ‘WTSS) do not follow mixed chi-squared distributions under the null. However, the
Wald test %/732) does not suffer from level distortions, indicating that 7732 and 7, follow mixed normal
distributions, as Lemma 4 (i) establishes. Finally, the Wald tests W}l), W}Q), and W}S) suffer no level
distortions when using the critical values from the mixed chi-squared distributions.

Table 3 shows the empirical Wald test rejection rates under the alternative DGP. The summary results
are as follows. First, with the bootstrap method, the empirical rejection rates of the Wald tests W(l),
"WT(Q), and "WT(S) tend toward 100% as T increases, implying their consistency against H/, %", and
HY’, respectively. Second, when applying the critical values obtained from the mixed chi-squared

(1), WT@), and %/753) also converge

distribution, the empirical rejection rates of the Wald tests 7.
toward 100% as T increases. However, it is difficult to control their sizes, as shown in Table 2. Third,
the standard Wald tests are consistently powerful. Fourth, as in the case of the bootstrap method, the
Wald tests “WT(I) and %/7(’3) are more powerful than the Wald tests W}l) and W%S), respectively, for

small 7". In contrast, both Wald tests WT@) and W}Q) show similar power patterns. U

We conduct another simulation assuming that Ax; is serially correlated. Instead of Azy = 1/2 + vy, we

set Azy = 1/4 + ki Axi—1 + vy and apply the same residual bootstrap method. Then, assuming s, = 1/2,

we conduct simulations by setting B = 500 and independently iterating the experiment 5000 times for

T = 100, 200, 300, 400, and 500. Here, both y; and x; become integrated series with time trends as before.

The simulation results are presented in Tables 4 and 5 in the same format as in Tables 2 and 3, respectively.

(a)

(b)

The simulation results are summarized as follows:

Table 4 presents the empirical Wald test rejection rates obtained using the null DGP condition. For
each value of T', the empirical rejection rates are very close to the nominal significance levels when
using the residual bootstrap method. In contrast, the asymptotic critical values introduce level dis-
tortions for the Wald tests ‘W/T(l) and ‘WT@), as observed earlier. Overall, these simulation results are
similar to those shown in Table 2.

Table 5 presents the empirical Wald test rejection rates obtained using the alternative DGP condition.

The results are as follows. First, when the residual bootstrap method is used, the empirical rejection
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rates of the Wald tests ‘WT(U, ‘WT(,Z), and ‘W/T(3) tend toward 100% as T' increases, implying their

consistency against H’, #7’, and HY", respectively. Second, when the asymptotic critical values are
used, the empirical rejection rates also converge toward 100% as T’ increases, although the level
distortions are difficult to control for the Wald tests WT(l) and 7/T(3) under the null. Third, the standard
Wald tests exhibit consistent power. As T increases, the Wald tests W(l), W:(p2) , and W:(FS) reject the
null with rejection rates tending toward 100%. Finally, the Wald tests ‘WT(I) and “W/TB) are more
powerful than the Wald tests W:(Fl) and W}?’), respectively, for small 7. However, both Wald tests

‘WT(2) and Wg) exhibit similar power patterns.
(c) These simulation results are qualitatively the same as those for the serially uncorrelated Ax;. g

Before moving to the empirical section, we describe other simulation experiences on OLS and 2SNARDL.

As the two estimators target the same parameter, each has relative advantages over the other. The OLS con-
tains a finite sample bias that is driven by g,,,,. in Lemma 3 and vanishes as T increases, so that the negligible
bias affects its finite sample performance. In contrast, 2SNARDL estimates the parameter by removing the
bias. On the other hand, 2SNARDL is more involved than OLS. The bias is removed using an asymptotic co-
variance matrix estimator between Ax; and w;, affecting the performance of 2SNARDL. Meanwhile, OLS
is straightforward to estimate. From this comparison, if 7" is sufficiently large, the OLS can be preferred
to the 2SNARDL for practical purposes. However, if 1" is not large but the asymptotic covariance matrix

estimator can remove the bias, 2SNARDL can be preferred over OLS.

7 Empirical Application

This section examines the empirical data provided by Romer and Romer (2010) to measure the fiscal policy
impact on the GDP of the United States of America. We review the literature and apply the NARDL model

to examine the long- and short-run symmetries in the data.

7.1 Literature Review and Empirical Motivation

Estimating the effects of fiscal policy on output is challenging, because many fiscal factors that lead to tax
changes are correlated with output, causing the OLS estimator to suffer from endogenous bias. Although
not all fiscal factors are endogenous in terms of output growth, using all tax changes to analyze GDP growth
can result in biased OLS estimates. Blanchard and Perotti (2002) address this by using structural vector au-
toregression (SVAR). They solve the bias problem by assuming that policymakers do not respond to shocks
contemporaneously, and by using information on the elasticity of revenue to create cyclically adjusted rev-

enues. From this, they estimate that the effect of a tax cut on U.S. GDP is around 1%. However, Romer
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and Romer (2010) and Cloyne (2013) argue that the structural assumptions used in the SVAR model may be
unrealistic in estimating the effect of fiscal policy on output.

Romer and Romer (2010) analyze the effects of tax changes correlated with GDP differently by per-
forming a narrative analysis. They examine the motivations behind each tax change from 1945 to 2007
using sources such as the Economic Report of the President and the Congressional Record. They catego-
rize legislated tax changes that altered tax liabilities from one quarter to the next into four categories: (i)
tax changes to counteract changes in government spending, (ii) tax changes to offset other factors affect-
ing near-term output, (iii) tax changes to address inherited budget deficits, and (iv) tax changes to promote
long-term growth. The first two categories, considered countercyclical, are motivated by restoring output
growth reduced by other factors, making it difficult to classify these tax changes as purely exogenous. In
contrast, the last two categories, based on policymakers’ perceptions of prudent fiscal policies or focus on
increasing long-term growth, may be classified as exogenous. Consequently, they identified 54 exogenous
tax changes through narrative analysis during the same period. Using these exogenous fiscal shocks, they
develop a time-series model and estimate that GDP would increase by approximately 3% over three years
following a tax cut of 1% of GDP. This estimate differs significantly from that of Blanchard and Perotti
(2002).

Narrative analysis is widely used to examine the effects of fiscal shocks on GDP. For example, Cloyne
(2013) applies this approach to UK legislation and estimates that a 1% tax cut, as a percentage of GDP,
increases output by nearly 2.5% over the following three years, similar to findings in the United States
of America. Mertens and Olea (2018) use narrative analysis to determine that the short-run tax elasticity
of income is approximately 1.2% in the United States of America by analyzing exogenous variations in
the marginal tax rate. Additionally, Gunter, Riera-Crichton, Vegh, and Vuletin (2021) expand the use of
narrative analysis to estimate the value-added-tax multipliers for 51 countries, showing that the effect of tax
changes on output is highly nonlinear.

Narrative analysis is also used to specialize the time-series model in Romer and Romer (2010) for spe-
cific models under various economic environments. For example, Mertens and Ravn (2012) differentiate
between surprise and anticipated tax changes to analyze the dynamic effects of tax changes on GDP, find-
ing that anticipated tax cuts lead to a contraction in GDP. Demirel (2021) and Ghassibe and Zanetti (2021)
examine the state-dependent effects of exogenous tax changes on GDP, allowing for varying tax multiplier
estimations during recessions and expansions. Researchers widely apply narrative analysis to examine the
effect of tax changes on GDP in other fields, enabling comparisons with outcomes from conventional anal-
yses.

The current study extends its focus beyond short-run relationships to estimate the long-run relationship
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between GDP and fiscal shocks. Previous studies have primarily concentrated on the short-term effects of

fiscal policy. For example, one benchmark model specified by Romer and Romer (2010) is given as

qg—1 p—1
Ay =7+ Y mpAn i+ 0ulyj+e (19)
j=0 j=1

to examine how GDP responds to exogenous tax changes, where y; is the logarithm of real GDP and AT,
is the logarithm of an exogenous tax change. Note that all variables in (19) are differenced. Thus, it
characterizes the short-run relationship between Ay, and Ary.

Because y; and 7; are both observable, we can estimate their long-run relationship by applying cointe-

gration analysis. To this end, we augment the cointegration error on the right side of (19) as follows:

q—1 p—1
Ayp = o + prg—1 + Z T AT + Z ©jxAys—j + e, (20)
7=0 J=1
where u; := y; — B« — (4t — vi. Note that the long-run relationship between y; and 7 can be found

by estimating the long-run coefficient 3, and the short-run relationship can be found by estimating the

coefficients of 7;, and ¢;,. To estimate the unknown parameters, we can also convert (20) as follows:

q—1 p—1
Ay = iy + pap_1 + Oxi1 + &t + Z T ATi—; + Z 0 Ay + €. 20
§=0 J=1

For this estimation, we first examine the partial sum processes of the exogenous tax changes used in
our empirical analysis. Figure I illustrates the partial sum processes due to the exogenous tax changes.'
The solid and dashed lines represent the partial sum processes of tax changes for deficit reduction (71;) and
long-run growth (7), respectively, and the dotted line represents the partial sum process of their sum (7).’

The exogenous tax changes exhibit characteristics suitable for NARDL analysis, which we discuss one
by one. First, tax changes for budget deficits always result in tax increases, so A7y, is always positive.
Second, most tax changes aimed at long-run economic growth involve tax decreases; out of 31 legislated tax
changes for long-run growth, only six of them result in tax increases. Consequently, overall, the partial sum

processes for deficit reduction and long-run growth remain in positive and negative regions, respectively.

"Data are obtained from https://eml.berkeley.edu/~cromer/ (Accessed: Feb. 10, 2023).

2We obtain the partial sum processes by first converting the nominal tax changes into consistent values over the period
1947Q1 to 2007Q4. To this end, we first discount the nominal values using the price index implied by the nominal GDP
and the quantity index for GDP in the data set, and then apply a log transformation. We find that A, = A7y + A7oy,
Aty = sgn(ATh) log(|ATve|/pe), Atee = sgn(ATs) log(|AT%:|/pe), and p; := NY;/Y;, where AT, and AT, repre-
sent the nominal tax changes for budget deficit and long-run growth, respectively, and NY; and Y; represent the nominal GDP
and quantity GDP index, respectively. If ATi; = 0 or ATy, = 0, we let A1y = 0 or A7o; = 0, respectively. The partial sum
processes in Figure 1 represent 7¢, 71+, and 7o¢.
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Although the NARDL model assumptions do not perfectly align with the characteristics of the exogenous
fiscal shocks, we use the approximation of ATt+ := max[0, A7 for tax changes due to budget deficit and
A7, :=min[0, Ar] for tax changes due to long-run growth.

Next, we specify the following NARDL model and estimate the long- and short-run parameters:

q—1 p—1
Ayt = Ve + PrU—1 + (W;AT;;Z' + Trj_*ATt_—i> + Z (pj*Ayt—j + ey, (22)
j=0 J=1
where u; := y; — ﬁij — By 7; — C«t — 1. This can be rewritten as
q—1 p—1
Ayp = o+ puye—1 + 0570+ 0, 7 + &b+ (ﬂﬁAT;ﬂi + W;kATt:i) + Z Ay + e, (23)
j=0 J=1

which we estimate by OLS. If 5 = 3. (or 6 = 0,) and W]TZ =, (22) reduces to (20). Economically,
this implies that the relationship between tax changes aimed at deficit reduction and long-run growth in real
GDP is roughly symmetric in both the long and short run. We can use the Wald tests defined in Section 5

for this inference.

7.2 Empirical Results

This section presents the estimation and inference results, divided into two parts. The first part presents the
estimation results using the tax change data outlined in the previous section. The second part measures the
fiscal policy effect using the tax ratio data, as used by Romer and Romer (2010). We have limited the sample

period to 1947Q1-2007Q4 by excluding periods with missing observations.

7.2.1 Tax Changes Measured by Log Transformation of Tax

Before presenting the estimation and inference results, we provide the basic statistical characteristics of the
data. The logarithm of the GDP quantity index, multiplied by 100, is represented by ¥;, and 7¢, 714, and 75
are defined as in footnote 2. The descriptive statistics of Ay, A7, A7or, and A7y can be found in Table
A.9 in the Online Supplement. Furthermore, our unit-root test on y;, 714, T2¢, and 7; follows the method of
Phillips and Perron (1988), including or excluding the time trend. The test results indicate that we cannot
reject the unit-root hypothesis for the series.

We report the estimation results in Table 6. The columns marked “Exo” give the parameter estimates
obtained by OLS for the NARDL and ARDL models. That is, the unknown parameters in (23) and (21) are
estimated by OLS. Orders for the NARDL model are based on the Akaike information criterion (AIC), with
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p = 3 and ¢ = 1 for both the NARDL and the ARDL models. Standard errors are listed in parentheses

below the parameter estimates. Except for the coefficient of y;_1, we use the asymptotic critical values from

the mixed normal distribution. For the ¢-test on the coefficient of 1;_1, we use the asymptotic critical values

provided by Banerjee et al. (1998). Furthermore, we test whether all coefficients of y;—1, 7, ;, and 7,_; are

equal to zero by applying the F'-test of Pesaran et al. (2001). Finally, we test the hypotheses of symmetry

between long-run parameters, short-run parameters, or both by using the Wald tests given in Section 5. The

results are presented in the two bottom panels. We summarize the results in Table 6 as follows:

(a)

(b)

(c)

(d)

(e)

The coefficient of y;_1 is significant at the 10% and 5% levels for the NARDL and ARDL models,
respectively by the ¢-test. Although we cannot reject the hypothesis of no cointegration by the F'-test
for the NARDL model, it is significant at the 10% level for the ARDL model. Our analysis using the
2SNARDL model also suggests a cointegrating relationship between the log real GDP and the log of
an exogenous log tax shock.

