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Abstract

This study examines the large-sample behavior of an ordinary least squares (OLS) estimator within a
correctly specified nonlinear autoregressive distributed lag (NARDL) model for nonstationary data. Al-
though the OLS estimator suffers from an asymptotically singular matrix problem, it remains consistent
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examine the large-sample behavior of the standard Wald test, as defined by the OLS estimator, for asym-
metries in long- and short-run NARDL parameters, and enhance this analysis with a super-consistent
long-run parameter estimator so that parameters targeted by the OLS and the two-step NARDL estima-
tors can be estimated at the same convergence rate. We then confirm the theory on the Wald test using
Monte Carlo simulations. Finally, using U.S. GDP and exogenous fiscal shock data, we demonstrate
use of the OLS estimator and show statistical evidence of long- and short-run symmetries between the
effects of tax increases and decreases on U.S. GDP.
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1 Introduction

The nonlinear autoregressive distributed lag (NARDL) model is widely used to estimate the asymmetric

cointegrating relationship between nonstationary variables. Since Shin, Yu, and Greenwood-Nimmo (2014)

introduced the NARDL model, researchers have revisited many long-run relationships, and modified lin-

ear ones using different slope coefficients based on the signs of the variables. For example, Borenstein,

Cameron, and Gilbert (1997) identified the so-called rockets and feathers in gasoline prices, showing that

upward cost shocks in crude oil prices pass through faster than downward shocks, thus affecting other eco-

nomic variables asymmetrically. Chesnes (2016) empirically confirms this feature using the NARDL model.

Despite its popularity, estimating the NARDL model using ordinary least squares (OLS) lacks theoretical

foundation. Cho, Greenwood-Nimmo, and Shin (2024) noted that OLS suffers from an asymptotically

singular matrix problem, and since then, no theoretical justification has emerged for estimating the NARDL

parameter using OLS. Currently, many empirical studies continue to estimate the unknown parameter using

OLS, without an established theory.

In this study, we revisit OLS and provide its large-sample theory. Although OLS suffers from the

problem of an asymptotically singular matrix, we find that it consistently estimates the unknown parameter.

Furthermore, we establish a theoretical basis for applying the Wald test principle to OLS by deriving its

asymptotic distribution, which allows us to test for the NARDL hypothesis. OLS asymptotically follows a

mixed normal distribution under some mild regularity conditions, validating the use of OLS for empirical

data analysis asymptotically.

This study addresses a gap in the literature concerning NARDL model estimation, although it is not

the first to address the asymptotically singular matrix problem associated with NARDL. Cho et al. (2024)

explained and resolved this problem by using a two-step procedure for estimating the NARDL parameter,

termed two-step NARDL (2SNARDL). They separately estimate the long- and short-run parameters, fol-

lowing the method used by Engle and Granger (1987), which avoids the asymptotically singular matrix

problem. They show that the long-run parameter estimator in 2SNARDL is super-consistent. We provide

theoretical grounds to compare these two estimators by deriving the limit distribution of OLS and show-

ing that the parameters targeted by both estimators are estimated at the same convergence rate despite the

asymptotic singular matrix problem. As a result, OLS estimates the targeted parameter with an asymptot-

ically negligible bias, whereas 2SNARDL removes it by first estimating the asymptotic covariance matrix

between the differenced regressor and cointegration error. From this feature, if the sample size is sufficiently

large, OLS can more straightforwardly estimate the parameter. If the sample size is small but the covariance

matrix estimator successfully removes the bias, 2SNARDL can be useful for practical purposes.
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Singular matrices are common in econometric asymptotics, particularly in multivariate regressions, and

do not necessarily indicate the absence of a limit theory; rather, they lead to significant changes in that theory.

In time-series analysis involving deterministic trends and nonstationary cointegrated regressors, researchers

typically resolve singularity issues by applying multiple rates of convergence in various directions (see

Phillips, 1995, and his subsequent works for early demonstrations). Similarly, the issue of singular matrices

emerges in the context of maximum-likelihood (ML) and nonlinear least squares (NLS) estimations. In these

cases, researchers find the limit distributions using higher-order approximations of the nonlinear model or

likelihood. This slows the convergence rate of the estimator compared to the standard case (e.g., Teräsvirta,

1994; Cho and White, 2007, 2010; Cho and Phillips, 2018).

In the current study’s OLS analysis, applying a higher-order approximation to its limit distribution is

necessary, but challenging. Unlike ML and NLS, the model is linear, which means the higher-order expan-

sion should directly apply to OLS, rather than the model itself. This task is particularly challenging, because

it involves applying the higher-order expansion to the inverse matrix within OLS. Because the dimension of

the matrix is arbitrary, approximating it using a higher-order expansion is not straightforward.

We address this issue by indirectly obtaining the asymptotic distribution of OLS. First, we represent

OLS as a transformation of other primitive estimators that do not suffer from a singular matrix problem,

and then we derive their weak limits to achieve the desired limit distribution. Using this process, we isolate

the singular matrix problem from the transformation form and show that the parameter targeted by OLS is

estimated by the estimator implied by 2SNARDL at the same convergence rate as OLS.

The indirectly obtained limit distribution is useful for inferring the NARDL parameter. We can develop

a test methodology using this limit distribution. In addition, using the limit distributions of the primitive

estimators, we can establish an additional Wald test to compensate for the slower convergence rate of OLS.

The primitive estimators prove to be super-consistent for the long-run parameter, which is also the same

convergence rate as the long-run estimator in 2SNARDL.

The limit theory of OLS guides proper empirical data analysis. In this demonstration, we analyze the

empirical data provided by Romer and Romer (2010) to examine the long- and short-run relationships be-

tween U.S. GDP and fiscal exogenous shocks. Romer and Romer (2010) measure legislated exogenous

tax changes related to the U.S. GDP using narrative records such as presidential speeches and Congres-

sional reports. By applying the NARDL model, we determine the long- and short-run relationships between

tax increases and decreases in relation to the U.S. GDP. This empirical project also serves to illustrate our

methodology in a standard setting.

We conduct the empirical project not only for demonstration, but also to identify how the long- and short-

run relationships between U.S. GDP and tax decreases differ from those with tax increases. According to
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Romer and Romer (2010), exogenous tax changes are classified into those aimed at deficit reduction and

those intended for long-run growth. All tax changes for deficit reduction relate to tax increases, while most

changes for long-run growth involve tax decreases. The NARDL model, which we use, separates shocks

into negative and positive ones and estimates their possibly different effects on the dependent variable. By

applying the NARDL model, we analyze the long- and short-run relationships between the tax changes for

deficit reduction and those for long-run growth in terms of U.S. GDP. Our investigation shows that the long-

and short-run parameters are indeed symmetric, meaning that the tax changes for deficit reduction and those

for long-run growth affect the U.S. GDP symmetrically. Moreover, our findings show that a 1% exogenous

GDP tax decrease increases the log real GDP by about 3% in the long run, which aligns closely with the

estimates by Romer and Romer (2010) and confirms their findings. Here, we illustrate our methodology

using both OLS and 2SNARDL.

The remainder of this paper is structured as follows. Section 2 provides an overview of the NARDL

model and discusses the asymptotically singular matrix problem associated with OLS. Section 3 defines

primitive estimators and presents OLS as a bilinear transform of other primitive estimators. Section 4

discusses the limit distribution of an OLS estimator, which varies depending on parameter values and specific

conditions for limit distributions. Section 5 examines the large-sample properties of the standard Wald test

for the NARDL hypothesis, and discusses another Wald test for supplementary purposes. Section 6 presents

Monte Carlo simulations for the Wald tests, and Section 7 presents the empirical illustration. Finally, Section

8 concludes the paper. All mathematical proofs are available in the Online Supplement, in which we also

provide other simulation evidence for OLS.

Before moving to the next section, we present the notation used throughout this paper. We provide

the weak limit of an estimator by a stochastic integral. Denoting the weak limit by
∫
B or

∫
dB means∫ 1

0 B(u)du or
∫ 1
0 dB(u), respectively, where B(·) is a Brownian motion.

2 Motivation and the NARDL Model in the Literature

This section briefly summarizes NARDL and motivates the current study by relating OLS to the asymptoti-

cally singular matrix problem.

We consider a NARDL(p, q) process augmented by a time trend:

yt = α0∗ + ξ∗t+

p∑
j=1

ϕj∗yt−j +

q∑
j=0

(θ+′
j∗x

+
t−j + θ−′

j∗x
−
t−j) + et, (1)
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where xt ∈ Rk (k ∈ N),

x+
t :=

t∑
j=1

∆x+
j , x−

t :=
t∑

j=1

∆x−
j , ∆x+

t := max[0,∆xt], ∆x−
t := min[0,∆xt],

{et,Ft} is a martingale difference array (MDA), and Ft is the smallest σ-algebra driven by {yt−1,x
+
t ,x

−
t ,

yt−2,x
+
t−1,x

−
t−1, . . .} such that ∆xt is a stationary process, and ∆ denotes the differencing operator, so

that ∆xt := xt − xt−1. Here, the max and min operators applied to a vector operate element-wise. The

NARDL process in (1) is defined by introducing the asymmetric effect to the autoregressive distributed

lag (ARDL) process proposed by Pesaran and Shin (1998). By supposing that the response of dependent

variable yt to the positive and negative parts of xt is possibly different, the NARDL process generalizes the

ARDL process. If θ+
j∗ = θ−

j∗ for each j, the NARDL process reduces to the ARDL process. In addition,

the NARDL process is more general than those defined by Shin et al. (2014) and Cho, Greenwood-Nimmo,

and Shin (2023b), because the latter do not allow for a time trend on the right side. If ξ∗ = 0, the NARDL

process in (1) reduces to their definition.

The NARDL process is closely related to an error-correction representation. We first rewrite (1) as

follows:

∆yt = ρ∗yt−1+θ+′
∗ x+

t−1+θ−′
∗ x−

t−1+ξ∗(t−1)+α∗+

p−1∑
j=1

φj∗∆yt−j+

q−1∑
j=0

(
π+′
j∗∆x+

t−j + π−′
j∗∆x−

t−j

)
+et,

where ρ∗, θ+
∗ , θ−

∗ , φj∗ (j = 1, 2, . . . , p − 1), π+
j∗, and π−

j∗ (j = 0, 1, . . . , q − 1) are defined by the

parameters in (1), as given in Cho et al. (2023b), and α∗ := α0∗ + ξ∗. At the end of Section A.1 in the

Online Supplement, we represent the parameters in the above equations using the parameters in (1). For

notational simplicity, we further rewrite this as

∆yt = ρ∗yt−1 + θ′
∗ẍt−1 + ξ∗(t− 1) + α∗ +φ∗∆yt−1 + π′

∗∆x̃t + et (2)

by letting

θ∗ := [θ+′
∗ ,θ

−′
∗ ]′, ẍt−1 := [x+′

t−1,x
−′
t−1]

′,

φ∗ := [φ1∗, φ2∗, . . . , φp−1∗]
′, ∆yt−1 := [∆yt−1,∆yt−2, . . . ,∆yt−p+1]

′,

π∗ := [π+′
∗ , π−′

∗ ]′, π+
∗ := [π+′

0∗ ,π
+′
1∗ , . . . ,π

+′
q−1∗]

′, π−
∗ := [π−′

0∗ ,π
−′
1∗ , . . . ,π

−′
q−1∗]

′,

∆x̃t := [∆x̃+′
t ,∆x̃−′

t ]′, ∆x̃+
t := [∆x+′

t , . . . ,∆x+′
t−q+1]

′, and ∆x̃−
t := [∆x−′

t , . . . ,∆x−′
t−q+1]

′.
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Here, yt−1, ẍt−1 and (t − 1) on the right side of (2) can be used to describe the long-run relationship. If

yt−1 is further cointegrated with ẍt−1, (2) can be rewritten into the following error-correction form:

∆yt = ρ∗ut−1 + γ∗ +φ′
∗∆yt−1 + π′

∗∆x̃t + et, (3)

such that the cointegration error is defined as ut−1 := yt−1 − β′
∗ẍt−1 − ζ∗(t− 1)− ν∗, with

β∗ := [β+′
∗ ,β

−′
∗ ]′, β+

∗ := −(θ+
∗ /ρ∗), β−

∗ := −(θ−
∗ /ρ∗), and ζ∗ := −(ξ∗/ρ∗).

Here, the intercept ν∗ is introduced so that E[ut] = 0, and ut is assumed to be stationary and possibly

correlated with ∆yt−1 and ∆x̃t. Therefore, it follows that γ∗ := α∗ + ρ∗ν∗.

The NARDL process captures an asymmetric cointegrating relationship between nonstationary pro-

cesses. If we let

µ∗ := [µ+′
∗ ,µ

−′
∗ ]′, µ+

∗ := E[∆x+
t ] and µ−

∗ := E[∆x−
t ], then µ+

∗ + µ−
∗ ≡ E[∆xt],

by construction, because ∆xt ≡ ∆x+
t + ∆x−

t . Therefore, if we further let s+t := ∆x+
t − µ+

∗ and

s−t := ∆x−
t − µ−

∗ , it follows that

ẍt = µ∗t+mt by letting mt := [m+′
t ,m

−′
t ]′, m+

t :=
t∑

j=1

s+j and m−
t :=

t∑
j=1

s−j . (4)

From (4), ẍt is clearly a unit-root process with nonzero time trends. Moreover, ∆yt is not necessarily

distributed around zero, even when xt is a unit-root process without a time trend. From (3) and by noting

that E[ut] = 0 and E[et] = 0, we have

δ∗ := E[∆yt] =
1

ϱ∗

γ∗ + q−1∑
j=0

πj∗µ∗

 , where πj∗ := [π+′
j∗ ,π

−′
j∗ ]

′ and ϱ∗ := 1−
p−1∑
j=1

φj∗,

so that if dt := ∆yt − δ∗, then

yt = δ∗t+

t∑
j=1

dj . (5)

This fact implies that yt is a unit-root process with a deterministic time trend. This cointegrating relationship

is more general than that assumed by a linear cointegration. By imposing β+
∗ = β−

∗ , the error-correction

form in (3) reduces to the linear cointegrating relationship between yt and xt.

The time trend in the dependent variable yt has further implications in the model specification. As (5)
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implies, if we suppose that xt is an integrated series without a time trend, the NADL model can capture a

cointegrating relationship between the variable without time trend xt and the variable with time trend yt.

This means that a time trend has to be assumed by the NARDL structure for the dependent variable as given

in (5). This also addresses another possibility that the NARDL model may not fully explain the time trend in

yt, and the specification in (2) is provided for such a case. By including (t− 1) as an additional explanatory

variable, we estimate its coefficient. If the estimated coefficient of (t − 1) is significant, it signals that the

NARDL structure cannot be regarded as the single source of the trend in yt.

Despite the popularity in the empirical literature of estimating the unknown parameters in (2) by OLS,

there is no theoretical foundation for doing so. This is mainly attributed to the asymptotically singular matrix

problem. For this examination, we first let

zt := [ z′
1t z′

2t
]′

:= [ yt−1 r′t−1 z′
2t

]′

:= [ yt−1 ẍ′
t−1 (t− 1) 1 ∆y′

t−1 ∆x̃′
t ]′,

so that rt−1 = [ẍ′
t−1, (t − 1), 1]′. Here, zt ∈ R2+p+2k(1+q) is partitioned into two variables such that

z1t ∈ R3+2k and z2t ∈ Rp+2kq−1 collect the variables in the long- and short-run equations, respectively.

Next, we let

α∗ := [ ρ∗ θ′
∗ ξ∗ α∗ φ′

∗ π′
∗ ]′.

From this, the OLS estimator is written as

α̂T := [ ρ̂T θ̂
′
T ξ̂T α̂T φ̂′

T π̂′
T ]′ :=

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt.

For later purposes, we partition θ̂T and π̂T into [θ̂
+′
T , θ̂

−′
T ]′ and [π̂+′

T , π̂
−′
T ]′, respectively. Even under mild

regularity conditions, the OLS estimator suffers from an asymptotically singular matrix problem. For this

discussion, we impose the following conditions, which are standard in the literature:

Assumption 1. (i) {(∆yt,∆x′
t, ut)

′ ∈ Rk+2 : t = . . . ,−1, 0, 1, . . .} is a strictly stationary mixing

process with ϕ of size −r/(2(r − 1)) or α of size −r/(r − 2) and r > 2;

(ii) E[|∆xti|r] <∞ (i = 1, 2, . . . , k), E[|ut|r] <∞, E[|et|2] <∞, and δ∗ ̸= 0, where xti is the i-th row

element of xt;
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(iii) Σ∗ := limT→∞ var[T−1/2
∑T

t=1wt] is positive definite, where

wt := [ w′
1t w′

2t
] := [ s′t−1 ut−1 et etut−1 etz

′
2t

]′

and st−1 := [s+′
t−1, s

−′
t−1]

′;

(iv) for some α∗ with ρ∗ < 0, ∆yt is generated by (2) such that |L∗| > 1, where 1−
∑p

j=1 ϕj∗L
j
∗ ≡ 0;

(v) {et,Ft} is an MDA. □

Remarks. (a) Under the same assumption, we investigate the limit behavior of the OLS estimator below.

(b) Assumptions 1 (i and ii) assume mixing and moment conditions to apply the functional central limit

theorem (FCLT) to a partial-sum data process. The FCLT is popular for deriving the limit distribution

of the OLS applied to estimate a cointegrating relationship (e.g., Phillips and Hansen, 1990; Phillips,

1991; White, 2001, chapter 7).

(c) Assumption 1 (iv) assumes ρ∗ < 0 for a cointegrating relationship between yt and ẍt. If no cointe-

grating relationship exists, so that if β∗ = 0 and ζ∗ = 0, then from (3), it follows that

yt = α∗ +

p∑
j=1

ϕj∗yt−j + π′
∗∆x̃t + et.

Assumption 1 (iv) applied to this equation implies that yt is a stationary process, which contradicts the

assumption that yt is a unit-root process. Therefore, it is necessary to assume ρ∗ = 0 for (β′
∗, ζ∗)

′ =

0. In this study, we assume the cointegrating relationship established by (3) and examine the limit

behavior of OLS.

(d) Although it is not our main interest, Pesaran, Shin, and Smith (2001) and Banerjee, Dolado, and

Mestre (1998) have previously examined estimating the unknown parameter by OLS under ρ∗ = 0.

They assumed a linear model and developed a testing methodology for ρ∗ = 0. Their methodology is

applicable even in the context of NARDL, because assuming no cointegration under the condition of

linearity is equivalent to assuming β∗ = 0 and ζ∗ = 0.

(e) Assumption 1 (v) is a standard condition for the error term in the ARDL and NARDL processes (e.g.,

Pesaran and Shin, 1998; Pesaran et al., 2001; Shin et al., 2014; Cho et al., 2024). □

We now show how the asymptotically singular matrix problem is associated with OLS. For this, we

provide the following lemma.

Lemma 1. Under Assumption 1,
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(i)

D−1
1

(
T∑
t=1

z1tz
′
1t

)
D−1

1
P→ M11 :=




1
3δ∗

1
3µ∗
1
3

1
2

 [δ∗,µ
′
∗, 1]


1
2δ∗

1
2µ∗
1
2

1



 ,

where D1 := diag[T 3/2I2+2k, T
1/2];

(ii) D−1
2

(∑T
t=1 z2tz

′
2t

)
D−1

2
P→ M22 := E[z2tz

′
2t], where D2 := T 1/2Ip+2kq−1;

(iii)

D−1
2

(
T∑
t=1

z2tz
′
1t

)
D−1

1
P→ M21 :=

  1
2δ∗ιp−1

1
2ιq ⊗ µ∗

 [δ∗,µ
′
∗, 1] 2

 1
2δ∗ιp−1

1
2ιq ⊗ µ∗

  ,
where for each ℓ ∈ N, ιℓ := [1, 1, . . . , 1]′ ∈ Rℓ;

(iv)

D−1

(
T∑
t=1

ztz
′
t

)
D−1 P→ M :=

 M11 M12

M21 M22

 ,
which is singular, where D := diag[D1,D2] and M12 := M′

21. □

Although the OLS estimator α̂T := (
∑T

t=1 ztz
′
t)
−1
∑T

t=1 zt∆yt is popular for empirical analyses,

Lemma 1 now clearly shows that its theoretical foundation cannot be established without tackling the asymp-

totic singular matrix problem. Note that we obtain M by employing different rates of convergence for each

element, and it is singular because its first (1 + 2k) columns are proportional to the (2 + 2k)-th column.

The singular matrix can be verified by conducting simple Monte Carlo simulations. By denoting the

model and data-generating process (DGP) conditions for Tables 3 and 5 given below as independent and

serially correlated cases, respectively, we compute the trace and determinant of D−1(
∑T

t=1 ztz
′
t)D

−1 for

T =50, 100, 200, 300, 400, and 500. After iterating 10000 independent experiments, the scatter diagram

between T and the average of the 10000 traces is drawn for both cases in Figure 1 (a). From this, the trace

converges to a finite number for both cases as T increases, indicating that D−1(
∑T

t=1 ztz
′
t)D

−1 = OP(1).

Meanwhile, the scatter diagram between T and the average of the 10000 determinants ×1012 in Figure 1

(b) shows that the determinant converges to zero. This implies that D−1(
∑T

t=1 ztz
′
t)D

−1 is asymptotically

singular as Lemma 1 indicates.

We provide the proof of Lemma 1 in the Online Supplement by extending lemma 1 of Cho et al. (2024).

Their lemma demonstrates another singular matrix problem by supposing no time trend in (1). Lemma 1

verifies that augmenting the time trend on the right side is not helpful in eliminating the asymptotically

singular matrix problem.
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The singular matrix problem arises from the deterministic time trend in the integrated series. More

specifically, (5) shows that E[∆yt−1] ̸= 0, so that yt−1 is an integrated series with a time trend. Similarly,

E[∆x̃+
t−1] and E[∆x̃−

t−1] differ from zero by construction, so that both x+
t−1 and x−

t−1 are also integrated

series with time trends, meaning that all of yt−1, ẍt−1, and (t− 1) on the right side of (2) are driven by the

time trend (t − 1), and estimating their coefficients suffers from the singular matrix problem. This aspect

is evident from Lemma 1, showing that the first (2 + 2k) columns of M are proportional to each other, and

they are involved with yt−1, ẍt−1, and (t− 1). Cho et al. (2024) note this aspect and estimate the unknown

long-run parameters by first removing the trends from yt−1 and ẍt−1, proposing the 2SNARDL estimation.

Singular matrices often appear in econometric asymptotics, especially in multivariate regressions. These

matrices do not necessarily indicate the absence of a limit theory; rather, they typically lead to significant

changes in that theory. In time-series analysis, when dealing with deterministic trends and nonstationary

cointegrated regressors, researchers use multiple rates of convergence in different directions to address this

issue (e.g., Phillips, 1995, and his subsequent works). In the cases of ML and NLS estimations, researchers

obtain the limit distribution by applying higher-order approximations to the nonlinear model or likelihood,

which results in a slower convergence rate compared to the standard case (e.g., Teräsvirta, 1994; Cho and

White, 2007, 2010; Cho and Phillips, 2018).

In the current context, it is not straightforward to apply a higher-order expansion to OLS. The model is

already linear, unlike ML and NLS. This means that it is necessary to apply the higher-order expansion to

OLS itself. However, given that the dimension of (
∑T

t=1 ztz
′
t)
−1 is determined by k, p, and q, and they can

be given arbitrarily, the task becomes challenging.

3 An Alternative Representation of the OLS Estimator

Owing to the complexity of the higher-order expansion, we use a different approach to obtain the desired

limit distribution. We represent the OLS estimator as a transformation of other primitive estimators that do

not suffer from an asymptotic singularity problem, and we express its limit distribution through those of

the primitive estimators. This method shows that the type of transformation is the source of the singularity

problem.

We achieve the alternative representation in three steps. First, we estimate the long-run parameters using

OLS. Second, we provide a short-run parameter estimator, allowing the OLS estimator α̂T to be expressed

as a bilinear transformation of the long- and short-run primitive estimators. Finally, we express the long-

and short-run primitive estimators as other bilinear transformations of further primitive estimators that do

not suffer from a singular matrix problem, enabling α̂T to be rewritten as a transformation of these primitive
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estimators.

First Step We estimate the long-run parameter using OLS. That is, after specifying the long-run equation

yt−1 = r′t−1υ∗ + ut−1

= β′
∗ẍt−1 + ζ∗(t− 1) + ν∗ + ut−1 (6)

by letting υ∗ := [β′
∗, ζ∗, ν∗]

′, we let the long-run parameter estimator be

υ̃T := [β̃
′
T , ζ̃T , ν̃T ]

′ :=

(
T∑
t=1

rt−1r
′
t−1

)−1 T∑
t=1

rt−1yt−1.

For later purposes, we let ũt−1 := yt−1 − r′t−1υ̃T and partition β̃T such that β̃T ≡ [β̃
+′
T , β̃

−′
T ]′.

Second Step We let ω∗ := [ρ∗,η
′
∗, ψ∗, γ∗,φ

′
∗,π

′
∗]
′, such that η∗ := θ∗ + ρ∗β∗ and ψ∗ := ξ∗ + ρ∗ζ∗, and

żt := [ut−1, r
′
t−1, z

′
2t]

′ to specify the error-correction model

∆yt = ż′
tω∗ + et

= ρ∗ut−1 + η′
∗ẍt−1 + ψ∗(t− 1) + γ∗ +φ∗∆yt−1 + π′

∗∆x̃t + et (7)

by combining (2) and (6). Then, we estimate the parameters in (7) by

ω̃T := [ρ̃T , η̃
′
T , ψ̃T , γ̃T , φ̃

′
T , π̃

′
T ]

′ :=

(
T∑
t=1

z̃tz̃
′
t

)−1 T∑
t=1

z̃t∆yt, where z̃t := [ũt−1, r
′
t−1, z

′
2t]

′,

estimating the short-run parameter ω∗. Note that ω̃T is obtained by replacing ut−1 in żt with ũt−1. For

later purposes, we also partition η∗ into [η+′
∗ ,η

−′
∗ ]′.

The long- and short-run parameter estimators have a regular relationship in terms of the OLS estimator

α̂T . From the definitions of the long-run and trend coefficients, β∗ and ζ∗, we must have η∗ = 0 and

ψ∗ = 0. Even so, we estimate them through the short-run parameter estimator ω̃T by including rt−1 as an

auxiliary regressor. The purpose of this inclusion is given in the following proposition:

Proposition 1. Under Assumption 1, α̂T = RT ω̃T , where

RT :=

 R11
T 0

0 Ip+2kq−1

 , and R11
T :=

 1 01×(2+2k)

−υ̃T I2+2k

 . □

10



That is, by including the regressor in the first step, rt−1, as an auxiliary regressor, we can represent the OLS

estimator α̂T as a bilinear transformation between the long- and short-run primitive estimators υ̃T and ω̃T .

From Proposition 1, it follows that

α̂T = [ρ̃T , −ρ̃T β̃
′
T + η̃′

T , −ρ̃T ζ̃T + ψ̃T , −ρ̃T ν̃T + γ̃T , φ̃
′
T , π̃

′
T ]

′.

Note that if both υ̃T and ω̃T are consistent for υ∗ and ω∗, respectively,

α̂T
P→ [ρ∗, −ρ∗β∗ + η′

∗, −ρ∗ζ∗ + ψ∗, −ρ∗ν∗ + γ∗, φ
′
∗, π

′
∗]
′ = [ρ∗, θ∗, ξ∗, α∗, φ

′
∗, π

′
∗]
′.

by noting that η∗ = 0 and ψ∗ = 0. Proposition 1 follows by applying Lemma A.1 in the Online Supplement.

