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1 Introduction

Differentiability is one of the regularity conditions for analyzing standard econometric models. For example,

Wald (1943) proposed it as one of the regularity conditions for his classic test statistic. As another example,

Chernoff (1954) examined use of the likelihood ratio (LR) test statistic by approximating the log-likelihood

function by Taylor’s expansion. Model differentiability is required for the approximation.

Many important econometric models are estimated by non-differentiable quasi-likelihood functions. For

example, the likelihood function examined by King and Shively (1993) is not differentiable. They attempted

to resolve the so-called Davies’s (1977, 1987) identification problem by reparameterizing the original pa-

rameter space through the polar coordinates. The consequent likelihood function, however, is not differen-

tiable (D) but only directionally differentiable (D-D). Additionally, Aigner, Lovell, and Schmidt (1977) and

Stevenson (1980) specified the stochastic frontier production function model to capture inefficiently pro-

duced outputs. Their model, however, is not D under the null of efficient production. In addition to these,

there are many other quasi-likelihood functions in prior literature that are not D and require a different model

analysis from the standard case.

The goal of this paper is, therefore, to extend the model analysis scope to include non-differentiable

models. Specifically, we suppose that model parameters are estimated by maximizing D-D quasi-likelihood

functions. As it turns out, the class of D-D functions includes D functions as a special case, so that we may

obtain generalized analysis outputs from D-D quasi-likelihood functions. In the current study, we achieve

this generalization by associating Billingsley’s (1999) asymptotically tight probability measure condition

with the score of D-D quasi-likelihood functions. Each direction around the parameter of interest is regarded

as an index indicating a particular value of directional derivatives, by which we can apply the functional

central limit theorem (FCLT) and the uniform law of large numbers (ULLN) to the first- and second-order

directional derivatives, respectively. Through this process, the large sample properties of quasi-maximum

likelihood (QML) estimator (or M-estimator) of D quasi-likelihood functions can be generalized to address

D-D quasi-likelihood functions.

Another goal of this study is to provide test statistics that can be properly used for data inference via D-D

models. The conventional quasi-likelihood ratio (QLR), Wald, and Lagrange multiplier (LM) test statistics

are defined by assuming model differentiability, so that they may or may not be proper for D-D models.

We examine the test statistics under the D-D model assumption and provide alternatives in case they are

not proper for D-D models. As a result, the Wald and LM test statistics are redefined under the D-D model

assumption to maintain their testing principles. We also show that the three test statistics are asymptotically

equivalent under the null hypothesis and mild regularity conditions detailed below, thereby achieving the
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dual purpose of estimating D-D models and inferring data through the model estimation.

Our D-D model analysis is applicable to a number of empirically popular econometric models. As an

illustration of our analysis, we revisit King and Shively’s (1993) reparameterized model and demonstrate

that our analysis provides an efficient vehicle for their model analysis. In addition to this, we include other

analyses in the Supplement to this study and demonstrate the usefulness of the current analysis (see Cho and

White, 2017). They include Aigner, Lovell, and Schmidt (1977) and Stevenson’s (1980) stochastic frontier

production function model and the Box-Cox transformation. The standard generalized method of moments

(GMM) estimation is also revisited using the D-D model analysis.

The approach of the current study is related to the prior literature. First, Pollard (1985) examined

stochastically differentiable quasi-likelihood functions that are not D although their population analogs are

D. The D-D quasi-likelihood function here is not stochastically differentiable because the population quasi-

likelihood function is D-D, let alone its sample analog. Second, Andrews (2001) examined data inference

when there is an unidentified parameter under a maintained null hypothesis that is possibly on the boundary

of the parameter space. Indeed, one may reparameterize the parameter space to avoid an unidentified model

feature and instead employ D-D quasi-likelihood functions. King and Shively’s (1993) model analysis is

a typical example of this, as detailed below. The analysis here, nevertheless, does not assume D-D quasi-

likelihood functions obtained only through reparameterization. General D-D quasi-likelihood functions are

assumed throughout this study so that the analysis here can be a vehicle for general model analysis. The

models in Aigner, Lovell, and Schmidt (1977) and Stevenson (1980) examined in the Supplement belong

to this case. Finally, Fang and Santos (2014) examined a D-D transform of a consistent estimator and

noted that a D transform is necessary and sufficient for a valid application of the standard bootstrap to the

transformation. Instead of assuming the presence of a consistent estimator, we examine a consistent QML

estimator obtained from D-D quasi-likelihood functions.

The plan of this paper is as follows. In Section 2, D-D functions are defined and examined, and the

D quasi-likelihood function is investigated as a special case of D-D quasi-likelihood functions. We also

provide regularity conditions for D-D quasi-likelihood functions and consider the limit distribution of the

QML estimator. Section 3 considers data inference using D-D models. For illustration purposes, we exploit

King and Shively’s (1993) reparameterized model throughout this paper, including Monte Carlo experiments

using the same model. Section 4 offers concluding remarks, and formal mathematical proofs are collected

in the Appendix. In the Supplement to this study, we provide additional examples for D-D model analysis.

Before moving to the next section, we introduce the mathematical notation used throughout this study.

For any x ∈ Rr, ‖x‖ stands for the Euclidean norm. Furthermore, 1{ · } and cl(A) stand for an indication
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function and a closure of set A, respectively. The other is standard.