The NARDL model estimation indicates that an increase in an exogenous tax shock measured by
Tttl reduces the log real GDP. In contrast, a decrease in an exogenous tax shock measured by 7,_;
increases the log of real GDP. The ARDL model shows the same relationship between the log of an
exogenous tax shock and the log real GDP, aligning with standard economic theory.

The estimated coefficients of Tttl and 7,_, are almost equal in magnitude, suggesting no long-run
asymmetry between the log real GDP and the log of an exogenous tax shock. We confirm this using
the Wald tests. Both Wald tests 7/7(,1) and W:(Fl) provide p-values that make it difficult to reject the
symmetry hypothesis.

Short-run symmetry is confirmed by the Wald tests ‘7/T(2) and WT(,Q), because they do not reject the
symmetry hypothesis. Moreover, neither the long-run nor the short-run symmetry hypothesis is chal-
lenged by the Wald test ngg) or W}g). As such, we conclude that the ARDL model is appropriate for
studying the relationship between the log real GDP and the log of an exogenous tax shock.

We present the estimation results for the log of an endogenous tax shock, calculated in the same way
as for the log of an exogenous tax shock. Columns labeled “Endo” give the estimation and inference
results obtained using the log of the endogenous tax shock data. Similarly, the columns labeled “Sum”
show the estimation and inference results obtained using the logs of both exogenous and endogenous
tax shocks. The estimated signs of Tt—tl, T,_1, and 7;_1 are inconsistent with the parameter values
posited by standard economic theory. When using the logs of both exogenous and endogenous tax
shocks jointly, there is little evidence of cointegration. These estimation results indicate that only the
log of an exogenous tax shock can be used to estimate the coefficients having signs consistent with

standard economic theory. O
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Next, we estimate the NARDL and ARDL models using the 2SNARDL method proposed by Cho et al.
(2023a). For the ARDL model, we apply 2SNARDL estimation by imposing the short- and long-run param-
eter symmetry conditions. The results are presented in Table 7, which is structured similarly to Table 6. This
separate investigation is conducted to validate the inference results presented in Table 6. We summarize the
results in Table 7.

(a) The NARDL and ARDL models estimated by 2SNARDL show that the coefficient of u;_; for the ex-
ogenous tax shock is statistically significant. The significance levels are 10% and 5% for the NARDL
and ARDL models, respectively. Moreover, we apply the unit-root test of Phillips and Perron (1988)
to the cointegration residuals obtained from both models. The results reject the unit-root hypothesis.
The p-values are 10.19% and 2.58% for the NARDL and ARDL models, respectively. This confirms
the cointegrating relationship between the log real GDP and the log of an exogenous tax shock.

(b) For the log of an exogenous tax shock, the NARDL model indicates that the long-run coefficient of the
log tax increase is -0.4329, whereas that of the log tax decrease is -0.3202. These signs are consistent
with standard economic theory, and are statistically significant at the 1% and 10% levels, respectively.
For the ARDL model, the long-run coefficient of the log tax change is -0.2328. This sign is also
consistent with standard economic theory, and the estimated coefficient is statistically significant at
the 1% level.

(¢) Our findings for the endogenous and aggregate log tax shocks align with the results presented in
Table 6. The coefficients of 7,7 |, 7,_, and 7;_1 for the log of endogenous tax shocks are statistically
significant, but their signs are inconsistent with standard economic theory. However, for the log of the
aggregate tax shock, none of these coefficients are statistically significant. Moreover, the coefficient
of u;_1 is insignificant. We believe these inconsistent results are due to the correlation between an
endogenous shock and a structural error. g

The results in Tables 6 and 7 suggest that by using the log of exogenous tax shocks, we can properly
identify the relationship between the log real GDP and a fiscal shock. The findings indicate limited statistical
support for the asymmetry between tax shocks for deficit reduction and those for long-run growth. Moreover,

the OLS and 2SNARDL estimations produce qualitatively similar results.

7.2.2 Tax Changes Measured by Tax-to-GDP Ratio

This section extends the work of Romer and Romer (2010) to investigate the long- and short-run rela-
tionships between fiscal shocks and real GDP. Rather than using the tax change logarithm 7;, we use
Ary := (ATy + ATy)/NYy, which represents the tax change-to-nominal GDP ratio, to measure the effect

of fiscal policy and to specify the models corresponding to (20), (21), (22), and (23). As with Tables 6 and
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7, we estimate the models using OLS and 2SNARDL. The estimation and inference results are presented in

Tables 8 and 9, respectively. We summarize the results as follows:

(a)

(b)

(c)

(d)

For the exogenous tax change, the coefficient of y,_; in Table 8 is statistically significant at the 25%
level for the NARDL and ARDL models, by the t-test. The F'-test does not reject the hypothesis of
no cointegration. However, the coefficient of u;_; in the ¢-test of Table 9 is statistically significant
at the 25% and 10% levels for the NARDL and ARDL models, respectively. We give more weight
to the inference results in Table 9 than to those in Table 8, because the long-run parameters can be
estimated super-consistently by 2SNARDL. In addition, neither ‘WT(U nor Wq(}) rejects the symmetry
hypothesis in the long-run parameters, indicating that the ARDL model can estimate a cointegrating
relationship between y; and r; more efficiently than 2SNARDL can.

The ARDL model estimation indicates that an increase in an exogenous tax shock measured by r;_1
reduces the long-run log real GDP by about 3%. This is close to the result of Romer and Romer
(2010), estimating that GDP will increase by approximately 3% over three years following a tax cut
of 1% of GDP.

The Wald tests ngz) and Wg) do not reject the hypothesis of symmetric short-run parameters. Fur-
thermore, neither %/733) nor W}S) rejects the hypothesis of long- and short-run symmetry. This con-
firms that ARDL is appropriate for the long- and short-run relationships between y; and r;.

For endogenous and aggregate tax changes, there is negligible evidence of cointegration between
real GDP and the tax change. None of the ¢- or F'-tests in Table 8 rejects the hypothesis of no
cointegration. Furthermore, none of the coefficients of u;_; in Table 9 is statistically significant.
Specifically, for the aggregate tax change, the unit-root test cannot confirm that 7, is nonstationary;
see the Online Supplement. Therefore, we conclude that the long- and short-run relationships can be

properly estimated only by the exogenous tax change. g

In summary, our empirical results obtained using the specification in Romer and Romer (2010) provide

qualitatively the same results as those in Section 7.2.1. In particular, the long-run relationship between y;

and r; captured by the cointegration coefficient is close to their estimate.

8 Conclusion

OLS has an asymptotically singular matrix when used with the NARDL model. However, despite the

absence of established limit theory for OLS, it remains popular in empirical literature.

This study investigates the large-sample behavior of OLS by addressing the problem of an asymptot-

ically singular matrix. Specifically, we find that OLS is consistent for the unknown NARDL parameters
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and follows a mixed normal distribution asymptotically under some mild regularity conditions. This implies
that the standard principles of the ¢- and Wald tests apply, despite the asymptotically singular matrix prob-
lem. To derive the asymptotic distribution, we first represent the OLS as a transformation of other primitive
estimators that are not affected by an asymptotically singular matrix, and derive their weak limits. This
representation and the weak limits allowed us to derive the weak limit of the OLS and enabled us to demon-
strate that the convergence rate of the OLS is identical to that of the estimator implied by the 2SNARDL
estimator despite the asymptotic singular matrix problem.

In addition, we examine the large-sample behavior of the Wald tests for the NARDL hypothesis. Beyond
the standard Wald tests defined by the OLS, we develop supplementary Wald tests using primitive estima-
tors to examine asymmetric long- and/or short-run parameters. The null limit distributions of the standard
Wald tests are mixed chi-squared, whereas those of the supplementary Wald tests differ when testing for
long-run asymmetry. By applying the residual bootstrap method, Monte Carlo simulations show that the
supplementary Wald tests generally perform better than the standard Wald tests.

OLS and 2SNARDL target the same parameter, and each has relative advantages over the other. The
OLS contains a finite sample bias that is asymptotically negligible, affecting its finite sample performance.
In contrast, 2SNARDL estimates the parameter by removing the bias. However, 2SNARDL first esti-
mates the asymptotic covariance matrix between the differenced regressor and cointegration error, affecting
2SNARDL. Meanwhile, OLS is not involved in such a preliminary procedure. From this, if the sample size
is sufficiently large, the OLS can be preferred to the 2SNARDL for practical purposes; if the sample size is
not large but the asymptotic covariance matrix estimator successfully removes the bias, 2SNARDL can be
preferred over OLS.

Lastly, we illustrate the proper use of the NARDL model by estimating the long- and short-run rela-
tionships between GDP and exogenous fiscal shocks due to deficit reduction and long-run growth, using the
empirical data from Romer and Romer (2010). Because all tax changes for deficit reduction are increases,
and most changes for long-run growth are decreases, the NARDL model approximates the relationship be-
tween GDP and the exogenous fiscal shocks. We estimate the model and examine whether the relationships
between tax increases and decreases are symmetric in both the long and short run. We find no evidence
of asymmetric relationships between them. We also find that a 1% exogenous increase in the tax-to-GDP
ratio reduces the log real GDP by about 3% in the long run, confirming the estimation results of Romer and

Romer (2010).
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution

a\T 100 200 300 400 500 | 100 200 _ 300 400 500

10% | 11.00 984 1056 10.44 10.78 | 45.62 46.14 4756 47.86 47.24

v,V 5% 606 500 508 500 520 | 3730 37.92 3950 3952 39.14
1% 124 100 086 102 086 | 23.86 2462 2540 2570 2620

10% | 1000 1052 10.02 958 972 | 11.66 1172 1074 10.12 10.04

w,? 5% 510 518 536 488 456 | 646 580 584 530  5.00
1% 116 118 112 090 078 | 166 134 112 102 1.04

10% | 11.16 1034 1074 1022  9.84 | 41.52 42.14 4304 4318 42.54

/a8 5% 590 526 516 518 494 | 3292 33.60 3410 3446 3452
1% 104 110 098 092 096 | 20.14 20.88 2136 21.12 2228

10% 934 906 10.02 1042 1020 | 1438 11.58 11.68 11.76 10.98

wil 5% 458 452 544 518 518 | 750 610 642 614 596
1% 088 096 1.02 094 104 | 218 154 144 146 122

10% 998 990 1054 964 1020 | 11.96 1094 11.14 1002 1046

W) 5% 510 512 538 478 530 | 646 604 592 510 574
1% 082 106 1.04 100 118 | 136 148 120 108 108

10% 972 970 10.62 1002 10.66 | 1422 12.04 1206 11.36 11.64

W) 5% 482 498 536 4838 514 | 804 642 638 568 598
1% 068 108 1.02 108 104 | 180 154 138 108 128

Table 2: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing Hjy : 8, = 0, ZJ : 7f = 7, and HY : 8, = 0
and m; = m, . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: Ay; =
pst—1 + T Axf 47 Axy ey, up =y — B xS — Brxy, Ary = 1/2 4y, and (e, v;)' ~ 1ID N (02, I2)
with (ps, 75, 7, B, Br) = (=1/2,1/2,1/2,1,1). Here, %/T(l), "WT(Q), and "WT(B’) denote the Wald tests in

Section 5, and WC(FI), Wi(pg), and W:(FS) are the standard Wald tests.
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution

a\T 100 200 300 400 500 100 200 300 400 500

10% 4538 87.08 97.72 99.80 99.94 | 68.44 9500 9932 99.96 100.00

‘WTO) 5% 3298 7954 96.02 9946 99.84 | 61.76 93.48 98.98 99.92 100.00
1% 13.60 57.06 8790 97.52 9948 | 4792 8892 98.12 99.86 99.98

10% 15.78 24.18 3030 37.58 4438 | 18.64 25.82 3142 38.80 44.86

WT(2) 5% 898 15.00 20.10 26.82 31.22 | 1142 16.78 2136 27.76 32.44
1% 2.22 5.16 7.18 10.54 13.30 3.44 6.18 8.28 11.68 14.54

10% 4356 86.04 9750 99.76 9994 | 6426 94.04 99.00 99.94 100.00

WT(B) 5% 3144 7796 9578 9942 99.78 | 57.12 9196 98.50 99.90 100.00
1% 12.88 5640 87.02 97.46 9948 | 43.80 8634 97.54 99.76 99.96

10% 42.88 8322 9746 99.54 9998 | 53.02 86.30 97.92 99.60 99.98

W}l) 5% 3050 7520 95.18 99.12 9990 | 41.82 79.88 96.34 99.20 99.94
1% 12.14 5398 87.00 97.34 99.58 | 2292 63.56 90.38 98.12 99.62

10% 16.68 2328 31.82 38.08 44.70 | 19.70 2496 3298 39.06 45.66

W:(FZ) 5% 9.82 1452 2138 26,56 3262 | 1234 16.00 22.72 2798 33.76
1% 2.60 3.98 748 10.82 13.82 4.00 5.08 8.42 12.16 15.08

10% 38.04 78.18 96.12 99.22 9994 | 47.26 81.52 96.64 99.30 99.96

W}S) 5% 26.50 69.44 9350 98.74 99.80 | 36.14 74.16 9454 98.94 99.88
1% 9.80 4746 8348 9632 9930 | 18.66 5634 8696 97.16 99.46

Table 3: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the

empirical rejection rates of the Wald statistics testing Hjy : 8, = 0, %' : 7"

=m,,and Hy : B, =0

and m; = m, . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: Ay; =
pst—1 + T Axf 47 Axy ey, up =y — B xS — Brxy, Ary = 1/2 4y, and (e, v;)' ~ 1ID N (02, I2)

with (p., 7,7, B, B) = (—1/2,1/8,—1/8,1/4,—1/4). Here, W,\", 7,

tests in Section 5, and WC(FD, Wi(r2)’ and Wi(pg) are the standard Wald tests.
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution

a\T 100 200 300 400 500 | 100 200 _ 300 400 500

10% | 1134 1078 10.18 1026 1032 | 39.68 40.84 4120 4278 41.72

w iV 5% 598 546 490 546 532 | 3204 3280 33.02 3462 3342
1% 100 102 094 138 090 | 1934 1962 1982 2096 21.40