By letting yt, xt, and zt of Lemma A.1 be ∆yt, yt−1, and [r′t−1, z
′
2t]

′ of (7), respectively, Proposition 1

follows. Here, we can let v̂t in Lemma A.1 be ũt−1.

Third Step Although Proposition 1 represents α̂T as a bilinear transformation between the long- and

short-run primitive estimators, both υ̃T and ω̃T suffer from an asymptotically singular matrix problem; see

Lemma A.3 in the Online Supplement. Again, the asymptotic singular matrix problem arises because the

regressors for υ̃T and ω̃T are driven by the time trend (t − 1). That is, ẍt−1 and (t − 1) in rt−1 and z̃t

are asymptotically correlated, producing singular matrix problems as before. Therefore, we again represent

both primitive estimators using other primitive estimators that do not suffer from an asymptotically singular

matrix problem.

We first represent the long-run parameter estimator υ̃T using other estimators. Note that both (4) and

(6) imply that

yt−1 = r′t−1υ∗ + ut−1

= β′
∗mt−1 + ϑ∗(t− 1) + ν∗ + ut−1, where ϑ∗ := β′

∗µ∗ + ζ∗. (8)

This representation is obtained by collecting the deterministic time trend as a single regressor (t − 1) and

the remaining term mt−1 of ẍt−1 as another regressor, so that the coefficient of (t− 1), ϑ∗, is now defined

by those of ẍt−1 and (t − 1). If mt−1 is observed, we can estimate the coefficients in (8) by regressing

yt−1 against [m′
t−1, (t− 1), 1]′. However, mt−1 is not. We instead predict mt−1 first, so that we can use its

predictor as a regressor. For this, we estimate the unknown parameters µ∗ in (4) by

µ̈T :=

(
T∑
t=1

(t− 1)2

)−1 T∑
t=1

(t− 1)ẍt−1, obtaining m̈t−1 := ẍt−1 − (t− 1)µ̈T .

11



We use m̈t−1 as a regressor to estimate the coefficients in (8). That is, we let

r̈t−1 := [m̈′
t−1, (t− 1), 1]′

and regress yt−1 against r̈t−1, to obtain

ϋT := [β̈′
T , ϑ̈T , ν̈T ]

′ :=

(
T∑
t=1

r̈t−1r̈
′
t−1

)−1 T∑
t=1

r̈t−1yt−1, estimating ῡ∗ := [β′
∗, ϑ∗, ν∗]

′.

Note that this primitive estimator ϋT is obtained by first removing the time trend from ẍt−1 to predict mt−1

so that the asymptotic singular matrix problem can be avoided and we can estimate the long-run parameter

consistently. For later purposes, we partition β̈T such that β̈T ≡ [β̈+′
T , β̈

−′
T ]′ and let üt−1 := yt−1− r̈′t−1ϋT .

The interrelationship between the long-run parameter and primitive estimators, υ̃T and ϋT , is stated in

the following proposition:

Proposition 2. Given Assumption 1, υ̃T := [β̃
′
T , ζ̃T , ν̃T ]

′ = PT ϋT = [β̈′
T , ϑ̈T − µ̈′

T β̈T , ν̈T ]
′, where

PT :=

 I2k 0

P21
T I2

 and P21
T :=

 −µ̈′
T

01×2k

 . □

That is, the long-run parameter estimator υ̃T is represented as a bilinear transformation between the prim-

itive estimators, µ̈T and ϋT . This representation is particularly useful, because neither µ̈T nor ϋT suffers

from an asymptotically singular matrix problem, as Lemma 2 verifies below. Further, ũt−1 = üt−1 using the

definition of m̈t−1 := ẍt−1 − (t− 1)µ̈T , and if both µ̈T and ϋT are consistent for µ∗ and ῡ∗, respectively,

υ̃T = [β̈′
T , ϑ̈T − µ̈′

T β̈T , ν̈T ]
′ P→ [β′

∗, ϑ∗ − µ′
∗β∗, ν∗]

′ = [β′
∗, ζ∗, ν∗]

′ =: υ∗

by noting that ϑ∗ := β′
∗µ∗ + ζ∗, leading to the consistency of υ̃T for υ∗. Proposition 2 is established by

applying Lemma A.2 in the Online Supplement. If we let ẍ′
t−1, (t−1), and 1 be xt, zt, and wt, respectively,

in Lemma A.2, then Proposition 2 follows.

Next, we represent the short-run parameter estimator ω̃T as a bilinear transformation between two other

estimators that do not suffer from an asymptotically singular matrix problem. This representation is parallel

to the one for the long-run parameter estimator. Both ẍt−1 and (t− 1) on the right side of (7) are driven by

the deterministic trend. We first collect the deterministic time trends in ẍt−1 and (t−1) as a single regressor

12



and reparameterize the right side. Specifically, we combine (4) and (7), obtaining

∆yt = ρ∗ut−1 + η′
∗mt−1 + ς∗(t− 1) + γ∗ +φ′

∗∆yt−1 + π′
∗∆x̃t + et, where ς∗ := µ′

∗η∗ + ψ∗. (9)

Here, the coefficient of (t− 1) is obtained as ς∗ by collecting the coefficients of the time trends in ẍt−1 and

(t− 1), but the coefficient of mt−1 keeps the same as that of ẍt−1 on the right side of (7) from the fact that

mt−1 is the remainder of ẍt−1 obtained by removing the trend. Furthermore, ς∗ must be 0 from the fact that

η∗ = 0 and ψ∗ = 0, but mt−1 and (t − 1) are included as auxiliary regressors to apply Lemma A.2 in the

Online Supplement again. That is, by regressing ∆yt against

z̈t := [ üt−1 r̈′t−1 z′
2t

]′,

we estimate the unknown parameters in (9) by OLS. For this, ut−1 and mt−1 in (9) are replaced with üt−1

and m̈t−1, respectively as both ut−1 and mt−1 are unobservable. The parameter estimator is denoted as

follows:

τ̈T := [ ρ̈T τ̈ ′
1T τ̈ ′

2T
]′ := [ ρ̈T η̈′

T ς̈T γ̈T τ̈ ′
2T

]′ :=

(
T∑
t=1

z̈tz̈
′
t

)−1 T∑
t=1

z̈t∆yt, estimating

τ ∗ := [ ρ∗ τ ′
1∗ τ ′

2∗ ]′ := [ ρ∗ η′
∗ ς∗ γ∗ φ′

∗ π′
∗ ]′.

Here, for later purposes, we partitioned the parameter τ ∗ and its estimator τ̈T into the smaller sets, and we

let η̈T ≡ [η̈+′
T , η̈

−′
T ]′ and π̈T ≡ [π̈+′

T , π̈
−′
T ]′, such that π̈T is the vector formed by the last 2kq elements of

τ̈ 2T . In addition, we separately estimate ψ∗ by ψ̈T := −µ̈′
T η̈T + ς̈T by applying the plug-in principle to

ς∗ := µ′
∗η∗ + ψ∗.

The interrelationship between the short-run parameter and primitive estimators, ω̃T and τ̈T , is stated in

the following proposition:

Proposition 3. Given Assumption 1, ω̃T = QT τ̈T , where

QT :=

 I1+2k 0

Q21
T Ip+2kq+1

 and Q21
T :=

 0 −µ̈′
T

0(p+2kq)×1 0(p+2kq)×2k

 . □

That is, by including m̈t−1 and (t − 1) as auxiliary regressors for τ̈T , we represent the short-run primitive

estimator ω̃T as a bilinear transformation between µ̈T and τ̈T . From Proposition 3, it follows that

ω̃T = [ρ̈T , η̈
′
T , −µ̈′

T η̈T + ς̈T , γ̈T , τ̈
′
2T ]

′.
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Therefore, QT τ̈T and τ̈T are almost identical. The only difference between them is in the coefficient of

(t− 1). The estimated coefficient of (t− 1) in QT τ̈T is equal to −µ̈′
T η̈T + ς̈T , whereas the corresponding

estimator in τ̈T is ς̈T . If both µ̈T and τ̈T are consistent for µ∗ and τ ∗, respectively, it follows that

ω̃T
P→ [ρ∗, η

′
∗, −µ′

∗η∗ + ς∗, γ∗, τ
′
2∗]

′ = [ρ∗, η
′
∗, ψ∗, γ∗, τ

′
2∗]

′ = ω∗

by noting that ς∗ := µ′
∗η∗ + ψ∗, and the last equality holds by the definition of ω∗. Furthermore, none

of µ̈T and τ̈T suffers from an asymptotically singular matrix problem, as Lemma 2 shows below, meaning

that ω̃T is represented using further primitive estimators without an asymptotically singular matrix problem.

Proposition 3 is again established by Lemma A.2 in the Online Supplement. By letting ẍt−1, (t − 1), and

[üt−1, 1, z
′
2t]

′ be xt, zt, and wt, respectively, of Lemma A.2, Proposition 3 follows.

Using these alternative forms for the long- and short-run parameter estimators, υ̃T and ω̃T , we now

represent the OLS estimator α̂T as a transform of the further primitive estimators: µ̈T , ϋT , and τ̈T .

Proposition 4. Given Assumption 1, α̂T = TT τ̈T , where TT := RTQT such that

RTQT = TT :=

 T11
T 0

T21
T Ip+2kq+1

 , T11
T :=

 1 01×2k

−β̃T I2k

 and

T21
T :=


−ζ̃T −µ̈′

T

−ν̃T 01×2k

0(p+2kq−1)×1 0(p+2kq−1)×2k

 . □

Proposition 4 follows simply by combining Propositions 1 and 3, in which we demonstrated that α̂T =

RT ω̃T and ω̃T = QT τ̈T , respectively. The individual elements of the OLS estimator α̂T can be rewritten

as follows:

α̂T =
[
ρ̈T ,−ρ̈T β̈′

T + η̈′
T ,−ρ̈T (ϑ̈T − µ̈′

T β̈T )− µ̈′
T η̈T + ς̈T ,−ρ̈T ν̈T + γ̈T , τ̈

′
2T

]′
(10)

by using Proposition 2: [β̃
′
T , ζ̃T , ν̃T ]

′ = [β̈′
T , ϑ̈T − µ̈′

T β̈T , ν̈T ]
′. Note that the OLS estimator α̂T is now

represented using the primitive estimators µ̈T , ϋT , and τ̈T .

Remarks. (a) If µ̈T , ϋT and τ̈T are consistent for µ∗, υ∗ and τ ∗, respectively, then

α̂T
P→
[
ρ∗,−ρ∗β′

∗ + η′
∗,−ρ∗ζ∗ − µ′

∗η∗ + ς∗,−ρ∗ν∗ + γ∗, τ
′
2∗
]′

=
[
ρ∗,−ρ∗β′

∗,−ρ∗ζ∗,−ρ∗ν∗ + γ∗, τ
′
2∗
]′
, (11)
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because ζ∗ = ϑ∗ − µ′
∗β∗, η∗ = 0 and ς∗ = 0. In addition, the final limit is identical to α∗ :=

[ρ∗,θ
′
∗, ξ∗, α∗,φ

′
∗,π

′
∗]
′ by the definitions of β∗, ζ∗, γ∗, and τ 2∗. From this, the OLS estimator is

consistent for its target parameter α∗. This fact implies that the consistence of the OLS estimator α̂T

can be revealed through the consistence of µ̈T , ϋT and τ̈T .

(b) By Proposition 4, the weak limit of the OLS estimator α̂T can also be represented using the weak

limits of the primitive estimators: µ̈T , ϋT , and τ̈T ; see Theorem 1.

(c) The convergence rate of the OLS estimator α̂T is slower than D in Lemma 1. For example, for

the long-run OLS estimator θ̂T , we have θ̂T = −ρ̈T β̈T + η̈T from (10), and the convergence rates

of ρ̈T and (β̈T , η̈T ) are T 1/2 and T , respectively, by Lemmas 3 and 4 given below. From this,

the convergence rate of θ̂T is determined as T 1/2, which is slower than T 3/2 given in D. Similar

arguments apply to the other elements of the OLS estimator α̂T , making its convergence rate slower

than D. This slower convergence rate is the same effect as expected when the asymptotic distribution

of an estimator is obtained by a higher-order expansion (e.g., Teräsvirta, 1994; Cho and White, 2007,

2010; Cho and Phillips, 2018). □

We now show that the primitive estimators τ̈T and ϋT do not suffer from an asymptotically singular

matrix problem. First, we let

B(·) := [Bm(·)′,Bu(·),Be(·),Bue(·),Bze(·)′]′ := Σ
1/2
∗ W(·),

where W(·) is a vector of (2+p+2k(1+ q)) independent standard Wiener processes, and Σ∗ is the global

covariance matrix given in Assumption 1. Here, B(·) is the Brownian motion obtained by applying FCLT

to BT (·) := T−1/2
∑⌊(·)T ⌋

t=1 wt; see Lemma B.1 in the Online Supplement. For later purposes, we also

partition BT (·) in parallel to B(·):

BT (·) := [BmT (·)′, BuT (·), BeT (·), BueT (·),BzeT (·)′]′ :=
1√
T

⌊(·)T ⌋∑
t=1

[s′t−1, ut−1, et, ut−1et, z
′
2tet]

′

by noting that wt := [s′t−1, ut−1, et, ut−1et, z
′
2tet]

′.

The following lemma shows that neither τ̈T nor ϋT suffers from an asymptotically singular matrix prob-

lem. As such, the long- and short-run parameter estimators, υ̃T and ω̃T , become bilinear transformations of

the primitive estimators that do not suffer from this problem.

Lemma 2. Given Assumption 1,

(i) T−1/2
(∑T

t=1 üt−1r̈t−1

)
D̈−1

1 ⇒ M1u := 0(2k+2)×1, where D̈1 := diag[T I2k, T 3/2, T 1/2];
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(ii)

D̈−1
1

(
T∑
t=1

r̈t−1r̈
′
t−1

)
D̈−1

1 ⇒ M11 :=


∫
B̄mB̄′

m 02k×1

∫
B̄m

01×2k
1
3

1
2∫

B̄′
m

1
2 1

 ,
where B̄m(·) := Bm(·)− 3(·)

∫
rBm;

(iii) D̈−1
2

(∑T
t=1 üt−1z2t

)
D̈−1

2
P→ M2u := E[ut−1z2t], where D̈2 := T 1/2Ip+2kq−1;

(iv)

D̈−1
2

(
T∑
t=1

z2tr̈
′
t−1

)
D̈−1

1 ⇒ M21 :=

 δ∗ιp−1

∫
B̄′

m
1
2δ∗ιp−1 δ∗ιp−1

ιq ⊗ µ∗
∫
B̄′

m
1
2ιq ⊗ µ∗ ιq ⊗ µ∗

 ;

(v) D̈−1
2

(∑T
t=1 z2tz

′
2t

)
D̈−1

2
P→ M22; and

(vi)

D̈−1

(
T∑
t=1

z̈tz̈
′
t

)
D̈−1 ⇒ M :=


σ2u Mu1 Mu2

M1u M11 M12

M2u M21 M22

 ,
where D̈ := diag[T 1/2, D̈1, D̈2], M12 := M′

21, Mu1 := M′
1u, Mu2 := M′

2u, and σ2u := E[u2t ]. □

Both weak limits M11 and M given in Lemmas 2 (ii and vi) are nonsingular almost surely, meaning that

the weak limits of (D̈−1
1

∑T
t=1 r̈t−1r̈

′
t−1D̈

−1
1 )−1 and (D̈−1

∑T
t=1 z̈tz̈

′
tD̈

−1)−1 are obtained as M−1
11 and

M−1, respectively, where the inverse matrices are those within the long- and short-run parameter estimators,

ϋT := (
∑T

t=1 r̈t−1r̈
′
t−1)

−1
∑T

t=1 r̈t−1yt−1 and τ̈T := (
∑T

t=1 z̈tz̈
′
t)
−1
∑T

t=1 z̈t∆yt. From this, neither ϋT

nor τ̈T suffers from an asymptotically singular matrix problem.

4 Limit Distribution of the OLS Estimator

In this section, we derive the limit distribution of the OLS estimator α̂T using the weak limits of the primitive

estimators. In addition, we establish the consistency of the long-run parameter and primitive estimators

(ϋT , τ̈T ) for their target parameters (ῡ∗, τ ∗), from which the consistency of α̂T follows.

We proceed in three steps. First, we derive the weak limit of the long-run parameter estimator ϋT and

show its consistency. Second, we conduct the same procedure for the primitive estimator τ̈T . Finally, we

derive the weak limit of the OLS estimator α̂T using the first two results.

First Step We derive the weak limit of the long-run parameter estimators ϋT and υ̃T . For this, note that

υ̃T = PT ϋT , from Proposition 2. The weak limit of the long-run parameter estimator υ̃T is then determined
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by each element on the right side. If we let P be the limit of PT , that is,

P :=

 I2k 0

P21 I2

 with P21 :=

 −µ′
∗

01×2k

 ,
its consistency follows from the consistency of µ̈T for µ∗. Next, we obtain the limit distribution of the

primitive estimator ϋT by noting that mt−1 = m̈t−1 + (µ̈T − µ∗)(t− 1). If we rewrite (8) as

yt−1 = r̈′t−1ῡT∗ + ut−1

= β′
∗m̈t−1 + ϑT∗(t− 1) + ν∗ + ut−1, where ῡT∗ := [β′

∗, ϑT∗, ν∗]
′ (12)

with ϑT∗ := β′
∗(µ̈T − µ∗) + ϑ∗, it follows that

ϋT :=

(
T∑
t=1

r̈t−1r̈
′
t−1

)−1 T∑
t=1

r̈t−1yt−1 = ῡT∗ +

(
T∑
t=1

r̈t−1r̈
′
t−1

)−1 T∑
t=1

r̈t−1ut−1. (13)

Using this arrangement, we provide the weak limit of the primitive estimator ϋT in the following lemma:

Lemma 3. Let ϱm∗ := limT→∞ T−1
∑T

t=1

∑t−1
τ=1 E[sτut]. Given Assumption 1,

(i) D̈1(ϋT − ῡT∗) ⇒ L := [L′
1,L2,L3]

′ := M−1
11 S, where

S :=


S1

S2

S3

 :=


∫
BmdBu − 3

∫
rBm

∫
rdBu + ϱm∗∫

rdBu∫
dBu

 ,

such that L1 and S1 ∈ R2k; and

(ii) D̈†(υ̃T − υ∗) ⇒ [L′
1,−µ′

∗L1,L3]
′, where D̈† := diag[T I2k, T, T 1/2]. □

Remarks. (a) By Lemma 3, none of (ϋT − ῡT∗) and (υ̃T − υ∗) follows a mixed normal distribution.

Further,S1 is influenced by the asymptotic bias ϱm∗. This asymptotic bias corresponds to that arising

when estimating a cointegrating relationship by OLS (e.g., Engle and Granger, 1987; Phillips and

Hansen, 1990).

(b) In the Online Supplement, we prove Lemma 3 (i) by noting that D̈1(ϋT − ῡT∗) = (D̈−1
1

∑T
t=1 r̈t−1

r̈′t−1D̈
−1
1 )−1D̈−1

1

∑T
t=1 r̈t−1ut−1. We focus on deriving the weak limit of D̈−1

1

∑T
t=1 r̈t−1ut−1,

because Lemma 2 (ii) already provides the weak limit of (D̈−1
1

∑T
t=1 r̈t−1r̈

′
t−1D̈

−1
1 )−1. Next, we

note that υ̃T − υ∗ = (PT − P)(ϋT − ῡT∗) + P(ϋT − ῡT∗) + (PT − P)(ῡT∗ − ῡ∗) + P(ῡT∗ −

ῡ∗) + (PT − P)ῡ∗, and prove Lemma 3 (ii) by examining the limit of each component on the right
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side and showing that υ̃T − υ∗ = P(ϋT − ῡT∗) +OP(T
−3/2) and D̈†(ϋT − ῡT∗) = OP(1).

(c) The consistency of the estimators follows from Lemma 3: ϋT−ῡT∗
P→ 0 and υ̃T

P→ υ∗. We also have

ῡT∗
P→ ῡ∗ := [β′

∗, ϑ∗, ν∗]
′, because ϑT∗ := β′

∗(µ̈T −µ∗)+ϑ∗
P→ ϑ∗, from µ̈T = µ∗ +OP(T

−1/2).

This implies that PT
P→ P, so that υ̃T = PT ϋT → Pῡ∗ = υ∗, by the definition of ν∗ := [β′

∗, ζ∗, ν∗]
′

in (8).

(d) Lemma 3 (ii) implies that the weak limits of β̃T and ζ̃T are linearly correlated, because they are

obtained as L1 and −µ′
∗L1, respectively. This feature confirms how the long parameter estimator

υ̃T suffers from the asymptotically singular matrix problem, although ϋT does not.

(e) 2SNARDL estimates the long- and short-run parameters separately, and the convergence rate of the

long-run 2SNARDL estimator for β∗ is T , which is also the convergence rate of β̈T in ϋT . That is, the

same convergence rate is shared by the long-run parameter estimators in the primitive and 2SNARDL

estimators. As we detail below, the convergence rate of the OLS estimator for θ∗ is
√
T , but ϋT

estimates the long-run parameter in the long-run equation with a faster convergence rate. We use this

feature for inference by defining a Wald test based on ϋT ; see Section 5. □

Second Step We derive the weak limit of the primitive estimator τ̈T . We first rewrite (9) as

∆yt = τ ′
T∗z̈t + et

= ρ∗üt−1 + (η∗ + ρ∗(β̈T − β∗))
′m̈t−1 + (ψ∗ + η′

∗µ̈T + ρ∗(ϑ̈T − ϑT∗))(t− 1)

+ (γ∗ + ρ∗(ν̈T − ν∗)) +φ′
∗∆yt−1 + π′

∗∆x̃t + et,

where

τT∗ := [ρ∗, τ
′
1T , τ

′
2∗]

′ and

τ 1T := [(η∗ + ρ∗(β̈T − β∗))
′, ψ∗ + η′

∗µ̈T + ρ∗(ϑ̈T − ϑT∗), γ∗ + ρ∗(ν̈T − ν∗)]
′.

This equality is established by noting that

ut−1 = üt−1 + (β̈T − β∗)
′m̈t−1 + (ϑ̈T − (β′

∗µ̈T + ζ∗))(t− 1) + (ν̈T − ν∗),

which follows from (12) because ũt−1 := yt−1 − r′t−1υ̃T = üt−1 := yt−1 − r̈′t−1ϋT . Using this represen-

tation, we again decompose the primitive estimator τ̈T into τT∗ and a remainder:

τ̈T :=

(
T∑
t=1

z̈tz̈
′
t

)−1 T∑
t=1

z̈t∆yt = τT∗ +

(
T∑
t=1

z̈tz̈
′
t

)−1 T∑
t=1

z̈tet. (14)
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We now provide the weak limit of the primitive estimator τ̈T in the following lemma:

Lemma 4. Given Assumption 1,

(i) D̈(τ̈T − τT∗) ⇒ D := [D1,D
′
2,D3,D4,D

′
5]
′ := M−1J, where J := [

∫
dBue,

∫
B̄′

mdBe,∫
rdBe,

∫
dBe,

∫
dB′

ze]
′;

(ii) D̈(τ̈T − τ ∗) ⇒ D− ρ∗[0,L
′,0′]′. □

Remarks. (a) From the definition of D, the primitive estimator D̈(τ̈T − τT∗) asymptotically follows

a mixed normal distribution, but the asymptotic distribution of D̈(τ̈T − τ ∗) differs from the mixed

normal distribution. Lemma 2 (i) already shows that the weak limit L does not follow a mixed normal

distribution and the limit distribution of D̈(τ̈T − τ ∗) is formed by both D and L.

(b) In the Online Supplement, we prove Lemma 4 by examining the limit behavior of each component

on the right side of (14). Because Lemma 2 (vi) already shows that D̈−1(
∑T

t=1 z̈tz̈
′
t)D̈

−1 ⇒ M, we

focus on showing that D̈−1
∑T

t=1 z̈tet ⇒ J. In addition, we note that D̈(τ̈T − τT∗) = D̈(τ̈T −

τ ∗) + [0,−ρ∗T (β̈T −β∗)
′,−ρ∗T 3/2(ϑ̈T − ϑT∗),−ρ∗T 1/2(ν̈T − ν∗),0

′]′, and exploit Lemmas 3 (ii)

and 4 (i) to prove Lemma 4 (ii).

(c) Unlike the weak limit of the long-run parameter estimator υ̃T given in Lemma 3 (ii), the weak limit

of D̈(τ̈T − τ ∗) cannot be written as a linear combination of other weak limits. This confirms that the

primitive estimator τ̈T does not suffer from an asymptotic singular matrix problem.

(d) Because Lemma 4 assumes that ρ∗ < 0, the weak limit in Lemma 4 (ii) cannot be used to derive the

null limit distribution of the t-statistic testing ρ∗ = 0. □

Third Step We finally derive the weak limit of the OLS estimator α̂T . For this derivation, we first note

that

(α̂T −α∗) = (TT −T)τ ∗ +T(τ̈T − τ ∗) + (TT −T)(τ̈T − τ ∗), (15)

by (10) and (11), where T is the probability limit of TT . That is,

T :=

 T11 0

T21 Ip+2kq+1

 , T11 :=

 1 01×2k

−β∗ I2k

 , T21 :=


−ζ∗ −µ′

∗

−ν∗ 01×2k

0(p+2kq−1)×1 0(p+2kq−1)×2k

 .

Here, the weak limits of TT and τ̈T are already provided in Lemmas 3 and 4, respectively. Using these

weak limits, we derive the weak limit of the OLS estimator α̂T .

Before providing the weak limit, we note that different weak limits are obtained under different parame-

ter value conditions. For example, if β+j∗ ̸= 0, β−j∗ ̸= 0, and ζ∗ ̸= 0, for each j = 1, 2, . . . , k, we can rewrite
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(15) as
√
T (α̂T −α∗) = c∗

√
T (ρ̈T − ρ∗) +

√
TdT + oP(1), (16)

where c∗ := [1,−β′
∗,−ζ∗,−ν∗,0′]′ and dT := [0,0′2k×1, 0, {(γ̈T − γ∗) − ρ∗(ν̈T − ν∗)}, (τ̈ 2T − τ 2∗)

′]′.

This representation implies that the weak limit of the OLS estimator α̂T is determined by the weak limits

of ρ̈T and dT . However, if β∗ or ζ∗ is zero, we cannot use (16) to find the weak limit, because the estimator

corresponding to β∗ or ζ∗ is asymptotically negligible. That is,
√
T (θ̂T − θ∗) = oP(1) or

√
T (ξ̂T − ξ∗) =

oP(1), respectively. For such a case, the next-order terms have to be used to derive the weak limit of

(α̂T − α∗). These examples demonstrate that the weak limit of the OLS estimator α̂T depends on the

parameter value condition on β∗ and ζ∗.

In the following theorem, we provide the weak limits of the OLS estimator α̂T under various parameter

conditions. For notational simplicity, we let D2 ≡ [D+′
2 ,D

−′
2 ]′. Recall that D2 is the weak limit of

η̈T − (η∗ + ρ∗(β̈T − β∗)).