2 Directionally Differentiable Quasi-Likelihood Functions

To proceed with our discussion in a manageable way, we first introduce the regularity conditions maintained

throughout this paper. The following is the data generating process (DGP) condition:

Assumption 1 (DGP). A sequence of random variables {Xt ∈ Rm}nt=1 (m ∈ N) defined on a complete

probability space (Ω,F ,P) is strictly stationary and ergodic. �

Assumption 1 is standard for stationary time-series data. Many economic data satisfy the given condition.

For example, the standard ARMA process, hidden Markov process, and GARCH process are typical exam-

ples of this DGP. Next, we suppose the following quasi-likelihood function that is assumed to capture DGP

properties:

Assumption 2 (Qausi-Likelihood Function). A sum of measurable functions {Ln(θ) :=
∑n

t=1 `t(θ; Xt) :

θ ∈ Θ} is the quasi-likelihood function for Xn such that for each t, `t( · ; Xt) is Lipschitz continuous on Θ

almost surely–P (a.s.–P), where for each t, Xt denotes (X1, · · · ,Xt), and Θ is a compact and convex set

in Rr with r ∈ N. �

This quasi-likelihood function condition is widely used in the literature, and the QML estimator is defined

by the quasi-likelihood function: let θ̂n be the QML estimator such that Ln(θ̂n) = maxθ∈Θ Ln(θ). We

further characterize the DGP by

Assumption 3 (Existence and Identification). (i) For each θ, n−1E[Ln(θ)] exists in R and is finite for any

n; and (ii) For a unique θ∗ ∈ Θ, E[n−1Ln(·)] is maximized at θ∗ ∈ Θ for any n. �

Several remarks are warranted regarding Assumption 3. First, Assumption 3(i) requires model identi-

fication. Even if models are not identified, D-D model analysis can still be made using the framework of

Davies (1977,1987), but it renders the key aspects of D-D quasi-likelihood functions obscure. Therefore, we

highlight the D-D model analysis by assuming model identification. Second, θ∗ can be on the boundary of

Θ as often ensured by the reparameterization method of King and Shively (1993). Assumption 3(ii) permits

this. Finally, we abbreviate `t( · ; Xt) into `t(·) henceforth for notational simplicity.

Given Assumptions 1 to 3, the QML estimator is consistent, viz., θ̂n converges to θ∗ a.s.–P, and this is

straightforward and well known in the literature (e.g., Andrews, 1999). The desired property is achieved by

applying the ULLN to n−1Ln(·), given that θ∗ is unique. We, therefore, do not prove this in the Appendix.
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Another implication is that the differentiability condition is not necessary for the consistency of the QML

estimator as Wald (1949) noted. On the other hand, the limit distribution of the QML estimator is critically

determined by model differentiability. We discuss this in the next subsections.

2.1 Directional Differentiability

In this subsection, we define the D-D function and characterize the D function through the D-D function.

Definition 1 (D-D Functions). (i) f : Θ 7→ R is called directionally differentiable (D-D) at θ in the direction

of d ∈ ∆(θ), if

Df(θ;d) := lim
h↓0

f(θ + hd)− f(θ)

h

exists in R, where ∆(θ) := {x ∈ Rr : x + θ ∈ cl{C(θ)}, ‖x‖ = 1}, and C(θ) := {x ∈ Rr : ∃θ′ ∈

Θ,x := θ+ δθ′, δ ∈ R+}; (ii) f : Θ 7→ R is said to be D-D on ∆(θ), if for all d ∈ ∆(θ), Df(θ;d) exists;

(iii) f : Θ 7→ R is said to be D-D on Θ, if for all θ ∈ Θ, f is D-D on ∆(θ). �

Several remarks are in order. First, the definition of the D-D function is weaker than that of the D

function. D-D functions can have different directional derivatives that are nonlinearly dependent upon d,

and there can be a continuum number of directions if r is greater than unity. On the other hand, if f(·) is

D, Df(θ;d) is represented as a linear combination of r different directional derivatives. Second, Df(θ; ·)

is defined on ∆(θ). This requirement is adopted to accommodate Chernoff’s (1954) device. Chernoff

(1954) noted that it is essential to approximate the parameter space by a cone C(θ) to obtain the limit

distribution of the QML estimator. We define ∆(θ) to collect only directions relevant to C(θ), and it

plays the role of the domain for a Gaussian stochastic process that is introduced below. Note that even

when θ is on the boundary of Θ, ∆(θ) can still be defined not to contain the directions of the boundary

side. Finally, another norm other than the Euclidean norm can be used to define ∆(θ). For example,

∆̃(θ) := {x ∈ Rr : x + θ ∈ cl{C(θ)}, ‖x‖∞ = 1} can be used, where ‖ · ‖∞ is the uniform norm, and it

captures the same directions as in ∆(θ). We continue our discussion using ∆(θ).

A regular relationship exists between D-D and D functions as Troutman (1996, p. 122) described. That

is, if (i) a function f : Θ 7→ R is D-D on Θ; (ii) for each θ,θ′ and for some M < ∞, |Df(θ′;d) −

Df(θ;d)| ≤ M‖θ′ − θ‖ uniformly on ∆(θ) ∩ ∆(θ′); and (iii) for each θ, Df(θ;d) is continuous and

linear in d, then f : Θ 7→ R is D on Θ. The linearity condition of Df(θ;d) in d is a key condition for a

D-D function to be D. Without this, directional derivatives cannot be represented as linear combinations of

other directional derivatives.
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We provide the following definition of the twice D-D function that also plays another key role in our

analysis.