10% 958 896 970 956 996 | 1210 1020 1052 1020 10.10

W, 5% 446 428 514 490 480 | 630 494 578 500 538
1% 104 08 102 084 102 | 156 106 128 090 106

10% | 1146 1050 1020 998 10.62 | 36.38 3646 3728 38.14 37.12

v, 5% 554 518 494 528 520 | 2810 27.56 2844 2944 28.86
1% 102 084 080 128 096 | 1662 1618 1612 1758 17.50

10% | 1024 1012 1062 934 990 | 1444 1278 1210 1090 10.96

wil 5% 538 552 514 434 486 | 856 722 646 526 556
1% 124 114 108 092 108 | 284 192 132 114 134

10% 982 1090 938 1032 1044 | 1198 1194 1024 1086 10.82

W) 5% 490 556 456 542 568 | 652 652 520 570  6.00
1% 104 096 100 136 112 | 174 110 118 138 146

10% 996 1132 10.06 990 10.84 | 1498 13.62 11.72 1098 11.66

W) 5% 506 564 482 496 586 | 842 754 600 574  6.60
1% 114 104 116 110 114 | 262 1.8 150 150 142

Table 4: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing Hjy : 8, = 0, ZJ : 7f = 7, and HY : 8, = 0
and m; = m, . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: Ay; =
Psllt—1 + WjA:L";r + 7 Axp + e, ur = yr — Bja:j — By xy, Axy = 1/4+ ke Axy_q + vy, and (eg, vg) ~
1ID N(0,Iy) with (K, ps, 75, 70, 85, 87) = (1/2,-1/2,1/2,1/2,1,1). Here, 7", 7,2, and %"

denote the Wald tests in Section 5, and Wz(}), W:(FQ), and W:(F?’) are the standard Wald tests.
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Method Bootstrap Method Mixed Chi-squared Distribution
a\T 100 200 300 400 500 100 200 300 400 500
10% 52.00 91.58 9930 9992 100.0 | 73.96 97.34 99.92 9998 100.0
‘WT(U 5% 3920 86.62 9854 99.88 100.0 | 67.62 9632 99.82 9998 100.0
1% 1732 7056 9476 9944 9994 | 55.08 9326 99.48 99.96 100.0
10% 1648 23,52 3024 3772 4420 | 19.12 2562 31.06 3896 4546

Wald Test

W, 5% 9.16 14.64 1944 2676 3258 | 11.80 1678 21.04 27.98 33.92
1% 232 430 652 1092 1418 | 394 582 746 11.64 1532
10% | 5070 90.78 99.18 99.92 100.0 | 69.84 9636 99.80 99.98 100.0
w; ¥ 5% | 3698 85.84 9832 99.90 99.98 | 63.90 9514 99.66 99.98  100.0

1% 1644 6922 9432 9936 9992 | 5142 91.68 9920 9994 100.0
10% 4792 91.16 99.16 9992 100.0 | 58.56 93.16 99.24 9994 100.0

W;l) 5% 35.04 8524 9822 9990 1000 | 47.72 88.778 98.774 99.92 100.0
1% 1522 6752 9424 99.12 9994 | 28.80 7620 9582 99.52 99.98
10% 1542 22,08 2992 37.12 45.18 | 1828 2442 3134 3848 46.34

W) 5% 874 14.10 1978 26.18 3178 | 1128 1562 21.00 27.80 33.48
1% 210 476 683 1038 1388 | 330 598  7.80 1142 14.92
10% | 41.94 87.02 9854 99.92 100.0 | 52.28 89.68 98.86 99.92 100.0
W) 5% 30.68 79.86 97.32 9976 100.0 | 4142 84.08 97.84 99.82  100.0

1% 1240 6120 91.60 98.86 99.88 | 23.66 69.66 9392 99.16 99.96

Table 5: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing Hjy : 8, = 0, ZJ : 7f = 7, and HY : 8, = 0
and m; = m, . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: Ay; =
psti—1 + T Azt + o Any +eup =y — Bl — Bray, Ary = 1/4+ ko Axy_1 + vy, and (eg, vp) ~
IID N(02,Ty) with (i, pu, 7, 70, B, B7) = (1/2,—1/2,1/8, —1/8,1/4, —1/4). Here, WV, w;?),
and ‘WT(S) denote the Wald tests in Section 5, and WC(FI), Wi(FQ), and W:(F3) are the standard Wald tests.
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NARDL Model ARDL Model
Variables \ Tax Exo. Endo. Sum. Variables \ Tax Exo. Endo. Sum.
Y1 -0.0683*  -0.0817  -0.0497 | g1 -0.070% 00755  -0.0404
0.0191)  (0.0223)  (0.0158) (0.0185)  (0.0220)  (0.0148)
iy -0.0123 00158  0.0016 | 7, 00139 00142 -0.0053
(0.0078)  (0.0078)  (0.0093) (0.0060)  (0.0077)  (0.0074)
T -0.0123 00149 -0.0093
(0.0083)  (0.0176)  (0.0090)
Trend 0.0549***  0.0631***  0.0324** | Trend 0.0570***  0.0584***  0.0333***
0.0177)  (0.0176)  (0.0127) 0.0151)  (0.0169)  (0.0120)
Constant 0.7588***  0.6974*** 0.8357*** | Constant 0.7826***  0.7542***  0.8543***
(0.1874)  (0.1644)  (0.1744) (0.1539)  (0.1604)  (0.1561)
Ay 03129 03118 03135 | Ay, 0.3091%**  0.3035***  0.3031***
(0.0633)  (0.0658)  (0.0646) (0.0630)  (0.0657)  (0.0648)
Ay 0.1265*  0.1446**  0.1190* | Ay_s 0.1304*  0.1331**  0.1091*
0.0646)  (0.0658)  (0.0645) 0.0643)  (0.0653)  (0.0647)
At -0.0029  0.0890*  0.03984 | Ar, -0.0444 00434 -0.0122
(0.0435)  (0.0465)  (0.0341) 0.0272)  (0.0362)  (0.0226)
At -0.0780*  -0.0302  -0.0683*
0.0391)  (0.0598)  (0.0347)
AIC 65459 65372 65332 | AIC 65561  -6.5434  -6.5284
BIC 64225  -6.4099  -6.5332 | BIC 64602 -6.4475  -6.4378
t-test -3.5680*  -3.6519*  -3.13087 | t-test -3.82207F  -34319* 27229
F-test 45387 49164 38509 | F-test 73222 65583 47046
;Y 9.8862  0.0048  9.8910
(0.4344)  (0.9696)  (0.5000)
W, 14822 3.8085 5.2908
(0.7472)  (0.1902)  (0.6567)
w, ¥ 30.9528 14114 32.3642
02737)  (0.2659)  (0.2718)
Wi 0.0000  0.0039  1.0285
(0.9982)  (0.9604)  (0.4485)
w2 1.5426 2.5180 4.4950
(02265  (0.1259)  (0.0398)
W 15527 25326 5.2070
(0.5474)  (0.3706)  (0.1525)

Table 6: OLS ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the OLS esti-
mation using quarterly data from Romer and Romer (2010). The left and right panels display estimated
parameters for (23) and (21), respectively. Figures in parentheses indicate standard errors of the OLS esti-
mates. At the bottom of the top panels, AIC, BIC, t-test, and Pesaran et al.’s (2001) F'-test are reported. f,
*,**, and *** indicate significance at 25%, 10%, 5%, and 1% levels, respectively. Wald tests in the last two
bottom panels show the Wald tests in Section 5 and the standard Wald tests. Figures in parentheses below

the Wald tests show p-values. They are obtained from 100000 bootstrap iterations.
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NARDL Model ARDL Model
Variables \ Tax  Exo. Endo. Sum. |Variables \ Tax  Exo. Endo. Sum.
Long-Run| Constant 4.2360 3.7413*** 4.9730** Constant  6.0785"** 4.8528*** 5.8407**
(2.5919) (1.2787) (2.3861) (0.0709) (1.3852) (2.8526)
(A -0.4329*** 0.2715***  0.2759 Ti—1 -0.2328"** 0.2523***  0.1564
(0.13189) (0.0546) (0.1723) (0.0709) (0.0591) (0.1716)
T 1 -0.3202%  0.3276"  0.2598
(0.1722) (0.1757) (0.1826)
Trend 0.8340"** 0.8461*** 0.8436™** Trend 0.8261"** 0.8367*** 0.8287***
(0.0184) (0.0090) (0.0169) (0.0127) (0.0098) (0.0202)
Short-Run Ug—1 -0.0683* -0.0817* -0.04977 Ug—1 -0.0708** -0.0755* -0.0404
(0.0191) (0.0223) (0.0158) (0.0185) (0.0220) (0.0148)
Constant  0.6734*** 0.6918*** 0.5683***|  Constant  0.5752*** 0.6590"** 0.6295***
(0.1424) (0.1458) (0.1472) (0.5752) (0.1392) (0.1404)
Ayt 0.3129*** 0.3118*** 0.3135*** Ay 0.3091*** 0.3035*** 0.3031***
(0.0633) (0.0658) (0.0646) (0.0630) (0.0657) (0.0648)
Ay—s 0.1265* 0.1446** 0.1190* Ayi—o 0.1304** 0.1331** 0.1091*
(0.0646) (0.0658) (0.0645) (0.0643) (0.0653) (0.0647)
Ar,t -0.0029  0.0890*  0.0398 ATy -0.0444  0.0434 -0.0122
(0.0435) (0.0465) (0.0341) (0.0272) (0.0362) (0.0226)
AT, -0.0780** -0.0302 -0.0683*
(0.0391) (0.0598) (0.0347)

Table 7: 2SNARDL ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the
2SNARDL estimation using the quarterly data from Romer and Romer (2010). The left and right pan-
els display estimated parameters for (22) and (20), respectively. T, *, **, and *** imply that the tests are
significant at 25%, 10%, 5%, and 1%, respectively.
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NARDL Model ARDL Model
Variables \ Tax Exo. ratio Endo. ratio Sum. ratio | Variables \ Tax Exo. ratio Endo. ratio Sum. ratio
Y1 -0.0609T  -0.0633  -0.0460 | y;_1 -0.0552T 00658 -0.0400
0.0184)  (0.0251)  (0.0177) 0.0163)  (0.0247)  (0.0160)
oy -0.1992  0.0850 0.0037 | r_1 -0.1125  0.1003 -0.0351
(0.1349)  (0.0954)  (0.0789) 0.0743)  (0.0925)  (0.0618)
o -0.0970  0.0401 -0.0566
(0.0801)  (0.1345)  (0.0645)
Trend 0.0499***  0.0488"*  0.0324** | Trend 0.0419***  0.0520***  0.0317***
0.0173)  (0.0200)  (0.0136) 0.0127)  (0.0194)  (0.0135)
Constant 0.2683 0.3673 0.3685* Constant 0.4054**  0.4700***  0.5261***
(0.2363)  (0.2380)  (0.2047) 0.1787)  (0.1663)  (0.1543)
Ay 03095 0.3144** 03049 | Ay,_, 0.3042°**  0.3115"**  0.2921***
0.0639)  (0.0672)  (0.0657) (0.0636)  (0.0660)  (0.0650)
Ay 0.1223* 01265  0.1139* | Ay,_o 0.1168*  0.1242*  0.1073*
0.0652)  (0.0660)  (0.0651) 0.0644)  (0.0657)  (0.0648)
Art 0.1638 0.2465 0.1778 | Ar, 0.1725 0.2553 0.1467
0.6215)  (0.2788)  (0.2621) 0.618)0  (0.2776)  (0.2609)
Ary 02706 -0.1477  -0.2350
0.2734)  (0.3051)  (0.2087)
AIC 2.6831 2.6925 2.6895 | AIC 2.6739 2.6780 2.6814
BIC 2.8133 2.8226 2.8196 | BIC 2.7751 2.7792 2.7826
t-test 330871 25198 -2.5917 | t-test 338671 26602 -2.4960
F-test 3.9276 3.5933 3.4873 | F-test 5.7417 5.2684 4.8210
;Y 527574 21358  48.9740
(0.1294)  (0.7290)  (0.2581)
w;? 0.0722 0.8121 0.4782
(0.8015)  (0.4021)  (0.4981)
w;? 52.8296  2.9480 49.4522
(0.1340)  (0.7595)  (0.2610)
Wi 0.5384 03344 0.8601
0.5697)  (0.6463)  (0.5035)
W) 0.4079 0.9926 1.5118
0.5278)  (0.3177)  (0.2279)
W) 1.0869 1.2200 2.1652
0.6618)  (0.6150)  (0.4681)

Table 8: OLS ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the OLS esti-
mation using quarterly data from Romer and Romer (2010). The left and right panels display estimated
parameters for (23) and (21) using r; instead of 7, respectively. Figures in parentheses indicate standard
errors of the OLS estimates. At the bottom of the top panels, AIC, BIC, t-test, and Pesaran et al.’s (2001) F'-

test are reported. T,

ko kk

, **, and *** indicate significance at 25%, 10%, 5%, and 1% levels, respectively. Wald

tests in the last two bottom panels show the Wald tests in Section 5 and the standard Wald tests. Figures in
parentheses below the Wald tests show p-values. They are obtained from 100000 bootstrap iterations.
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NARDL Model ARDL Model
Variables \ Tax EX.O' Enc.lo. Sum. Variables \ Tax EX.O' Enc.lo. Sur.n.
ratio ratio ratio ratio ratio ratio
Long-Run| Constant -2.5602 -2.5888** -2.9531 Constant -0.3468 -2.2311* -1.0492
(2.4603) (1.1990) (2.5202) (2.3897) (1.2927) (2.8199)
T -6.7407%** 4.2616*** 4.5455*** Ti—1 -3.0752** 3.3960*** 2.2608*
(2.0794) (0.5100) (1.2686) (1.2428) (0.5463) (1.2356)
Ti_q -2.8360* 5.1176*** 2.762**3
(1.5211) (0.9583) (1.2373)
Trend 0.8364*** 0.8391*** 0.8435*** Trend 0.8242*** 0.8370*** 0.8295***
(0.0166) (0.0081) (0.0170) (0.0161) (0.0087) (0.0190)
Short-Run Ug—1 -0.0609T  -0.0633 -0.0460 Ug—1 -0.0558* -0.0627 -0.0378
(0.0184) (0.0251) (0.0177) (0.0162) (0.0248) (0.0160)
Constant  0.6763*** 0.6693*** 0.6719***|  Constant  0.5730"** 0.6828*** 0.6517***
(0.1484) (0.1510) (0.1534) (0.1470) (0.1468) (0.1464)
Ay 0.3095*** 0.3144"** 0.3049*** Ayiq 0.3038*** 0.3127*** 0.3007***
(0.0639) (0.0672) (0.0657) (0.0635) (0.0669) (0.0656)
Ayio 0.1223* 0.1265* 0.1139* Ayio 0.1149* 0.1220* 0.1070
(0.0652) (0.0660) (0.0651) (0.0644) (0.0658) (0.0648)
Arft 0.1638  0.2465 0.1778 Ary -0.2094  0.0801 -0.0737
(0.6215) (0.2788) (0.2621) (0.2435) (0.2087) (0.1596)
Ar, -0.2706  -0.1477 -0.2350
(0.2734) (0.3051) (0.2087)

Table 9: 2SNARDL ESTIMATION OF THE NARDL AND ARDL MODELS.