Theorem 1. Given Assumption 1,

(i) if for each j = 1, 2, . . . , k, β+j∗ ̸= 0, β−j∗ ̸= 0, and ζ∗ ̸= 0, then
√
T (α̂T − α∗) ⇒ c∗D1 +

[0,0′2k×1, 0,D4,D
′
5]
′;

(ii) if β+
∗ = 0, but for each j = 1, 2, . . . , k, β−j∗ ̸= 0, and ζ∗ ̸= 0, then D̈+(α̂T − α∗) ⇒ [D1,D

+′
2 ,

−β−′
∗ D1,−ζ∗D1,D4 − ν∗D1,D

′
5]
′, where D̈+ := diag[T 1/2, T Ik, T

1/2Ik+2, D̈2];

(iii) if β−
∗ = 0, but for each j = 1, 2, . . . , k, β+j∗ ̸= 0, and ζ∗ ̸= 0, then D̈−(α̂T −α∗) ⇒ [D1,−β+′

∗ D1,

D−′
2 ,−ζ∗D1,D4 − ν∗D1,D

′
5]
′, where D̈− := diag[T 1/2Ik+1, T Ik, T

1/2I2, D̈2]; and

(iv) if for each j = 1, 2, . . . , k, β+j∗ ̸= 0, β−j∗ ̸= 0, but ζ∗ = 0, D̈⊙(α̂T − α∗) ⇒ [D1,−β′
∗D1,

−µ′
∗D2,D4 − ν∗D1,D

′
5]
′, where D̈⊙ := diag[T 1/2I2k+1, T, T

1/2, D̈2]. □

Remarks. (a) The limit distribution of the OLS estimator α̂T is determined by D under all the param-

eter value conditions in Theorem 1, so that it asymptotically follows a mixed normal distribution

by Lemma 4. The OLS estimator is formed by the primitive estimators ϋT and τ̈T , none of which

follows a mixed normal distribution asymptotically, but α̂T follows a mixed normal distribution.

(b) Although the time trend and nonstationary regressors are included as regressors, the convergence

rate of the OLS estimator α̂T in Theorem 1 (i) is slower than D in Lemma 1. Again, this slower

convergence rate is the same effect as expected when the asymptotic distribution of an estimator is

obtained by a higher-order expansion (e.g., Teräsvirta, 1994; Cho and White, 2007, 2010; Cho and

Phillips, 2018).

(c) In the Online Supplement, we prove Theorem 1 (i) by deriving the weak limit of each component on
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the right side of (15). For example, we first derive the following for the long-run OLS estimator θ̂T :

(θ̂T − θ∗) = −β∗(ρ̈T − ρ∗) + (η̈T − η∗)− ρ∗(β̈T − β∗). (17)

Lemmas 3 and 4 verify that (ρ̈T − ρ∗) = OP(T
−1/2) and (η̈T − η∗) − ρ∗(β̈T − β∗) = OP(T

−1),

respectively. Using these, we derive that
√
T (θ̂T − θ∗) ⇒ −β∗D1.

(d) By Theorem 1 (iv), the 2SNARDL estimator has the same convergence rate as the OLS estimator when

it is properly transformed to estimate the parameter targeted by OLS. Specifically, 2SNARDL esti-

mates υ∗ and τ ∗ separately, and Cho, Greenwood-Nimmo, and Shin (2023a) show that the 2SNARDL

estimator for β∗ and ρ∗ has convergence rate T and
√
T , respectively. By this feature, if we multiply

the two estimators, θ∗ can be estimated by 2SNARDL and its convergence rate becomes
√
T . We

also note that this convergence rate is identical to that of θ̂T , meaning that the OLS and 2SNARDL

estimators converges to θ∗ at the same convergence rate. In Section A.4.1 of the Online Supplement,

we confirm this by simulation.

(e) By Theorem 1 (i), the weak limit of (ρ̂T , θ̂
′
T , ξ̂T )

′ is (1,β′
∗,−ζ∗)′D1, indicating that the estimates are

linearly correlated at the limit. This result highlights how the asymptotically singular matrix problem

arises and affects the convergence rate of the OLS estimator α̂T . Although D1 is not associated

with an asymptotically singular matrix problem, the type of the transformation means that the OLS

estimator α̂T suffers from the singularity problem.

(f) Despite the asymptotic singularity problem associated with the OLS estimator α̂T , its weak limit

given in Theorem 1 (i) is determined by D1, D4, and D5. This implies the following. First, the OLS

estimator α̂T follows a mixed normal distribution as pointed out above. Therefore, if the standard t-

test applies to the OLS estimator α̂T , it follows a mixed normal distribution under the null hypothesis

and the condition in Theorem 1 (i). We verify this feature by simulation in the Online Supplement; see

Section A.4.2. Second, both D1 and D5 are the weak limits of the last two OLS estimators obtained

by regressing ∆yt against (1, ut−1, z
′
2t)

′ or (1, üt−1, z
′
2t)

′. Thus, the null weak limit of the t-statistic

testing ρ∗(< 0) is equivalent to those of the t-statistics testing the long-run parameters β∗ and ξ∗.

(g) If the zero coefficient conditions in Theorems 1 (ii, iii, and iv) hold, the limit distribution of the OLS

estimator restricted by the zero condition is determined by the next-order term in (15) as mentioned

above. If β+
∗ = 0, (17) implies that T (θ̂

+

T − θ+
∗ ) = T{(η̈+

T − η+
∗ ) − ρ∗(β̈

+
T − β+

∗ )} ⇒ D+
2 by

Lemma 4 (i). In parallel, if β−
∗ = 0, then T (θ̂

−
T − θ−

∗ ) = T{(η̈−
T − η−

∗ ) − ρ∗(β̈
−
T − β−

∗ )} ⇒ D−
2 ;

and if ζ∗ = 0, then T (ξ̂T − ξ∗) = −µ′
∗T{(η̈T − η∗) − ρ∗(β̈T − β∗)} + OP(T

−1/2) ⇒ −µ′
∗D2,

meaning that the weak limits of θ̂T and ξ̂T are determined by D2. Given that D2 follows a mixed
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normal distribution, if the standard t-test applies to θ̂T or ξ̂T , its null weak limit also follows a mixed

normal distribution.

(h) There is a caveat to Theorems 1 (i, ii, iii, and iv). If β∗ = 0 and ζ∗ = 0 simultaneously, then ρ∗ = 0,

by the remark below Assumption 1, which contradicts the assumption that ρ∗ < 0. Theorems 1 (i, ii,

iii, and iv) assume an environment in which at least one of β+
∗ , β−

∗ , and ζ∗ is nonzero.

(i) As a remark relevant to (h), Pesaran et al. (2001) and Banerjee et al. (1998) provide the asymptotic

critical values of the F - and t-statistics testing ρ∗ = 0, showing that their null limit distributions

cannot be approximated by a mixed normal distribution. This also implies that the limit distributions

of the OLS estimator α̂T are different from those under β∗ = 0 and ζ∗ = 0 under the parameter value

conditions in Theorem 1.

(j) For empirical application, we recommend the following procedure. First, it is necessary to test ρ∗ = 0

using Pesaran et al.’s (2001) F -test or Banerjee et al.’s (1998) t-test as a preliminary procedure. Next,

if ρ∗ turns out to be negative, we can estimate the unknown coefficients by OLS. As the OLS estimator

is asymptotically mixed normal, the null limit distribution of the t-test is also mixed normal for each

parameter except for the t-statistic testing ρ∗ = 0. This aspect further implies that the asymptotic

critical values of the t-test can be obtained from the standard normal distribution table. Third, when

a joint hypothesis is tested, we can apply the standard Wald test principle to the OLS estimator. By

Theorem 1, the standard Wald test defined by OLS is asymptotically mixed chi-squared unless the

joint hypothesis is involved with testing ρ∗ = 0. Therefore, its asymptotic critical values can be

obtained from the chi-square distribution table. Note that the second and third steps are exactly the

same procedure as for a standard regression analysis. Finally, when estimating the long-run parameter

in the long-run equation, using the primitive estimator ϋT or 2SNARDL is recommended. □

Before closing this section, we briefly discuss applying other estimations to the NARDL model as a

future research topic. Phillips and Hansen (1990) examine estimating unknown cointegrating relationships

by instrumental variable (IV) estimation. The IV or generalized method of moments (GMM) estimation

can be applied to NARDL estimation, but its asymptotic distribution needs to be obtained by overcoming

asymptotic singular matrix problems similarly to OLS. Alternatively, the IV or GMM estimator has to be

defined to reflect the orthogonality condition properly to avoid asymptotic singular matrix problems under

the NARDL framework. We leave this as a future research topic.
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5 Hypotheses Testing

In this section, we develop a testing methodology by applying the Wald test principle to NARDL. In particu-

lar, we suppose that a cointegrating relationship holds between yt and ẍt, under Assumption 1, by supposing

that θ+
∗ ̸= 0 and/or θ−

∗ ̸= 0, and develop the testing methodology. In addition to the standard Wald test, we

apply the Wald test principle to the primitive estimators introduced in Sections 3 and 4.

Our main interest is in testing the symmetry conditions. The NARDL process reduces to the ARDL

process if θ+
∗ = θ−

∗ and π+
∗ = π−

∗ . Under the ARDL process condition, it is inefficient to estimate the

parameters using NARDL, making it necessary to test the parameter symmetry conditions. We specify the

following three hypothesis systems:

H′
0 : θ+

∗ = θ−
∗ vs. H′

1 : θ+
∗ ̸= θ−

∗ ;

H′′
0 : π+

∗ = π−
∗ vs. H′′

1 : π+
∗ ̸= π−

∗ ;

H′′′
0 : θ+

∗ = θ−
∗ and π+

∗ = π−
∗ vs. H′′′

1 : θ+
∗ ̸= θ−

∗ or π+
∗ ̸= π−

∗ .

Here, H′
0 and H′′

0 are provided to test the long- and short-run symmetries, respectively, and H′′′
0 hypothe-

sizes both symmetries simultaneously.

Testing H′
0 versus H′

1 We first apply the Wald test principle to test H′
0 . The standard Wald test applied to

OLS is defined as follows:

W
(1)
T := α̂′

T R̂
′
1

(
Ŵ

(1)
T

)−1
R̂1α̂T , where Ŵ

(1)
T := σ̂2e,T R̂1

(
T∑
t=1

ztz
′
t

)−1

R̂′
1,

σ̂2e,T := T−1
∑T

t=1(∆yt − z′
tα̂T )

2, and R̂1 := [0k×1, Ik,−Ik,0k×(1+p+2kq)]. As we are presuming that

θ+
∗ ̸= 0 and/or θ−

∗ ̸= 0, we cannot suppose the environment assumed in Theorems 1 (ii or iii) to obtain

the null limit distribution of the Wald test. In addition to this, we cannot directly apply the limit distribution

of the OLS estimator in Theorems 1 (i and iv) to obtain the null limit distribution. Note that R̂1α̂T =

(θ̂
+

T − θ̂
−
T ), so that

√
T (θ̂

+

T − θ̂
−
T ) ⇒ (β−

∗ − β+
∗ )D1. Thus, the weak limit in Theorem 1 (i or iv) does not

help us to obtain the null limit distribution of the Wald test, because β+
∗ = β−

∗ under the null, meaning that
√
T (θ̂

+

T − θ̂
−
T ) is asymptotically negligible. The null limit behavior has to be obtained by the next-order
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term of (θ̂
+

T − θ̂
−
T ). Specifically, (10) implies that

(θ̂
+

T − θ̂
−
T ) = (η̈+

T − η̈−
T )− ρ̈T (β̃

+

T − β̃
−
T ) (18)

= (η̈+
T − η̈−

T )− (η+
∗ − η−

∗ )− ρ∗(β̃
+

T − β̃
−
T )− (ρ̈T − ρ∗)(β̃

+

T − β̃
−
T )

= (η̈+
T − η̈−

T )− (η+
T∗ − η−

T∗) + oP(T
−1)

under H′
0 , where we let ηT∗ := η∗ + ρ∗(β̈T − β∗) denote the vector formed by the first 2k-row elements

of τ 1T , and (18) is established by letting ηT∗ := [η+′
T∗,η

−′
T∗]

′ and noting that β̃T = β̈T . Therefore, the null

limit distribution of the Wald test W (1)
T is determined not by Theorem 1 (i or iv), but by Lemma 4. All these

imply (θ̂
+

T − θ̂
−
T ) = OP(T

−1), so that if we let R1 := [0k×1, Ik,−Ik,0k×(1+p+2kq)], T (θ̂
+

T − θ̂
−
T ) ⇒ R1D

under H′
0 by Lemma 4. However, its alternative behavior is different. From R̂1α̂T = (θ̂

+

T − θ̂
−
T ), its

divergence rate is determined by Theorem 1 (i or iv), meaning that R̂1α̂T = OP(T
−1/2). That is, the

convergence and divergence rates of the test basis are unbalanced between H′
0 and H′

1 , respectively.

We supplement the unbalanced convergence and divergence rates by applying the Wald test principle to

the primitive estimator ϋT . This is mainly because the primitive estimator ϋT enables us to define another

Wald test using the next-order terms. Because testing H′
0 is equivalent to testing

H′
0 : β

+
∗ − β−

∗ = 0,

we apply the Wald test principle to the primitive estimator β̈T . If we let R̈1 := [Ik,−Ik,0k×2], R̈1ῡT∗ =

β+
∗ − β−

∗ , which we can estimate by β̈+
T − β̈−

T = R̈1ϋT . Using this feature, we define the following

supplementary Wald test:

W
(1)
T := ϋ′

T D̈1R̈
′
1(Ẅ

(1)
T )−1R̈1D̈1ϋT , where Ẅ

(1)
T := σ̈2u,T R̈1D̈1

(
T∑
t=1

r̈t−1r̈
′
t−1

)−1

D̈1R̈
′
1

and σ̈2u,T := T−1
∑T

t=1 ü
2
t . Here, (β̈+

T − β̈−
T ) is not the same as (θ̂

+

T − θ̂
−
T ). Their difference is caused by

(η̈+
T − η̈−

T ) and ρ̈T , as implied by (18) and the fact that (β̃
+

T − β̃
−
T ) = (β̈+

T − β̈−
T ). Here, the Wald test W(1)

T

is defined only by the test basis with power. Neither (η̈+
T − η̈−

T ) nor ρ̈T is capable of contributing to the

power of the test. Furthermore, (β̈+
T − β̈−

T ) = OP(T
−1) under both hypotheses. From this, the convergence

and divergence rates of the Wald test are the same under both H′
0 and H′

1 .
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Testing H′′
0 versus H′′

1 We next apply the Wald test principle to test H′′
0 . The Wald test principle applied

to the OLS estimator α̂T delivers the following test:

W
(2)
T := α̂′

T R̂
′
2(Ŵ

(2)
T )−1R̂2α̂T , where Ŵ

(2)
T := σ̂2e,T R̂2

(
T∑
t=1

ztz
′
t

)−1

R̂′
2

and R̂2 := [0kq×(2+p+2k), Ikq,−Ikq], so that it follows that R̂2α̂T = π̂+
T − π̂−

T and
√
T R̂2α̂T ⇒ R̂2D

using the limit distribution in Theorem 1.

We define another supplementary Wald test using the primitive estimator, as in the earlier case. From

Proposition 4, it follows that (φ̂′
T , π̂

+′
T , π̂

−′
T )′ = (φ̈′

T , π̈
+′
T , π̈

−′
T )′ := τ̈ 2T . That is, the short-run OLS and

primitive estimators are the same, implying that we can test H′′
0 by using τ̈T . Lemma 2 (vi) implies that

the primitive estimator τ̈T is not associated with an asymptotically singular matrix problem. From this, we

define the following Wald test:

W
(2)
T := τ̈ ′

T D̈R̂′
2(Ẅ

(2)
T )−1R̂2D̈τ̈T , where Ẅ

(2)
T := σ̂2e,T R̂2D̈

(
T∑
t=1

z̈tz̈
′
t

)−1

D̈R̂′
2.

That is, W(2)
T is defined by applying the Wald test principle to the primitive estimator τ̈T , estimating the

parameters in (9) by noting that R̂2D̈τ̈T =
√
T (π̈+

T − π̈−
T ). Although the test basis of the Wald test W(2)

T

is the same as that of W (2)
T , from π̈+

T − π̈−
T = π̂+

T − π̂−
T , their weight matrices are different. The Wald test

W
(2)
T is defined using the weight matrix Ẅ

(2)
T . This weight matrix is more relevant to the test basis, because

τ̈T is obtained by regressing z̈t against ∆yt.

Testing H′′′
0 versus H′′′

1 Finally, we apply the Wald test principle to test H′′′
0 . As before, we cannot

suppose the environment in Theorems 1 (ii and iii) under H′′′
0 . We apply the Wald test principle to the OLS

estimator α̂T as follows:

W
(3)
T := α̂′

T R̂
′
3(Ŵ

(3)
T )−1R̂3α̂T , where Ŵ

(3)
T := σ̂2e,T R̂3

(
T∑
t=1

ztz
′
t

)−1

R̂′
3

and R̂3 := diag[R̂1, R̂2], so that R̂3α̂T = (θ̂
+′
T −θ̂

−′
T , π̂

+′
T −π̂−′

T )′. Here, the null limit distribution of R̂3α̂T

is obtained by combining the results given above. That is, T (θ̂
+

T−θ̂
−
T ) ⇒ R1D and

√
T (π̂+

T−π̂−
T ) ⇒ R̂2D

under H′′′
0 . Therefore, if we further let R3 := diag[R1, R̂2], it follows that (T (θ̂

+′
T − θ̂

−′
T ),

√
T (π̂+′

T −

π̂−′
T ))′ ⇒ R3D under H′′′

0 . However, R̂3α̂T = OP(T
−1/2) under H′′′

1 because (θ̂
+′
T − θ̂

−′
T )′ = OP(T

−1/2)

under H′′′
1 as discussed above.
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We also define another supplementary Wald test and overcome the unbalanced convergence rate ofW (3)
T

under H′′′
0 and H′′′

1 . For this, we first reformulate H′′′
0 against H′′′

1 into

H′′′
0 : β+

∗ = β−
∗ and π+

∗ = π−
∗ vs. H′′′

1 : β+
∗ ̸= β−

∗ or π+
∗ ̸= π−

∗ ,

and define the following supplementary Wald test:

W
(3)
T := δ̈′T D̄R̈′

3(Ẅ
(3)
T )−1R̈3D̄δ̈T ,

where δ̈T := (ϋ′
T , τ̈

′
T )

′, D̄ := diag[D̈1, D̈], R̈3 := diag[R̈1, R̂2], and Ẅ
(3)
T := diag[Ẅ(1)

T ,Ẅ
(2)
T ]. Note

that the Wald test W(3)
T is defined by applying the Wald test principle to both primitive estimators, ϋT

and τ̈T , and by noting that R̈3D̄δ̈T = (T (β̈+
T − β̈−

T )
′,
√
T (π̈+

T − π̈−
T )

′)′. It straightforwardly follows

that W(3)
T = W

(1)
T + W

(2)
T from the fact that Ẅ(3)

T is block-diagonal, so that its null and alternative limit

behaviors are determined by those of W(1)
T and W

(2)
T .

We now provide the limit behaviors of the Wald tests under the null and alternative using the weak limits

of the primitive estimators, ϋT and τ̈T . For notational simplicity, we partition H′′′
0 into H′′′

01 : β
+
∗ = β−

∗ and

H′′′
02 : π

+
∗ = π−

∗ . In parallel, we also partition H′′′
1 into H′′′

11 : β
+
∗ ̸= β−

∗ and H′′′
12 : π

+
∗ ̸= π−

∗ . We introduce

this partition because the power behavior of the Wald test W(3)
T depends on the sub-hypotheses from the

fact that the convergence rate of (β̈+
T − β̈−

T ) differs from that of (π̈+
T − π̈−

T ). We also let σ2e := E[e2t ]. We

summarize their limit behaviors in the following theorem:

Theorem 2. Given Assumption 1, if θ+
∗ ̸= 0 and/or θ−

∗ ̸= 0,

(i) (a) W (1)
T ⇒ D′R′

1(σ
2
eR1M

−1R′
1)

−1R1D underH′
0 , where R1 := [0k×1, Ik,−Ik,0k×(1+p+2kq)];

(b) W (2)
T ⇒ D′R̂′

2(σ
2
eR̂2M

−1R̂′
2)

−1R̂2D under H′′
0 ;

(c) W (3)
T ⇒ D′R′

3(σ
2
eR3M

−1R′
3)

−1R3D under H′′′
0 , where R3 := diag[R1, R̂2];

(ii) (a) for any c′T = o(T ), limT→∞ P(W (1)
T > cT ) = 1 under H′

1;

(b) for any c′T = o(T ), limT→∞ P(W (2)
T > c′T ) = 1 under H′′

1 ;

(c) for any c′T = o(T ), limT→∞ P(W (3)
T > c′T ) = 1 under H′′′

1 ;

(iii) (a) W
(1)
T ⇒ L′R̈′

1(σ
2
uR̈1M

−1
11 R̈

′
1)

−1R̈1L under H′
0;

(b) W
(2)
T ⇒ D′R̂′

2(σ
2
eR̂2M

−1R̂′
2)

−1R̂2D under H′′
0 ;

(c) W
(3)
T ⇒ L′R̈′

1(σ
2
uR̈1M

−1
11 R̈

′
1)

−1R̈1L +D′R̂′
2(σ

2
eR̂2M

−1R̂′
2)

−1R̂2D under H′′′
0 ; and

(iv) (a) for any cT = o(T 2), limT→∞ P(W(1)
T > cT ) = 1 under H′

1;

(b) for any c′T = o(T ), limT→∞ P(W(2)
T > c′T ) = 1 under H′′

1 ;

(c) for any cT = o(T 2) and c′T = o(T ),
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(1) limT→∞ P(W(3)
T > cT ) = 1 under H′′′

11

⋂
H′′′

02;

(2) limT→∞ P( W(3)
T > c′T ) = 1 under H′′′

01

⋂
H′′′

12; and

(3) limT→∞ P(W(3)
T > cT ) = 1 under H′′′

11

⋂
H′′′

12. □

Remarks. (a) The asymptotic behaviors of the Wald tests W (1)
T , W (2)

T , and W (3)
T are determined by the

weak limit of the primitive estimator (τ̈T −τT∗). For example, it follows from (18) that (θ̂
+

T − θ̂
−
T ) =

(θ+
∗ −θ−

∗ )−(ρ̈T −ρ∗)(β+
∗ −β−

∗ )+(η̈+
T −η+

T∗)−(η̈−
T −η−

T∗)+oP(T
−1). Therefore, if we imposeH′

0 ,

(θ̂
+

T−θ̂
−
T ) = (η̈+

T−η+
T∗)−(η̈−

T−η−
T∗)+oP(T

−1). In other words, R̂1α̂T = R1(τ̈T−τT∗)+oP(T
−1).

This fact implies that the null weak limit of the Wald test W (1)
T is determined by that of (τ̈T − τT∗),

which is given in Lemma 4. Theorem 2 (i.a) reports the weak limit obtained in this way. Here, we

note that the test basis has a different weak limit under H′
1 . From (18), it follows that (θ̂

+

T − θ̂
−
T ) =

(θ+
∗ −θ−

∗ )−(ρ̈T −ρ∗)(β+
∗ −β−

∗ )+oP(T
−1/2) and (ρ̈T −ρ∗) = OP(T

−1/2). Theorem 2 (ii.a) reports

the power behavior of the test implied by this representation. By applying similar arguments to the

other Wald tests, W (2)
T and W (3)

T , we provide their limit behaviors in Theorem 2 (i.b, i.c, ii.b, and

ii.c). Consequently, the Wald tests W (1)
T , W (2)

T , and W (3)
T asymptotically follow mixed chi-squared

distributions under the null hypotheses, because all they have the null limit distributions characterized

by D following a mixed normal distribution.

(b) If we partition L1 such that L1 ≡ (L+′
1 ,L

−′
1 )′, R̈1L = L+

1 − L−
1 , so that the null weak limit

in Theorem 2 (iii.a) is given as (L+
1 − L−

1 )
′(σ2uR̈1M

−1
11 R̈

′
1)

−1(L+
1 − L−

1 ). In parallel, if we

let D5 ≡ [D†′
5 ,D

+′
5 ,D

−′
5 ]′, such that D†

5, D+
5 , and D−

5 are the weak limits of φ̈T , π̈+
T , and π̈−

T ,

respectively, then R̂2D = D+
5 −D−

5 , and so the weak the limit in Theorem 2 (iii.b) can be rewritten

as (D+
5 −D−

5 )
′(σ2eR̂2M

−1R̂′
2)

−1(D+
5 −D−

5 ).

(c) The testing methodology of using the supplementary tests depends on the hypotheses. We can rewrite

the null weak limit of the Wald test W(1)
T as S′M−1

11 R̈
′
1(σ

2
uR̈1M

−1
11 R̈

′
1)

−1R̈1M
−1
11 S using the def-

inition of L := M−1
11 S, meaning that the Wald test W(1)

T does not follow a mixed chi-squared

distribution. This is mainly because the weak limitS does not follow a mixed normal distribution and

is also influenced by the asymptotic bias ϱm∗. The same result holds for the Wald test W(3)
T from the

fact that W(3)
T = W

(1)
T +W

(2)
T . However, the null weak limit of the Wald test W(2)

T is characterized

by D, meaning that its null weak limit follows a mixed chi-squared distribution. Therefore, tabulated

asymptotic critical values are available for the Wald test W(2)
T . For both Wald tests, W(1)

T and W
(3)
T ,

we can apply a resampling method; see Section 6.

(d) The divergence speed of the Wald test W(3)
T depends on the alternative hypothesis. If H′′′

0 is negated

only because of the asymmetric long-run parameters: β+
∗ ̸= β−

∗ , the divergence speed is T 2. In

contrast, if only the short-run parameters are asymmetric: π+
∗ ̸= π−

∗ , its divergence speed is T . If
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both the long- and short-run parameters are asymmetric, the divergence speed is determined by T 2.

Theorem 2 (iv.c) summarizes these results. □

Before moving to the next section, we summarize the use of the Wald tests introduced in this section.

Table 1 provides their summary. We contain the formulas of the Wald tests along with their null hypotheses

and null limit distributions. In case the null limit distribution is mixed chi-squared, the researcher can obtain

the asymptotic critical values from the chi-square distribution table. Otherwise, the residual bootstrap can

apply. Section 6 details the residual bootstrap procedure applied to the Wald test.

6 Monte Carlo Simulations

In this section, we conduct simulations and examine the finite-sample properties of the Wald tests.

For our simulation, we assume the following DGP condition:

yt−1 = ν∗ + β+∗ x
+
t−1 + β−∗ x

−
t−1 + ζ∗(t− 1) + ut−1 and

∆yt = α∗ + ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x
+
t + π−∗ ∆x

−
t + et,

where ∆xt = 1/2 + vt, and (et, vt)
′ ∼ IIDN(02, I2). By this DGP condition, both yt and xt are integrated

series with time trends. We also set (ν∗, ζ∗, α∗, ρ∗, φ∗) = (0, 0, 0,−1/2, 0) throughout the simulation, but

adjust the value of (β+∗ , β
−
∗ , π

+
∗ , π

−
∗ ), depending on the hypotheses of interest. According to the NARDL

condition, it must hold that θ+∗ = −ρ∗β+∗ and θ−∗ = −ρ∗β−∗ .