Definition 2 (Twice D-D Functions). A function f : Θ 7→ R is called twice D-D on Θ, if for each θ and

for all d̃ ∈ ∆(θ), D2f(θ; d̃;d) exists, where

D2f(θ; d̃;d) := lim
h↓0

Df(θ + hd̃;d)−Df(θ;d)

h
.

Note that first-order directional differentiability is necessary to define the twice D-D function. Furthermore,

for a twice D-D function to be twice D, it is necessary forD2f(θ; d̃;d) to be bilinear in d and d̃. We discuss

this in the Supplement more precisely. Henceforth, we denote D2f(θ; d̃;d) as D2f(θ;d) if d = d̃.

2.2 Example: Conditional Heteroskedasticity

Many econometric models are specified using D-D quasi-likelihood functions. In this subsection, we illus-

trate King and Shively’s (1993) model as a representative example of D-D models and demonstrate that the

notion of the D-D function is important in practice. We include other examples in the Supplement.

King and Shively (1993) examined a model for conditional heteroskedasticity. When a set of economic

data {(Yt,Q′t)
′ := (Yt,Wt,R

′
t)
′ ∈ R2+k} is given, they assumed

Yn = Wn α∗ + Rn β∗ + Un, Un|Qn ∼ N [0, σ2
∗{In + κ∗Ω

n(ρ∗)}],

where Yn := (Y1, · · · , Yn)′, Un := (U1, · · · , Un)′, Wn := (W1, · · · ,Wn)′, Rn is an n × k matrix with

Rt
′ at t-th row, Qn := (Wn,Rn), and Ωn(ρ∗) is an n × n square matrix with t-th row and t′-th column

element Ωn
tt′(ρ∗) := WtWt′ρ∗

|t′−t|/(1−ρ∗2). Furthermore, they let (γ ′∗, σ
2
∗, κ∗, ρ∗) := (α∗,β

′
∗, σ

2
∗, κ∗, ρ∗)

be an unknown parameter in Γ× [0, σ̄2]× [0, κ̄]× [0, ρ̄], where Γ is a compact and convex subset of Rk+1, σ̄2

and κ̄ are positive real numbers, and ρ̄ is also a positive real number but less than one. For each (γ, σ2, κ, ρ),

its log-likelihood can be written as

Ln(γ, σ2, κ, ρ) = −1

2
log
(
(2π)n det

[
σ2{In + κΩn(ρ)}

])
− 1

2σ2
Un(γ)′ [In + κΩn(ρ)]−1 Un(γ),

where Un(γ) := Yn −Qnγ, and γ := (α,β′)′.

This model was motivated by Rosenberg (1973), who aimed to test κ∗ = 0 and examined whether a

systematic risk of an asset is time-varying. If κ∗ 6= 0, the conditional covariance of Un|Qn depends on

Wn, so that the error exhibits time-varying conditional heteroskedasty. On the other hand, if κ∗ = 0,
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the error exhibits conditional homoskedasticity, but ρ∗ is not identified, leading to Davies’s (1977, 1987)

identification problem. This renders the null limit distributions of the standard test statistics non-standard.

King and Shively (1993) attempted to resolve the unidentified parameter problem by reparameterizing

the original model using the polar coordinates: θ′∗ := (θ1∗, θ2∗) := (κ∗ cos(ρ∗π/2), κ∗ sin(ρ∗π/2)), so that

the parameter space of θ is now obtained as [0, κ̄ cos(ρ̄π/2)]× [0, κ̄ sin(ρ̄ π/2)], and

Un|Qn ∼ N [0, σ∗
2{In + (θ∗

′θ∗)
1/2Ωn(2 tan−1(θ2∗/θ1∗)/π)}].

Furthermore, the original hypotheses are modified into H ′0 : θ∗
′θ∗ = 0 versus H ′1 : θ∗

′θ∗ > 0. Note that

the null parameter value is on the boundary of Θ and the identification problem no longer arises under H ′0.

On the other hand, the reparameterized quasi-likelihood function is not D. It is indeed D-D under H ′0: for

each (γ, σ2,θ), the modified log-likelihood is

Ln(γ, σ2,θ) =− n

2
log (2π)− 1

2
log
(

det
[
σ2{In + (θ′θ)1/2Ωn(2 tan−1(θ2/θ1)/π)}

])
− 1

2σ2
Un(γ)′

[
In + (θ′θ)1/2Ωn(2 tan−1(θ2/θ1)/π)

]−1
Un(γ),

and from this, θ2∗/θ1∗ has the form of 0/0 under the null, and this renders tan−1(0/0) undefined. Nonethe-

less, this yields the null log-likelihood desired by Rosenberg (1973) and King and Shively (1993): for each

d := (d′γ , dσ, d1, d2)′ such that θ∗ = 0 and d′d = 1,

lim
h↓0

Ln(γ∗ + dγh, σ
2
∗ + dσ2h,θ∗ + dθh) = −n

2
log
(
2π det(σ2

∗)
)
− 1

2σ2
∗
Un(γ∗)