This table presents the

2SNARDL estimation using the quarterly data from Romer and Romer (2010). The left and right pan-
els display estimated parameters for (22) and (20), respectively. T, *, **, and *** imply that the tests are
significant at 25%, 10%, 5%, and 1%, respectively.
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Figure 1: TRACE AND DETERMINANT OF D_l(zzﬂ:1 z:z,)D~L. Figure 1 (a) shows the average of the

traces of D! (Zle z;2,)D~! that are obtained by 10000 independent experiments under the DGP con-
matrices.

ditions given in Tables 3 and 5. Figure 1 (b) shows the average of the determinants x10'? of the same
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Figure 2: PARTIAL SUM PROCESS FORMED BY EXOGENOUS FISCAL SHOCKS. The solid, dashed, and
dotted lines represent deficit reduction, long-run growth, and exogenous fiscal shocks, respectively.
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‘Estimation and Inference of Nonlinear Autoregressive Distributed Lag Models
with Time Trend by Ordinary Least Squares’’
by
Jin Seo Cho
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This Online Supplement is an Appendix that provides proofs of all the results in the paper,
including the lemmas, additional Monte Carlo simulations, and supplementary empirical find-

ings.

A Supplements

A.1 Supplementary Lemmas

Before proving the main claims in the text, we first provide some preliminary lemmas to prove the main
claims efficiently.

The following two lemmas provide alternative representations of the OLS estimators, which we define
under different environments. We first suppose that ; € R is a dependent variable and (x}, z})’ € R(5tF)
is an explanatory variable, and the OLS estimator is obtained by regressing y; against (x}, z})’. Given this,

we provide alternative forms of the OLS estimator in the following lemmas:

Lemma A.1. Suppose that {(y;, x}, 2;)" € RYFSTF . ¢ = 1,2 ... T}. If the OLS estimators are obtained

as follows: for j =1,2,...,s,

T T
= . 2 7 . 2
(Br, A7) := arg mlnz (yt —x0 - zé’y) , Gp = arg mlnz (xjt — z;qu) , and
(&p,07) = ar%glinz (v — B1€ — 210)°
9 =1

where for each t, vy := x; — (/;'\)épzt and ¢ = (Pyp, . .. ,(?)ST), then By = €p and §p = 87 — dpplp. O

!The co-editor, Degui Li and three anonymous referees provided helpful comments for which the author is most grateful. The
author is also indebted to Chun-Kyu Cho for his support and discussions with Matthew Greenwood-Nimmo, Peter Phillips, and
Yongcheol Shin. Cho acknowledges the research grant provided by the Ministry of Education of the Republic of Korea and the
National Research Foundation of Korea (NRF2020S1A5A2A0104-0235).



Therefore, we can obtain the OLS estimator (BT,'AVT) by combining the two OLS estimators Z;Z)T and
(ET, ST) obtained from the first- and second-step OLS estimators, respectively.
The following lemma considers a different environment. We let the OLS estimator be obtained by

regressing y; against (x¢, 2}, w}) € R¥T#+4 and provide another alternative form of the OLS estimator:

Lemma A.2. Suppose that {(y;, x}, 2}, w}) € RIFfsthtd . ¢ — 1 2 TY. If the OLS estimators are

obtained as follows: for j =1,2,... s,

T T
> o~ . 2 o : 2
(B, ¥, ar) := arg mlnz (ye — xiB — ziy —wiar)”,  ¢p = arg mlnz (zje — z1¢;)", and
Bv,ex t=1 ¢ t=1
T
(€7, 07,07) == argmin Y _ (y — 1€ — 240 — w}0),
LI —
~ -~/ -7 - < P > ~ < - n
where for each t, vy = x; — ¢pzy and ¢y = (Pypy ..., Ggr), then By = Ep, Yp = 017 — &y, and
ar = 0r. O

Note that w, is added as an additional regressor to the regressors given in Lemma A.1 and that the nuisance
parameter estimator cy is the same as the nuisance parameter estimator @T obtained in the second step.

We now prove Lemmas A.1 and A.2. For notational simplicity, we let

~

/, X := [ml,mg,...,a}T]', 7 — [21,22,...,ZT],, V = [/’(?1,/1}2,...,’2)\7“]/,

Y = [3/1792,---,QT]
and W = [wl,wg, RN wT]’.

Proof of Lemma A.1. From the definition of (3, 97), we first note that

-1

By X'X X'Z X'Y (X'QX)'X'QY Al
o 7Z’X Z'Z 7'Y (Z'Z)"'Z'[1 - X(X'QX)"'X'QY | '
where Q := I — Z(Z'Z)~'Z'. Next, we note that
V=X-Z¢;,=X-7Z(Z'2)'ZX = QX. (A.2)

Therefore, Z'V = 0 by noting that Z'Q = 0. Third, we note that

~ ~ N~ -1r ~ ~
&r V'V V'Z V'Y (V'V)~IV'Y

or ZV 77 7Z'Y (Z'Z)~'Z'Y



~

using the fact that Z'V = 0. Therefore,

&= (VV)"'V'Y = (X'QX)'X'QY (A3)
using (A.2). This shows that BT = ET. Finally, we note that
O — Gl = (ZZ)'Z'Y — (ZZ) ' ZX(V'V) V'Y = (ZZ) ' Z[1-X(X'QX)"'X'Q]Y = 77,

which follows from (A.1), where the second equality follows from (A.3). Thus, ST — ESTET = 4. This

completes the proof. |

Proof of Lemma A.2. To prove the claim, we represent the OLS estimators in different forms. If we let

T

~ . X 2
(Br(a),Ar(a)) = ar%mmz (e — 2B — 2y — wyar)”,
Y t=1

then
T ~ 2
ar = arg minz (Z/t — @Br(e) — zi7yp(e) — wéa) )
R
and (B, (ar), 370(ar)) = (Bp, J7). Likewise, if we let

T

(£1(6),07(0)) := arg gﬁnz (yr — Dyt — 2,6 — wi0)”,
’ t=1

then
T

N ~ N 2
O0r = argeminz (yt —0,&7(0) — 2,67(0) — wé@) ,
t=1

and (ET(ET),ST@T)) = (ET,ST)-

Here, for each o, if we let y () := y; — wiex,

T
(Br(),77()) = argmin 3 () — 28 - 2/7)?,  and

1@77 t=1

~

T
(Er(),07()) == arg gnnz (v () — T1€ — 216)°,
t=1



so that Lemma A.1 implies that 3,(-) = ET() and v () = ET() - gAbTET() Therefore,
~1 e 2 d <! e 1R 2

> () = 5Er() = 28()) =3 () = (@0 — $r20) € () — 2181())

t=1 t=1

=3 (w() — 2(E0() — 24Br() — Br&r() = ()~ 2Br() — 2A00))

t=1 t=1

/N

implying that
T —~ —~ 2 T ~ 2
argmin Y (y(er) - 8(€r(e) - 21d1(c)) =arg;mn2(yt<e>—:c;ﬁT<e>—zﬁT<e>) ,
@ =1 t=1

viz., & = O7. Thus, it follows that B (ar) = &€4(87) and F5(ar) = 07(07) — ¢pr&p(O7). That is,

BT = ET and yp = oy — (AbTET. This completes the proof. u

The following lemma shows that ©7 and w1 defined in Section 3 suffer from an asymptotically singular

matrix problem.

Lemma A.3. Given Assumption 1,
o e 5 P
(i) T2 47y~ op = Efuf);
(ii) T—1/2 (ZtT:1 ﬂt,lrt,l) IN)I1 = M, = 01 (2k+2), where D, := diag[T3/?1y;,, T3/2, T1/?);
(iii)

1 / 1 1
T §IJ/*IJ/* §IJ’* §.U*
D1 E: ! p-1 . 1,/ 1 1
D1 ( "'t—l"’t—l) Dl = M1 = 5y 3 5 )
t=1
1,,7 1
e 3 1

which is singular;
. _ - ~ 1P =~ ~ )
(iv) T/ (Zle ut,lzzt) Dy 5 My, = Elus_1251), where Dy = diag[TV/?L,  o1q-1);
(v)
- T - — L TR ¥ W Suly_
D' (ZZ%TQl) Di'=ully:=| *"7 e 20t ot ;

=1 Slq @ Ml Sl R, 1O p,

(Vi) ]52_1 (ZZ:I thZIQt> ]52_1 ﬂ Mgg = MQQ,' and
(vii) if we let D := diag[T*/?, Dy, Dy, D! (Zthl E{i;) D! = M, where

2
o, My My

T
D! ( 5t52> D' ul:=| My, My My |-
=1 . N
Moy, 2 Mo



and My := M},
O

which is singular, where D := diag[Tl/27 ]51, ]52], :/;llg = .%/21, Mul — M,

1w

Both v and wy suffer from the asymptotically singular matrix problem by Lemma A.3 (iii and vii). Specif-
ically, every column from the second to (1 + k)-th columns of M s proportional to the (2 + 2k)-th column.
Likewise, every column from the first to k-th columns in M 11 is proportional to the (1 + 2k)-th column of
M.

We now prove Lemma A.3.
Proof of Lemma A.3. (i) This follows from Lemma B.6 (iv) given in Section A.2.

(if) This follows from Lemmas B.3 (v), B.4 (v), and B.5 (iv) given in Section A.2.

(iii) This follows from Lemmas B.3 (i, i), B.4 (i, ii), and B.5 (i) given in Section A.2.

(iv) This follows from Lemma B.2 (vii) given in Section A.2.

(vi) This follows from Lemma B.2 (i) given in Section A.2.
(vii) The given weak convergence follows from Lemma A.3 (i, ii, iii, iv, v, and vi) given in Section A.2,

and the singularity follows from the structure of M. |

Before moving to the next section, we demonstrate how (2) is associated with (1) by representing the

parameters in (2) using the parameters in (1) as follows:
P q q
Py 1= Zqﬁj* -1, 6f:= ZO;, 0, = ZO;H w, =04, mo. =0,

Jj=1 j=0 j=0

andfor{=1,2,...,p—landj=1,2,...q— 1,
P q q
Ppx 1= — Z ODixs Trjt = — Z 0;;, and T = — Z 0,
i=0+1 i=j+1 i=j+1

Finally, a., = a4 + £4«. By plugging these parameters into (2), the NARDM(p, ¢) process in (1) is obtained.

A.2 Preliminary Lemmas
We next provide preliminary lemmas to prove the main claims efficiently.
Lemma B.1. Given Assumption 1, Bp(-) :== T—1/2 Ztu:)lﬂ w; = B(-). O

Lemma B.2. Given Assumption I,

o P
(i) T Zthl 22, — E[zarzh];



(ll) - Zt l’?"%_)[(S p 1?l’q®u’*]’

(”l) T_2 Zt:l(t_ 1)Z2t —> [ 5 l’p 102 q®l‘l’*] )

. _ .. P
(iv) T2 & 12, = (30l 1, 3paaty @ pl);
(v) T™ 3/22 _q 125215 = [d« f'%mLp 1af‘%ml' ®H*]’

(vi) T2 yi—12, E (3020515 30xty @ i)'

o .. P
(vii) T—1 Z;le U129t — Elup_129).

Lemma B.3. Given Assumption I,

(i) T2t — 4
(i) T2 iy 5 L,
(iii) T~ 3/22 1y = [ B,

Lemma B.4. Given Assumption I,

(i) T3 2= %
(i)) T3 iy = L,
(iii) S (t — 1)y, = 0;

Lemma B.S. Given Assumption 1,

. _ . oy P
UNARDVARE AN TINTA
(ii) T2 &t | = [ BB

Remark. [ 3,3, = [ B.RB,, = [ BB, — 3 [rRB,, [ rSRB,, from the definition of B,(s)

B(s)—3s [rRBm,
Lemma B.6. Given Assumption I,

(i) T2 3¢y vyt = [ BB
(ii) EtT:1 my 11 = 0;

(lv)TQZt 1Y E)%é;
(v) Zt L Up—1 = 0.

(iv) T3 Zthl ty; LN %5*;
v) SSE (= 1)iy = 0.

el e . P
(iii) T3 Z?:l Ty — %(hu*;
(iv) S & iy 1 = 0.