The next procedure applies to define the Wald tests. First, we estimate the unknown parameters using

the primitive parameter estimators. Specifically, we estimate ῡT∗ and τT∗ separately by specifying the

following models:

yt = β+m̂+
t + β−m̂−

t + ϑt+ ν + ut and

∆yt = ρũt−1 + η+m̂+
t−1 + η−m̂−

t−1 + ς(t− 1) + γ + φ∆yt−1 + π+∆x+t + π−∆x−t + et,

where we set m̂+
t := x+t −tµ̂

+
T , m̂−

t := x−t −tµ̂
−
T , and ũt := yt−r′tυ̃T , with µ̂+T := (

∑T−1
t=1 t

2)−1
∑T−1

t=1 tx
+
t ,

µ̂−T := (
∑T−1

t=1 t
2)−1

∑T−1
t=1 tx

−
t , υ̃T := (

∑T
t=1 rt−1r

′
t−1)

−1
∑T

t=1 rt−1yt−1, and rt−1 := [x+t−1, x
−
t−1, (t−

1), 1]′. Second, we specify the following hypothesis systems:

H′
0 : θ+∗ = θ−∗ vs. H′

1 : θ+∗ ̸= θ−∗ ;

H′′
0 : π+∗ = π−∗ vs. H′′

1 : π+∗ ̸= π−∗ ;
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H′′′
0 : θ+∗ = θ−∗ and π+∗ = π−∗ vs. H′′′

1 : θ+∗ ̸= θ−∗ or π+∗ ̸= π−∗ ;

H′
0 : β∗ = 0 vs. H′

1 : β∗ ̸= 0; and H′′′
0 : β∗ = 0 and π+∗ = π−∗ vs. H′′′

1 : β∗ ̸= 0 or π+∗ ̸= π−∗ .

Note that these hypotheses correspond to those in Section 5. Finally, we compute the Wald tests W
(1)
T ,

W
(2)
T , W(3)

T , W (1)
T , W (2)

T , and W (3)
T , as stated in Section 5.

We conduct simulations under the following two DGP conditions. First, we set β+∗ = β−∗ = 1 and

π+∗ = π−∗ = 1/2 to generate data. This parameter condition satisfies the ARDL condition. From this,

we examine the finite-sample properties of the Wald tests under the null. Second, we set β+∗ = 1/4,

β−∗ = −1/4, π+∗ = 1/8, and π−∗ = −1/8, and use this to examine the power of the tests.

A bootstrap method is used for the testing. Theorem 2 shows that the null limit distributions of the Wald

tests W(1)
T and W

(3)
T are not mixed chi-squared. We apply the following residual bootstrap procedure.

S1: After computing the Wald tests, we estimate the ARDL model by regressing ∆yt against yt−1, xt−1,

(t − 1), 1, ∆yt−1, and ∆xt. We let the estimated linear coefficient be (ρ̂T , θ̂T , ξ̂T , α̂T , φ̂T , π̂T ). We

also let the residual be êt := ∆yt − ρ̂T yt−1 − θ̂Txt−1 − ξ̂T (t− 1)− α̂T − φ̂T∆yt−1 − π̂T∆xt.

S2: We construct a resampled series as follows. First, we resample êt with replacement and denote it as

ebt . Next, we let

∆ybt := ρ̂T y
b
t−1 + θ̂Txt−1 + ξ̂T (t− 1) + α̂T + φ̂T∆y

b
t−1 + π̂T∆xt + ebt ,

where ybt is the cumulative sum of ∆ybt . Note that we do not resample ∆xt here. Using the resampled

series, we compute the Wald tests and denote them using the superscript b. For example, we let W(1),b
T

denote the bootstrapped W
(1)
T .

S3: We iterate the second stepB times in total and compute the empirical p-value of the test. For example,

we let the empirical p-value be p(1)T := B−1
∑B

b=1 1{W
(1),b
T > W

(1)
T } for W(1)

T . If p(1)T is less than

the significance level, we reject the null hypothesis. □

This bootstrap procedure can apply even when the null weak limit of the Wald test follows a mixed chi-

squared distribution.

We conducted our simulation following the above residual bootstrap procedure. Assuming that B =

500, we independently iterate the above experiment 5000 times for T = 100, 200, 300, 400, and 500. The

simulation results are reported in Tables 2 and 3. We also evaluated the Wald tests by mixed chi-squared

distributions and reported the empirical rejection rates. The simulation results are summarized as follows:

(a) Table 2 shows the empirical Wald test rejection rates using the null DGP condition allowing β+∗ =

β−∗ = 1 and π+∗ = π−∗ = 1/2. The left side panel shows the empirical rejection rates obtained
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by the residual bootstrap method. The rejection rates on the right side are based on the mixed chi-

squared distributions. In summary, first, when using the bootstrap method, for each T , the empirical

rejection rates are very close to the nominal significance levels. This implies that the bootstrap method

effectively controls the test levels. Second, when considering the asymptotic critical values from the

mixed chi-squared distribution, we find no significant level distortion for the Wald test W(2)
T , but

both Wald tests W(1)
T and W

(3)
T do experience level distortions. For the current DGP, the Wald tests

W
(1)
T and W

(3)
T reject H′

0 and H′′′
0 more often than the significance levels. This confirms that the

Wald tests W(1)
T and W

(3)
T do not follow mixed chi-squared distributions under the null. However, the

Wald test W(2)
T does not suffer from level distortions, indicating that π̈+T and π̈−T follow mixed normal

distributions, as Lemma 4 (i) establishes. Finally, the Wald testsW (1)
T , W (2)

T , andW (3)
T suffer no level

distortions when using the critical values from the mixed chi-squared distributions.

(b) Table 3 shows the empirical Wald test rejection rates under the alternative DGP. The summary results

are as follows. First, with the bootstrap method, the empirical rejection rates of the Wald tests W(1)
T ,

W
(2)
T , and W

(3)
T tend toward 100% as T increases, implying their consistency against H′

1, H′′
1 , and

H′′′
1 , respectively. Second, when applying the critical values obtained from the mixed chi-squared

distribution, the empirical rejection rates of the Wald tests W
(1)
T , W(2)

T , and W
(3)
T also converge

toward 100% as T increases. However, it is difficult to control their sizes, as shown in Table 2. Third,

the standard Wald tests are consistently powerful. Fourth, as in the case of the bootstrap method, the

Wald tests W
(1)
T and W

(3)
T are more powerful than the Wald tests W (1)

T and W (3)
T , respectively, for

small T . In contrast, both Wald tests W(2)
T and W (2)

T show similar power patterns. □

We conduct another simulation assuming that ∆xt is serially correlated. Instead of ∆xt = 1/2+ vt, we

set ∆xt = 1/4 + κ∗∆xt−1 + vt and apply the same residual bootstrap method. Then, assuming κ∗ = 1/2,

we conduct simulations by setting B = 500 and independently iterating the experiment 5000 times for

T = 100, 200, 300, 400, and 500. Here, both yt and xt become integrated series with time trends as before.

The simulation results are presented in Tables 4 and 5 in the same format as in Tables 2 and 3, respectively.

The simulation results are summarized as follows:

(a) Table 4 presents the empirical Wald test rejection rates obtained using the null DGP condition. For

each value of T , the empirical rejection rates are very close to the nominal significance levels when

using the residual bootstrap method. In contrast, the asymptotic critical values introduce level dis-

tortions for the Wald tests W(1)
T and W

(3)
T , as observed earlier. Overall, these simulation results are

similar to those shown in Table 2.

(b) Table 5 presents the empirical Wald test rejection rates obtained using the alternative DGP condition.

The results are as follows. First, when the residual bootstrap method is used, the empirical rejection
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rates of the Wald tests W
(1)
T , W(2)

T , and W
(3)
T tend toward 100% as T increases, implying their

consistency against H′
1, H′′

1 , and H′′′
1 , respectively. Second, when the asymptotic critical values are

used, the empirical rejection rates also converge toward 100% as T increases, although the level

distortions are difficult to control for the Wald tests W(1)
T and W

(3)
T under the null. Third, the standard

Wald tests exhibit consistent power. As T increases, the Wald tests W (1)
T , W (2)

T , and W (3)
T reject the

null with rejection rates tending toward 100%. Finally, the Wald tests W
(1)
T and W

(3)
T are more

powerful than the Wald tests W (1)
T and W (3)

T , respectively, for small T . However, both Wald tests

W
(2)
T and W (2)

T exhibit similar power patterns.

(c) These simulation results are qualitatively the same as those for the serially uncorrelated ∆xt. □

Before moving to the empirical section, we describe other simulation experiences on OLS and 2SNARDL.

As the two estimators target the same parameter, each has relative advantages over the other. The OLS con-

tains a finite sample bias that is driven by ϱm∗ in Lemma 3 and vanishes as T increases, so that the negligible

bias affects its finite sample performance. In contrast, 2SNARDL estimates the parameter by removing the

bias. On the other hand, 2SNARDL is more involved than OLS. The bias is removed using an asymptotic co-

variance matrix estimator between ∆xt and ut, affecting the performance of 2SNARDL. Meanwhile, OLS

is straightforward to estimate. From this comparison, if T is sufficiently large, the OLS can be preferred

to the 2SNARDL for practical purposes. However, if T is not large but the asymptotic covariance matrix

estimator can remove the bias, 2SNARDL can be preferred over OLS.

7 Empirical Application

This section examines the empirical data provided by Romer and Romer (2010) to measure the fiscal policy

impact on the GDP of the United States of America. We review the literature and apply the NARDL model

to examine the long- and short-run symmetries in the data.

7.1 Literature Review and Empirical Motivation

Estimating the effects of fiscal policy on output is challenging, because many fiscal factors that lead to tax

changes are correlated with output, causing the OLS estimator to suffer from endogenous bias. Although

not all fiscal factors are endogenous in terms of output growth, using all tax changes to analyze GDP growth

can result in biased OLS estimates. Blanchard and Perotti (2002) address this by using structural vector au-

toregression (SVAR). They solve the bias problem by assuming that policymakers do not respond to shocks

contemporaneously, and by using information on the elasticity of revenue to create cyclically adjusted rev-

enues. From this, they estimate that the effect of a tax cut on U.S. GDP is around 1%. However, Romer
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and Romer (2010) and Cloyne (2013) argue that the structural assumptions used in the SVAR model may be

unrealistic in estimating the effect of fiscal policy on output.

Romer and Romer (2010) analyze the effects of tax changes correlated with GDP differently by per-

forming a narrative analysis. They examine the motivations behind each tax change from 1945 to 2007

using sources such as the Economic Report of the President and the Congressional Record. They catego-

rize legislated tax changes that altered tax liabilities from one quarter to the next into four categories: (i)

tax changes to counteract changes in government spending, (ii) tax changes to offset other factors affect-

ing near-term output, (iii) tax changes to address inherited budget deficits, and (iv) tax changes to promote

long-term growth. The first two categories, considered countercyclical, are motivated by restoring output

growth reduced by other factors, making it difficult to classify these tax changes as purely exogenous. In

contrast, the last two categories, based on policymakers’ perceptions of prudent fiscal policies or focus on

increasing long-term growth, may be classified as exogenous. Consequently, they identified 54 exogenous

tax changes through narrative analysis during the same period. Using these exogenous fiscal shocks, they

develop a time-series model and estimate that GDP would increase by approximately 3% over three years

following a tax cut of 1% of GDP. This estimate differs significantly from that of Blanchard and Perotti

(2002).

Narrative analysis is widely used to examine the effects of fiscal shocks on GDP. For example, Cloyne

(2013) applies this approach to UK legislation and estimates that a 1% tax cut, as a percentage of GDP,

increases output by nearly 2.5% over the following three years, similar to findings in the United States

of America. Mertens and Olea (2018) use narrative analysis to determine that the short-run tax elasticity

of income is approximately 1.2% in the United States of America by analyzing exogenous variations in

the marginal tax rate. Additionally, Gunter, Riera-Crichton, Vegh, and Vuletin (2021) expand the use of

narrative analysis to estimate the value-added-tax multipliers for 51 countries, showing that the effect of tax

changes on output is highly nonlinear.

Narrative analysis is also used to specialize the time-series model in Romer and Romer (2010) for spe-

cific models under various economic environments. For example, Mertens and Ravn (2012) differentiate

between surprise and anticipated tax changes to analyze the dynamic effects of tax changes on GDP, find-

ing that anticipated tax cuts lead to a contraction in GDP. Demirel (2021) and Ghassibe and Zanetti (2021)

examine the state-dependent effects of exogenous tax changes on GDP, allowing for varying tax multiplier

estimations during recessions and expansions. Researchers widely apply narrative analysis to examine the

effect of tax changes on GDP in other fields, enabling comparisons with outcomes from conventional anal-

yses.

The current study extends its focus beyond short-run relationships to estimate the long-run relationship
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between GDP and fiscal shocks. Previous studies have primarily concentrated on the short-term effects of

fiscal policy. For example, one benchmark model specified by Romer and Romer (2010) is given as

∆yt = γ∗ +

q−1∑
j=0

πj∗∆τt−i +

p−1∑
j=1

φj∗∆yt−j + et (19)

to examine how GDP responds to exogenous tax changes, where yt is the logarithm of real GDP and ∆τt

is the logarithm of an exogenous tax change. Note that all variables in (19) are differenced. Thus, it

characterizes the short-run relationship between ∆yt and ∆τt.

Because yt and τt are both observable, we can estimate their long-run relationship by applying cointe-

gration analysis. To this end, we augment the cointegration error on the right side of (19) as follows:

∆yt = γ∗ + ρ∗ut−1 +

q−1∑
j=0

πj∗∆τt−i +

p−1∑
j=1

φj∗∆yt−j + et, (20)

where ut := yt − β∗τt − ζ∗t − ν∗. Note that the long-run relationship between yt and τt can be found

by estimating the long-run coefficient β∗, and the short-run relationship can be found by estimating the

coefficients of πj∗ and φj∗. To estimate the unknown parameters, we can also convert (20) as follows:

∆yt = α∗ + ρ∗yt−1 + θ∗τt−1 + ξ∗t+

q−1∑
j=0

πj∗∆τt−i +

p−1∑
j=1

φj∗∆yt−j + et. (21)

For this estimation, we first examine the partial sum processes of the exogenous tax changes used in

our empirical analysis. Figure 1 illustrates the partial sum processes due to the exogenous tax changes.1

The solid and dashed lines represent the partial sum processes of tax changes for deficit reduction (τ1t) and

long-run growth (τ2t), respectively, and the dotted line represents the partial sum process of their sum (τt).2

The exogenous tax changes exhibit characteristics suitable for NARDL analysis, which we discuss one

by one. First, tax changes for budget deficits always result in tax increases, so ∆τ1t is always positive.

Second, most tax changes aimed at long-run economic growth involve tax decreases; out of 31 legislated tax

changes for long-run growth, only six of them result in tax increases. Consequently, overall, the partial sum

processes for deficit reduction and long-run growth remain in positive and negative regions, respectively.

1Data are obtained from https://eml.berkeley.edu/˜cromer/ (Accessed: Feb. 10, 2023).
2We obtain the partial sum processes by first converting the nominal tax changes into consistent values over the period

1947Q1 to 2007Q4. To this end, we first discount the nominal values using the price index implied by the nominal GDP
and the quantity index for GDP in the data set, and then apply a log transformation. We find that ∆τt = ∆τ1t + ∆τ2t,
∆τ1t := sgn(∆T1t) log(|∆T1t|/pt), ∆τ2t := sgn(∆T2t) log(|∆T2t|/pt), and pt := NYt/Yt, where ∆T1t and ∆T2t repre-
sent the nominal tax changes for budget deficit and long-run growth, respectively, and NYt and Yt represent the nominal GDP
and quantity GDP index, respectively. If ∆T1t = 0 or ∆T2t = 0, we let ∆τ1t = 0 or ∆τ2t = 0, respectively. The partial sum
processes in Figure 1 represent τt, τ1t, and τ2t.
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Although the NARDL model assumptions do not perfectly align with the characteristics of the exogenous

fiscal shocks, we use the approximation of ∆τ+t := max[0,∆τt] for tax changes due to budget deficit and

∆τ−t := min[0,∆τt] for tax changes due to long-run growth.

Next, we specify the following NARDL model and estimate the long- and short-run parameters:

∆yt = γ∗ + ρ∗ut−1 +

q−1∑
j=0

(
π+j∗∆τ

+
t−i + π−j∗∆τ

−
t−i

)
+

p−1∑
j=1

φj∗∆yt−j + et, (22)

where ut := yt − β+∗ τ
+
t − β−∗ τ

−
t − ζ∗t− ν∗. This can be rewritten as

∆yt = α∗ + ρ∗yt−1 + θ+∗ τ
+
t−1 + θ−∗ τ

−
t−1 + ξ∗t+

q−1∑
j=0

(
π+j∗∆τ

+
t−i + π−j∗∆τ

−
t−i

)
+

p−1∑
j=1

φj∗∆yt−j + et, (23)

which we estimate by OLS. If β+∗ = β−∗ (or θ+∗ = θ−∗ ) and π+j∗ = π−j∗, (22) reduces to (20). Economically,

this implies that the relationship between tax changes aimed at deficit reduction and long-run growth in real

GDP is roughly symmetric in both the long and short run. We can use the Wald tests defined in Section 5

for this inference.

7.2 Empirical Results

This section presents the estimation and inference results, divided into two parts. The first part presents the

estimation results using the tax change data outlined in the previous section. The second part measures the

fiscal policy effect using the tax ratio data, as used by Romer and Romer (2010). We have limited the sample

period to 1947Q1–2007Q4 by excluding periods with missing observations.

7.2.1 Tax Changes Measured by Log Transformation of Tax

Before presenting the estimation and inference results, we provide the basic statistical characteristics of the

data. The logarithm of the GDP quantity index, multiplied by 100, is represented by yt, and τt, τ1,t, and τ2,t

are defined as in footnote 2. The descriptive statistics of ∆yt, ∆τ1t, ∆τ2t, and ∆τt can be found in Table

A.9 in the Online Supplement. Furthermore, our unit-root test on yt, τ1t, τ2t, and τt follows the method of

Phillips and Perron (1988), including or excluding the time trend. The test results indicate that we cannot

reject the unit-root hypothesis for the series.

We report the estimation results in Table 6. The columns marked “Exo” give the parameter estimates

obtained by OLS for the NARDL and ARDL models. That is, the unknown parameters in (23) and (21) are

estimated by OLS. Orders for the NARDL model are based on the Akaike information criterion (AIC), with
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p = 3 and q = 1 for both the NARDL and the ARDL models. Standard errors are listed in parentheses

below the parameter estimates. Except for the coefficient of yt−1, we use the asymptotic critical values from

the mixed normal distribution. For the t-test on the coefficient of yt−1, we use the asymptotic critical values

provided by Banerjee et al. (1998). Furthermore, we test whether all coefficients of yt−1, τ+t−1, and τ−t−1 are

equal to zero by applying the F -test of Pesaran et al. (2001). Finally, we test the hypotheses of symmetry

between long-run parameters, short-run parameters, or both by using the Wald tests given in Section 5. The

results are presented in the two bottom panels. We summarize the results in Table 6 as follows:

(a) The coefficient of yt−1 is significant at the 10% and 5% levels for the NARDL and ARDL models,

respectively by the t-test. Although we cannot reject the hypothesis of no cointegration by the F -test

for the NARDL model, it is significant at the 10% level for the ARDL model. Our analysis using the

2SNARDL model also suggests a cointegrating relationship between the log real GDP and the log of

an exogenous log tax shock.

(b) The NARDL model estimation indicates that an increase in an exogenous tax shock measured by

τ+t−1 reduces the log real GDP. In contrast, a decrease in an exogenous tax shock measured by τ−t−1

increases the log of real GDP. The ARDL model shows the same relationship between the log of an

exogenous tax shock and the log real GDP, aligning with standard economic theory.

(c) The estimated coefficients of τ+t−1 and τ−t−1 are almost equal in magnitude, suggesting no long-run

asymmetry between the log real GDP and the log of an exogenous tax shock. We confirm this using

the Wald tests. Both Wald tests W
(1)
T and W (1)

T provide p-values that make it difficult to reject the

symmetry hypothesis.

(d) Short-run symmetry is confirmed by the Wald tests W
(2)
T and W (2)

T , because they do not reject the

symmetry hypothesis. Moreover, neither the long-run nor the short-run symmetry hypothesis is chal-

lenged by the Wald test W(3)
T or W (3)

T . As such, we conclude that the ARDL model is appropriate for

studying the relationship between the log real GDP and the log of an exogenous tax shock.

(e) We present the estimation results for the log of an endogenous tax shock, calculated in the same way

as for the log of an exogenous tax shock. Columns labeled “Endo” give the estimation and inference

results obtained using the log of the endogenous tax shock data. Similarly, the columns labeled “Sum”

show the estimation and inference results obtained using the logs of both exogenous and endogenous

tax shocks. The estimated signs of τ+t−1, τ−t−1, and τt−1 are inconsistent with the parameter values

posited by standard economic theory. When using the logs of both exogenous and endogenous tax

shocks jointly, there is little evidence of cointegration. These estimation results indicate that only the

log of an exogenous tax shock can be used to estimate the coefficients having signs consistent with

standard economic theory. □
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Next, we estimate the NARDL and ARDL models using the 2SNARDL method proposed by Cho et al.

(2023a). For the ARDL model, we apply 2SNARDL estimation by imposing the short- and long-run param-

eter symmetry conditions. The results are presented in Table 7, which is structured similarly to Table 6. This

separate investigation is conducted to validate the inference results presented in Table 6. We summarize the

results in Table 7.

(a) The NARDL and ARDL models estimated by 2SNARDL show that the coefficient of ut−1 for the ex-

ogenous tax shock is statistically significant. The significance levels are 10% and 5% for the NARDL

and ARDL models, respectively. Moreover, we apply the unit-root test of Phillips and Perron (1988)

to the cointegration residuals obtained from both models. The results reject the unit-root hypothesis.

The p-values are 10.19% and 2.58% for the NARDL and ARDL models, respectively. This confirms

the cointegrating relationship between the log real GDP and the log of an exogenous tax shock.

(b) For the log of an exogenous tax shock, the NARDL model indicates that the long-run coefficient of the

log tax increase is -0.4329, whereas that of the log tax decrease is -0.3202. These signs are consistent

with standard economic theory, and are statistically significant at the 1% and 10% levels, respectively.

For the ARDL model, the long-run coefficient of the log tax change is -0.2328. This sign is also

consistent with standard economic theory, and the estimated coefficient is statistically significant at

the 1% level.

(c) Our findings for the endogenous and aggregate log tax shocks align with the results presented in

Table 6. The coefficients of τ+t−1, τ−t−1, and τt−1 for the log of endogenous tax shocks are statistically

significant, but their signs are inconsistent with standard economic theory. However, for the log of the

aggregate tax shock, none of these coefficients are statistically significant. Moreover, the coefficient

of ut−1 is insignificant. We believe these inconsistent results are due to the correlation between an

endogenous shock and a structural error. □

The results in Tables 6 and 7 suggest that by using the log of exogenous tax shocks, we can properly

identify the relationship between the log real GDP and a fiscal shock. The findings indicate limited statistical

support for the asymmetry between tax shocks for deficit reduction and those for long-run growth. Moreover,

the OLS and 2SNARDL estimations produce qualitatively similar results.

7.2.2 Tax Changes Measured by Tax-to-GDP Ratio

This section extends the work of Romer and Romer (2010) to investigate the long- and short-run rela-

tionships between fiscal shocks and real GDP. Rather than using the tax change logarithm τt, we use

∆rt := (∆T1t +∆T2t)/NYt, which represents the tax change-to-nominal GDP ratio, to measure the effect

of fiscal policy and to specify the models corresponding to (20), (21), (22), and (23). As with Tables 6 and
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7, we estimate the models using OLS and 2SNARDL. The estimation and inference results are presented in

Tables 8 and 9, respectively. We summarize the results as follows:

(a) For the exogenous tax change, the coefficient of yt−1 in Table 8 is statistically significant at the 25%

level for the NARDL and ARDL models, by the t-test. The F -test does not reject the hypothesis of

no cointegration. However, the coefficient of ut−1 in the t-test of Table 9 is statistically significant

at the 25% and 10% levels for the NARDL and ARDL models, respectively. We give more weight

to the inference results in Table 9 than to those in Table 8, because the long-run parameters can be

estimated super-consistently by 2SNARDL. In addition, neither W(1)
T nor W (1)

T rejects the symmetry

hypothesis in the long-run parameters, indicating that the ARDL model can estimate a cointegrating

relationship between yt and rt more efficiently than 2SNARDL can.

(b) The ARDL model estimation indicates that an increase in an exogenous tax shock measured by rt−1

reduces the long-run log real GDP by about 3%. This is close to the result of Romer and Romer

(2010), estimating that GDP will increase by approximately 3% over three years following a tax cut

of 1% of GDP.

(c) The Wald tests W(2)
T and W (2)

T do not reject the hypothesis of symmetric short-run parameters. Fur-

thermore, neither W(3)
T nor W (3)

T rejects the hypothesis of long- and short-run symmetry. This con-

firms that ARDL is appropriate for the long- and short-run relationships between yt and rt.

(d) For endogenous and aggregate tax changes, there is negligible evidence of cointegration between

real GDP and the tax change. None of the t- or F -tests in Table 8 rejects the hypothesis of no

cointegration. Furthermore, none of the coefficients of ut−1 in Table 9 is statistically significant.

Specifically, for the aggregate tax change, the unit-root test cannot confirm that rt is nonstationary;

see the Online Supplement. Therefore, we conclude that the long- and short-run relationships can be

properly estimated only by the exogenous tax change. □

In summary, our empirical results obtained using the specification in Romer and Romer (2010) provide

qualitatively the same results as those in Section 7.2.1. In particular, the long-run relationship between yt

and rt captured by the cointegration coefficient is close to their estimate.

8 Conclusion

OLS has an asymptotically singular matrix when used with the NARDL model. However, despite the

absence of established limit theory for OLS, it remains popular in empirical literature.

This study investigates the large-sample behavior of OLS by addressing the problem of an asymptot-

ically singular matrix. Specifically, we find that OLS is consistent for the unknown NARDL parameters
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and follows a mixed normal distribution asymptotically under some mild regularity conditions. This implies

that the standard principles of the t- and Wald tests apply, despite the asymptotically singular matrix prob-

lem. To derive the asymptotic distribution, we first represent the OLS as a transformation of other primitive

estimators that are not affected by an asymptotically singular matrix, and derive their weak limits. This

representation and the weak limits allowed us to derive the weak limit of the OLS and enabled us to demon-

strate that the convergence rate of the OLS is identical to that of the estimator implied by the 2SNARDL

estimator despite the asymptotic singular matrix problem.

In addition, we examine the large-sample behavior of the Wald tests for the NARDL hypothesis. Beyond

the standard Wald tests defined by the OLS, we develop supplementary Wald tests using primitive estima-

tors to examine asymmetric long- and/or short-run parameters. The null limit distributions of the standard

Wald tests are mixed chi-squared, whereas those of the supplementary Wald tests differ when testing for

long-run asymmetry. By applying the residual bootstrap method, Monte Carlo simulations show that the

supplementary Wald tests generally perform better than the standard Wald tests.

OLS and 2SNARDL target the same parameter, and each has relative advantages over the other. The

OLS contains a finite sample bias that is asymptotically negligible, affecting its finite sample performance.