′Un(γ∗)

as desired, because 0× tan−1(·) ≡ 0 on the Euclidean real line. Furthermore,

DLn(γ∗, σ
2
∗,θ∗;d) =− ndσ2

2σ2
∗
− (d2

1 + d2
2)1/2

2
tr[Ωn

(
2 tan−1(d2/d1)/π

)
] +

dσ2

2σ4
∗
Un′Un

+
1

σ2
∗

(Qndγ)′Un +
(d2

1 + d2
2)1/2

2σ2
∗

Un′Ωn
(
2 tan−1(d2/d1)/π

)
Un (1)

which is not linear with respect to (d1, d2), implying that the quasi-likelihood function is not D. The second-
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order directional derivative is also obtained as

D2Ln(γ∗, σ
2
∗,θ∗;d) =

nd2
σ2

2σ4
∗
−
d2
σ2

σ6
∗

Un′Un − 2dσ2

σ4
∗

(Qndγ)′Un − 1

σ2
∗

(Qndγ)′(Qndγ)

−
√
d2

1 + d2
2

{
dσ2

σ4
∗

Un′ − 2

σ2
∗

(Qndγ)′
}[

Ωn(2 tan−1(d2/d1)/π)
]
Un

+ (d2
1 + d2

2)

{
1

2
tr
[
Ωn(2 tan−1(d2/d1)/π)2

]
− 1

σ2
∗
Un′ [Ωn(2 tan−1(d2/d1)/π)

]2
Un

}
(2)

which is not quadratic with respect to d, implying the D model analysis cannot be applied for this model. In

particular, the limit distribution of the QML estimator must be differently obtained from the standard case.

There are many other D-D models. For example, the stochastic frontier production function model

introduced by Aigner, Lovell, and Schmidt (1977) and Stevenson (1980) is also D-D. As another example,

if Box-Cox (1964) transformation is used as a regressor, the model is D-D when the regressor does not

reduce the prediction error variance. In the Supplement, we analyze them along with the GMM estimation

defined by the D model using the method of this study.

2.3 Asymptotic Distribution of the QML Estimator

As noted in Section 2.1, the most significant difference between D-D and D functions lies in the linearity

condition of Df(θ;d) in d. In this section, we provide further regularity conditions for D-D models. In

particular, the smoothness condition of the D-D quasi-likelihood function is important in obtaining the limit

distribution of θ̂n.

Assumption 4 (D-D Quasi-Likelihood Function). `t : Θ 7→ R is twice D-D on Θ a.s.−P, and for each

θ ∈ Θ and d ∈ ∆(θ), D2`t( · ;d) is continuous on Θ a.s.−P. �

We use Assumption 4 to approximate D-D quasi-likelihood functions by a second-order directional Taylor

expansion for each direction. For this goal, the following conditions are also imposed:

Assumption 5 (Mode of Continuity). (i) For each θ ∈ Θ, D`t(θ; ·) andD2`t(θ; ·) are continuous on ∆(θ)

a.s.–P; (ii) For each θ,θ′ ∈ Θ, |D`t(θ;d)−D`t(θ′;d)| ≤Mt‖θ− θ′‖ and |D2`t(θ;d)−D2`t(θ
′;d)| ≤

Mt‖θ − θ′‖ uniformly on ∆(θ) ∩ ∆(θ′), where {Mt} is a sequence of stationary and ergodic variables;

and (iii) For each θ ∈ Θ and for all d1,d2 ∈ ∆(θ), there is λ > 0 such that |D`t(θ;d1)−D`t(θ;d2)| ≤

Mt‖d1 − d2‖λ and |D2`t(θ;d1)−D2`t(θ;d2)| ≤Mt‖d1 − d2‖λ. �

The examples mentioned in Section 2.2 satisfy Assumptions 4 and 5. Here, Assumption 5(iii) is assumed to

apply the asymptotic tightness and ULLN to the first- and second-order directional derivatives, respectively.
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We detail the asymptotic tightness and ULLN below, when they are more relevant. If Assumption 5(iii) is

replaced by the following stronger Assumption 5(iii)?, the quasi-likelihood function is twice D a.s.–P:

Assumption 5 (Mode of Continuity). (iii)? For each θ and for all d ∈ ∆(θ), D`t(θ;d) and D2`t(θ; d̃;d)

are linear in d and bilinear in (d, d̃) a.s.−P, respectively, and for each d ∈ ∆(θ), D2`t( · ;d) is continuous

on Θ a.s.−P. �

We let Assumption 5? denote Assumptions 5(i, ii, and iii?) going forward when D quasi-likelihood functions

are referenced. Unless otherwise stated, Assumption 5 stands for Assumptions 5(i, ii, and iii).

We impose further regularity conditions for the limit distribution of the QML estimator.

Assumption 6 (CLT). (i) For any t,E[D`t(θ∗;d)] = 0 uniformly on ∆(θ∗); (ii)A∗(d) := E[n−1D2Ln(θ∗;

d)] is strictly negative and finite uniformly on ∆(θ∗); (iii) B∗(d,d) is strictly positive and finite uniformly

on ∆(θ∗), where for each d, d̃,

B∗(d, d̃) := acov{n−1/2DLn(θ∗;d), n−1/2DLn(θ∗; d̃)},

and “acov” denotes the asymptotic covariance of given arguments; and (iv) For some q > (r − 1)/(λγ)

and s > q ≥ 2, and for each ft ∈ L̄, ‖ft − E[ft|F t+τt−τ ]‖q ≤ ντ , where L̄ := {a1f1 + a2f2 : f1, f2 ∈