_ P
(iii) T~y v = 30

iy =2 =i~ 2 B9
(v) 6o =T > u; — oy

Lemma B.7. Let g,,, = limp_,oo T~ " S07Y Els,uq). Given Assumption 1,

:E[

2
Uy

J-

O



(i) VT (jip — ) = 3 [ 7Bm; (iv) TP my e = [ BrndBe;
(ii) foreveryt, rivr = U, (v) 62 p 5 o2 :=E[e?). O

(iii) T2 my_1ue = [ BrndBu + 0o

We now prove the preliminary Lemmas B.1 to B.7.
Proof of Lemma B.1. This trivially follows theorem 7.30 of White (2001). [

Proof of Lemma B.2. (i) It holds by the ergodic theorem.

(ii) It holds by the ergodic theorem and the fact that E[z9;] = [dxe;,_;,ty @ p]’ because dutp1 =
EAy, ], v, @ pl =E[(Axf’, ..., Az )], and ¢ @ p" = E[(Az; ..., Az )]

(iii) We note that T=2 Y7 (t — 1)zo; = T~V ((t — 1)/T)zas, and we let q, := ((t — 1)/T)za
for notational simplicity, which is a heterogeneous process. Therefore, 71 EtT:l(qt — Elq,]) 50 m
addition, 7' YL E[q,) = T-2°L | (t — 1)E[29/] — LE[25], implying that T-' 37 | q, > LE[2o]
by White (2001, theorem 3.47), given the DGP condition in Assumption 1. We further note that E[zo;] =
[0xty_1, ty @ p,]', leading to the desired result.

(iv) We first note that &; 1 = p,(t — 1) + my_;. Therefore, S0 | & 125, = St p(t — 1)zh, +
S L, m;_ 12}, The proof of Lemma B.2 (iii) already shows that =2 "7 (t — 1)z 5 $E[z5]. Fur-
thermore, Zle my_zh, = Op(T?’/ 2) as shown in the proof of Lemma B.2 (v). Therefore, it follows that
T2 Zle Ep_12h, LN 11, E[z9], as desired.

(v) Note that m;_1 = my_1 — (fip — . )(t — 1). Therefore, Zthl my_1zh, = Zthl my_jzh, —
(i — 1) Y2y (¢ — 1)2h,. We here note that >/ my—12h, = Y1, my—1Elzh,] + 30, my—1(2h, —
E[z,]). The proof of Lemma A.3 (iv) implies that T'~3/2 Zz;l m;_; = [ RB,, and Zle my;_(z5 —
E[z5,]) = op(T3/?) by noting that m;_; = Op(T"/2) and 3.1, (2}, — E[2},]) = Op(T"/?). Therefore,
T2 my 1 2h, = [ BnE[zh,]. Next, (jip — p,) Sy (= 1)2h, = VT (jap — )T 23, (1 —
1)z%,, and Lemma B.7 (i) implies that \/T(;lT — p,) = 3 [rAB,,. In addition to this, Lemma B.2 (iii)
shows that T-2 "L (t — 1)z}, > 1E[24,]. Therefore, T=3/2(jip — p,) S(_,(t — 1)zh = 3 [rBo.
Hence, if we combine all these, it follows that 3°,_ | thy_125, = ([ Bin—3 [1Bn)E[2h,] = [ BinE[2h,].

(vi) Note that y,—1 = 6.(t — 1) + Z§;11 dj. Therefore, Zthl Y—12h = Zthl du(t — 1)2zh, +
23:1(25;11 d;)z%,. The proof of Lemma B.2 (iii) already showed that 7> Zthl(t —1)zy 5 $E[z2].
Furthermore, we note that 23:1(25;11 d;)zh, = Op(T??). Therefore, T~2 1 yi 12}, 5 36, E[z2],
as desired.

(vii) In the proof of Lemma B.6 (iv), we show that iy = u; + O]p(Tfl/ 2). Therefore, it follows that

71 Zle Up_qz9 = T71 Zthl w129t + op(1) LY [E[u;—129] by the ergodic theorem. This completes



the proof. |

Proof of Lemma B.3. (i) .7, t = T(T + 1)/2, leading to the desired result.

(ii) Note that &; = pu,t + my, so that 3, & = p, St + > p, my. Here, T2t — &
by Lemma B.3 (i), and Lemma B.1 implies that 7—3/2 thl my; = T1 thl ﬁmt = [By(r)dr =
[ RBom. Therefore, T—3/2 5T &y = p, 77323t 4 0p(1) LN ..

(iii) Note that m; = my + (jip — p,)t. Thus, T=325° 7 vy = 773725 my + VT(jip —
w,)T~2 Zthl t. Lemma B.7 (i) implies that VT (ji; — p,) = 3 [ r%B,. Lemma B.3 (i) implies that
T-2Y"7  t — L. In addition to these, T2 m; = 7', %mt = [By(r)dr = [SBn
by Lemma B.1. Thus, T~%/2 YT vy = [ RB,u(r) — 3 [rdr [ sBm(s)ds = [ R, by the definition of
B (), Viz., B () = B (-) — 3(-) [ sBm(s)ds.

(iv) From (5), T2y 4y = 0. T2 3 t+ T2 S5y dj = 36, + op(1).

(v) We note that i;—1 = U—1 := Y1 — Ty_1 07, so that Z?zl it—17¢—1 = 0. We here note that

ri_1 := [&}_q,(t — 1), 1]’. This completes the proof. [ ]

Proof of Lemma B.4. (i) ., t> = T(T + 1)(2T + 1) /6, leading to the desired result.

(i) T3 tay = p, T35 2 + T3] tm,. Here, it follows that 7-3 3"/ > — 1 and
752 tmy = T Zle(%)ﬁmt = [1Bur(r)dr = [rRB,. Therefore, T3] ti;, =
3h + op(1).

(iii) Note that rhy = &y — tjip and fip = (ZT L2yt Zt ! ti;. Therefore, ZtT:l(t —1)m;_; =0.

(iv) From (5), T3 Yy tyy = 6. T3 2+ T35 ¢ 30 dj = 364 + op(1).

(v) The proof of Lemma B.3 (v) already shows the given claim. [

Proof of Lemma B.5. (i) Using the fact that &; = gt +my, Y1 &%) = Y1 (bt +my)(p,t+m;) =
Soio bt 4+ 3 pemit + S myplt + 3, mymy. Here, T3 Y poplt? = by
Lemma B.4 (i), and T~%/2 Zthl pmit = p, [r9B,, as shown in the proof of Lemma B.4 (ii)). Fur-
thermore, 7723 mm, = 771 "7 ﬁmtﬁmt [ Bur(r)Byr(r)dr = [ B,9S,,. Thus,
T3 i, > bl

(if) We first note that S°7_ &, jin) | = S20 (u,(t — 1) +my_1)m)_, = p, ST (t — 1)), +
SSL my gl = Y[ m; ) | by Lemma B.4 (iii). We further note that >/ m; jm} , =
S my g (my_y — (jip — p,)(t — 1)) using the fact that r; = my — (ji; — p,)t. Here, we note that
T2 mym, = [ %, 9B, as shown in the proof of Lemma B.5 (i), and T2 3.1, tmy (jip — p,)’ =
752 tmy VT (jiy — p,) = 3 [ 7B [ 7Ry by Lemma B.7 (ii) and the fact that 752 3] | tm,

71 Zle %ﬁmt = [rBpn(r)dr = [r%,, as shown in the proof of Lemma B.4 (ii). Therefore,



T2 Zthl &), = [ B (B — 3r [ sBy,) f% AB.,. We further note that [ %, 3R, =
[ B, 9B, by the definition of 9B,,,RB,, and the fact that [r? = %

(iif) Using the fact that &; = p,t + my and v = 0.t + 22:1 d;, Zle Tiyr = WO« Zle 2 +
S SO tmy + pu, SO tZ;Zl dj + . my 2?21 dj. Here, T3 #* — 1 by Lemma B.4 (i),
and T—°/2 Zthl tm; = f rAB,, as shown in the proof of Lemma B.4 (ii)). Furthermore, we note that
ZtT:1 t Z;:l d; = Op(T"/?) and Zthl my ZT: d; = Op(T?). Therefore, T3 Zthl Tyt 5 10.p,.

(iv) The proof of Lemma B.3 (v) already shows the given claim. |

Proof of Lemma B.6. (i) We first note that 3" vy} | = S (my_ 1 — (jip — ) (t — 1))} =
S my g — (jap — ) S (t— Dy, = S°T my;_jxn) | by Lemma B.4 (iii). We next note
that EtT:l my_jm, | = Et:l my_q(my_q — (fip—p,)(t—1)) using the fact that vy = my — (fop — p, )1,
Here, T2 Y], mym} = [ &,, R, as shown in the proof of Lemma B.5 (i), and T~2 3"/, tmy (jip —
w,) = 3 [rRBy, [ 1B, as shown in the proof of Lemma B.5 (ii). Therefore, 72 Zthl my 1, ; =
[ B (B, — 31 [ sRBr) = f.%m.@’m

(if) As Lemma B.7 (iii) shows, for each ¢, 7;vp = 7,0, so that Uy := y; — r}Op = tly—1 = ys — ¥, O7.
We further note that O = (Zthl Pyq )7t Zthl 7+ 191, so that Zthl 7i_10;—1 = 0. We now note
that #,_1 := [m}_,, (¢t — 1), 1])’, leading to that Zthl my_ju—1 = 0.

(iii) From (5), y¢ = 6.t + > 5_;d;. We here note that Sy = S (0t + S d)? =
Sy 6242 + 23 6tk dy + 30 (37 dj)?. Furthermore, 723"/, > — % by Lemma B.4
(i), Yoy 6t Yy dj = Op(T%/%), and [, (3!, d;)? = Op(T?), implying that T3 3", 2 = 5152,

(iv) Note that u; := y; — r,op, and riop = mtﬁT + tCT + vr with &; = my + fipt. Furthermore,
Yy = BL (10 + jipt) + Cut + vy + g using (6). Hence, U = ug — (By — B,)'tiy — (U7 — Ip,)t — (i — 1),
We now note that Lemma 3, th; = Op(T"/?), and t = O(T) imply that %i; = u; + Op(T~/?). Therefore,

ST @2 =TT w2 4 op(1), and T2 57 w2 5 E[u?) by the ergodic theorem, implying that

T = 02 1= E[uf). n

Proof of Lemma B.7. (i) Note that ji; = (37 't*)"' S 't&; and & = p,t + m,. Therefore,
iy — o= (S5 )7 S5 tmy, so that VT (jip — p,) = (T7° ZT 1t2> =52 5 .
Lemma B.4 (i) implies that 73 "1 2 — 3. Furthermore, T-52 5T D Py %fmt
[rBur(r)dr = [rSRB,,. Hence, VT (jip — p,) = 3 [ RBm

(if) Note that rjo = a:t,BT + tCT + vp with &; = my + fipt. Therefore, rior = ﬁléBT + t(;’l’TBT +
ZT) +Up = r'h;BT + thp + ip = 7,07, where the second last equality holds by Proposition 2, and the last
equality follows from the definition of #;.

(iii) Note that T~' ST my yu; = TS0 T?my VT (Bur(t/T) — Bur((t — 1)/T)) =



[ B (r)dByr(r). We here note that [ B,,p(r)dByr(r) = [ BndB, + ©,,, by applying theorem
4 of de Jong and Davidson (2000).

(iv) We first note that T S°7 my_ye; = TV ST T=Y?my (VT (Ber(t)T) — Ber((t—1)/T)) =
[ By (r)dBer(r). Note that [ B,p(r)dBer(r) = [ B,,d%B. by applying theorem 4 of de Jong and
Davidson (2000) and noting that E[s,e;] = 0 for each 7 < ¢.

(v) Note that if we let & := Ay, — 2,77, it follows that 52, := T=' 31 ¢? and that & = —2}(#1 —

T74) + e; from the fact that Ay, = 2,77, + e, implying that

T T T T
Y& =(Fr—7r)D (151 > 2t2;151> D(#r—T7.) —2 (Z et2t> D 'D(Fr—Tr)+ Y €.
t=1 t=1

t=1 t=1

We examine the asymptotic behavior of each element on the right side. First, Lemmas 3 (vi) and 4 (i) imply
that D(#7 — 77+) = Op(1) and D! Zthl 2,2/D~' = Op(1). Second, from the definitions of 2; and D,
Y ez DT = [TV e, T 0y ety T3P et — 1), T2 e, T2
Zthl er2h,]’. We verify that each element on the right side is Op(1). We first note that 7—3/2 Zthl er(t —
1) = Op(1), T~1/2 Zthl e; = Op(1), and T~ 1/2 Z?zl etz = Op(1) by the martingale difference CLT
based upon the fact that {e;, %} is an MDA. In addition, 7~* Zthl ey =T71 ZtT:l ermy_1 — (fip —
)Tt Zthl et(t — 1) by noting that ;1 = my;_; — (jsp — p,)(t — 1) as given in the proof of Lemma
B.6(i). Here, Lemmas B.7 (i and iv) imply that (fip — p,) = OP(T_1/2) and 71 Zthl esmy_1 = Op(1),
respectively, so that 7~ S0 ey = Op(1). Finally, T-Y2 ] ety 1 = T2 equp 1 +
op(1) using the fact that ii,_; = u;—1 + Op(T~'/2) as given in the proof of Lemma B.6 (iv). All these
facts imply that 3/ | e,2,D ' = Op(1). By these two facts, it follows that 31, & = > 7 + Op(1),
implying that ng = T! Zle e =171 Zthl e? + Op(T~1). The desired result follows from the

ergodic theorem, and this completes the proof. |

A.3 Proofs

Proof of Lemma 1. (i) This follows from Lemmas B.3 (i, ii, iv), B.4 (i, ii, iv), B.5 (i, iii), B.6 (iii), and the
remarks below Lemmas B.3, B.4, and B.5.

(i) This follows from Lemma B.2 (7).