In contrast, 2SNARDL estimates the parameter by removing the bias. However, 2SNARDL first esti-

mates the asymptotic covariance matrix between the differenced regressor and cointegration error, affecting

2SNARDL. Meanwhile, OLS is not involved in such a preliminary procedure. From this, if the sample size

is sufficiently large, the OLS can be preferred to the 2SNARDL for practical purposes; if the sample size is

not large but the asymptotic covariance matrix estimator successfully removes the bias, 2SNARDL can be

preferred over OLS.

Lastly, we illustrate the proper use of the NARDL model by estimating the long- and short-run rela-

tionships between GDP and exogenous fiscal shocks due to deficit reduction and long-run growth, using the

empirical data from Romer and Romer (2010). Because all tax changes for deficit reduction are increases,

and most changes for long-run growth are decreases, the NARDL model approximates the relationship be-

tween GDP and the exogenous fiscal shocks. We estimate the model and examine whether the relationships

between tax increases and decreases are symmetric in both the long and short run. We find no evidence

of asymmetric relationships between them. We also find that a 1% exogenous increase in the tax-to-GDP

ratio reduces the log real GDP by about 3% in the long run, confirming the estimation results of Romer and

Romer (2010).
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 11.00 9.84 10.56 10.44 10.78 45.62 46.14 47.56 47.86 47.24

W
(1)
T 5% 6.06 5.00 5.08 5.00 5.20 37.30 37.92 39.50 39.52 39.14

1% 1.24 1.00 0.86 1.02 0.86 23.86 24.62 25.40 25.70 26.20
10% 10.00 10.52 10.02 9.58 9.72 11.66 11.72 10.74 10.12 10.04

W
(2)
T 5% 5.10 5.18 5.36 4.88 4.56 6.46 5.80 5.84 5.30 5.00

1% 1.16 1.18 1.12 0.90 0.78 1.66 1.34 1.12 1.02 1.04
10% 11.16 10.34 10.74 10.22 9.84 41.52 42.14 43.04 43.18 42.54

W
(3)
T 5% 5.90 5.26 5.16 5.18 4.94 32.92 33.60 34.10 34.46 34.52

1% 1.04 1.10 0.98 0.92 0.96 20.14 20.88 21.36 21.12 22.28
10% 9.34 9.06 10.02 10.42 10.20 14.38 11.58 11.68 11.76 10.98

W
(1)
T 5% 4.58 4.52 5.44 5.18 5.18 7.50 6.10 6.42 6.14 5.96

1% 0.88 0.96 1.02 0.94 1.04 2.18 1.54 1.44 1.46 1.22
10% 9.98 9.90 10.54 9.64 10.20 11.96 10.94 11.14 10.02 10.46

W
(2)
T 5% 5.10 5.12 5.38 4.78 5.30 6.46 6.04 5.92 5.10 5.74

1% 0.82 1.06 1.04 1.00 1.18 1.36 1.48 1.20 1.08 1.08
10% 9.72 9.70 10.62 10.02 10.66 14.22 12.04 12.06 11.36 11.64

W
(3)
T 5% 4.82 4.98 5.36 4.88 5.14 8.04 6.42 6.38 5.68 5.98

1% 0.68 1.08 1.02 1.08 1.04 1.80 1.54 1.38 1.08 1.28

Table 2: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1+π

+
∗ ∆x

+
t +π−∗ ∆x

−
t +et, ut = yt−β+∗ x+t −β−∗ x−t , ∆xt = 1/2+vt, and (et, vt)

′ ∼ IIDN(02, I2)

with (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (−1/2, 1/2, 1/2, 1, 1). Here, W(1)

T , W(2)
T , and W

(3)
T denote the Wald tests in

Section 5, and W (1)
T , W (2)

T , and W (3)
T are the standard Wald tests.
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 45.38 87.08 97.72 99.80 99.94 68.44 95.00 99.32 99.96 100.00

W
(1)
T 5% 32.98 79.54 96.02 99.46 99.84 61.76 93.48 98.98 99.92 100.00

1% 13.60 57.06 87.90 97.52 99.48 47.92 88.92 98.12 99.86 99.98
10% 15.78 24.18 30.30 37.58 44.38 18.64 25.82 31.42 38.80 44.86

W
(2)
T 5% 8.98 15.00 20.10 26.82 31.22 11.42 16.78 21.36 27.76 32.44

1% 2.22 5.16 7.18 10.54 13.30 3.44 6.18 8.28 11.68 14.54
10% 43.56 86.04 97.50 99.76 99.94 64.26 94.04 99.00 99.94 100.00

W
(3)
T 5% 31.44 77.96 95.78 99.42 99.78 57.12 91.96 98.50 99.90 100.00

1% 12.88 56.40 87.02 97.46 99.48 43.80 86.34 97.54 99.76 99.96
10% 42.88 83.22 97.46 99.54 99.98 53.02 86.30 97.92 99.60 99.98

W
(1)
T 5% 30.50 75.20 95.18 99.12 99.90 41.82 79.88 96.34 99.20 99.94

1% 12.14 53.98 87.00 97.34 99.58 22.92 63.56 90.38 98.12 99.62
10% 16.68 23.28 31.82 38.08 44.70 19.70 24.96 32.98 39.06 45.66

W
(2)
T 5% 9.82 14.52 21.38 26.56 32.62 12.34 16.00 22.72 27.98 33.76

1% 2.60 3.98 7.48 10.82 13.82 4.00 5.08 8.42 12.16 15.08
10% 38.04 78.18 96.12 99.22 99.94 47.26 81.52 96.64 99.30 99.96

W
(3)
T 5% 26.50 69.44 93.50 98.74 99.80 36.14 74.16 94.54 98.94 99.88

1% 9.80 47.46 83.48 96.32 99.30 18.66 56.34 86.96 97.16 99.46

Table 3: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1+π

+
∗ ∆x

+
t +π−∗ ∆x

−
t +et, ut = yt−β+∗ x+t −β−∗ x−t , ∆xt = 1/2+vt, and (et, vt)

′ ∼ IIDN(02, I2)

with (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (−1/2, 1/8,−1/8, 1/4,−1/4). Here, W(1)

T , W(2)
T , and W

(3)
T denote the Wald

tests in Section 5, and W (1)
T , W (2)

T , and W (3)
T are the standard Wald tests.
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 11.34 10.78 10.18 10.26 10.32 39.68 40.84 41.20 42.78 41.72

W
(1)
T 5% 5.98 5.46 4.90 5.46 5.32 32.04 32.80 33.02 34.62 33.42

1% 1.00 1.02 0.94 1.38 0.90 19.34 19.62 19.82 20.96 21.40
10% 9.58 8.96 9.70 9.56 9.96 12.10 10.20 10.52 10.20 10.10

W
(2)
T 5% 4.46 4.28 5.14 4.90 4.80 6.30 4.94 5.78 5.00 5.38

1% 1.04 0.86 1.02 0.84 1.02 1.56 1.06 1.28 0.90 1.06
10% 11.46 10.50 10.20 9.98 10.62 36.38 36.46 37.28 38.14 37.12

W
(3)
T 5% 5.54 5.18 4.94 5.28 5.20 28.10 27.56 28.44 29.44 28.86

1% 1.02 0.84 0.80 1.28 0.96 16.62 16.18 16.12 17.58 17.50
10% 10.24 10.12 10.62 9.34 9.90 14.44 12.78 12.10 10.90 10.96

W
(1)
T 5% 5.38 5.52 5.14 4.34 4.86 8.56 7.22 6.46 5.26 5.56

1% 1.24 1.14 1.08 0.92 1.08 2.84 1.92 1.32 1.14 1.34
10% 9.82 10.90 9.38 10.32 10.44 11.98 11.94 10.24 10.86 10.82

W
(2)
T 5% 4.90 5.56 4.56 5.42 5.68 6.52 6.52 5.20 5.70 6.00

1% 1.04 0.96 1.00 1.36 1.12 1.74 1.10 1.18 1.38 1.46
10% 9.96 11.32 10.06 9.90 10.84 14.98 13.62 11.72 10.98 11.66

W
(3)
T 5% 5.06 5.64 4.82 4.96 5.86 8.42 7.54 6.00 5.74 6.60

1% 1.14 1.04 1.16 1.10 1.14 2.62 1.82 1.50 1.50 1.42

Table 4: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et, ut = yt − β+∗ x

+
t − β−∗ x

−
t , ∆xt = 1/4 + κ∗∆xt−1 + vt, and (et, vt)

′ ∼
IID N(02, I2) with (κ∗, ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (1/2,−1/2, 1/2, 1/2, 1, 1). Here, W(1)

T , W(2)
T , and W

(3)
T

denote the Wald tests in Section 5, and W (1)
T , W (2)

T , and W (3)
T are the standard Wald tests.
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Wald Test Method Bootstrap Method Mixed Chi-squared Distribution
α \ T 100 200 300 400 500 100 200 300 400 500
10% 52.00 91.58 99.30 99.92 100.0 73.96 97.34 99.92 99.98 100.0

W
(1)
T 5% 39.20 86.62 98.54 99.88 100.0 67.62 96.32 99.82 99.98 100.0

1% 17.32 70.56 94.76 99.44 99.94 55.08 93.26 99.48 99.96 100.0
10% 16.48 23.52 30.24 37.72 44.20 19.12 25.62 31.06 38.96 45.46

W
(2)
T 5% 9.16 14.64 19.44 26.76 32.58 11.80 16.78 21.04 27.98 33.92

1% 2.32 4.30 6.52 10.92 14.18 3.94 5.82 7.46 11.64 15.32
10% 50.70 90.78 99.18 99.92 100.0 69.84 96.36 99.80 99.98 100.0

W
(3)
T 5% 36.98 85.84 98.32 99.90 99.98 63.90 95.14 99.66 99.98 100.0

1% 16.44 69.22 94.32 99.36 99.92 51.42 91.68 99.20 99.94 100.0
10% 47.92 91.16 99.16 99.92 100.0 58.56 93.16 99.24 99.94 100.0

W
(1)
T 5% 35.04 85.24 98.22 99.90 100.0 47.72 88.78 98.74 99.92 100.0

1% 15.22 67.52 94.24 99.12 99.94 28.80 76.20 95.82 99.52 99.98
10% 15.42 22.08 29.92 37.12 45.18 18.28 24.42 31.34 38.48 46.34

W
(2)
T 5% 8.74 14.10 19.78 26.18 31.78 11.28 15.62 21.00 27.80 33.48

1% 2.10 4.76 6.88 10.38 13.88 3.30 5.98 7.80 11.42 14.92
10% 41.94 87.02 98.54 99.92 100.0 52.28 89.68 98.86 99.92 100.0

W
(3)
T 5% 30.68 79.86 97.32 99.76 100.0 41.42 84.08 97.84 99.82 100.0

1% 12.40 61.20 91.60 98.86 99.88 23.66 69.66 93.92 99.16 99.96

Table 5: EMPIRICAL REJECTION RATES OF THE WALD TESTS (IN PERCENT). This table shows the
empirical rejection rates of the Wald statistics testing H′

0 : β∗ = 0, H′′
0 : π+∗ = π−∗ , and H′′′

0 : β∗ = 0
and π+∗ = π−∗ . The total number of repetitions is 5000, and the bootstrap iteration is 500. DGP: ∆yt =
ρ∗ut−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et, ut = yt − β+∗ x

+
t − β−∗ x

−
t , ∆xt = 1/4 + κ∗∆xt−1 + vt, and (et, vt)

′ ∼
IID N(02, I2) with (κ∗, ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ ) = (1/2,−1/2, 1/8,−1/8, 1/4,−1/4). Here, W(1)

T , W(2)
T ,

and W
(3)
T denote the Wald tests in Section 5, and W (1)

T , W (2)
T , and W (3)

T are the standard Wald tests.
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NARDL Model ARDL Model
Variables \ Tax Exo. Endo. Sum. Variables \ Tax Exo. Endo. Sum.
yt−1 -0.0683∗ -0.0817 -0.0497 yt−1 -0.070∗∗ -0.0755 -0.0404

(0.0191) (0.0223) (0.0158) (0.0185) (0.0220) (0.0148)
τ+t−1 -0.0123 0.0158∗∗ 0.0016 τt−1 -0.0139 0.0142 -0.0053

(0.0078) (0.0078) (0.0093) (0.0060) (0.0077) (0.0074)
τ−t−1 -0.0123 0.0149 -0.0093

(0.0083) (0.0176) (0.0090)
Trend 0.0549∗∗∗ 0.0631∗∗∗ 0.0324∗∗ Trend 0.0570∗∗∗ 0.0584∗∗∗ 0.0333∗∗∗

(0.0177) (0.0176) (0.0127) (0.0151) (0.0169) (0.0120)
Constant 0.7588∗∗∗ 0.6974∗∗∗ 0.8357∗∗∗ Constant 0.7826∗∗∗ 0.7542∗∗∗ 0.8543∗∗∗

(0.1874) (0.1644) (0.1744) (0.1539) (0.1604) (0.1561)
∆yt−1 0.3129∗∗∗ 0.3118∗∗∗ 0.3135∗∗∗ ∆yt−1 0.3091∗∗∗ 0.3035∗∗∗ 0.3031∗∗∗

(0.0633) (0.0658) (0.0646) (0.0630) (0.0657) (0.0648)
∆yt−2 0.1265∗ 0.1446∗∗ 0.1190∗ ∆yt−2 0.1304∗∗ 0.1331∗∗ 0.1091∗

(0.0646) (0.0658) (0.0645) (0.0643) (0.0653) (0.0647)
∆τ+t -0.0029 0.0890∗ 0.03984 ∆τt -0.0444 0.0434 -0.0122

(0.0435) (0.0465) (0.0341) (0.0272) (0.0362) (0.0226)
∆τ−t -0.0780∗ -0.0302 -0.0683∗

(0.0391) (0.0598) (0.0347)
AIC -6.5459 -6.5372 -6.5332 AIC -6.5561 -6.5434 -6.5284
BIC -6.4225 -6.4099 -6.5332 BIC -6.4602 -6.4475 -6.4378
t-test -3.5680∗ -3.6519∗ -3.1308† t-test -3.8220∗∗ -3.4319∗ -2.7229
F -test 4.5387 4.9164 3.8509 F -test 7.3222∗ 6.5583∗ 4.7046
W

(1)
T 9.8862 0.0048 9.8910

(0.4344) (0.9696) (0.5000)
W

(2)
T 1.4822 3.8085 5.2908

(0.7472) (0.1902) (0.6567)
W

(3)
T 30.9528 1.4114 32.3642

(0.2737) (0.2659) (0.2718)
W

(1)
T 0.0000 0.0039 1.0285

(0.9982) (0.9604) (0.4485)
W

(2)
T 1.5426 2.5180 4.4950

(0.2265) (0.1259) (0.0398)
W

(3)
T 1.5527 2.5326 5.2070

(0.5474) (0.3706) (0.1525)

Table 6: OLS ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the OLS esti-
mation using quarterly data from Romer and Romer (2010). The left and right panels display estimated
parameters for (23) and (21), respectively. Figures in parentheses indicate standard errors of the OLS esti-
mates. At the bottom of the top panels, AIC, BIC, t-test, and Pesaran et al.’s (2001) F -test are reported. †,
∗, ∗∗, and ∗∗∗ indicate significance at 25%, 10%, 5%, and 1% levels, respectively. Wald tests in the last two
bottom panels show the Wald tests in Section 5 and the standard Wald tests. Figures in parentheses below
the Wald tests show p-values. They are obtained from 100000 bootstrap iterations.
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NARDL Model ARDL Model
Variables \ Tax Exo. Endo. Sum. Variables \ Tax Exo. Endo. Sum.

Long-Run Constant 4.2360 3.7413∗∗∗ 4.9730∗∗ Constant 6.0785∗∗∗ 4.8528∗∗∗ 5.8407∗∗

(2.5919) (1.2787) (2.3861) (0.0709) (1.3852) (2.8526)
τ+t−1 -0.4329∗∗∗ 0.2715∗∗∗ 0.2759 τt−1 -0.2328∗∗∗ 0.2523∗∗∗ 0.1564

(0.13189) (0.0546) (0.1723) (0.0709) (0.0591) (0.1716)
τ−t−1 -0.3202∗ 0.3276∗ 0.2598

(0.1722) (0.1757) (0.1826)
Trend 0.8340∗∗∗ 0.8461∗∗∗ 0.8436∗∗∗ Trend 0.8261∗∗∗ 0.8367∗∗∗ 0.8287∗∗∗

(0.0184) (0.0090) (0.0169) (0.0127) (0.0098) (0.0202)
Short-Run ut−1 -0.0683∗ -0.0817∗ -0.0497† ut−1 -0.0708∗∗ -0.0755∗ -0.0404

(0.0191) (0.0223) (0.0158) (0.0185) (0.0220) (0.0148)
Constant 0.6734∗∗∗ 0.6918∗∗∗ 0.5683∗∗∗ Constant 0.5752∗∗∗ 0.6590∗∗∗ 0.6295∗∗∗

(0.1424) (0.1458) (0.1472) (0.5752) (0.1392) (0.1404)
∆yt−1 0.3129∗∗∗ 0.3118∗∗∗ 0.3135∗∗∗ ∆yt−1 0.3091∗∗∗ 0.3035∗∗∗ 0.3031∗∗∗

(0.0633) (0.0658) (0.0646) (0.0630) (0.0657) (0.0648)
∆yt−2 0.1265∗ 0.1446∗∗ 0.1190∗ ∆yt−2 0.1304∗∗ 0.1331∗∗ 0.1091∗

(0.0646) (0.0658) (0.0645) (0.0643) (0.0653) (0.0647)
∆τ+t -0.0029 0.0890∗ 0.0398 ∆τt -0.0444 0.0434 -0.0122

(0.0435) (0.0465) (0.0341) (0.0272) (0.0362) (0.0226)
∆τ−t -0.0780∗∗ -0.0302 -0.0683∗

(0.0391) (0.0598) (0.0347)

Table 7: 2SNARDL ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the
2SNARDL estimation using the quarterly data from Romer and Romer (2010). The left and right pan-
els display estimated parameters for (22) and (20), respectively. †, ∗, ∗∗, and ∗∗∗ imply that the tests are
significant at 25%, 10%, 5%, and 1%, respectively.
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NARDL Model ARDL Model
Variables \ Tax Exo. ratio Endo. ratio Sum. ratio Variables \ Tax Exo. ratio Endo. ratio Sum. ratio
yt−1 -0.0609† -0.0633 -0.0460 yt−1 -0.0552† -0.0658 -0.0400

(0.0184) (0.0251) (0.0177) (0.0163) (0.0247) (0.0160)
r+t−1 -0.1992 0.0850 0.0037 rt−1 -0.1125 0.1003 -0.0351

(0.1349) (0.0954) (0.0789) (0.0743) (0.0925) (0.0618)
r−t−1 -0.0970 0.0401 -0.0566

(0.0801) (0.1345) (0.0645)
Trend 0.0499∗∗∗ 0.0488∗∗ 0.0324∗∗ Trend 0.0419∗∗∗ 0.0520∗∗∗ 0.0317∗∗∗

(0.0173) (0.0200) (0.0136) (0.0127) (0.0194) (0.0135)
Constant 0.2683 0.3673 0.3685∗ Constant 0.4054∗∗ 0.4700∗∗∗ 0.5261∗∗∗

(0.2363) (0.2380) (0.2047) (0.1787) (0.1663) (0.1543)
∆yt−1 0.3095∗∗∗ 0.3144∗∗∗ 0.3049∗∗∗ ∆yt−1 0.3042∗∗∗ 0.3115∗∗∗ 0.2921∗∗∗

(0.0639) (0.0672) (0.0657) (0.0636) (0.0660) (0.0650)
∆yt−2 0.1223∗ 0.1265∗∗ 0.1139∗ ∆yt−2 0.1168∗ 0.1242∗ 0.1073∗

(0.0652) (0.0660) (0.0651) (0.0644) (0.0657) (0.0648)
∆r+t 0.1638 0.2465 0.1778 ∆rt 0.1725 0.2553 0.1467

(0.6215) (0.2788) (0.2621) (0.618)0 (0.2776) (0.2609)
∆r−t -0.2706 -0.1477 -0.2350

(0.2734) (0.3051) (0.2087)
AIC 2.6831 2.6925 2.6895 AIC 2.6739 2.6780 2.6814
BIC 2.8133 2.8226 2.8196 BIC 2.7751 2.7792 2.7826
t-test -3.3087† -2.5198 -2.5917 t-test -3.3867† -2.6602 -2.4960
F -test 3.9276 3.5933 3.4873 F -test 5.7417 5.2684 4.8210
W

(1)
T 52.7574 2.1358 48.9740

(0.1294) (0.7290) (0.2581)
W

(2)
T 0.0722 0.8121 0.4782

(0.8015) (0.4021) (0.4981)
W

(3)
T 52.8296 2.9480 49.4522

(0.1340) (0.7595) (0.2610)
W

(1)
T 0.5384 0.3344 0.8601

(0.5697) (0.6463) (0.5035)
W

(2)
T 0.4079 0.9926 1.5118

(0.5278) (0.3177) (0.2279)
W

(3)
T 1.0869 1.2200 2.1652

(0.6618) (0.6150) (0.4681)

Table 8: OLS ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the OLS esti-
mation using quarterly data from Romer and Romer (2010). The left and right panels display estimated
parameters for (23) and (21) using rt instead of τt, respectively. Figures in parentheses indicate standard
errors of the OLS estimates. At the bottom of the top panels, AIC, BIC, t-test, and Pesaran et al.’s (2001) F -
test are reported. †, ∗, ∗∗, and ∗∗∗ indicate significance at 25%, 10%, 5%, and 1% levels, respectively. Wald
tests in the last two bottom panels show the Wald tests in Section 5 and the standard Wald tests. Figures in
parentheses below the Wald tests show p-values. They are obtained from 100000 bootstrap iterations.
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NARDL Model ARDL Model

Variables \ Tax
Exo. Endo. Sum.

Variables \ Tax
Exo. Endo. Sum.

ratio ratio ratio ratio ratio ratio
Long-Run Constant -2.5602 -2.5888∗∗ -2.9531 Constant -0.3468 -2.2311∗ -1.0492

(2.4603) (1.1990) (2.5202) (2.3897) (1.2927) (2.8199)
r+t−1 -6.7407∗∗∗ 4.2616∗∗∗ 4.5455∗∗∗ rt−1 -3.0752∗∗ 3.3960∗∗∗ 2.2608∗

(2.0794) (0.5100) (1.2686) (1.2428) (0.5463) (1.2356)
r−t−1 -2.8360∗ 5.1176∗∗∗ 2.762∗∗3

(1.5211) (0.9583) (1.2373)
Trend 0.8364∗∗∗ 0.8391∗∗∗ 0.8435∗∗∗ Trend 0.8242∗∗∗ 0.8370∗∗∗ 0.8295∗∗∗

(0.0166) (0.0081) (0.0170) (0.0161) (0.0087) (0.0190)
Short-Run ut−1 -0.0609† -0.0633 -0.0460 ut−1 -0.0558∗ -0.0627 -0.0378

(0.0184) (0.0251) (0.0177) (0.0162) (0.0248) (0.0160)
Constant 0.6763∗∗∗ 0.6693∗∗∗ 0.6719∗∗∗ Constant 0.5730∗∗∗ 0.6828∗∗∗ 0.6517∗∗∗

(0.1484) (0.1510) (0.1534) (0.1470) (0.1468) (0.1464)
∆yt−1 0.3095∗∗∗ 0.3144∗∗∗ 0.3049∗∗∗ ∆yt−1 0.3038∗∗∗ 0.3127∗∗∗ 0.3007∗∗∗

(0.0639) (0.0672) (0.0657) (0.0635) (0.0669) (0.0656)
∆yt−2 0.1223∗ 0.1265∗ 0.1139∗ ∆yt−2 0.1149∗ 0.1220∗ 0.1070

(0.0652) (0.0660) (0.0651) (0.0644) (0.0658) (0.0648)
∆r+t 0.1638 0.2465 0.1778 ∆rt -0.2094 0.0801 -0.0737

(0.6215) (0.2788) (0.2621) (0.2435) (0.2087) (0.1596)
∆r−t -0.2706 -0.1477 -0.2350

(0.2734) (0.3051) (0.2087)

Table 9: 2SNARDL ESTIMATION OF THE NARDL AND ARDL MODELS. This table presents the
2SNARDL estimation using the quarterly data from Romer and Romer (2010). The left and right pan-
els display estimated parameters for (22) and (20), respectively. †, ∗, ∗∗, and ∗∗∗ imply that the tests are
significant at 25%, 10%, 5%, and 1%, respectively.
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Figure 1: TRACE AND DETERMINANT OF D−1(
∑T

t=1 ztz
′
t)D

−1. Figure 1 (a) shows the average of the
traces of D−1(

∑T
t=1 ztz

′
t)D

−1 that are obtained by 10000 independent experiments under the DGP con-
ditions given in Tables 3 and 5. Figure 1 (b) shows the average of the determinants ×1012 of the same
matrices.
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Figure 2: PARTIAL SUM PROCESS FORMED BY EXOGENOUS FISCAL SHOCKS. The solid, dashed, and
dotted lines represent deficit reduction, long-run growth, and exogenous fiscal shocks, respectively.
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This Online Supplement is an Appendix that provides proofs of all the results in the paper,

including the lemmas, additional Monte Carlo simulations, and supplementary empirical find-

ings.

A Supplements

A.1 Supplementary Lemmas

Before proving the main claims in the text, we first provide some preliminary lemmas to prove the main

claims efficiently.

The following two lemmas provide alternative representations of the OLS estimators, which we define

under different environments. We first suppose that yt ∈ R is a dependent variable and (x′
t, z

′
t)
′ ∈ R(s+k)

is an explanatory variable, and the OLS estimator is obtained by regressing yt against (x′
t, z

′
t)
′. Given this,

we provide alternative forms of the OLS estimator in the following lemmas:

Lemma A.1. Suppose that {(yt,x′
t, z

′
t)
′ ∈ R1+s+k : t = 1, 2, . . . , T}. If the OLS estimators are obtained

as follows: for j = 1, 2, . . . , s,

(β̃T , γ̂T ) := argmin
β,γ

T∑
t=1

(
yt − xtβ − z′

tγ
)2
, ϕ̂jT := argmin

ϕj

T∑
t=1

(
xjt − z′

tϕj

)2
, and

(ξ̂T , δ̂T ) := argmin
ξ,δ

T∑
t=1

(
yt − v̂′

tξ − z′
tδ
)2
,

where for each t, v̂t := xt − ϕ̂
′
Tzt and ϕ̂T := (ϕ̂1T , . . . , ϕ̂sT ), then β̃T = ξ̂T and γ̂T = δ̂T − ϕ̂T ξ̂T . □

1The co-editor, Degui Li and three anonymous referees provided helpful comments for which the author is most grateful. The
author is also indebted to Chun-Kyu Cho for his support and discussions with Matthew Greenwood-Nimmo, Peter Phillips, and
Yongcheol Shin. Cho acknowledges the research grant provided by the Ministry of Education of the Republic of Korea and the
National Research Foundation of Korea (NRF2020S1A5A2A0104-0235).
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Therefore, we can obtain the OLS estimator (β̃T , γ̂T ) by combining the two OLS estimators ϕ̂T and

(ξ̂T , δ̂T ) obtained from the first- and second-step OLS estimators, respectively.