{D`t(θ∗; · ,d) : d ∈ ∆(θ∗)}, a1, a2 ∈ R}; ντ is of size −1/(1 − γ) with 1/2 ≤ γ < 1; F t+τt−τ :=

σ(Xt−τ , · · · ,Xt+τ ); and {Xt ∈ Rk : t ∈ N} is a strong mixing sequence with size −sq/(s− q). Further-

more, E[M s
t ] <∞ and supd∈∆(θ∗) supt=1,2,··· ‖D`t(θ∗;d)‖s < ∆ <∞. �

Some remarks are warranted on Assumption 6. Assumption 6(i) is imposed to apply the central limit

theorem (CLT). Note that Assumption 6(i) may not hold uniformly in d if θ∗ is a boundary point of Θ: for

some d, E[D`t(θ∗;d)] can be strictly negative if θ∗ is a boundary point, although θ∗ maximizes E[`t(·)].

If so, the test statistics considered below can be degenerate. We impose Assumption 6(i), which prevents

this. On the other hand, if θ∗ is an interior element, Assumption 6(i) can be derived from the condition

that θ∗ maximizes E[`t(·)]. Assumption 6(iii) is imposed for the same purpose. For notational simplicity,

we let B∗(d) denote B∗(d, d̃) if d = d̃ henceforth. Assumption 6(iv) is imposed to apply corollary 3.1 of

Wooldridge and White (1988) and theorem 4 of Hansen (1996a). It follows that n−1/2DLn(θ∗; · ) obeys

the FCLT mainly from Assumption 6(iv). Wooldridge and White (1988) provided regularity conditions for

the CLT of near-epoch processes as a special case of the mixingale process. Hansen (1996a) generalized

this and provided the regularity conditions for the asymptotic tightness of Lipschitz continuous functions.

In essence, Assumption 6 is used to apply both CLT and asymptotic tightness to n−1/2DLn(θ∗; · ). Finally,
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our focus is different from that of Fang and Santos (2014) in which a D-D transform of a consistent estimator

is examined. Our interests are in examining the estimator maximizing a D-D quasi-likelihood function.

The limit distribution of θ̂n is obtained using the regularity conditions provided thus far. Our plan is to

approximate the quasi-likelihood function by a second-order directional Taylor expansion for each direction

and relate this to other directional Taylor expansions. Specifically, we first derive the limit distribution of

θ̂n for a particular direction d and call it the directional QML estimator (DQML estimator). Next, we

examine how this is interrelated with another DQML estimator obtained using a different direction. For this

examination, we first let θ̂n(d) denote the DQML estimator. That is, Ln(θ̂n(d)) = maxθ∈Θ∗(d) Ln(θ),

where Θ∗(d) := {θ′ ∈ Θ : θ′ = θ∗ + hd, h ∈ R+,d ∈ ∆(θ∗)}. Note that the DQML estimator is

constrained by d: for a given d, Θ∗(d) is a straight line starting from θ∗ with its endpoint at the boundary

of Θ. Therefore, Θ∗(d) ⊂ Θ, so that for each d, Ln(θ̂n(d)) ≤ Ln(θ̂n).

We can also represent the DQML estimator θ̂n(d) using the distance between θ∗ and θ̂n(d). With the

constraint that θ̂n(d) ∈ Θ∗(d), we let ĥn(d) be such that θ̂n(d) ≡ θ∗ + ĥn(d)d, from which the limit

behavior of ĥn(d) is associated with that of θ̂n(d). We define the space of h as H∗(d) := {h ∈ R+ :

θ∗ + hd ∈ Θ∗(d)}, so that maxh∈H∗(d) Ln(θ∗ + hd) = Ln(θ̂(d)). As Θ is a compact and convex set in

Rr, H∗(d) must be a closed and bounded interval in R+ with its left-end point equal to zero. We next apply

the directional second-order Taylor approximation to Ln(θ∗ + (·)d), so that for some θ̄n(d) ∈ Θ(d), the

following holds by the mean-value theorem:

Ln(θ∗ + hd) = Ln(θ∗) +DLn(θ∗;d)h+
1

2
D2Ln(θ̄n(d);d)h2. (3)

This approximation can be carried out on H∗(d) because θ̂n = θ∗ + oP(1), so that for each d ∈ ∆(θ∗),

2{Ln(θ̂n(d))− Ln(θ∗)} ⇒ max
h̃∈R+

[2Z(d)h̃+A∗(d)h̃2], (4)

where n−1/2DLn(θ∗;d) and n−1D2Ln(θ∗;d) are such that
{
n−1/2DLn(θ∗;d), n−1D2Ln(θ∗;d)

}
⇒

{Z(d), A∗(d)} as shown in the Appendix. Here, h̃ captures the limit behavior of
√
nh, and the argument

of the right side in (4) is simply obtained as max[0,G(d)], where G(d) := {−A∗(d)}−1Z(d) by the

Kuhn-Tucker theorem, so that
√
nĥn(d) ⇒ max[0,G(d)]. This also implies that

√
n(θ̂n(d) − θ∗) ⇒

max[0,G(d)]d by noting that θ̂n(d) = θ∗ + ĥn(d)d, and 2{Ln(θ̂n(d)) − Ln(θ∗)} ⇒ max[0,Y(d)]2,

where for each d, Y(d) := {−A∗(d)}1/2G(d). Note that (3) implies that the quasi-likelihood function may

not be stochastically differentiable with respect to d because the given quasi-likelihood function may not be

approximated by a second-order expansion with respect to d (see Pollard, 1985).