(ii7) This follows from Lemmas B.2 (ii, iii, iv, vi) and the remark below Lemma B.2.

(iv) This follows from Lemmas 1 (i, ii, iii) and the structure of M. [ |

Proof of Lemma 2. (i) This follows from Lemmas B.3 (v), B.4 (v), and B.6 (ii).
(ii) This follows from Lemmas B.3 (i, ii, iii), B.4 (i, ii, iii), and B.6 (7).
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(iii) This follows from Lemma B.2 (vii).
(iv) This follows from Lemmas B.2 (i, iii, iv, and vi).
(v) This follows from Lemma B.2 (7).

(vi) This follows from Lemma A.3 (i) and Lemmas 2 (i, ii, iii, iv, v). [

Proof of Lemma 3. (i) We note that Dy (7 — r.) = (DTS00 7 1#  DTH DTS e qus
from (13), and Lemma 2 (vii) implies that ]jfl(zz;l i"t_lﬂfl)]jfl = JM11. We therefore focus on the

limit distribution of D7 S22 4, ju;_1. Note that

T /

T T T
Dty ieues = |T70 ) aig gy, T2 (¢ = Dup, 72 ) e
t=1 t=1 t=1 t=1

We now examine the asymptotic behavior of each element on the right side. First, we note that m;_; =
my_ 1 —(jip—p,)(t—1). Therefore, T~ S°1 vy qup 1 =TS0 my ouy (+T S0 8¢ qup 1 —
(fop — )T ST (= 1)ug_1. We here note that T~ ST my ous 1 = [ Bnd By + 0, by Lemma
B.7 (iii), and VT (jiy — p,) = 3 [ 7RB,n by Lemma B.7 (i). In addition to this, T3/ ST (t — 1)uy_1 =
Ty (t;—l)\/f(BuT((t —1)/T) — Buyr((t — 2)/T)) = [rdByr(r) = [rd%,. Hence, it follows
that 71 Zthl my_u—1 = 81 := [ BmdBy+ 0y — 3 [ 1B, [ 7dB,. Next, it is already showed that
7325 (t—1)u = & == [rdB,. Third, note that T-/2 57wy y = TS V/T(Bur((t —
1)/T) — Bur((t — 2)/T)) = [rdByr(r) = 83 := [ d%,. We now combine the first to third facts to
obtain that ]':')1—1 Z;le i_1u—1 = &, leading to that ]jl(i)T —Ury) = & = J%ﬁ%S’, as desired.

(i) We first note that vy — v, = Ppop — Po,. Therefore, Or — v, = (Pp — P)(Vr — 074) +
P(Vr — vry) + (Pr — P)(Ors — ©.) + P(Or. — ©.) + (Pr — P)v,. From the definition of P7 and
Lemma 3 (i), we note that (Pp — P) = Op(T~Y/2), (07 — O7,) = Op(D™ 1), and (Pp — P) (07, — ©,) =
0. Furthermore, P(vr, — ©.) = [0/,0, (V7. — ¥4),0]" such that (97, — Ys) = B.(jip — p,), and
(P —P)v. = (0,0, -3, (jry — w,),0], so that P(07, — 0.) + (Pr — P)v. = 0. Hence, it now follows
that o7 — v, = (Pp — P)(r — O74) + P(07 — O1) = P(07 — O14) + Op(T73/2), s0 that

Bi(r—v.) = [ T(Br — B.) 1 ~w,T(Br —B.) VT(r —v) V+op() = [ 211 L2y %5
by Lemma 3 (7). |

Proof of Lemma 4. (i) We first note that D(#7 — 77.) = (D21 22D 'D ' L | e, from
(14), and Lemma 2 (vi) implies that D=1 (.1 2,2,)D~! = L. We therefore focus on the limit distribu-

tion of ]L_.)il Z?:l z:e;. We note that ].:')71 23;1 zZier = ].:’)71 23;1 [ilt_ler, I.l.’lg_let, (t — 1)615, €, letet]/.
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We now investigate the asymptotic behavior of each element on the right side. First, we already
showed in the proof of Lemma B.6 (iv) that iy = wu; + Op(T‘l/Q). Therefore, T~1/2 Z;‘FZI 16 =
T2 us_ye; + op(1). Inaddition, T~V2 3T wy yey = TS VT (Buer(t/T) — Buer((t —
1)/T)) = [rdByer(r) = A = [dBye. Second, we note that ;1 = my_1 — (fip — p,)(t — 1).
Therefore, 7! Zle my_1e;, = T71 Zle my_q1e; — (jip — p)T7! Zle(t — 1)e;. We here note
that 7! ZtT:1 my_ie; = [ B,dBe by Lemma B.7 (iv) and VT (jip — p,) = 3 [r3RB,, by Lemma
B.7 (i). In addition to this, T-3/25°F (t — 1)e, = T30 CDYT(Br((t — 1)/T) — Ber((t —
2)/T)) = [rdBer(r) = [rd%B.. Hence, it follows that T~' ST 1y je; = £y = [ BndB. —
3[r By, [rdBy = [ BmdB.. Third, it is already showed that T3/ Z;‘F:l(t—l)et_l = 7= [rdB..
Fourth, we note that T~ Y/2 YT e, = TS\ VT (Ber(t/T) — Ber((t — 1)/T)) = [dBer(r) =
Ji = [ dB,.. Fifth, note that T2 "1 zoie; = TS5 | VT (BLer(t/T) — Bier((t — 1)/T)) =
[dB.er(r) = F5:= [ dSB... We next combine the first to fifth facts to obtain that D! Zthl zier = F

by noting that

/

F=a g5 on g =] JdBe (B [ram. [im. [ |

leading to that f)(ﬁ"T —Tr) = M —1 £, as desired.

(if) From the definitions of 77, := [px, Thp, Thy)' and 717 := [(n. + p«(Br — BL)) s 6x + 0.ty —
) + pe(O7 — 97.), %4 + pu (U7 — 14)]', we obtain that D(F7 — 77.) = D(F1 — 7.) + [0, —pT(Br —
B.), —p T3 (I — O7.), —p T2 (i — 14),0') = D by Lemma 4 (i) and noting that 7, = 0. In
addition, Lemma 3 implies that T'(8r — 3,) = &}, and TV/?(ip — v,) = Z5. Furthermore, the proof of
Lemma 3 (i) shows that T3/2(0p — 97,) = Z. Therefore, D(¥1 — 7.) = D — p.[0, L, Lo, 3,07 =

D — p.[0, &', 0. This completes the proof. [

Proof of Theorem 1. (/) We note that (o — o) = (Tr —T)7o + T(7Fr —74) + (T —T)(Fr —74) =
(Tr — T)7s + T(77 — 74) + op(T7 — T) using (10) and (11). We further note that

(TT — T)’T* + T(%T — ’T*)

" (5t — p)
—B.(pr — p+) + (ir — ) — p+(Br — B.)

= | @ —<) = iy —m) — G(Pr — ps) — P*(ET — G) — 0oy — )
(1 — 7)) = pu(Ur — vs) — vi(Pr — pi)

(Tor — Ts2)
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and the fact that ,@T = BT, ET = —[L’TBT +dp and ¢, = —p’. B, + V., so that (ET — () = (19T —Ury) —
I‘L;(IBT - /8*) - (:u’T - M*),(ET - /6*)’ where (ﬁT - Q9T>(<) = OP(T_?)/Q) and (I'LT - u*)/(BT - ﬂ*) =
Op(T—3/?) by Lemmas 4 (i), B.7 (i), and 3 (ii). Therefore, it now follows that

(Tr — T)T*+T(7“'T —T4)

0 0
B, 0
=(Fr =710 = (br—p2) | G | | —pid(ir —m.) = pu(Br — B} + Op(T72) |- (Ad)
Vs 0
0 0

We here use the fact that , = 0. We further note that \/T'(¥7 — 77.) = [D1, 01,0, D4, D5)' by
Lemma 4 (i) and —VT(pr — p) [0, B, Gy v, 0] = =1 [0, B, (v, vs, 0']. In addition, we note that

~w VT {(ip = n,) = p(Br — B} + O(T™") = op(1) because VT{(ijy — 1.) — p«(Br — B,)} =
Op(T~'/?) by Lemma 4 (i). Therefore, it follows that

VT(ar — o) = (D1, —B.D1, —( D1, Dy — . Dy, DL (A5)

We finally note that the derived weak limit is identical to ¢, 2 + [0,0',0,0, Py, D]’

C« = 0, although it is not permitted by p. < 0. If so, it algebraically follows from (A.4) that

(aT — Ot*) = (TT — T)T>,< + T(%T — T*) + OP(TT — T)

_ ) :
0
= (Fr=71r) + | —pi{(iiy —m.) = po(Br = B} + Op(T~2) | +0op(Tr —T).
—vu(PT — ps)
L 0 -

Here, D(¥7 — 714) = [@1, @}, 0, Dy, D5 and T{(i)p — n.) — p«(By — B,)} = D by Lemma 4 (i),
so that
D(ar — o) = (21, Db, — . D2, Ds — v, D1, DY), (A.6)
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in (if) are imposed, the weak limit of /O\JTF is determined by (A.6) as D7, but the others are determined by
(A.5), so that the weak limit in (ii) is delivered. As another example, if the conditions in (iv) are imposed,
the weak limit of ET is determined by (A.6) as p’. Do, but the others are determined by (A.5), so that the

weak limit in (iv) is delivered. In this manner, the weak limits in (i, iii, and iv) are obtained. [

Proof of Theorem 2. (i) We show the null limit distribution of each test using Lemma 4.
. S+ 5= — . _ . . _ _
(i.a) Note that (67 —87) = (05 —6,) — (pr —p)(BF —BL) + (F —n7,) — (p —np,) +oe(T),
so that it follows that (5; —6;) = (15 —nt,) — (7 —n7,) + op(T~1) under . Therefore, Riar =
Ry (77 — T1+) + op(T 1), and it follows from Lemmas 4 (i) and B.7 (v) that
-1

T —1
Wi = (7 — 77.) DR} 520 Ry (131 > 2t2;131> R, | RiD(Fr—77.) + op(1)
t=1

= IR (7R M'R)) T R\ D.

(i.b) We note that (%JTF, ) = (w;, t.). Therefore, it follows from Lemmas 4 (i) and B.7 (v) that

-1

T -1
Wj(“z) = (fr — 77.) DR}, ae,TﬁQ (ﬁ_l Z étégf)_1> R} RoD (77 — 71.) + 0p(1)
t=1
~ ~ ~,\ —1 ~
= DR, (Roull'R}) RoD.

(i.c) From the notice given in the proofs of (i.a and i.b), it follows from Lemmas 4 (i) and B.7 (v) that

-1

. -1
W:(rg) = (7 — 71.)’DR} | 52 7R3 (lj_l Z 5#215_1) R; | RsD(¥r—7T1.) +op(1)
t=1
= DR} (7R3 M 'R}) ™ Ry D.

(if) We show the power behavior of each test using Lemma 4.

(ii.a) We show that W) = Op(T’). Note that (87, —87) = (07 —0 ) —(jr—p.) (B —B5 )+op(T~1/2)
under % and (pr — p.) = Op(T~'/?), so that (5; —07) — (67 — 67) = Op(T~Y/2). Therefore,
(5; — 67) = Op(T"/2), and this implies that W:(Fl) = Op(T).

(ii.b) We show that W:(FQ) = Op(T). Note that Lemma 4 (i) implies that 7rJTr — Tty =7 — 7w, +
Op(T~1/?). Therefore, 7} — 47 = Op(T*/2), implying that W}Q) = Op(T).

(ii.c) From the proofs of (ii.a) and (ii.b), (@; - 5;) = Op(T"?) and (7t} — i) = Op(TY/?).
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Therefore, it trivially follows that W}?’) = Op(T).

o, and ]':')1—1 Z;‘le i;t_lf’,’fflf)l_l = J 1 from
Lemma 2 (vii). Therefore, W(Tl) = o2RyM{'R). Second, H), implies that RiD v = T(,BJTr —
BH —T(By — By) = (LT — 7). If we combine these two facts, it follows that WT(I) = (£ -
L) (2RI M R))"HLT — £7) that is identical to the given weak limit by the definitions of R and
Z.

(iii.b) First, Lemma B.7 (v) implies that 837T LN o2, and D! ZtT:1 étégf)_l = M from Lemma 2
(vi). Therefore, Wg?) = agfig./ll_lﬁg. Second, ﬁg]f)&"T = \/T(ﬂ'} —Ttp) = 9; -9, = ﬁg@. If
we combine these two facts, it follows that ‘“WQEQ) = D'Ry(c3RoM 'R} 'Ry D.

(iii.c) We note that from the definition of A% , it follows that WT(S) = WT(l) + WT@) , and it follows from
(ia and i.b) that 7,0 = LR, (02R1 M R,) ' R1Z + D'RY(02RoM'R}) 'Ry D under HY'.

(iif) We show the null limit distribution of each test using Lemmas 3 and 4.
(iii.a) First, Lemma B.6 (iv) implies that &7 5 o2

(iv) We next show the power behavior of each test.

(iv.a) To show the claim, we show that WT(I) = Op(T?) under H. Given that W(T1 ) = 2R MR,
we focus on the limit behavior of R;D97. Note that le)l(i}T —vr) = (& f — &) by Lemma 3 (i)
and RiD op, = T8, = O(T). Therefore, R.D o7 = Op(T), implying that %/T(l) = Op(T?), leading
to the desired result.

(iv.b) We show that WT(Q) = Op(T) under /. Given that W(TQ) = o2Ry M 'R}, we focus on the
limit behavior of RoD#7. We note that ﬁg]ﬁ(i—T —TTy) = \/T[(Tr}r —dtp) — (7w —7,)] = R,9 by
Lemma 4 (i) and RoD77, = VT (7} — 75) = O(TY/?). Therefore, RoD#7 = Op(T/?), implying that
w\? = 0p(T).