The following lemma considers a different environment. We let the OLS estimator be obtained by

regressing yt against (xt, z
′
t,w

′
t)
′ ∈ Rs+k+d and provide another alternative form of the OLS estimator:

Lemma A.2. Suppose that {(yt,x′
t, z

′
t,w

′
t)
′ ∈ R1+s+k+d : t = 1, 2, . . . , T}. If the OLS estimators are

obtained as follows: for j = 1, 2, . . . , s,

(β̃T , γ̂T , α̂T ) := argmin
β,γ,α

T∑
t=1

(
yt − x′

tβ − z′
tγ −w′

tα
)2
, ϕ̂jT := argmin

ϕ

T∑
t=1

(
xjt − z′

tϕj

)2
, and

(ξ̂T , δ̂T , θ̂T ) := argmin
ξ,δ,θ

T∑
t=1

(
yt − v̂′

tξ − z′
tδ −w′

tθ
)2
,

where for each t, v̂t := xt − ϕ̂
′
Tzt and ϕ̂T := (ϕ̂1T , . . . , ϕ̂sT ), then β̃T = ξ̂T , γ̂T = δ̂T − ϕ̂T ξ̂T , and

α̂T = θ̂T . □

Note that wt is added as an additional regressor to the regressors given in Lemma A.1 and that the nuisance

parameter estimator α̂T is the same as the nuisance parameter estimator θ̂T obtained in the second step.

We now prove Lemmas A.1 and A.2. For notational simplicity, we let

Y := [y1, y2, . . . , yT ]
′, X := [x1,x2, . . . ,xT ]

′, Z := [z1, z2, . . . ,zT ]
′, V̂ := [v̂1, v̂2, . . . , v̂T ]

′,

and W := [w1,w2, . . . ,wT ]
′.

Proof of Lemma A.1. From the definition of (β̃T , γ̂T ), we first note that

 β̃T

γ̂T

 =

 X′X X′Z

Z′X Z′Z

−1  X′Y

Z′Y

 =

 (X′QX)−1X′QY

(Z′Z)−1Z′[I−X(X′QX)−1X′Q]Y

 , (A.1)

where Q := I− Z(Z′Z)−1Z′. Next, we note that

V̂ = X− Zϕ̂T = X− Z(Z′Z)−1Z′X = QX. (A.2)

Therefore, Z′V̂ = 0 by noting that Z′Q = 0. Third, we note that

 ξ̂T

δ̂T

 =

 V̂′V̂ V̂′Z

Z′V̂ Z′Z

−1  V̂′Y

Z′Y

 =

 (V̂′V̂)−1V̂′Y

(Z′Z)−1Z′Y


2



using the fact that Z′V̂ = 0. Therefore,

ξ̂T = (V̂′V̂)−1V̂′Y = (X′QX)−1X′QY (A.3)

using (A.2). This shows that β̃T = ξ̂T . Finally, we note that

δ̂T − ϕ̂T ξ̂T = (Z′Z)−1Z′Y− (Z′Z)−1Z′X(V̂′V̂)−1V̂′Y = (Z′Z)−1Z′[I−X(X′QX)−1X′Q]Y = γ̂T ,

which follows from (A.1), where the second equality follows from (A.3). Thus, δ̂T − ϕ̂T ξ̂T = γ̂T . This

completes the proof. ■

Proof of Lemma A.2. To prove the claim, we represent the OLS estimators in different forms. If we let

(β̃T (α), γ̂T (α)) := argmin
β,γ

T∑
t=1

(
yt − x′

tβ − z′
tγ −w′

tα
)2
,

then

α̂T = argmin
α

T∑
t=1

(
yt − xtβ̃T (α)− z′

tγ̂T (α)−w′
tα
)2
,

and (β̃T (α̂T ), γ̂T (α̂T )) = (β̃T , γ̂T ). Likewise, if we let

(ξ̂T (θ), δ̂T (θ)) := argmin
ξ,δ

T∑
t=1

(
yt − v̂′

tξ − z′
tδ −w′

tθ
)2
,

then

θ̂T = argmin
θ

T∑
t=1

(
yt − v̂′

tξ̂T (θ)− z′
tδ̂T (θ)−w′

tθ
)2
,

and (ξ̂T (θ̂T ), δ̂T (θ̂T )) = (ξ̂T , δ̂T ).

Here, for each α, if we let yt(α) := yt −w′
tα,

(β̃T (·), γ̂T (·)) := argmin
β,γ

T∑
t=1

(
yt(·)− x′

tβ − z′
tγ
)2
, and

(ξ̂T (·), δ̂T (·)) := argmin
ξ,δ

T∑
t=1

(
yt(·)− v̂′

tξ − z′
tδ
)2
,

3



so that Lemma A.1 implies that β̃T (·) = ξ̂T (·) and γ̂T (·) = δ̂T (·)− ϕ̂T ξ̂T (·). Therefore,

T∑
t=1

(
yt(·)− v̂′

tξ̂T (·)− z′
tδ̂T (·)

)2
=

T∑
t=1

(
yt(·)− (xt − ϕ̂

′
Tzt)

′ξ̂T (·)− z′
tδ̂T (·)

)2
=

T∑
t=1

(
yt(·)− x′

tξ̂T (·)− z′
t(δ̂T (·)− ϕ̂T ξ̂T (·))

)2
=

T∑
t=1

(
yt(·)− x′

tβ̃T (·)− z′
tγ̂T (·)

)2
,

implying that

argmin
α

T∑
t=1

(
yt(α)− v̂′

tξ̂T (α)− z′
tδ̂T (α)

)2
= argmin

θ

T∑
t=1

(
yt(θ)− x′

tβ̃T (θ)− z′
tγ̂T (θ)

)2
,

viz., α̂T = θ̂T . Thus, it follows that β̃T (α̂T ) = ξ̂T (θ̂T ) and γ̂T (α̂T ) = δ̂T (θ̂T ) − ϕ̂T ξ̂T (θ̂T ). That is,

β̃T = ξ̂T and γ̂T = δ̂T − ϕ̂T ξ̂T . This completes the proof. ■

The following lemma shows that υ̃T and ω̃T defined in Section 3 suffer from an asymptotically singular

matrix problem.

Lemma A.3. Given Assumption 1,

(i) T−1
∑T

t=1 ũ
2
t−1

P→ σ2u := E[u2t ];

(ii) T−1/2
(∑T

t=1 ũt−1rt−1

)
D̃−1

1 ⇒ M̃1u := 01×(2k+2), where D̃1 := diag[T 3/2I2k, T
3/2, T 1/2];

(iii)

D̃−1
1

(
T∑
t=1

rt−1r
′
t−1

)
D̃−1

1 ⇒ M̃11 :=


1
3µ∗µ

′
∗

1
3µ∗

1
2µ∗

1
3µ

′
∗

1
3

1
2

1
2µ

′
∗

1
2 1

 ,
which is singular;

(iv) T−1/2
(∑T

t=1 ũt−1z2t

)
D̃−1

2
P→ M̃2u := E[ut−1z2t], where D̃2 := diag[T 1/2Ip+2kq−1];

(v)

D̃−1
2

(
T∑
t=1

z2tr
′
t−1

)
D̃−1

1 ⇒ M̃21 :=

 1
2δ∗ιp−1µ

′
∗

1
2δ∗ιp−1 δ∗ιp−1

1
2ιq ⊗ µ∗µ

′
∗

1
2ιq ⊗ µ∗ ιq ⊗ µ∗

 ;

(vi) D̃−1
2

(∑T
t=1 z2tz

′
2t

)
D̃−1

2
P→ M̃22 := M22; and

(vii) if we let D̃ := diag[T 1/2, D̃1, D̃2], D̃−1
(∑T

t=1 z̃tz̃
′
t

)
D̃−1 ⇒ M̃, where

D̃−1

(
T∑
t=1

z̃tz̃
′
t

)
D̃−1 ⇒ M̃ :=


σ2u M̃u1 M̃u2

M̃1u M̃11 M̃12

M̃2u M̃21 M̃22

 ,
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which is singular, where D̃ := diag[T 1/2, D̃1, D̃2], M̃12 := M̃
′
21, M̃u1 := M̃′

1u, and M̃u2 := M̃′
2u.

□

Both υ̃T and ω̃T suffer from the asymptotically singular matrix problem by Lemma A.3 (iii and vii). Specif-

ically, every column from the second to (1+k)-th columns of M̃ is proportional to the (2+2k)-th column.

Likewise, every column from the first to k-th columns in M̃11 is proportional to the (1 + 2k)-th column of

M̃11.

We now prove Lemma A.3.

Proof of Lemma A.3. (i) This follows from Lemma B.6 (iv) given in Section A.2.

(ii) This follows from Lemmas B.3 (v), B.4 (v), and B.5 (iv) given in Section A.2.

(iii) This follows from Lemmas B.3 (i, ii), B.4 (i, ii), and B.5 (i) given in Section A.2.

(iv) This follows from Lemma B.2 (vii) given in Section A.2.

(v) This follows from Lemma B.2 (ii, iii, and iv) given in Section A.2.

(vi) This follows from Lemma B.2 (i) given in Section A.2.

(vii) The given weak convergence follows from Lemma A.3 (i, ii, iii, iv, v, and vi) given in Section A.2,

and the singularity follows from the structure of M̃. ■

Before moving to the next section, we demonstrate how (2) is associated with (1) by representing the

parameters in (2) using the parameters in (1) as follows:

ρ∗ :=

p∑
j=1

ϕj∗ − 1, θ+
∗ :=

q∑
j=0

θ+
j∗, θ−

∗ :=

q∑
j=0

θ−
j∗, π+

0∗ := θ+
0∗, π−

0∗ := θ−
0∗,

and for ℓ = 1, 2, . . . , p− 1 and j = 1, 2, . . . q − 1,

φℓ∗ := −
p∑

i=ℓ+1

ϕi∗, π+
j∗ := −

q∑
i=j+1

θ+
i∗, and π−

j∗ := −
q∑

i=j+1

θ−
i∗.

Finally, α∗ = α0∗+ ξ∗. By plugging these parameters into (2), the NARDM(p, q) process in (1) is obtained.

A.2 Preliminary Lemmas

We next provide preliminary lemmas to prove the main claims efficiently.

Lemma B.1. Given Assumption 1, BT (·) := T−1/2
∑⌊(·)T ⌋

t=1 wt ⇒ B(·). □

Lemma B.2. Given Assumption 1,

(i) T−1
∑T

t=1 z2tz
′
2t

P→ E[z2tz
′
2t];

5



(ii) T−1
∑T

t=1 z2t
P→ [δ∗ι

′
p−1, ι

′
q ⊗ µ′

∗]
′;

(iii) T−2
∑T

t=1(t− 1)z2t
P→ [12δ∗ι

′
p−1,

1
2ι

′
q ⊗ µ′

∗]
′;

(iv) T−2
∑T

t=1 ẍt−1z
′
2t

P→ [12δ∗µ∗ι
′
p−1,

1
2µ∗ι

′
q ⊗ µ′

∗]
′;

(v) T−3/2
∑T

t=1 m̈t−1z
′
2t ⇒ [δ∗

∫
B̄mι′p−1,

∫
B̄mι′q ⊗ µ′

∗]
′;

(vi) T−2
∑T

t=1 yt−1z
′
2t

P→ [12δ
2
∗ι

′
p−1,

1
2δ∗ι

′
q ⊗ µ′

∗]
′;

(vii) T−1
∑T

t=1 üt−1z2t
P→ E[ut−1z2t]. □

Lemma B.3. Given Assumption 1,

(i) T−2
∑T

t=1 t→
1
2 ;

(ii) T−2
∑T

t=1 ẍt
P→ 1

2µ∗;

(iii) T−3/2
∑T

t=1 m̈t ⇒
∫
B̄m;

(iv) T−2
∑T

t=1 yt
P→ 1

2δ∗;

(v)
∑T

t=1 üt−1 ≡ 0. □

Lemma B.4. Given Assumption 1,

(i) T−3
∑T

t=1 t
2 → 1

3 ;

(ii) T−3
∑T

t=1 tẍt
P→ 1

3µ∗;

(iii)
∑T

t=1(t− 1)m̈t−1 ≡ 0;

(iv) T−3
∑T

t=1 tyt
P→ 1

3δ∗;

(v)
∑T

t=1(t− 1)üt−1 ≡ 0. □

Lemma B.5. Given Assumption 1,

(i) T−3
∑T

t=1 ẍtẍ
′
t

P→ 1
3µ∗µ

′
∗;

(ii) T−2
∑T

t=1 ẍt−1m̈
′
t−1 ⇒

∫
BmB̄′

m;

(iii) T−3
∑T

t=1 ẍtyt
P→ 1

3δ∗µ∗;

(iv)
∑T

t=1 ẍt−1üt−1 ≡ 0. □

Remark.
∫
BmB̄′

m =
∫
B̄mB̄′

m =
∫
BmB′

m − 3
∫
rBm

∫
rB′

m from the definition of B̄m(s) =

Bm(s)− 3s
∫
rBm. □

Lemma B.6. Given Assumption 1,

(i) T−2
∑T

t=1 m̈t−1m̈
′
t−1 ⇒

∫
BmB̄′

m;

(ii)
∑T

t=1 m̈t−1ũt−1 ≡ 0;

(iii) T−3
∑T

t=1 y
2
t

P→ 1
3δ

2
∗;

(iv) σ̈2u,T := T−1
∑T

t=1 ũ
2
t

P→ σ2u := E[u2t ]. □

Lemma B.7. Let ϱm∗ := limT→∞ T−1
∑T

t=1

∑t−1
τ=1 E[sτut]. Given Assumption 1,

6



(i)
√
T (µ̈T − µ∗) ⇒ 3

∫
rBm;

(ii) for every t, r′tυ̃T = r̈′tϋT ;

(iii) T−1
∑T

t=1mt−1ut ⇒
∫
BmdBu + ϱm∗;

(iv) T−1
∑T

t=1mt−1et ⇒
∫
BmdBe;

(v) σ̂2e,T
P→ σ2e := E[e2t ]. □

We now prove the preliminary Lemmas B.1 to B.7.

Proof of Lemma B.1. This trivially follows theorem 7.30 of White (2001). ■

Proof of Lemma B.2. (i) It holds by the ergodic theorem.

(ii) It holds by the ergodic theorem and the fact that E[z2t] = [δ∗ι
′
p−1, ι

′
q ⊗ µ′

∗]
′ because δ∗ιp−1 =

E[∆yt−], ι
′
q ⊗ µ+′

∗ = E[(∆x+′
t , . . . ,∆x+′

t−q+1)], and ι′q ⊗ µ−′
∗ = E[(∆x−′

t , . . . ,∆x−′
t−q+1)].

(iii) We note that T−2
∑T

t=1(t − 1)z2t = T−1
∑T

t=1((t − 1)/T )z2t, and we let qt := ((t − 1)/T )z2t

for notational simplicity, which is a heterogeneous process. Therefore, T−1
∑T

t=1(qt − E[qt])
P→ 0. In

addition, T−1
∑T

t=1 E[qt] = T−2
∑T

t=1(t − 1)E[z2t] → 1
2E[z2t], implying that T−1

∑T
t=1 qt

P→ 1
2E[z2t]

by White (2001, theorem 3.47), given the DGP condition in Assumption 1. We further note that E[z2t] =

[δ∗ι
′
p−1, ι

′
q ⊗ µ′

∗]
′, leading to the desired result.

(iv) We first note that ẍt−1 = µ∗(t − 1) +mt−1. Therefore,
∑T

t=1 ẍt−1z
′
2t =

∑T
t=1µ∗(t − 1)z′

2t +∑T
t=1mt−1z

′
2t. The proof of Lemma B.2 (iii) already shows that T−2

∑T
t=1(t − 1)z2t

P→ 1
2E[z2t]. Fur-

thermore,
∑T

t=1mt−1z
′
2t = OP(T

3/2) as shown in the proof of Lemma B.2 (v). Therefore, it follows that

T−2
∑T

t=1 ẍt−1z
′
2t

P→ 1
2µ∗E[z2t], as desired.

(v) Note that m̈t−1 = mt−1 − (µ̈T − µ∗)(t − 1). Therefore,
∑T

t=1 m̈t−1z
′
2t =

∑T
t=1mt−1z

′
2t −

(µ̈T − µ∗)
∑T

t=1(t − 1)z′
2t. We here note that

∑T
t=1mt−1z

′
2t =

∑T
t=1mt−1E[z′

2t] +
∑T

t=1mt−1(z
′
2t −

E[z′
2t]). The proof of Lemma A.3 (iv) implies that T−3/2

∑T
t=1mt−1 ⇒

∫
Bm, and

∑T
t=1mt−1(z

′
2t −

E[z′
2t]) = oP(T

3/2) by noting that mt−1 = OP(T
1/2) and

∑T
t=1(z

′
2t − E[z′

2t]) = OP(T
1/2). Therefore,

T−3/2
∑T

t=1mt−1z
′
2t ⇒

∫
BmE[z′

2t]. Next, (µ̈T −µ∗)
∑T

t=1(t− 1)z′
2t =

√
T (µ̈T −µ∗)T

−2
∑T

t=1(t−

1)z′
2t, and Lemma B.7 (i) implies that

√
T (µ̈T − µ∗) ⇒ 3

∫
rBm. In addition to this, Lemma B.2 (iii)

shows that T−2
∑T

t=1(t − 1)z′
2t

P→ 1
2E[z

′
2t]. Therefore, T−3/2(µ̈T − µ∗)

∑T
t=1(t − 1)z′

2t ⇒ 3
2

∫
rBm.

Hence, if we combine all these, it follows that
∑T

t=1 m̈t−1z
′
2t ⇒ (

∫
Bm−3

2

∫
rBm)E[z′

2t] =
∫
B̄mE[z′

2t].

(vi) Note that yt−1 = δ∗(t − 1) +
∑t−1

j=1 dj . Therefore,
∑T

t=1 yt−1z
′
2t =

∑T
t=1 δ∗(t − 1)z′

2t +∑T
t=1(

∑t−1
j=1 dj)z

′
2t. The proof of Lemma B.2 (iii) already showed that T−2

∑T
t=1(t − 1)z2t

P→ 1
2E[z2t].

Furthermore, we note that
∑T

t=1(
∑t−1

j=1 dj)z
′
2t = OP(T

3/2). Therefore, T−2
∑T

t=1 yt−1z
′
2t

P→ 1
2δ∗E[z2t],

as desired.

(vii) In the proof of Lemma B.6 (iv), we show that üt = ut + OP(T
−1/2). Therefore, it follows that

T−1
∑T

t=1 üt−1z2t = T−1
∑T

t=1 ut−1z2t + oP(1)
P→ E[ut−1z2t] by the ergodic theorem. This completes

7



the proof. ■

Proof of Lemma B.3. (i)
∑T

t=1 t = T (T + 1)/2, leading to the desired result.

(ii) Note that ẍt = µ∗t + mt, so that
∑T

t=1 ẍt = µ∗
∑T

t=1 t +
∑T

t=1mt. Here, T−2
∑T

t=1 t → 1
2

by Lemma B.3 (i), and Lemma B.1 implies that T−3/2
∑T

t=1mt = T−1
∑T

t=1
1√
T
mt =

∫
Bm(r)dr ⇒∫

Bm. Therefore, T−3/2
∑T

t=1 ẍt = µ∗T
−3/2

∑T
t=1 t+ oP(1)

P→ 1
2µ∗.

(iii) Note that m̈t = mt + (µ̈T − µ∗)t. Thus, T−3/2
∑T

t=1 m̈t = T−3/2
∑T

t=1mt +
√
T (µ̈T −

µ∗)T
−2
∑T

t=1 t. Lemma B.7 (i) implies that
√
T (µ̈T − µ∗) ⇒ 3

∫
rBm. Lemma B.3 (i) implies that

T−2
∑T

t=1 t → 1
2 . In addition to these, T−3/2

∑T
t=1mt = T−1

∑T
t=1

1√
T
mt =

∫
Bm(r)dr ⇒

∫
Bm

by Lemma B.1. Thus, T−3/2
∑T

t=1 m̈t ⇒
∫
Bm(r) − 3

∫
rdr

∫
sBm(s)ds =

∫
B̄m by the definition of

B̄m(·), viz., B̄m(·) = Bm(·)− 3(·)
∫
sBm(s)ds.

(iv) From (5), T−2
∑T

t=1 yt = δ∗T
−2
∑T

t=1 t+ T−2
∑T

t=1

∑t
j=1 dj =

1
2δ∗ + oP(1).

(v) We note that üt−1 = ũt−1 := yt−1 − r′t−1υ̃T , so that
∑T

t=1 üt−1rt−1 ≡ 0. We here note that

rt−1 := [ẍ′
t−1, (t− 1), 1]′. This completes the proof. ■

Proof of Lemma B.4. (i)
∑T

t=1 t
2 = T (T + 1)(2T + 1)/6, leading to the desired result.

(ii) T−3
∑T

t=1 tẍt = µ∗T
−3
∑T

t=1 t
2 + T−3

∑T
t=1 tmt. Here, it follows that T−3

∑T
t=1 t

2 → 1
3 and

T−5/2
∑T

t=1 tmt = T−1
∑T

t=1(
t
T )

1√
T
mt =

∫
rBmT (r)dr ⇒

∫
rBm. Therefore, T−3

∑T
t=1 tẍt =

1
3µ∗ + oP(1).

(iii) Note that m̈t = ẍt − tµ̈T and µ̈T = (
∑T−1

t=1 t
2)−1

∑T−1
t=1 tẍt. Therefore,

∑T
t=1(t− 1)m̈t−1 ≡ 0.

(iv) From (5), T−3
∑T

t=1 tyt = δ∗T
−3
∑T

t=1 t
2 + T−3

∑T
t=1 t

∑t
j=1 dj =

1
3δ∗ + oP(1).

(v) The proof of Lemma B.3 (v) already shows the given claim. ■

Proof of Lemma B.5. (i) Using the fact that ẍt = µ∗t+mt,
∑T

t=1 ẍtẍ
′
t =

∑T
t=1(µ∗t+mt)(µ∗t+mt)

′ =∑T
t=1µ∗µ

′
∗t

2 +
∑T

t=1µ∗m
′
tt +

∑T
t=1mtµ

′
∗t +

∑T
t=1mtm

′
t. Here, T−3

∑T
t=1µ∗µ

′
∗t

2 → 1
3µ∗µ

′
∗ by

Lemma B.4 (i), and T−5/2
∑T

t=1µ∗m
′
tt ⇒ µ∗

∫
rBm as shown in the proof of Lemma B.4 (ii). Fur-

thermore, T−2
∑T

t=1mtm
′
t = T−1

∑T
t=1

1√
T
mt

1√
T
m′

t =
∫
BmT (r)BmT (r)

′dr ⇒
∫
BmB′

m. Thus,

T−3
∑T

t=1 ẍtẍ
′
t

P→ 1
3µ∗µ

′
∗.

(ii) We first note that
∑T

t=1 ẍt−1m̈
′
t−1 =

∑T
t=1(µ∗(t − 1) +mt−1)m̈

′
t−1 = µ∗

∑T
t=1(t − 1)m̈′

t−1 +∑T
t=1mt−1m̈

′
t−1 =

∑T
t=1mt−1m̈

′
t−1 by Lemma B.4 (iii). We further note that

∑T
t=1mt−1m̈

′
t−1 =∑T

t=1mt−1(mt−1 − (µ̈T − µ∗)(t − 1))′ using the fact that m̈t = mt − (µ̈T − µ∗)t. Here, we note that

T−2
∑T

t=1mtm
′
t ⇒

∫
BmB′

m as shown in the proof of Lemma B.5 (i), and T−2
∑T

t=1 tmt(µ̈T −µ∗)
′ =

T−5/2
∑T

t=1 tmt

√
T (µ̈T −µ∗)

′ ⇒ 3
∫
rBm

∫
rBm by Lemma B.7 (ii) and the fact that T−5/2

∑T
t=1 tmt

= T−1
∑T

t=1
t
T

1√
T
mt =

∫
rBm(r)dr ⇒

∫
rBm as shown in the proof of Lemma B.4 (ii). Therefore,
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T−2
∑T

t=1 ẍt−1m̈
′
t−1 ⇒

∫
Bm(Bm − 3r

∫
sBm)′ =

∫
BmB̄′

m. We further note that
∫
BmB̄′

m =∫
B̄mB̄′

m by the definition of BmB̄m and the fact that
∫
r2 = 1

3 .

(iii) Using the fact that ẍt = µ∗t + mt and yt = δ∗t +
∑t

j=1 dj ,
∑T

t=1 ẍtyt = µ∗δ∗
∑T

t=1 t
2 +

δ∗
∑T

t=1 tmt + µ∗
∑T

t=1 t
∑t

j=1 dj +
∑T

t=1mt
∑T

j=1 dj . Here, T−3
∑T

t=1 t
2 → 1

3 by Lemma B.4 (i),

and T−5/2
∑T

t=1 tmt ⇒
∫
rBm as shown in the proof of Lemma B.4 (ii). Furthermore, we note that∑T

t=1 t
∑t

j=1 dj = OP(T
5/2) and

∑T
t=1mt

∑T
j=1 dj = OP(T

2). Therefore, T−3
∑T

t=1 ẍtyt
P→ 1

3δ∗µ∗.

(iv) The proof of Lemma B.3 (v) already shows the given claim. ■

Proof of Lemma B.6. (i) We first note that
∑T

t=1 m̈t−1m̈
′
t−1 =

∑T
t=1(mt−1 − (µ̈T −µ∗)(t− 1))m̈′

t−1 =∑T
t=1mt−1m̈

′
t−1 − (µ̈T − µ∗)

∑T
t=1(t − 1)m̈′

t−1 =
∑T

t=1mt−1m̈
′
t−1 by Lemma B.4 (iii). We next note

that
∑T

t=1mt−1m̈
′
t−1 =

∑T
t=1mt−1(mt−1−(µ̈T −µ∗)(t−1))′ using the fact that m̈t = mt−(µ̈T −µ∗)t.

Here, T−2
∑T

t=1mtm
′
t ⇒

∫
BmB′

m as shown in the proof of Lemma B.5 (i), and T−2
∑T

t=1 tmt(µ̈T −

µ∗)
′ ⇒ 3

∫
rBm

∫
rBm as shown in the proof of Lemma B.5 (ii). Therefore, T−2

∑T
t=1 m̈t−1m̈

′
t−1 ⇒∫

Bm(Bm − 3r
∫
sBm)′ =

∫
BmB̄′

m.

(ii) As Lemma B.7 (iii) shows, for each t, r′tυ̃T = r̈′tϋT , so that ũt := yt−r′tυ̃T = üt−1 := yt− r̈′tϋT .

We further note that ϋT := (
∑T

t=1 r̈t−1r̈
′
t−1)

−1
∑T

t=1 r̈t−1yt−1, so that
∑T

t=1 r̈t−1ũt−1 = 0. We now note

that r̈t−1 := [m̈′
t−1, (t− 1), 1]′, leading to that

∑T
t=1 m̈t−1ũt−1 = 0.

(iii) From (5), yt = δ∗t +
∑t

j=1 dj . We here note that
∑T

t=1 y
2
t =

∑T
t=1(δ∗t +

∑t
j=1 dj)

2 =∑T
t=1 δ

2
∗t

2 + 2
∑T

t=1 δ∗t
∑t

j=1 dj +
∑T

t=1(
∑t

j=1 dj)
2. Furthermore, T−3

∑T
t=1 t

2 → 1
3 by Lemma B.4

(i),
∑T

t=1 δ∗t
∑t

j=1 dj = OP(T
5/2), and

∑T
t=1(

∑t
j=1 dj)

2 = OP(T
2), implying that T−3

∑T
t=1 y

2
t

P→ 1
3δ

2
∗ .