9



This pointwise result (with respect to d) is not sufficient to derive the limit distribution of the QML

estimator. It is necessary to examine the stochastic interrelationship of DQML estimators obtained using

different directions. Note that

Ln(θ̂n) = sup
d∈∆(θ∗)

Ln(θ̂n(d)). (5)

That is, if we let d̂n := arg maxd∈∆(θ∗) Ln(θ̂n(d)), then Ln(θ̂n) ≡ Ln(θ̂n(d̂n)). The limit behavior of θ̂n

is derived by examining how θ̂n is asymptotically associated with θ̂n( · ) and, for this purpose, we show in

the Appendix that DLn(θ∗; ·) is asymptotically tight: for all ε > 0, there is δ > 0 such that

lim sup
n→∞

Pn

(
sup

‖d1−d2‖<δ
n−1/2|DLn(θ∗;d1)−DLn(θ∗;d2)| > ε

)
< ε,

where Pn is the empirical probability measure. These facts imply that the first-order directional derivative

weakly converges to a Gaussian stochastic process indexed by d (e.g., Billingsley, 1999). In addition,

n−1D2Ln(θ∗; ·) obeys the ULLN under the given conditions provided thus far.

If Ln(·) is D, it is trivial to show asymptotic tightness, because DLn(θ∗;d) = ∇θLn(θ∗)d, so that

sup
‖d1−d2‖<δ

n−1/2|DLn(θ∗;d1)−DLn(θ∗;d2)| ≤ ‖n−1/2∇θLn(θ∗)‖δ,

implying that for any ε > 0,

Pn

(
sup

‖d1−d2‖<δ
n−1/2 |DLn(θ∗;d1)−DLn(θ∗;d2)| > ε

)
≤ Pn

(∥∥∥n−1/2∇θLn(θ∗)
∥∥∥ δ > ε

)
.

Thus, if n−1/2∇θLn(θ∗) obeys the CLT, we can choose δ to have the right side be less than ε, and this

shows the asymptotic tightness. Likewise, we can apply the ULLN to the second-order derivatives: for each

d ∈ ∆(θ∗), D2Ln(θ∗;d) = d′∇2
θLn(θ∗)d, so that for a nontrivial norm, ‖ · ‖∞ say,

sup
d
|n−1{d′∇2

θLn(θ∗)d− d′E[∇2
θLn(θ∗)]d}| ≤ sup

d
d′d

∥∥n−1{∇2
θLn(θ∗)− E[∇2

θLn(θ∗)}]
∥∥
∞ ,

where the right side can be made as small as possible by applying the law of large numbers.

By the asymptotically tight directional derivatives, we now extend the pointwise limit result for
√
nĥn(d)

to the level of functional space, and from this we obtain the limit distribution of the QML estimator as re-

ported in the following theorem:

Theorem 1. Given Assumptions 1 to 6, (i)
{
n−1/2DLn(θ∗; · ), n−1D2Ln(θ∗; · )

}
⇒ (Z(·), A∗(·)), where
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for each d and d′, E[Z(d)Z(d′)] = B∗(d,d
′); (ii)

√
nĥn(·)⇒ max[0,G(·)]; (iii) 2{Ln(θ̂n)−Ln(θ∗)} ⇒

supd∈∆(θ∗) max[0,Y(d)]2; and (iv)
√
n(θ̂n − θ∗) ⇒ max[0,G(d∗)]d∗, provided that max[0,Y(·)]2 is

uniquely maximized at d∗ a.s.−P. �

Note that the limit distribution of the QML estimator is now represented as a functional of the Gaussian

stochastic process defined on ∆(θ∗). Here, Theorem 1(iv) follows from the argmax continuous mapping

theorem (e.g., Kim and Pollard, 1990; van der Vaart and Wellner, 1996). If max[0,Y(·)]2 is almost surely

flat on ∆(θ∗), it is hard to think of d∗ as the limit of d̂n. The unique maximization condition on d∗ is

imposed to prevent this. This result also implies that, even when the model is correctly specified so that

2{Ln(θ̂n)− Ln(θ∗)} is the LR test statistic, its null limit distribution is not chi-squared.

Many statistics are known to follow limit distributions characterized by a Gaussian stochastic process.

For example, Davies (1977, 1987), Andrews (2001), Cho and White (2007, 2010, 2011a), and Baek, Cho,

and Phillips (2015) examined statistics with this feature: unidentified parameters yield a limit distribution

characterized by a Gaussian process, and Theorem 1 can be thought of as a variational result of this.

Theorem 1 accommodates the standard D quasi-likelihood function as a special case of D-D quasi-

likelihood functions. For this examination, we impose

Assumption 6 (CLT). (ii)? For a symmetric and negative definite matrix A∗ and each d, A∗(d) = d′A∗d;

and (iii)? For a symmetric and positive definite matrix B∗ and each d, d̃, B∗(d, d̃) = d′B∗d̃. �

Assumptions 6(ii and iii)? correspond to the assumption that A∗ := limn→∞ n
−1E[∇2

θLn(θ∗)] and B∗ :=

acov{n−1/2∇θLn(θ∗)} are negative and positive definite, respectively, in the D quasi-likelihood function

context. Using these assumptions, we can further refine the results in Theorem 1. We let Assumption 6?

denote Assumptions 6(i, ii?, iii?, and iv) henceforth.