(iv.c) We show that ‘WT@ = Op(T?) under HY". Note that 7/T(3) = ‘WT(,I) + 7Y, and WT(I) and
‘WT@) are Op(T?) and Op(T) by (ii.a) and (ii.b), respectively. Therefore, "WT(B) = Op(T?) under ] and
Wj@ = Op(T) under H{j; (HY5. This completes the proof. [ ]

A.4 Additional Monte Carlo Simulations

In this section, we compare the finite sample performance of OLS with 2SNARDL and also provide addi-

tional simulation evidence for the main claims.

A4.1 Comparison of OLS with 2SNARDL

In this section, we compare the finite sample performance of OLS with 2SNARDL by simulation.
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For the simulation, we assume the following simulation environment. We first suppose that
Ay = peug—1 + @ Ay—1 + Trij;r + 7, Az, + ey,

Uy = Yy — Bjx? —Brx; —C(t—1), and Axp = wi + 0+Azi—1 + vy,

where (eta Ut)/ ~ 1ID N(OQa 12) and (p*v W:a Ty s 5:_5 B*_u C*) = (_1/27 1/27 _1/27 3/2’ _3/2’ O) We
further assume two DGP conditions by letting (i) (w«, 0+) = (1/2,0) or (ii) (ws, 0«) = (1/4,1/2). That is,
we let { Az, } be an independent or autocorrelated series. This is an environment parallel to the Monte Carlo

experiments in Section 6. For each DGP, we plug the equation for u; into the equation for Ay; to obtain
Ayr = e+ papp—1 + 05z |+ 0 2, | + &t — 1) + Ay + 1 Az + 7 Az + e

and estimate the coefficients in this equation by OLS and 2SNARDL. For the 2SNARDL, we first estimate
p«, B3, and B, by following Cho et al. (2023a) and next indirectly estimate 6 and 6, by noting that
0 = —pB and 07 = —p. 3, .

Using the OLS and 2SNARDL estimates, we report their finite sample biases and root mean square

errors (RMSEs). For example, the finite sample bias and RMSE of 5} are computed as follows:

Bias = ;i(é\;] —6f) and RMSE = ;i(@f] — 652,
i=1 i=1
where j indicates the experimental index, and m denotes the total number of experiments. For the simula-
tion, we let m = 50000.

Table A.1 reports the finite sample biases of the OLS and 2SNARDL estimators when {Az;} is an
independent series. As we see from the table, the performance of the OLS estimator is comparable to the
2SNARDL estimator. As 7' increases, the finite sample bias converges to zero for both estimators, which
implies that the asymptotic bias is negligible. Nonetheless, each parameter estimator has nuanced results.
Specifically, when 7" is small, say 1" = 100, the finite sample biases of the OLS estimator are greater than
those of the 2SNARDL estimator for the long-run parameters. If the sample size is as large as 2000, this
relationship is reversed. For the short-run parameter, the OLS estimator for p, always exhibits bigger biases
than 2SNARDL, but this relationship is reversed for ;" and 7, . For the case of (., both estimators exhibit
similar finite sample biases.

Table A.2 reports the finite sample RMSEs of the OLS and 2SNARDL estimators when {Az;} is an

independent series. From the table, as 7" increases, the finite sample RMSE converges to zero for both esti-
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mators, which implies that both estimators are consistent for the unknown parameters. We further observe
that both estimators exhibit similar RMSEs for each sample size. It is difficult to say one estimator is su-
perior to another in terms of finite sample RMSE. This aspect implies that the 2SNARDL estimator for 6
and 0, has the same convergence rate as for the OLS estimator, although the 2SNARDL estimators for 3,
and (3, are super-consistent. The main reason of this is in the fact that the 2SNARDL estimator for p, has
VT convergence rate, so that the convergence rate of the 2SNARDL estimator for #; and 6 is determined
by the 2SNARDL estimator for p,.

Tables A.3 and A.4 report the finite sample biases and RMSEs of the OLS and 2SNARDL estimators,
respectively, when {Ax;} is an autocorrelated series. Although there exist minor differences between the
tables, their qualitative properties are identical to those of Tables A.1 and A.2, respectively. This aspect
implies that the simulation results are the same irrespective of whether Ax; is serially correlated or not.

From this experiment, we can observe that both OLS and 2SNARDL estimators are consistent estima-
tors. As T increases, the finite sample biases and RMSEs decrease. Although the performances of the two
estimators in terms of finite sample bias depend on multiple factors such as the sample size and the roles of
the parameters, the overall performance of the OLS estimator is not so different from 2SNARDL in terms

of their finite sample RMSE.

A.4.2 Additional Simulation Evidence

In this section, we provide additional simulation evidence for the main claims. The main goal of this section
is to verify the properties in Theorem 1.

Theorem 1 demonstrates that the convergence rate of the OLS estimator depends on the DGP conditions.
Specifically, four different DGP conditions are considered in Theorem 1 as follows:

e Theorem 1 (i): foreach j =1,2,...,k, ;; #0, B =0, and ¢, # 0;

e Theorem 1 (ii): 3] = 0, butforeachj = 1,2,... k, Bj_* =# 0, and ¢, # 0;

e Theorem 1 (iii): B, = 0, butforeach j =1,2,... k, 5;'; # 0, and (s # 0; and

e Theorem 1 (iv): foreach j =1,2,... k, ,8;-; #0, ﬁj_* % 0,but ¢, =0,
and Theorem 1 shows that the convergence rate of the OLS estimator is different under each condition. We

verify this property by simulation together with its distributional implications.

DGP Condition under Theorem 1 (i) For simulation, we first generate data according to the DGP condi-
tion in Theorem 1 (7). Specifically, we generate data observations according to the DGP condition in Section
A1 by letting (p., 75,77, 85, B, G) = (=1/2,1/2,—1/2.3/2,-3/2,1) and (s, 0.) = (1/2,0). Us-

ing the data set generated by this DGP condition, we compute OLS estimators by repeating independent
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experiments 50000 times.

We verify Theorem 1 (i) in two ways. First, we compute the finite sample bias and RMSE of the OLS
estimator. For the verification, we compute the bias and RMSE by multiplying the convergence rate in
Theorem 1 (i) to the OLS estimator. For example, as 5; has convergence rate /T, we compute the bias and

RMSE as

. N ot + _ |1 . o+ +\2
BlaS—EZ\/T(HT’j—Q*) and RMSE = mle(GTJ—Q*),

where m denotes the total number of experiments, viz., 50000. If the convergence rate in Theorem 1 (i)
is correct for the OLS estimator, the finite sample bias and RMSE have to converge to zero and a positive
constant as the sample size increases. Otherwise, the finite sample RMSE would converge to zero or diverge
to positive infinity. We contain the finite sample bias and RMSE in Table A.5 and observe these two features
for the long- and short-run parameters by letting the sample size increase from 100 to 2000, affirming that
the convergence rate in Theorem 1 (i) is correct.

Second, we compute the standard ¢-test using the OLS estimator to compare its finite sample null distri-
bution with the standard mixed-normal distribution. Theorem 1 () implies that the null limit distribution of
the ¢-test is the standard mixed-normal. Figure A.1 (a) shows the QQ-plots between the ¢-tests defined by
the long- and short-run OLS estimators and the standard normal distribution. The QQ-plots are obtained by
letting 7" = 3000 and repeating independent experiments 50000 times, and they are distributed around the

45-degree line. This aspect affirms the distributional property given in Theorem 1 (7).

DGP Condition under Theorem 1 (ii) We next verify Theorem 1 (ii) in the same way. We generate data
according to the DGP condition in Section A.4.1 by letting (p«, 73, 75, B, B, G) = (—1/2,1/2,—-1/2,0,
—3/2,1) and (wx, 0+) = (1/2,0). This parameter condition obeys the condition in Theorem 1 (if).

We verify Theorem 1 (i7) in the same manner to the earlier case. The only difference is in the convergence
rate of the OLS estimator. Theorem 1 (if) implies that the convergence rate of §+ is T', although the other
convergence rates are the same as before. Therefore, we modify the finite sample bias and RMSE of 9T into

the following:

Bias = ZT 9+ —60F) and RMSE = ZT2 9+ —0)2

while maintaining the previous formula for the others. We contain the finite sample biases and RMSEs in
Table A.6 and observe that they converge to zero and a positive constant as the sample size increases. This

affirms that the convergence rate given in Theorem 1 (ii) is correct.
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Second, we compare the finite sample null distribution of the standard ¢-test with the standard mixed-
normal distribution. Figure A.1 (b) shows the QQ-plots between the t-tests and the standard normal distri-
bution. The QQ-plots are distributed around the 45-degree line, affirming the distributional property given

in Theorem 1 (ii).

DGP Condition under Theorem 1 (iii) We next verify Theorem 1 (iii) in the same way. We generate data
according to the DGP condition in Section A.4.1 by letting (ps, 7, 75, B, B, C) = (=1/2,1/2,—-1/2,
3/2,0,1) and (wx, 0+) = (1/2,0). This parameter condition obeys the condition in Theorem 1 (iii).

We verify Theorem 1 (iii) in a manner similar to Theorem 1 (7). Theorem 1 (iii) implies that the conver-
gence rate of 5} is T, and the other convergence rates are v/7'. Therefore, we modify the finite sample bias

and RMSE of 5} into the following:

1 &K~ 1~
Bias = — g T(0r;—0,) and RMSE=  |— E T%(07; — 0 )2,
m ’ m ’
i=1 i=1

while maintaining the same formula for the others as in Theorem 1 (i). We contain the finite sample biases
and RMSEs in Table A.7 and affirm that the convergence rate given in Theorem 1 (iii) is correct.

Second, we draw the QQ-plots between the finite sample null distribution of the standard ¢-tests and
the standard mixed-normal distribution. Figure A.1 (c) shows the QQ-plots and affirms the distributional

property given in Theorem 1 (iii).

DGP Condition under Theorem 1 (iv) We finally verify Theorem 1 (iv). We generate data according to
the DGP condition in Section A.4.1 by letting (p., 7, 7, , B, B, ¢) = (—1/2,1/2,-1/2,3/2,-3/2,0)
and (wy, 0+) = (1/2,0) to obey the condition in Theorem 1 (iv).

Given that the convergence rate of the OLS estimator is /7', we compute the finite sample bias and
RMSE as for Theorem 1 (i) and contain them in Table A.8. We observe that they converge to zero and
positive constants, respectively, as 71" increases. Further, the QQ-plots between the ¢-tests and the standard

mixed-normal are distributed around the 45-degree line. These two features affirm Theorem 1 (iv).

A.5 Empirical Supplements

In this section, we provide additional empirical supplements.
Two tables are provided. First, Table A.9 provides the descriptive statistics of the variables examined in

Sections 7.2.1 and 7.2.2. The sample period is from 1947Q1 to 2007:Q4.
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Second, Table A.10 provides the testing results using Phillips and Perron’s (1988) unit-root test applied
to the partial sum processes for Tables 6 and 8. As we apply the unit-root testing by including both constant
and trend, or including only constant, two testing results are provided for each variable. Except for r;, the

test results show that nonstationary data analysis has to be conducted for the other variables.
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Estimation Parameter \ T 100 500 1000 1500 2000
0.F 0.0690 0.0152 0.0071 0.0051 0.0039
0, -0.0687 -0.0152 -0.0071 -0.0051 -0.0039
OLS P -0.0557 -0.0105 -0.0048 -0.0035 -0.0026
O« 0.0128 0.0024 0.0010 0.0007 0.0006
mF -0.0019 -0.0002 0.0000 -0.0001 -0.0002
um 0.0035 0.0005 -0.0005 0.0002 0.0000
0 -0.0573 -0.0200 -0.0099 -0.0070 -0.0054
0, 0.0575 0.0200 0.0098 0.0070 0.0054
P+ -0.0447 -0.0049 -0.0012 -0.0008 -0.0004
2SNARDL ©Ox 0.0162 -0.0002 -0.0009 -0.0007 -0.0006
mF 0.0144 0.0091 0.0053 0.0037 0.0028
Ty -0.0135 -0.0088 -0.0058 -0.0036 -0.0030

Table A.1: FINITE SAMPLE BIASES OF OLS AND 2SNADL ESTIMATORS. This table shows the finite
sample biases of the OLS and 2SNARDL estimators. The total number of repetitions is 50000. DGP:
Ays = paus 1+ @Dy 1+ Azl s Axy e up = yi— Bt —Bray —CG(t—1), Axy = 1/2 4,
and (eg,vt) ~ IID N(09,Io) with (p., w5, 7y, B, B, C) = (=1/2,1/2,-1/2,3/2,-3/2,0).