(iv) Note that ũt := yt − r′tυ̃T , and r′tυ̃T = ẍ′
tβ̃T + tζ̃T + ν̃T with ẍt = m̈t + µ̈T t. Furthermore,

yt = β′
∗(m̈t+ µ̈T t)+ ζ∗t+ν∗+ut using (6). Hence, ũt = ut− (β̈T −β∗)

′m̈t− (ϑ̈T −ϑT∗)t− (ν̈T −ν∗).

We now note that Lemma 3, m̈t = OP(T
1/2), and t = O(T ) imply that ũt = ut + OP(T

−1/2). Therefore,

T−1
∑T

t=1 ũ
2
t = T−1

∑T
t=1 u

2
t + oP(1), and T−1

∑T
t=1 u

2
t

P→ E[u2t ] by the ergodic theorem, implying that

T−1
∑T

t=1 ũ
2
t

P→ σ2u := E[u2t ]. ■

Proof of Lemma B.7. (i) Note that µ̈T = (
∑T−1

t=1 t
2)−1

∑T−1
t=1 tẍt and ẍt = µ∗t + mt. Therefore,

µ̈T − µ∗ = (
∑T−1

t=1 t
2)−1

∑T−1
t=1 tmt, so that

√
T (µ̈T − µ∗) = (T−3

∑T−1
t=1 t

2)−1T−5/2
∑T−1

t=1 tmt.

Lemma B.4 (i) implies that T−3
∑T

t=1 t
2 → 1

3 . Furthermore, T−5/2
∑T−1

t=1 tmt = T−1
∑T−1

t=1
t
T

1√
T
mt =∫

rBmT (r)dr ⇒
∫
rBm. Hence,

√
T (µ̈T − µ∗) ⇒ 3

∫
rBm.

(ii) Note that r′tυ̃T = ẍ′
tβ̃T + tζ̃T + ν̃T with ẍt = m̈t + µ̈T t. Therefore, r′tυ̃T = m̈′

tβ̃T + t(µ̈′
T β̃T +

ζ̃T ) + ν̃T = m̈′
tβ̈T + tϑ̈T + ν̈T = r̈′tϋT , where the second last equality holds by Proposition 2, and the last

equality follows from the definition of r̈t.

(iii) Note that T−1
∑T

t=1mt−1ut = T−1
∑T

t=1 T
−1/2mt−1

√
T (BuT (t/T ) − BuT ((t − 1)/T )) =

9



∫
BmT (r)dBuT (r). We here note that

∫
BmT (r)dBuT (r) ⇒

∫
BmdBu + ϱm∗ by applying theorem

4 of de Jong and Davidson (2000).

(iv) We first note that T−1
∑T

t=1mt−1et = T−1
∑T

t=1 T
−1/2mt−1

√
T (BeT (t/T )−BeT ((t−1)/T )) =∫

BmT (r)dBeT (r). Note that
∫
BmT (r)dBeT (r) ⇒

∫
BmdBe by applying theorem 4 of de Jong and

Davidson (2000) and noting that E[sτet] = 0 for each τ < t.

(v) Note that if we let ët := ∆yt − z̈tτ̈T , it follows that σ̂2e,T := T−1
∑T

t=1 ë
2
t and that ët = −z̈′

t(τ̈T −

τT∗) + et from the fact that ∆yt = z̈′
tτT∗ + et, implying that

T∑
t=1

ë2t = (τ̈T −τT∗)
′D̈

(
D̈−1

T∑
t=1

z̈tz̈
′
tD̈

−1

)
D̈(τ̈T −τT∗)−2

(
T∑
t=1

etz̈t

)
D̈−1D̈(τ̈T −τT∗)+

T∑
t=1

e2t .

We examine the asymptotic behavior of each element on the right side. First, Lemmas 3 (vi) and 4 (i) imply

that D̈(τ̈T − τT∗) = OP(1) and D̈−1
∑T

t=1 z̈tz̈
′
tD̈

−1 = OP(1). Second, from the definitions of z̈t and D̈,∑T
t=1 etz̈tD̈

−1 = [T−1/2
∑T

t=1 etüt−1, T
−1
∑T

t=1 etm̈
′
t−1, T

−3/2
∑T

t=1 et(t − 1), T−1/2
∑T

t=1 et, T
−1/2∑T

t=1 etz
′
2t]

′. We verify that each element on the right side is OP(1). We first note that T−3/2
∑T

t=1 et(t−

1) = OP(1), T−1/2
∑T

t=1 et = OP(1), and T−1/2
∑T

t=1 etz2t = OP(1) by the martingale difference CLT

based upon the fact that {et,Ft} is an MDA. In addition, T−1
∑T

t=1 etm̈t−1 = T−1
∑T

t=1 etmt−1− (µ̈T −

µ∗)T
−1
∑T

t=1 et(t− 1) by noting that m̈t−1 = mt−1 − (µ̈T − µ∗)(t− 1) as given in the proof of Lemma

B.6(i). Here, Lemmas B.7 (i and iv) imply that (µ̈T − µ∗) = OP(T
−1/2) and T−1

∑T
t=1 etmt−1 = OP(1),

respectively, so that T−1
∑T

t=1 etm̈t−1 = OP(1). Finally, T−1/2
∑T

t=1 etüt−1 = T−1/2
∑T

t=1 etut−1 +

oP(1) using the fact that üt−1 = ut−1 + OP(T
−1/2) as given in the proof of Lemma B.6 (iv). All these

facts imply that
∑T

t=1 etz̈tD̈
−1 = OP(1). By these two facts, it follows that

∑T
t=1 ë

2
t =

∑T
t=1 e

2
t +OP(1),

implying that σ̂2e,T := T−1
∑T

t=1 ë
2
t = T−1

∑T
t=1 e

2
t + OP(T

−1). The desired result follows from the

ergodic theorem, and this completes the proof. ■

A.3 Proofs

Proof of Lemma 1. (i) This follows from Lemmas B.3 (i, ii, iv), B.4 (i, ii, iv), B.5 (i, iii), B.6 (iii), and the

remarks below Lemmas B.3, B.4, and B.5.

(ii) This follows from Lemma B.2 (i).

(iii) This follows from Lemmas B.2 (ii, iii, iv, vi) and the remark below Lemma B.2.

(iv) This follows from Lemmas 1 (i, ii, iii) and the structure of M. ■

Proof of Lemma 2. (i) This follows from Lemmas B.3 (v), B.4 (v), and B.6 (ii).

(ii) This follows from Lemmas B.3 (i, ii, iii), B.4 (i, ii, iii), and B.6 (i).

10



(iii) This follows from Lemma B.2 (vii).

(iv) This follows from Lemmas B.2 (ii, iii, iv, and vi).

(v) This follows from Lemma B.2 (i).

(vi) This follows from Lemma A.3 (i) and Lemmas 2 (i, ii, iii, iv, v). ■

Proof of Lemma 3. (i) We note that D̈1(ϋT − ῡT∗) = (D̈−1
1

∑T
t=1 r̈t−1r̈

′
t−1D̈

−1
1 )−1D̈−1

1

∑T
t=1 r̈t−1ut−1

from (13), and Lemma 2 (vii) implies that D̈−1
1 (
∑T

t=1 r̈t−1r̈
′
t−1)D̈

−1
1 ⇒ M11. We therefore focus on the

limit distribution of D̈−1
1

∑T
t=1 r̈t−1ut−1. Note that

D̈−1
1

T∑
t=1

r̈t−1ut−1 =

[
T−1

T∑
t=1

m̈′
t−1ut−1, T

−3/2
T∑
t=1

(t− 1)ut−1, T
−1/2

T∑
t=1

ut−1

]′
.

We now examine the asymptotic behavior of each element on the right side. First, we note that m̈t−1 =

mt−1−(µ̈T−µ∗)(t−1). Therefore, T−1
∑T

t=1 m̈t−1ut−1 = T−1
∑T

t=1mt−2ut−1+T
−1
∑T

t=1 st−1ut−1−

(µ̈T −µ∗)T
−1
∑T

t=1(t−1)ut−1. We here note that T−1
∑T

t=1mt−2ut−1 ⇒
∫
BmdBu+ϱm∗ by Lemma

B.7 (iii), and
√
T (µ̈T −µ∗) ⇒ 3

∫
rBm by Lemma B.7 (i). In addition to this, T−3/2

∑T
t=1(t− 1)ut−1 =

T−1
∑T

t=1
(t−1)
T

√
T (BuT ((t − 1)/T ) − BuT ((t − 2)/T )) =

∫
rdBuT (r) ⇒

∫
rdBu. Hence, it follows

that T−1
∑T

t=1 m̈t−1ut−1 ⇒S1 :=
∫
BmdBu+ϱm∗−3

∫
rBm

∫
rdBu. Next, it is already showed that

T−3/2
∑T

t=1(t− 1)ut−1 ⇒ S2 :=
∫
rdBu. Third, note that T−1/2

∑T
t=1 ut−1 = T−1

∑T
t=1

√
T (BuT ((t−

1)/T ) − BuT ((t − 2)/T )) =
∫
rdBuT (r) ⇒ S3 :=

∫
dBu. We now combine the first to third facts to

obtain that D̈−1
1

∑T
t=1 r̈t−1ut−1 ⇒S, leading to that D̈1(ϋT − ῡT∗) ⇒ L := M−1

11 S, as desired.

(ii) We first note that υ̃T − υ∗ = PT ϋT − Pῡ∗. Therefore, υ̃T − υ∗ = (PT − P)(ϋT − ῡT∗) +

P(ϋT − ῡT∗) + (PT − P)(ῡT∗ − ῡ∗) + P(ῡT∗ − ῡ∗) + (PT − P)ῡ∗. From the definition of PT and

Lemma 3 (i), we note that (PT −P) = OP(T
−1/2), (ϋT − ῡT∗) = OP(D̈

−1), and (PT −P)(ῡT∗− ῡ∗) =

0. Furthermore, P(ῡT∗ − ῡ∗) = [0′,0′, (ϑT∗ − ϑ∗), 0]
′ such that (ϑT∗ − ϑ∗) = β′

∗(µ̈T − µ∗), and

(PT −P)ῡ∗ = [0,0,−β′
∗(µ̈T −µ∗), 0]

′, so that P(ῡT∗ − ῡ∗)+ (PT −P)ῡ∗ = 0. Hence, it now follows

that υ̃T − υ∗ = (PT −P)(ϋT − ῡT∗) +P(ϋT − ῡT∗) = P(ϋT − ῡT∗) +OP(T
−3/2), so that

D̈†(υ̃T −υ∗) = [ T (β̈T − β∗)
′ −µ′

∗T (β̈T − β∗)
√
T (ν̈T − ν∗) ]′+oP(1) ⇒ [ L′

1 −µ′
∗L1 L3 ]′

by Lemma 3 (i). ■

Proof of Lemma 4. (i) We first note that D̈(τ̈T − τT∗) = (D̈−1
∑T

t=1 z̈tz̈
′
tD̈

−1)−1D̈−1
∑T

t=1 z̈tet from

(14), and Lemma 2 (vi) implies that D̈−1(
∑T

t=1 z̈tz̈
′
t)D̈

−1 ⇒ M. We therefore focus on the limit distribu-

tion of D̈−1
∑T

t=1 z̈tet. We note that D̈−1
∑T

t=1 z̈tet = D̈−1
∑T

t=1[üt−1er, m̈
′
t−1et, (t− 1)et, et, z

′
2tet]

′.
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We now investigate the asymptotic behavior of each element on the right side. First, we already

showed in the proof of Lemma B.6 (iv) that üt = ut + OP(T
−1/2). Therefore, T−1/2

∑T
t=1 üt−1et =

T−1/2
∑T

t=1 ut−1et + oP(1). In addition, T−1/2
∑T

t=1 ut−1et = T−1
∑T

t=1

√
T (BueT (t/T ) − BueT ((t −

1)/T )) =
∫
rdBueT (r) ⇒ J1 :=

∫
dBue. Second, we note that m̈t−1 = mt−1 − (µ̈T − µ∗)(t − 1).

Therefore, T−1
∑T

t=1 m̈t−1et = T−1
∑T

t=1mt−1et − (µ̈T − µ∗)T
−1
∑T

t=1(t − 1)et. We here note

that T−1
∑T

t=1mt−1et ⇒
∫
BmdBe by Lemma B.7 (iv) and

√
T (µ̈T − µ∗) ⇒ 3

∫
rBm by Lemma

B.7 (i). In addition to this, T−3/2
∑T

t=1(t − 1)et = T−1
∑T

t=1
(t−1)
T

√
T (BeT ((t − 1)/T ) − BeT ((t −

2)/T )) =
∫
rdBeT (r) ⇒

∫
rdBe. Hence, it follows that T−1

∑T
t=1 m̈t−1et ⇒ J2 :=

∫
BmdBe −

3
∫
rBm

∫
rdBu =

∫
B̄mdBe. Third, it is already showed that T−3/2

∑T
t=1(t−1)et−1 ⇒ J3 :=

∫
rdBe.

Fourth, we note that T−1/2
∑T

t=1 et = T−1
∑T

t=1

√
T (BeT (t/T ) − BeT ((t − 1)/T )) =

∫
dBeT (r) ⇒

J4 :=
∫
dBe. Fifth, note that T−1/2

∑T
t=1 z2tet = T−1

∑T
t=1

√
T (BzeT (t/T ) − BzeT ((t − 1)/T )) =∫

dBzeT (r) ⇒ J5 :=
∫
dBze. We next combine the first to fifth facts to obtain that D̈−1

∑T
t=1 z̈tet ⇒ J

by noting that

J =
[
J1 J′

2 J3 J4 J′
5

]′
:=
[ ∫

dBue

∫
B̄′

mdBe

∫
rdBe

∫
dBe

∫
dB′

ze

]′
,

leading to that D̈(τ̈T − τT∗) ⇒ M−1J, as desired.

(ii) From the definitions of τT∗ := [ρ∗, τ
′
1T , τ

′
2∗]

′ and τ 1T := [(η∗ + ρ∗(β̈T − β∗))
′, ς∗ + η′

∗(µ̈T −

µ∗) + ρ∗(ϑ̈T − ϑT∗), γ∗ + ρ∗(ν̈T − ν∗)]
′, we obtain that D̈(τ̈T − τT∗) = D̈(τ̈T − τ ∗) + [0,−ρ∗T (β̈T −

β∗)
′,−ρ∗T 3/2(ϑ̈T − ϑT∗),−ρ∗T 1/2(ν̈T − ν∗),0

′]′ ⇒ D by Lemma 4 (i) and noting that η∗ = 0. In

addition, Lemma 3 implies that T (β̈T − β∗) ⇒ L′
1, and T 1/2(ν̈T − ν∗) ⇒ L3. Furthermore, the proof of

Lemma 3 (i) shows that T 3/2(ϑ̈T − ϑT∗) ⇒ L2. Therefore, D̈(τ̈T − τ ∗) ⇒ D− ρ∗[0,L
′
1,L2,L3,0

′]′ =

D− ρ∗[0,L
′,0′]′. This completes the proof. ■

Proof of Theorem 1. (i) We note that (α̂T −α∗) = (TT −T)τ ∗+T(τ̈T − τ ∗)+ (TT −T)(τ̈T − τ ∗) =

(TT −T)τ ∗ +T(τ̈T − τ ∗) + oP(TT −T) using (10) and (11). We further note that

(TT −T)τ ∗ +T(τ̈T − τ ∗)

=



(ρ̈T − ρ∗)

−β∗(ρ̈T − ρ∗) + (η̈T − η∗)− ρ∗(β̈T − β∗)

(ς̈T − ς∗)− µ′
∗(η̈T − η∗)− ζ∗(ρ̈T − ρ∗)− ρ∗(ζ̃T − ζ∗)− η′

∗(µ̈T − µ∗)

(γ̈T − γ∗)− ρ∗(ν̃T − ν∗)− ν∗(ρ̈T − ρ∗)

(τ̈ 2T − τ ∗2)


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and the fact that β̃T = β̈T , ζ̃T = −µ̈′
T β̈T + ϑ̈T and ζ∗ = −µ′

∗β∗ + ϑ∗, so that (ζ̃T − ζ∗) = (ϑ̈T − ϑT∗)−

µ′
∗(β̈T − β∗) − (µ̈T − µ∗)

′(β̃T − β∗), where (ϑ̈T − ϑT∗) = OP(T
−3/2) and (µ̈T − µ∗)

′(β̃T − β∗) =

OP(T
−3/2) by Lemmas 4 (i), B.7 (i), and 3 (ii). Therefore, it now follows that

(TT −T)τ ∗+T(τ̈T − τ ∗)

= (τ̈T − τT∗)− (ρ̈T − ρ∗)



0

β∗

ζ∗

ν∗

0


+



0

0

−µ′
∗{(η̈T − η∗)− ρ∗(β̈T − β∗)}+OP(T

−3/2)

0

0


. (A.4)

We here use the fact that η∗ = 0. We further note that
√
T (τ̈T − τT∗) ⇒ [D1,0

′
2k×1, 0,D4,D5]

′ by

Lemma 4 (i) and −
√
T (ρ̈T − ρ∗)

[
0,β′

∗, ζ∗, ν∗,0
′] ⇒ −D1

[
0,β′

∗, ζ∗, ν∗,0
′]. In addition, we note that

−µ′
∗
√
T{(η̈T − η∗) − ρ∗(β̈T − β∗)} + OP(T

−1) = oP(1) because
√
T{(η̈T − η∗) − ρ∗(β̈T − β∗)} =

OP(T
−1/2) by Lemma 4 (i). Therefore, it follows that

√
T (α̂T −α∗) ⇒ [D1,−β′

∗D1,−ζ∗D1,D4 − ν∗D1,D
′
5]
′. (A.5)

We finally note that the derived weak limit is identical to c∗D1 + [0,0′, 0, 0,D4,D
′
5]
′.

(ii, iii, and iv) For an efficient proof, we prove (ii, iii, and iv) together by supposing that β∗ = 0 and

ζ∗ = 0, although it is not permitted by ρ∗ < 0. If so, it algebraically follows from (A.4) that

(α̂T −α∗) = (TT −T)τ ∗ +T(τ̈T − τ ∗) + oP(TT −T)

= (τ̈T − τT∗) +



0

0

−µ′
∗{(η̈T − η∗)− ρ∗(β̈T − β∗)}+OP(T

−3/2)

−ν∗(ρ̈T − ρ∗)

0


+ oP(TT −T).

Here, D̂(τ̈T − τT∗) ⇒ [D1,D
′
2, 0,D4,D5]

′ and T{(η̈T − η∗) − ρ∗(β̈T − β∗)} ⇒ D2 by Lemma 4 (i),

so that

D̂(α̂T −α∗) ⇒ [D1,D
′
2,−µ′

∗D2,D4 − ν∗D1,D
′
5]
′, (A.6)

where D̂ := diag[
√
T , T I2k+1,

√
T , D̈2]. From the weak limits in (A.5) and (A.6), (ii, iii, and iv) follow by
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applying the weak limits corresponding to the conditions in (ii, iii, and iv). For example, if the conditions

in (ii) are imposed, the weak limit of θ̂
+

T is determined by (A.6) as D+
2 , but the others are determined by

(A.5), so that the weak limit in (ii) is delivered. As another example, if the conditions in (iv) are imposed,

the weak limit of ξ̂T is determined by (A.6) as µ′
∗D2, but the others are determined by (A.5), so that the

weak limit in (iv) is delivered. In this manner, the weak limits in (ii, iii, and iv) are obtained. ■

Proof of Theorem 2. (i) We show the null limit distribution of each test using Lemma 4.

(i.a) Note that (θ̂
+

T − θ̂
−
T ) = (θ+

∗ −θ−
∗ )− (ρ̈T −ρ∗)(β+

∗ −β−
∗ )+(η̈+

T −η+
T∗)− (η̈−

T −η−
T∗)+oP(T

−1),

so that it follows that (θ̂
+

T − θ̂
−
T ) = (η̈+

T − η+
T∗)− (η̈−

T − η−
T∗) + oP(T

−1) under H′
0 . Therefore, R̂1α̂T =

R1(τ̈T − τT∗) + oP(T
−1), and it follows from Lemmas 4 (i) and B.7 (v) that

W
(1)
T = (τ̈T − τT∗)

′D̈R′
1

σ̂2e,TR1

(
D̈−1

T∑
t=1

z̈tz̈
′
tD̈

−1

)−1

R′
1

−1

R1D̈(τ̈T − τT∗) + oP(1)

⇒ D′R′
1

(
σ2eR1M

−1R′
1

)−1
R1D.

(i.b) We note that (π̂+
T , π̂

−
T ) = (π̈+

T , π̈
−
T ). Therefore, it follows from Lemmas 4 (i) and B.7 (v) that

W
(2)
T = (τ̈T − τT∗)

′D̈R̂′
2

σ̂2e,T R̂2

(
D̈−1

T∑
t=1

z̈tz̈
′
tD̈

−1

)−1

R̂′
2

−1

R̂2D̈(τ̈T − τT∗) + oP(1)

⇒ D′R̂′
2

(
σ2eR̂2M

−1R̂′
2

)−1
R̂2D.

(i.c) From the notice given in the proofs of (i.a and i.b), it follows from Lemmas 4 (i) and B.7 (v) that

W
(3)
T = (τ̈T − τT∗)

′D̈R′
3

σ̂2e,TR3

(
D̈−1

T∑
t=1

z̈tz̈
′
tD̈

−1

)−1

R′
3

−1

R3D̈(τ̈T − τT∗) + oP(1)

⇒ D′R′
3

(
σ2eR3M

−1R′
3

)−1
R3D.

(ii) We show the power behavior of each test using Lemma 4.

(ii.a) We show thatW (1)
T = OP(T ). Note that (θ̂

+

T−θ̂
−
T ) = (θ+

∗ −θ−
∗ )−(ρ̈T−ρ∗)(β+

∗ −β−
∗ )+oP(T

−1/2)

under H′
1 and (ρ̈T − ρ∗) = OP(T

−1/2), so that (θ̂
+

T − θ̂
−
T ) − (θ+

∗ − θ−
∗ ) = OP(T

−1/2). Therefore,

(θ̂
+

T − θ̂
−
T ) = OP(T

1/2), and this implies that W (1)
T = OP(T ).

(ii.b) We show that W (2)
T = OP(T ). Note that Lemma 4 (i) implies that π̈+

T − π̈−
T = π+

∗ − π−
∗ +

OP(T
−1/2). Therefore, π̈+

T − π̈−
T = OP(T

1/2), implying that W (2)
T = OP(T ).

(ii.c) From the proofs of (ii.a) and (ii.b), (θ̂
+

T − θ̂
−
T ) = OP(T

1/2) and (π̈+
T − π̈−

T ) = OP(T
1/2).
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Therefore, it trivially follows that W (3)
T = OP(T ).

(iii) We show the null limit distribution of each test using Lemmas 3 and 4.

(iii.a) First, Lemma B.6 (iv) implies that σ̈2u,T
P→ σ2u, and D̈−1

1

∑T
t=1 r̈t−1r̈

′
t−1D̈

−1
1 ⇒ M11 from

Lemma 2 (vii). Therefore, Ẅ
(1)
T ⇒ σ2uR̈1M

−1
11 R̈

′
1. Second, H′

0 implies that R̈1D̈1ϋT = T (β̈+
T −

β+
∗ ) − T (β̈−

T − β−
∗ ) ⇒ (L+

1 − L−
1 ). If we combine these two facts, it follows that W(1)

T ⇒ (L+
1 −

L−
1 )

′(σ2uR̈1M
−1
11 R̈

′
1)

−1(L+
1 −L−

1 ) that is identical to the given weak limit by the definitions of R̈1 and

L.

(iii.b) First, Lemma B.7 (v) implies that σ̂2e,T
P→ σ2e , and D̈−1

∑T
t=1 z̈tz̈

′
tD̈

−1 ⇒ M from Lemma 2

(vi). Therefore, Ẅ(2)
T ⇒ σ2eR̂2M

−1R̂′
2. Second, R̂2D̈τ̈T =

√
T (π̈+

T − π̈−
T ) ⇒ D+

5 −D−
5 = R̂2D. If

we combine these two facts, it follows that W(2)
T ⇒ D′R̂′

2(σ
2
2R̂2M

−1R̂′
2)

−1R̂2D.

(iii.c) We note that from the definition of W(3)
T , it follows that W(3)

T = W
(1)
T +W

(2)
T , and it follows from

(i.a and i.b) that W(3)
T ⇒ L′R̈′

1(σ
2
uR̈1M

−1
11 R̈

′
1)

−1R̈1L +D′R̂′
2(σ

2
2R̂2M

−1R̂′
2)

−1R̂2D under H′′′
0 .

(iv) We next show the power behavior of each test.

(iv.a) To show the claim, we show that W(1)
T = OP(T

2) under H′
1. Given that Ẅ(1)

T ⇒ σ2uR̈1M
−1
11 R̈

′
1,

we focus on the limit behavior of R̈1D̈1ϋT . Note that R̈1D̈1(ϋT − ῡT∗) ⇒ (L+
1 −L−

1 ) by Lemma 3 (i)

and R̈1D̈1ῡT∗ = Tβ∗ = O(T ). Therefore, R̈1D̈1ϋT = OP(T ), implying that W(1)
T = OP(T

2), leading

to the desired result.

(iv.b) We show that W(2)
T = OP(T ) under H′′

1 . Given that Ẅ(2)
T ⇒ σ2eR̂2M

−1R̂′
2, we focus on the

limit behavior of R̂2D̈τ̈T . We note that R̂2D̈(τ̈T − τT∗) =
√
T [(π̈+

T − π̈−
T )− (π+

∗ − π−
∗ )] ⇒ R̂2D by

Lemma 4 (i) and R̂2D̈τT∗ =
√
T (π+

∗ − π−
∗ ) = O(T 1/2). Therefore, R̂2D̈τ̈T = OP(T

1/2), implying that

W
(2)
T = OP(T ).

(iv.c) We show that W(3)
T = OP(T

2) under H′′′
1 . Note that W(3)

T = W
(1)
T + W

(2)
T , and W

(1)
T and

W
(2)
T are OP(T

2) and OP(T ) by (ii.a) and (ii.b), respectively. Therefore, W(3)
T = OP(T

2) under H′′′
11 and

W
(3)
T = OP(T ) under H′′′

01

⋂
H′′′

12. This completes the proof. ■

A.4 Additional Monte Carlo Simulations

In this section, we compare the finite sample performance of OLS with 2SNARDL and also provide addi-

tional simulation evidence for the main claims.

A.4.1 Comparison of OLS with 2SNARDL

In this section, we compare the finite sample performance of OLS with 2SNARDL by simulation.
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For the simulation, we assume the following simulation environment. We first suppose that

∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x
+
t + π−∗ ∆x

−
t + et,

ut = yt − β+∗ x
+
t − β−∗ x

−
t − ζ∗(t− 1), and ∆xt = ω∗ + ϱ∗∆xt−1 + vt,

where (et, vt)
′ ∼ IID N(02, I2) and (ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 0). We

further assume two DGP conditions by letting (i) (ω∗, ϱ∗) = (1/2, 0) or (ii) (ω∗, ϱ∗) = (1/4, 1/2). That is,

we let {∆xt} be an independent or autocorrelated series. This is an environment parallel to the Monte Carlo

experiments in Section 6. For each DGP, we plug the equation for ut into the equation for ∆yt to obtain

∆yt = α∗ + ρ∗yt−1 + θ+∗ x
+
t−1 + θ−∗ x

−
t−1 + ξ∗(t− 1) + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et

and estimate the coefficients in this equation by OLS and 2SNARDL. For the 2SNARDL, we first estimate

ρ∗, β+∗ , and β−∗ by following Cho et al. (2023a) and next indirectly estimate θ+∗ and θ−∗ by noting that

θ+∗ = −ρ∗β+∗ and θ−∗ = −ρ∗β−∗ .