Corollary 1. Given Assumptions 1 to 4, 5?, and 6?, (i) Z(·) is linear in d ∈ ∆(θ∗), so that for each

d, Z(d) = Z′d in distribution, where Z ∼ N(0,B∗); (ii) For each d, G(d) = Z′d{−d′A∗d}−1 in

distribution; (iii) For each d,
√
n(θ̂n(d) − θ∗) ⇒ max[0, {Z′d{−d′A∗d}−1]d; (iv)

√
n(θ̂n − θ∗) ⇒

max[0,−Z′d∗{d∗′A∗d∗}−1]d∗ with d∗ := arg maxdmax[0,Z′d]2/d′(−A∗)d; (v)
√
n(θ̂n − θ∗) ⇒

(−A∗)
−1Z, provided that θ∗ is interior to Θ; (vi) 2{Ln(θ̂n)−Ln(θ∗)} ⇒ supd∈∆(θ∗) max[0,Z′d]2{d′(−

A∗)d}−1; and (vii) 2{Ln(θ̂n)− Ln(θ∗)} ⇒ Z′(−A∗)
−1Z, provided that θ∗ is interior to Θ. �

Corollary 1 is the same consequence as for the standard case if θ∗ is interior to Θ. Our analysis is more prim-

itive because it involves directional derivatives. In particular, Corollaries 1(iv to vii) imply that max[0,Y(·)]2

is uniquely maximized at d∗ a.s.−P. Cho (2011) exploited the D-D quasi-likelihood function analysis for D

quasi-likelihood function estimation and examined other aspects that are not contained in Corollary 1.
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3 Testing Hypotheses Using D-D Quasi-Likelihood Functions

This section examines data inference using D-D models. To this end, the standard QLR, Wald, and LM test

statistics are reviewed and redefined in case there is a need to accommodate directional differentiability.

It is efficient to first specify the role of each parameter. We partition θ into (π′, τ ′)′ = (λ′,υ′, τ ′)′ such

that the directional derivatives of Ln(·) with respect to λ (∈ Rrλ) and υ (∈ Rrυ) are linear and possibly

non-linear with respect to dλ and dυ, respectively. The parameter τ (∈ Rrτ ) consists of other nuisance

parameters that are asymptotically orthogonal to π := (λ′,υ′)′ (∈ Rrπ) in terms of the second-order

directional derivative. More specifically, we suppose that for each d, DLn(θ∗;d) can be written as

DLn(θ∗;d) = dλ
′DL(λ)

n +DL(υ)
n (dυ) +DL(τ )

n (dτ )

such that for each (dλ
′,dυ

′,dτ
′)
′,

1√
n

 DL
(π)
n (dπ)

DL
(τ )
n (dτ )

 :=
1√
n


dλ
′DL

(λ)
n

DL
(υ)
n (dυ)

DL
(τ )
n (dτ )

⇒
 Z(π)(dπ)

Z(τ )(dτ )

 :=


dλ
′Z(λ)

Z(υ)(dυ)

Z(τ )(dτ )

 ∼ N(0,B∗(d)),

and n−1/2(DL
(π)
n (·), DL(τ )

n (·))⇒ (Z(π)(·),Z(τ )(·)), where for each d, d̃ ∈ ∆(θ∗),

B∗(d, d̃) :=

 B
(π,π)
∗ (dπ, d̃π) B

(π,τ )
∗ (dπ, d̃τ )

B
(τ ,π)
∗ (dτ , d̃π)

′
B

(τ ,τ )
∗ (dτ , d̃τ )



:=


dλ
′B

(λ,λ)
∗ d̃λ dλ

′B
(λ,υ)
∗ (d̃υ) dλ

′B
(λ,τ )
∗ (d̃τ )

B
(υ,λ)
∗ (dυ)

′
d̃λ B

(υ,υ)
∗ (dυ, d̃υ) B

(υ,τ )
∗ (dυ, d̃τ )

B
(τ ,λ)
∗ (dτ )

′
d̃λ B

(τ ,υ)
∗ (dτ , d̃υ) B

(τ ,τ )
∗ (dτ , d̃τ )

 , (6)

DL
(λ)
n ∈ Rrλ , DL(υ)

n (dυ) ∈ R, DL(τ )
n (dτ ) ∈ R, B

(λ,λ)
∗ ∈ Rrλ × Rrλ , B

(λ,υ)
∗ (dυ) ∈ Rrλ , B

(λ,τ )
∗ (dτ ) ∈

Rrλ , B
(υ,λ)
∗ (dυ) = B

(λ,υ)
∗ (dυ), and B

(τ ,λ)
∗ (dτ ) = B

(λ,τ )
∗ (dτ ). Thus, it follows that

acov
{
n−1/2DLn(θ∗;d), n−1/2DLn(θ∗; d̃)

}
= ι3

′B∗(d, d̃)ι3,
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where ι` is the `× 1 vector of ones. Similarly, we also suppose that A∗(d) = ι3
′A∗(d)ι3, where

A∗(d) :=

 A
(π,π)
∗ (dπ) A

(π,τ )
∗ (dπ,dτ )

A
(τ ,π)
∗ (dτ ,dπ)

′
A

(τ ,τ )
∗ (dτ )



:=


dλ
′A

(λ,λ)
∗ dλ dλ

′A
(λ,υ)
∗ (dυ) dλ

′A
(λ,τ )
∗ (dτ )