Estimation Parameter \ T 100 500 1000 1500 2000
0.F 0.1518 0.0533 0.0360 0.0290 0.0258
0, 0.2059 0.0583 0.0376 0.0300 0.0265
OLS P 0.1020 0.0353 0.0239 0.0193 0.0172
Ox 0.0870 0.0364 0.0256 0.0208 0.0185
o 0.1647 0.0685 0.0479 0.0390 0.0348
Ty 0.3081 0.1240 0.0867 0.0706 0.0628
0.F 0.1506 0.0549 0.0367 0.0295 0.0261
0, 0.2330 0.0617 0.0388 0.0308 0.0270
P 0.0999 0.0349 0.0238 0.0193 0.0172
2SNARDL O« 0.0892 0.0368 0.0259 0.0209 0.0186
mr 0.1670 0.0688 0.0480 0.0391 0.0348
T 0.3122 0.1235 0.0865 0.0705 0.0628

Table A.2: FINITE SAMPLE ROOT MEAN SQUARE ERRORS OF OLS AND 2SNADL ESTIMATORS. This
table shows the finite sample root mean square errors of the OLS and 2SNARDL estimators. The total
number of repetitions is 50000. DGP: Ay, = pau—1 + @ Ayi—1 + 7 Axf + 77 Axy + ey, up = yi —
Bzt —Bray —C(t—1), Azy = 1/2+ v, and (eq, v;) ~ 1D N (02, Iz) with (ps, 75, 70, B, B, Ci) =
(-1/2,1/2,-1/2,3/2,-3/2,0).
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Estimation Parameter \ T 100 500 1000 1500 2000
0 0.0733 0.0147 0.0073 0.0050 0.0042
0, -0.0709 -0.0147 -0.0074 -0.0050 -0.0042
OLS P -0.0565 -0.0101 -0.0049 -0.0034 -0.0028
O« 0.0060 0.0004 0.0002 0.0002 0.0002
mF -0.0207 -0.0041 -0.0017 -0.0014 -0.0014
Ty 0.0041 0.0005 0.0001 0.0007 0.0006
0 -0.0626 -0.0162 -0.0081 -0.0056 -0.0046
0, 0.0668 0.0202 0.0104 0.0071 0.0060
P+ -0.0536 -0.0071 -0.0029 -0.0019 -0.0015
2SNARDL O« 0.0187 0.0002 -0.0003 -0.0003 -0.0002
mF 0.0060 0.0056 0.0037 0.0024 0.0018
Ty -0.0110 -0.0074 -0.0044 -0.0024 -0.0021

Table A.3: FINITE SAMPLE BIASES OF OLS AND 2SNADL ESTIMATORS. This table shows the finite
sample biases of the OLS and 2SNARDL estimators. The total number of repetitions is 50000. DGP: Ay, =
Pstty— 1+ Ay 1+ Axf s Any dep, up = y— B —Brry —C(t—1), Axy = 1/4+1/2A2 1+
vg, and (eg, vy)’ ~ 1D N (09, Io) with (ps, mF, 7, B, B, ) = (=1/2,1/2,-1/2,3/2,—-3/2,0).

Estimation Parameter \ T 100 500 1000 1500 2000
0.F 0.1446 0.0503 0.0343 0.0277 0.0251
0, 0.1936 0.0537 0.0355 0.0283 0.0256
OLS P 0.1000 0.0337 0.0229 0.0185 0.0168
Ox 0.0830 0.0345 0.0244 0.0200 0.0182
o 0.1750 0.0707 0.0494 0.0401 0.0367
Ty 0.3281 0.1253 0.0873 0.0708 0.0645
0.F 0.1406 0.0507 0.0345 0.0278 0.0252
0, 0.2190 0.0561 0.0364 0.0288 0.0260
P 0.1002 0.0332 0.0227 0.0184 0.0167
2SNARDL O« 0.0854 0.0347 0.0246 0.0201 0.0182
mr 0.1755 0.0705 0.0494 0.0401 0.0367
T 0.3304 0.1248 0.0871 0.0707 0.0644

Table A.4: FINITE SAMPLE ROOT MEAN SQUARE ERRORS OF OLS AND 2SNADL ESTIMATORS.
This table shows the finite sample root mean square errors of the OLS and 2SNARDL estimators. The
total number of repetitions is 50000. DGP: Ay, = pau—1 + @ Ayi1 + 7 Az + 77 Az; + ey
Ut = Yt — ﬁ:—l‘j — ﬁ*_x; — C*(t — 1), A:L‘t = 1/4 + 1/2A$t71 + v, and (et,vt)’ ~ IID N(OQ’IQ)
with (ps, 5, 70, B, B 5 G) = (—=1/2,1/2,-1/2,3/2,-3/2,0).
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Estimation | Parameter | Con. Rate \ T 100 500 1000 1500 2000

o+ VT 0.6620  0.3218  0.2360  0.1927  0.1694
(i VT -0.6644  -0.3208 -0.2358  -0.1925  -0.1717
s VT -0.5290 -0.2218  -0.1608  -0.1305  -0.1133

BIAS
s VT 0.0998  0.0478  0.0371 0.0358  0.0284
it VT -0.0025 -0.0159  -0.0125  0.0074  0.0045
o VT -0.0101  -0.0040  0.0099  -0.0087  0.0082
0+ VT 1.4871 1.1821 1.1389 1.1252 1.1195
0, VT 20415  1.2909  1.1944  1.1619  1.1475
s VT 0.9861 0.7842  0.7564  0.7480  0.7444

RMSE
s VT 0.8439  0.8086  0.8096  0.8051 0.8071
it VT 1.6542  1.5294 15141 15099  1.5103
o VT 3.0823 2.7777 2.7341 27314  2.7288

Table A.5: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (i). The to-
tal number of repetitions is 50000. DGP: Ay, = paur—1 + pAy—1 + Wrszr + 7o Az, + ey,
w = y — Bz — Bray — Gt — 1), Az = 1/2 + v, and (e, v;) ~ TID N(0g,I3) with
(p*,ﬂ':_, W;’ﬁ:—a B*_a C*) = (_1/2’ 1/27 _1/2’ 3/27 _3/27 1)'

Estimation | Parameter | Con. Rate \ 7' 100 500 1000 1500 2000
0.F T 0.3992 0.1210 0.0944 0.0524 0.0279
0, VT -0.5741  -0.3598  -0.2601  -0.2052  -0.1868
BIAS Px VT -04243  -0.2525  -0.1765  -0.1388  -0.1261
P vT 0.1732 0.0997 0.0667 0.0579 0.0509
T VT 0.0050  -0.0005  0.0014 0.0004  -0.0119
Ty VT 0.0007  -0.0048  -0.0046  -0.0204  -0.0011
0 T 8.1992 7.7456 7.5341 7.4918 7.4571
0, VT 1.6527 1.3495 1.2543 1.2176 1.2066
RMSE P+ VT 0.9416 0.8319 0.8014 0.7881 0.7864
P VT 0.8891 0.8642 0.8514 0.8458 0.8480
o VT 1.5746 1.5267 1.5126 1.5258 1.5086
Ty VT 2.8861 2.7729 2.7416 2.7369 2.7271

Table A.6: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (ii). The to-
tal number of repetitions is 50000. DGP: Ay, = pau—1 + pAy—1 + Wrszr + 7o Az, + ey,
w = y — Bz — Bray — Gt — 1), Az = 1/2 + v, and (e, v;) ~ TID N(09,I3) with
(p*,ﬂ':_, W;’ﬁ:—a B G) =(-1/2,1/2,-1/2,0,-3/2,1).
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Estimation | Parameter | Con. Rate \ T 100 500 1000 1500 2000

0 VT 0.5713 0.2648 0.1867 0.1564 0.1339
0, T -0.5093  -0.0685  -0.1303  -0.0330  -0.0829

BIAS P vT -0.4594  -0.1827  -0.1256  -0.1052  -0.0904
O« VT 0.0750 0.0339 0.0188 0.0217 0.0176
o VT -0.0229  -0.0083  -0.0085  -0.0036  -0.0005
Ty VT 0.0118 0.0079  -0.0168  0.0089  -0.0082
0, VT 1.4031 1.0743 1.0309 1.0214 1.0147
0, T 16.300 13.829 13.557 13.417 13.414
P vT 0.9015 0.7060 0.6809 0.6758 0.6731

RMSE
P vT 0.8270 0.7800 0.7828 0.7765 0.7783
o VT 1.6381 1.5289 1.5194 1.5082 1.5083
Ty VT 3.0672 2.7835 2.7405 2.7345 2.7232

Table A.7: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (iii). The to-
tal number of repetitions is 50000. DGP: Ay, = pu—1 + peAy—1 + Wijzr + 7, Az, + ey,
Uy = Y — :rl‘zr — B;l't_ — C*(t — 1), Ax; = 1/2 + v, and (et,vt)’ ~ 1ID N(OQ,IQ) with
(o, B, BT, G) = (—1/2,1/2,-1/2,3/2,0,1).

Estimation | Parameter | Con. Rate \ T 100 500 1000 1500 2000

o+ VT 0.6768  0.3285  0.2547  0.1969  0.1702
0 VT 0.6737 -0.3247  -0.2561  -0.1951  -0.1724
s VT -0.5513  -0.2288  -0.1751  -0.1325  -0.1143

BIAS
s VT 0.1251 0.0525  0.0430  0.0280  0.0258
it VT -0.0214  -0.0032  -0.0088  -0.0020  -0.0146
o VT 0.0024  0.0173  -0.0112  0.0022  0.0142
o VT 1.5038  1.1912  1.1460  1.1318  1.1174
0, VT 2.0446 12982  1.2131  1.1678  1.1444
s VT 1.0148  0.7887  0.7605  0.7527  0.7437

RMSE
s VT 0.8654  0.8137  0.8136  0.8055  0.8091
it VT 1.6534  1.5324 15218 15174 15112
o VT 3.0824 27782 27496 27250  2.7190

Table A.8: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (iv). The to-
tal number of repetitions is 50000. DGP: Ay, = pau—1 + pAy—1 + Wrszr + 7o Az, + ey,
w = y — Bz — Bray — Gt — 1), Az = 1/2 + v, and (e, v;) ~ TID N(09,I3) with
(p*,ﬂ':_, W;’ﬁ:—a B*_a C*) = (_1/2’ 1/27 _1/2’ 3/27 _3/27 O)'
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Ay Exo. Endo. Sum.

ATlt ATQt ATt ATlt ATQt ATt ATlt ATQt ATt
Mean 0.8256 | 0.4240 -0.4704 -0.0464 | 0.3773 -0.1841 0.1932 | 0.7564 -0.6228 0.1336
Median 0.7876 | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
Maximum | 4.0198 | 6.4312 0.0000 6.4312 | 6.7617 0.0000 6.7617 | 6.7617 0.0000 6.7617
Minimum [-2.7525| 0.0000 -7.0965 -7.0965| 0.0000 -7.1122 -7.1122| 0.0000 -7.1122 -7.1122
Std. Dev. | 0.9780 | 1.3755 1.5073 2.1364 | 1.3317 1.0117 1.7136 | 1.7775 1.7316 2.6653
Skewness |-0.0501| 3.0654 -3.0598 -0.2762| 3.4094 -5.4276 0.4394 | 2.0432 -2.5281 -0.1450
Kurtosis | 4.3614 |10.8514 10.8759 6.3787 |13.2115 31.1514 10.4245| 5.4941 7.7131 4.1776
Obs. 243 243 243 243 243 243 243 243 243 243

Ay, Exo. ratio Endo. ratio Sum. ratio

Arlt A’I“Qt Art Arlt ATQt Art Arlt A’I“Qt A?"t
Mean 0.8256 | 0.0246 -0.0517 -0.0271]| 0.0471 -0.0260 0.0211 | 0.0679 -0.0738 -0.0059
Median 0.7876 | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
Maximum | 4.0198 | 0.6977 0.0000 0.6977 | 1.9542 0.0000 1.9542 | 1.9542 0.0000 1.9542
Minimum [-2.7525| 0.0000 -1.8706 -1.8706| 0.0000 -2.8214 -2.8214| 0.0000 -2.8214 -2.8214
Std. Dev. | 0.9780 | 0.0963 0.2171 0.2428 | 0.2245 0.2028 0.3066 | 0.2351 0.2876 0.3847
Skewness |-0.0501| 4.6231 -5.3926 -3.7013| 6.0062 -11.5395 -1.0526| 5.1164 -5.9045 -1.3783
Kurtosis | 4.3614 |25.4621 35.2975 25.0905(41.7414 152.4675 44.1557|33.0743 45.6366 21.6860
Obs. 243 243 243 243 243 243 243 243 243 243

Table A.9: DESCRIPTIVE STATISTICS. This table shows the descriptive statistics used in Sections 7.2.1 and

Exo.
T1t T2t Tt

Endo.
T1t T2t Tt

Sum.
T1t T2t Tt

0.7551 -0.7188 -1.6243
0.9931 0.8387 0.4686
-1.8278 -1.3653 -1.3483
0.6883 0.8686 0.8732

-2.4701 -0.3499 -2.2743
0.1241 0.9140 0.1812
-0.7094 -2.2995 -0.8156
0.9707 0.4322 0.9618

-1.3064 -0.4173 -2.0303
0.6270 0.9028 0.2738
-0.9285 -2.0326 -2.7414
0.9500 0.5801 0.2210

Exo. ratio
T1t T2t Tt

Endo. ratio
1t T2t Tt

Sum. ratio
1t T2t Tt

7.2.2.

PP test Ut
PP test w/o trend |-1.4767
p-value 0.5439
PP test w/ trend |-2.3488
p-value 0.4056
PP test Ut
PP test w/o trend |-1.4767
p-value 0.5439
PP test w/ trend |-2.3488
p-value 0.4056

0.7288 -0.7859 -1.7004
0.9926 0.8210 0.4299
-1.8466 -2.3558 -2.2056
0.6790 0.4019 0.4840

-2.5409 -0.9379 -3.0710
0.1071 0.7749 0.0301
-1.5667 -2.0336 -2.6499
0.8033 0.5796 0.2587

-1.7735 -1.8303 -2.9448
0.3932 0.3652 0.0418
-1.3375 -2.3690 -3.4114
0.8761 0.3949 0.0521

Table A.10: PHILLIPS AND PERRON’S (1988) UNIT-ROOT TESTS APPLIED TO THE QUARTERLY DATA
IN ROMER AND ROMER (2010). Two Phillips and Perron’s test statistics are computed using the data in
Table A.9 by including the time trend and/or the constant. The lag lengths are selected by BIC.
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(c) DGP under Theorem 1 (iii) (d) DGP under Theorem 1 (iv)

Figure A.1: QQ-PLOTS OF THE ¢-TESTS UNDER THE NULL AND DGP CONDITIONS IN THEOREM 1.
This figure shows the QQ-plots of the ¢-tests defined by 0, 6., pr, @r, 75, and 6 under the null hy-
pothesis and the DGP conditions in Theorem 1. To draw the QQ-plots, we let T" = 3000 and computed the
standard ¢-test using the OLS estimator. Total number of independent experiments is 50000.
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