Using the OLS and 2SNARDL estimates, we report their finite sample biases and root mean square

errors (RMSEs). For example, the finite sample bias and RMSE of θ̂+T are computed as follows:

Bias =
1

m

m∑
i=1

(θ̂+T,j − θ+∗ ) and RMSE =

√√√√ 1

m

m∑
i=1

(θ̂+T,j − θ+∗ )2,

where j indicates the experimental index, and m denotes the total number of experiments. For the simula-

tion, we let m = 50000.

Table A.1 reports the finite sample biases of the OLS and 2SNARDL estimators when {∆xt} is an

independent series. As we see from the table, the performance of the OLS estimator is comparable to the

2SNARDL estimator. As T increases, the finite sample bias converges to zero for both estimators, which

implies that the asymptotic bias is negligible. Nonetheless, each parameter estimator has nuanced results.

Specifically, when T is small, say T = 100, the finite sample biases of the OLS estimator are greater than

those of the 2SNARDL estimator for the long-run parameters. If the sample size is as large as 2000, this

relationship is reversed. For the short-run parameter, the OLS estimator for ρ∗ always exhibits bigger biases

than 2SNARDL, but this relationship is reversed for π+∗ and π−∗ . For the case of φ∗, both estimators exhibit

similar finite sample biases.

Table A.2 reports the finite sample RMSEs of the OLS and 2SNARDL estimators when {∆xt} is an

independent series. From the table, as T increases, the finite sample RMSE converges to zero for both esti-
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mators, which implies that both estimators are consistent for the unknown parameters. We further observe

that both estimators exhibit similar RMSEs for each sample size. It is difficult to say one estimator is su-

perior to another in terms of finite sample RMSE. This aspect implies that the 2SNARDL estimator for θ+∗

and θ−∗ has the same convergence rate as for the OLS estimator, although the 2SNARDL estimators for β+∗

and β−∗ are super-consistent. The main reason of this is in the fact that the 2SNARDL estimator for ρ∗ has
√
T convergence rate, so that the convergence rate of the 2SNARDL estimator for θ+∗ and θ−∗ is determined

by the 2SNARDL estimator for ρ∗.

Tables A.3 and A.4 report the finite sample biases and RMSEs of the OLS and 2SNARDL estimators,

respectively, when {∆xt} is an autocorrelated series. Although there exist minor differences between the

tables, their qualitative properties are identical to those of Tables A.1 and A.2, respectively. This aspect

implies that the simulation results are the same irrespective of whether ∆xt is serially correlated or not.

From this experiment, we can observe that both OLS and 2SNARDL estimators are consistent estima-

tors. As T increases, the finite sample biases and RMSEs decrease. Although the performances of the two

estimators in terms of finite sample bias depend on multiple factors such as the sample size and the roles of

the parameters, the overall performance of the OLS estimator is not so different from 2SNARDL in terms

of their finite sample RMSE.

A.4.2 Additional Simulation Evidence

In this section, we provide additional simulation evidence for the main claims. The main goal of this section

is to verify the properties in Theorem 1.

Theorem 1 demonstrates that the convergence rate of the OLS estimator depends on the DGP conditions.

Specifically, four different DGP conditions are considered in Theorem 1 as follows:

• Theorem 1 (i): for each j = 1, 2, . . . , k, β+j∗ ̸= 0, β−j∗ ̸= 0, and ζ∗ ̸= 0;

• Theorem 1 (ii): β+
∗ = 0, but for each j = 1, 2, . . . , k, β−j∗ ̸= 0, and ζ∗ ̸= 0;

• Theorem 1 (iii): β−
∗ = 0, but for each j = 1, 2, . . . , k, β+j∗ ̸= 0, and ζ∗ ̸= 0; and

• Theorem 1 (iv): for each j = 1, 2, . . . , k, β+j∗ ̸= 0, β−j∗ ̸= 0, but ζ∗ = 0,

and Theorem 1 shows that the convergence rate of the OLS estimator is different under each condition. We

verify this property by simulation together with its distributional implications.

DGP Condition under Theorem 1 (i) For simulation, we first generate data according to the DGP condi-

tion in Theorem 1 (i). Specifically, we generate data observations according to the DGP condition in Section

A.4.1 by letting (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 1) and (ω∗, ϱ∗) = (1/2, 0). Us-

ing the data set generated by this DGP condition, we compute OLS estimators by repeating independent
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experiments 50000 times.

We verify Theorem 1 (i) in two ways. First, we compute the finite sample bias and RMSE of the OLS

estimator. For the verification, we compute the bias and RMSE by multiplying the convergence rate in

Theorem 1 (i) to the OLS estimator. For example, as θ̂+T has convergence rate
√
T , we compute the bias and

RMSE as

Bias =
1

m

m∑
i=1

√
T (θ̂+T,j − θ+∗ ) and RMSE =

√√√√ 1

m

m∑
i=1

T (θ̂+T,j − θ+∗ )2,

where m denotes the total number of experiments, viz., 50000. If the convergence rate in Theorem 1 (i)

is correct for the OLS estimator, the finite sample bias and RMSE have to converge to zero and a positive

constant as the sample size increases. Otherwise, the finite sample RMSE would converge to zero or diverge

to positive infinity. We contain the finite sample bias and RMSE in Table A.5 and observe these two features

for the long- and short-run parameters by letting the sample size increase from 100 to 2000, affirming that

the convergence rate in Theorem 1 (i) is correct.

Second, we compute the standard t-test using the OLS estimator to compare its finite sample null distri-

bution with the standard mixed-normal distribution. Theorem 1 (i) implies that the null limit distribution of

the t-test is the standard mixed-normal. Figure A.1 (a) shows the QQ-plots between the t-tests defined by

the long- and short-run OLS estimators and the standard normal distribution. The QQ-plots are obtained by

letting T = 3000 and repeating independent experiments 50000 times, and they are distributed around the

45-degree line. This aspect affirms the distributional property given in Theorem 1 (i).

DGP Condition under Theorem 1 (ii) We next verify Theorem 1 (ii) in the same way. We generate data

according to the DGP condition in Section A.4.1 by letting (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 0,

−3/2, 1) and (ω∗, ϱ∗) = (1/2, 0). This parameter condition obeys the condition in Theorem 1 (ii).

We verify Theorem 1 (ii) in the same manner to the earlier case. The only difference is in the convergence

rate of the OLS estimator. Theorem 1 (ii) implies that the convergence rate of θ̂+T is T , although the other

convergence rates are the same as before. Therefore, we modify the finite sample bias and RMSE of θ̂+T into

the following:

Bias =
1

m

m∑
i=1

T (θ̂+T,j − θ+∗ ) and RMSE =

√√√√ 1

m

m∑
i=1

T 2(θ̂+T,j − θ+∗ )2,

while maintaining the previous formula for the others. We contain the finite sample biases and RMSEs in

Table A.6 and observe that they converge to zero and a positive constant as the sample size increases. This

affirms that the convergence rate given in Theorem 1 (ii) is correct.
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Second, we compare the finite sample null distribution of the standard t-test with the standard mixed-

normal distribution. Figure A.1 (b) shows the QQ-plots between the t-tests and the standard normal distri-

bution. The QQ-plots are distributed around the 45-degree line, affirming the distributional property given

in Theorem 1 (ii).

DGP Condition under Theorem 1 (iii) We next verify Theorem 1 (iii) in the same way. We generate data

according to the DGP condition in Section A.4.1 by letting (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2,

3/2, 0, 1) and (ω∗, ϱ∗) = (1/2, 0). This parameter condition obeys the condition in Theorem 1 (iii).

We verify Theorem 1 (iii) in a manner similar to Theorem 1 (i). Theorem 1 (iii) implies that the conver-

gence rate of θ̂−T is T , and the other convergence rates are
√
T . Therefore, we modify the finite sample bias

and RMSE of θ̂−T into the following:

Bias =
1

m

m∑
i=1

T (θ̂−T,j − θ−∗ ) and RMSE =

√√√√ 1

m

m∑
i=1

T 2(θ̂−T,j − θ−∗ )2,

while maintaining the same formula for the others as in Theorem 1 (i). We contain the finite sample biases

and RMSEs in Table A.7 and affirm that the convergence rate given in Theorem 1 (iii) is correct.

Second, we draw the QQ-plots between the finite sample null distribution of the standard t-tests and

the standard mixed-normal distribution. Figure A.1 (c) shows the QQ-plots and affirms the distributional

property given in Theorem 1 (iii).

DGP Condition under Theorem 1 (iv) We finally verify Theorem 1 (iv). We generate data according to

the DGP condition in Section A.4.1 by letting (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 0)

and (ω∗, ϱ∗) = (1/2, 0) to obey the condition in Theorem 1 (iv).

Given that the convergence rate of the OLS estimator is
√
T , we compute the finite sample bias and

RMSE as for Theorem 1 (i) and contain them in Table A.8. We observe that they converge to zero and

positive constants, respectively, as T increases. Further, the QQ-plots between the t-tests and the standard

mixed-normal are distributed around the 45-degree line. These two features affirm Theorem 1 (iv).

A.5 Empirical Supplements

In this section, we provide additional empirical supplements.

Two tables are provided. First, Table A.9 provides the descriptive statistics of the variables examined in

Sections 7.2.1 and 7.2.2. The sample period is from 1947Q1 to 2007:Q4.
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Second, Table A.10 provides the testing results using Phillips and Perron’s (1988) unit-root test applied

to the partial sum processes for Tables 6 and 8. As we apply the unit-root testing by including both constant

and trend, or including only constant, two testing results are provided for each variable. Except for rt, the

test results show that nonstationary data analysis has to be conducted for the other variables.
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Estimation Parameter \ T 100 500 1000 1500 2000

OLS

θ+∗ 0.0690 0.0152 0.0071 0.0051 0.0039
θ−∗ -0.0687 -0.0152 -0.0071 -0.0051 -0.0039
ρ∗ -0.0557 -0.0105 -0.0048 -0.0035 -0.0026
φ∗ 0.0128 0.0024 0.0010 0.0007 0.0006
π+∗ -0.0019 -0.0002 0.0000 -0.0001 -0.0002
π−∗ 0.0035 0.0005 -0.0005 0.0002 0.0000

2SNARDL

θ+∗ -0.0573 -0.0200 -0.0099 -0.0070 -0.0054
θ−∗ 0.0575 0.0200 0.0098 0.0070 0.0054
ρ∗ -0.0447 -0.0049 -0.0012 -0.0008 -0.0004
φ∗ 0.0162 -0.0002 -0.0009 -0.0007 -0.0006
π+∗ 0.0144 0.0091 0.0053 0.0037 0.0028
π−∗ -0.0135 -0.0088 -0.0058 -0.0036 -0.0030

Table A.1: FINITE SAMPLE BIASES OF OLS AND 2SNADL ESTIMATORS. This table shows the finite
sample biases of the OLS and 2SNARDL estimators. The total number of repetitions is 50000. DGP:
∆yt = ρ∗ut−1+φ∗∆yt−1+π

+
∗ ∆x

+
t +π−∗ ∆x

−
t +et, ut = yt−β+∗ x+t −β−∗ x−t −ζ∗(t−1), ∆xt = 1/2+vt,

and (et, vt)
′ ∼ IID N(02, I2) with (ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 0).

Estimation Parameter \ T 100 500 1000 1500 2000

OLS

θ+∗ 0.1518 0.0533 0.0360 0.0290 0.0258
θ−∗ 0.2059 0.0583 0.0376 0.0300 0.0265
ρ∗ 0.1020 0.0353 0.0239 0.0193 0.0172
φ∗ 0.0870 0.0364 0.0256 0.0208 0.0185
π+∗ 0.1647 0.0685 0.0479 0.0390 0.0348
π−∗ 0.3081 0.1240 0.0867 0.0706 0.0628

2SNARDL

θ+∗ 0.1506 0.0549 0.0367 0.0295 0.0261
θ−∗ 0.2330 0.0617 0.0388 0.0308 0.0270
ρ∗ 0.0999 0.0349 0.0238 0.0193 0.0172
φ∗ 0.0892 0.0368 0.0259 0.0209 0.0186
π+∗ 0.1670 0.0688 0.0480 0.0391 0.0348
π−∗ 0.3122 0.1235 0.0865 0.0705 0.0628

Table A.2: FINITE SAMPLE ROOT MEAN SQUARE ERRORS OF OLS AND 2SNADL ESTIMATORS. This
table shows the finite sample root mean square errors of the OLS and 2SNARDL estimators. The total
number of repetitions is 50000. DGP: ∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et, ut = yt −

β+∗ x
+
t −β−∗ x−t − ζ∗(t−1), ∆xt = 1/2+vt, and (et, vt)

′ ∼ IID N(02, I2) with (ρ∗, π
+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) =

(−1/2, 1/2,−1/2, 3/2,−3/2, 0).
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Estimation Parameter \ T 100 500 1000 1500 2000

OLS

θ+∗ 0.0733 0.0147 0.0073 0.0050 0.0042
θ−∗ -0.0709 -0.0147 -0.0074 -0.0050 -0.0042
ρ∗ -0.0565 -0.0101 -0.0049 -0.0034 -0.0028
φ∗ 0.0060 0.0004 0.0002 0.0002 0.0002
π+∗ -0.0207 -0.0041 -0.0017 -0.0014 -0.0014
π−∗ 0.0041 0.0005 0.0001 0.0007 0.0006

2SNARDL

θ+∗ -0.0626 -0.0162 -0.0081 -0.0056 -0.0046
θ−∗ 0.0668 0.0202 0.0104 0.0071 0.0060
ρ∗ -0.0536 -0.0071 -0.0029 -0.0019 -0.0015
φ∗ 0.0187 0.0002 -0.0003 -0.0003 -0.0002
π+∗ 0.0060 0.0056 0.0037 0.0024 0.0018
π−∗ -0.0110 -0.0074 -0.0044 -0.0024 -0.0021

Table A.3: FINITE SAMPLE BIASES OF OLS AND 2SNADL ESTIMATORS. This table shows the finite
sample biases of the OLS and 2SNARDL estimators. The total number of repetitions is 50000. DGP: ∆yt =
ρ∗ut−1+φ∗∆yt−1+π

+
∗ ∆x

+
t +π

−
∗ ∆x

−
t +et, ut = yt−β+∗ x+t −β−∗ x

−
t −ζ∗(t−1), ∆xt = 1/4+1/2∆xt−1+

vt, and (et, vt)
′ ∼ IID N(02, I2) with (ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 0).

Estimation Parameter \ T 100 500 1000 1500 2000

OLS

θ+∗ 0.1446 0.0503 0.0343 0.0277 0.0251
θ−∗ 0.1936 0.0537 0.0355 0.0283 0.0256
ρ∗ 0.1000 0.0337 0.0229 0.0185 0.0168
φ∗ 0.0830 0.0345 0.0244 0.0200 0.0182
π+∗ 0.1750 0.0707 0.0494 0.0401 0.0367
π−∗ 0.3281 0.1253 0.0873 0.0708 0.0645

2SNARDL

θ+∗ 0.1406 0.0507 0.0345 0.0278 0.0252
θ−∗ 0.2190 0.0561 0.0364 0.0288 0.0260
ρ∗ 0.1002 0.0332 0.0227 0.0184 0.0167
φ∗ 0.0854 0.0347 0.0246 0.0201 0.0182
π+∗ 0.1755 0.0705 0.0494 0.0401 0.0367
π−∗ 0.3304 0.1248 0.0871 0.0707 0.0644

Table A.4: FINITE SAMPLE ROOT MEAN SQUARE ERRORS OF OLS AND 2SNADL ESTIMATORS.
This table shows the finite sample root mean square errors of the OLS and 2SNARDL estimators. The
total number of repetitions is 50000. DGP: ∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et,

ut = yt − β+∗ x
+
t − β−∗ x

−
t − ζ∗(t − 1), ∆xt = 1/4 + 1/2∆xt−1 + vt, and (et, vt)

′ ∼ IID N(02, I2)
with (ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 0).
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Estimation Parameter Con. Rate \ T 100 500 1000 1500 2000

BIAS

θ+∗
√
T 0.6620 0.3218 0.2360 0.1927 0.1694

θ−∗
√
T -0.6644 -0.3208 -0.2358 -0.1925 -0.1717

ρ∗
√
T -0.5290 -0.2218 -0.1608 -0.1305 -0.1133

φ∗
√
T 0.0998 0.0478 0.0371 0.0358 0.0284

π+∗
√
T -0.0025 -0.0159 -0.0125 0.0074 0.0045

π−∗
√
T -0.0101 -0.0040 0.0099 -0.0087 0.0082

RMSE

θ+∗
√
T 1.4871 1.1821 1.1389 1.1252 1.1195

θ−∗
√
T 2.0415 1.2909 1.1944 1.1619 1.1475

ρ∗
√
T 0.9861 0.7842 0.7564 0.7480 0.7444

φ∗
√
T 0.8439 0.8086 0.8096 0.8051 0.8071

π+∗
√
T 1.6542 1.5294 1.5141 1.5099 1.5103

π−∗
√
T 3.0823 2.7777 2.7341 2.7314 2.7288

Table A.5: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (i). The to-
tal number of repetitions is 50000. DGP: ∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et,

ut = yt − β+∗ x
+
t − β−∗ x

−
t − ζ∗(t − 1), ∆xt = 1/2 + vt, and (et, vt)

′ ∼ IID N(02, I2) with
(ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 1).

Estimation Parameter Con. Rate \ T 100 500 1000 1500 2000

BIAS

θ+∗ T 0.3992 0.1210 0.0944 0.0524 0.0279
θ−∗

√
T -0.5741 -0.3598 -0.2601 -0.2052 -0.1868

ρ∗
√
T -0.4243 -0.2525 -0.1765 -0.1388 -0.1261

φ∗
√
T 0.1732 0.0997 0.0667 0.0579 0.0509

π+∗
√
T 0.0050 -0.0005 0.0014 0.0004 -0.0119

π−∗
√
T 0.0007 -0.0048 -0.0046 -0.0204 -0.0011

RMSE

θ+∗ T 8.1992 7.7456 7.5341 7.4918 7.4571
θ−∗

√
T 1.6527 1.3495 1.2543 1.2176 1.2066

ρ∗
√
T 0.9416 0.8319 0.8014 0.7881 0.7864

φ∗
√
T 0.8891 0.8642 0.8514 0.8458 0.8480

π+∗
√
T 1.5746 1.5267 1.5126 1.5258 1.5086

π−∗
√
T 2.8861 2.7729 2.7416 2.7369 2.7271

Table A.6: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (ii). The to-
tal number of repetitions is 50000. DGP: ∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et,

ut = yt − β+∗ x
+
t − β−∗ x

−
t − ζ∗(t − 1), ∆xt = 1/2 + vt, and (et, vt)

′ ∼ IID N(02, I2) with
(ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 0,−3/2, 1).
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Estimation Parameter Con. Rate \ T 100 500 1000 1500 2000

BIAS

θ+∗
√
T 0.5713 0.2648 0.1867 0.1564 0.1339

θ−∗ T -0.5093 -0.0685 -0.1303 -0.0330 -0.0829
ρ∗

√
T -0.4594 -0.1827 -0.1256 -0.1052 -0.0904

φ∗
√
T 0.0750 0.0339 0.0188 0.0217 0.0176

π+∗
√
T -0.0229 -0.0083 -0.0085 -0.0036 -0.0005

π−∗
√
T 0.0118 0.0079 -0.0168 0.0089 -0.0082

RMSE

θ+∗
√
T 1.4031 1.0743 1.0309 1.0214 1.0147

θ−∗ T 16.300 13.829 13.557 13.417 13.414
ρ∗

√
T 0.9015 0.7060 0.6809 0.6758 0.6731

φ∗
√
T 0.8270 0.7800 0.7828 0.7765 0.7783

π+∗
√
T 1.6381 1.5289 1.5194 1.5082 1.5083

π−∗
√
T 3.0672 2.7835 2.7405 2.7345 2.7232

Table A.7: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (iii). The to-
tal number of repetitions is 50000. DGP: ∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et,

ut = yt − β+∗ x
+
t − β−∗ x

−
t − ζ∗(t − 1), ∆xt = 1/2 + vt, and (et, vt)

′ ∼ IID N(02, I2) with
(ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2, 0, 1).

Estimation Parameter Con. Rate \ T 100 500 1000 1500 2000

BIAS

θ+∗
√
T 0.6768 0.3285 0.2547 0.1969 0.1702

θ−∗
√
T -0.6737 -0.3247 -0.2561 -0.1951 -0.1724

ρ∗
√
T -0.5513 -0.2288 -0.1751 -0.1325 -0.1143

φ∗
√
T 0.1251 0.0525 0.0430 0.0280 0.0258

π+∗
√
T -0.0214 -0.0032 -0.0088 -0.0020 -0.0146

π−∗
√
T 0.0024 0.0173 -0.0112 0.0022 0.0142

RMSE

θ+∗
√
T 1.5038 1.1912 1.1460 1.1318 1.1174

θ−∗
√
T 2.0446 1.2982 1.2131 1.1678 1.1444

ρ∗
√
T 1.0148 0.7887 0.7605 0.7527 0.7437

φ∗
√
T 0.8654 0.8137 0.8136 0.8055 0.8091

π+∗
√
T 1.6534 1.5324 1.5218 1.5174 1.5112

π−∗
√
T 3.0824 2.7782 2.7496 2.7250 2.7190

Table A.8: FINITE SAMPLE BIAS AND RMSE OF OLS ESTIMATOR. This table shows the finite
sample bias and RMSE of the OLS estimator under the DGP condition of Theorem 1 (iv). The to-
tal number of repetitions is 50000. DGP: ∆yt = ρ∗ut−1 + φ∗∆yt−1 + π+∗ ∆x

+
t + π−∗ ∆x

−
t + et,

ut = yt − β+∗ x
+
t − β−∗ x

−
t − ζ∗(t − 1), ∆xt = 1/2 + vt, and (et, vt)

′ ∼ IID N(02, I2) with
(ρ∗, π

+
∗ , π

−
∗ , β

+
∗ , β

−
∗ , ζ∗) = (−1/2, 1/2,−1/2, 3/2,−3/2, 0).
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∆yt
Exo. Endo. Sum.

∆τ1t ∆τ2t ∆τt ∆τ1t ∆τ2t ∆τt ∆τ1t ∆τ2t ∆τt
Mean 0.8256 0.4240 -0.4704 -0.0464 0.3773 -0.1841 0.1932 0.7564 -0.6228 0.1336
Median 0.7876 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 4.0198 6.4312 0.0000 6.4312 6.7617 0.0000 6.7617 6.7617 0.0000 6.7617
Minimum -2.7525 0.0000 -7.0965 -7.0965 0.0000 -7.1122 -7.1122 0.0000 -7.1122 -7.1122
Std. Dev. 0.9780 1.3755 1.5073 2.1364 1.3317 1.0117 1.7136 1.7775 1.7316 2.6653
Skewness -0.0501 3.0654 -3.0598 -0.2762 3.4094 -5.4276 0.4394 2.0432 -2.5281 -0.1450
Kurtosis 4.3614 10.8514 10.8759 6.3787 13.2115 31.1514 10.4245 5.4941 7.7131 4.1776
Obs. 243 243 243 243 243 243 243 243 243 243

∆yt
Exo. ratio Endo. ratio Sum. ratio

∆r1t ∆r2t ∆rt ∆r1t ∆r2t ∆rt ∆r1t ∆r2t ∆rt
Mean 0.8256 0.0246 -0.0517 -0.0271 0.0471 -0.0260 0.0211 0.0679 -0.0738 -0.0059
Median 0.7876 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 4.0198 0.6977 0.0000 0.6977 1.9542 0.0000 1.9542 1.9542 0.0000 1.9542
Minimum -2.7525 0.0000 -1.8706 -1.8706 0.0000 -2.8214 -2.8214 0.0000 -2.8214 -2.8214
Std. Dev. 0.9780 0.0963 0.2171 0.2428 0.2245 0.2028 0.3066 0.2351 0.2876 0.3847
Skewness -0.0501 4.6231 -5.3926 -3.7013 6.0062 -11.5395 -1.0526 5.1164 -5.9045 -1.3783
Kurtosis 4.3614 25.4621 35.2975 25.0905 41.7414 152.4675 44.1557 33.0743 45.6366 21.6860
Obs. 243 243 243 243 243 243 243 243 243 243

Table A.9: DESCRIPTIVE STATISTICS. This table shows the descriptive statistics used in Sections 7.2.1 and
7.2.2.

PP test yt
Exo. Endo. Sum.

τ1t τ2t τt τ1t τ2t τt τ1t τ2t τt
PP test w/o trend -1.4767 0.7551 -0.7188 -1.6243 -2.4701 -0.3499 -2.2743 -1.3064 -0.4173 -2.0303
p-value 0.5439 0.9931 0.8387 0.4686 0.1241 0.9140 0.1812 0.6270 0.9028 0.2738
PP test w/ trend -2.3488 -1.8278 -1.3653 -1.3483 -0.7094 -2.2995 -0.8156 -0.9285 -2.0326 -2.7414
p-value 0.4056 0.6883 0.8686 0.8732 0.9707 0.4322 0.9618 0.9500 0.5801 0.2210

PP test yt
Exo. ratio Endo. ratio Sum. ratio

r1t r2t rt r1t r2t rt r1t r2t rt
PP test w/o trend -1.4767 0.7288 -0.7859 -1.7004 -2.5409 -0.9379 -3.0710 -1.7735 -1.8303 -2.9448
p-value 0.5439 0.9926 0.8210 0.4299 0.1071 0.7749 0.0301 0.3932 0.3652 0.0418
PP test w/ trend -2.3488 -1.8466 -2.3558 -2.2056 -1.5667 -2.0336 -2.6499 -1.3375 -2.3690 -3.4114
p-value 0.4056 0.6790 0.4019 0.4840 0.8033 0.5796 0.2587 0.8761 0.3949 0.0521

Table A.10: PHILLIPS AND PERRON’S (1988) UNIT-ROOT TESTS APPLIED TO THE QUARTERLY DATA

IN ROMER AND ROMER (2010). Two Phillips and Perron’s test statistics are computed using the data in
Table A.9 by including the time trend and/or the constant. The lag lengths are selected by BIC.
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(a) DGP under Theorem 1 (i) (b) DGP under Theorem 1 (ii)

(c) DGP under Theorem 1 (iii) (d) DGP under Theorem 1 (iv)

Figure A.1: QQ-PLOTS OF THE t-TESTS UNDER THE NULL AND DGP CONDITIONS IN THEOREM 1.
This figure shows the QQ-plots of the t-tests defined by θ̂+T , θ̂−T , ρ̂T , φ̂T , π̂+T , and θ̂−T under the null hy-
pothesis and the DGP conditions in Theorem 1. To draw the QQ-plots, we let T = 3000 and computed the
standard t-test using the OLS estimator. Total number of independent experiments is 50000.
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