A
(υ,λ)
∗ (dυ)

′
dλ A

(υ,υ)
∗ (dυ) A

(υ,τ )
∗ (dυ,dτ )

A
(τ ,λ)
∗ (dτ )

′
dλ A

(τ ,υ)
∗ (dτ ,dυ) A

(τ ,τ )
∗ (dτ )

 , (7)

A
(λ,λ)
∗ ∈ Rrλ × Rrλ , A

(λ,υ)
∗ (dυ) ∈ Rrλ , A

(λ,τ )
∗ (dτ ) ∈ Rrλ , A

(υ,λ)
∗ (dυ) = A

(λ,υ)
∗ (dυ), and A

(τ ,λ)
∗ (dτ )

= A
(λ,τ )
∗ (dτ ). We also let π be orthogonal to τ : for each d, A

(τ ,π)
∗ (dτ ,dπ) = A

(π,τ )
∗ (dπ,dτ ) = 0.

This assumption is useful in eliminating the nuisance parameters from our analysis that are asymptotically

irrelevant to testing the hypothesis given below. We also permit rυ, rλ, and rτ to be zero, so that λ, υ, or τ

may be absent in the model. If rυ and rτ are zero, the quasi-likelihood function is twice D. These conditions

are collected into

Assumption 7 (D-Derivatives). (i) For each d,DLn(θ∗;d) = DL
(π)
n (dπ)+DL

(τ )
n (dτ ), and n−1/2(DL

(π)
n

(·), DL(τ )
n (·)) ⇒ (Z(π)(·),Z(τ )(·)); (ii) For each d and d̃, B∗(d, d̃) = ι3

′B∗(d, d̃)ι3, where for each d,

B∗(d,d) is symmetric and positive definite; (iii) For each d,A∗(d) = ι3
′A∗(d)ι3, where for each d, A∗(d)

is symmetric and negative definite; (iv) A
(τ ,π)
∗ (dτ ,dπ) = A

(π,τ )
∗ (dπ, dτ ) = 0 uniformly on ∆(θ∗); (v)

Θ = Π×T andC(θ∗) = C(π∗)×C(τ ∗), whereC(π∗) := {x ∈ Rrπ : ∃π′ ∈ Π,x := π∗+δπ
′, δ ∈ R+}

and C(τ ∗) := {x ∈ Rrτ : ∃τ ′ ∈ T,x := τ ∗+δτ ′, δ ∈ R+}; (vi) Π = Λ×Υ and C(π∗) = Rrλ×C(υ∗),

where C(υ∗) := {x ∈ Rrυ : ∃υ′ ∈ Υ,x := υ∗ + δυ′, δ ∈ R+}; and (vii) λ∗ is an interior element of Λ.

�

Assumptions 7(v and vi) let the parameter space Θ and Π be the Cartesian products of two separate param-

eter spaces. We use this property to represent Ln(·) as a sum of two independent functions at the limit as

detailed below. Given this, we further let υ be the parameter of interest, and the hypotheses of interest are

given as

H0 : υ∗ = υ0, versus H1 : υ∗ 6= υ0.

For future reference, we also let Θ0 be the parameter space constrained by the null hypotheses. That is,

Θ0 := {(υ′,λ′, τ ′)′ ∈ Θ : υ = υ0}.
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3.1 Qausi-Likelihood Ratio Test Statistic

The standard QLR test statistic defined for D quasi-likelihood functions can be used for D-D quasi-likelihood

functions without modification. We formally define the QLR test statistic as LRn := 2{Ln(θ̂n)−Ln(θ̈n)},

where θ̈n is such that Ln(θ̈n) := supθ∈Θ0
Ln(θ).

For the analysis of the QLR test statistic, we split LRn into LR(1)
n and LR(2)

n such that LR(1)
n :=

2{Ln(θ̂n) − Ln(θ∗)} and LR(2)
n := 2{Ln(θ̈n) − Ln(θ∗)}. Note that LR(1)

n tests whether the unknown

parameter is θ∗. Although Theorem 1(iii) already provides the limit distribution of LR(1)
n , we reexamine

this here by separating ∆(θ∗) into ∆(π∗) := {x ∈ Rrπ : π∗ + x ∈ cl{C(π∗)}, ‖x‖ = 1 } and ∆(τ ∗) :=

{x ∈ Rrτ : τ ∗+x ∈ cl{C(τ ∗)}, ‖x‖ = 1 }. We denote their representative components as sπ(= (s′λ, s
′
υ)′)

and sτ , respectively. Here, direction s is used to distinguish its role from that of d ∈ ∆(θ∗). Note that

∆(π∗) and ∆(τ ∗) are subsets of ∆(θ∗). This separation is useful in uncovering the limit distribution of

LR(2)
n . The following theorem provides the null limit distribution of LRn:

Theorem 2. (i) Given Assumptions 1 to 7, LR(1)
n ⇒ H0 +H1 +H2, where

H0 := sup
sυ∈∆(υ∗)

max[0, Ỹ(υ)(sυ)]2; H1 := Z(λ)′(−A
(λ,λ)
∗ )−1Z(λ); H2 := sup

sτ∈∆(τ∗)
max[0,Y(τ )(sτ )]2

such that for each sυ ∈ ∆(υ∗) := {x ∈ Rrυ : υ∗ + x ∈ cl{C(υ∗)}, ‖x‖ = 1 },

Ỹ(υ)(sυ) := (−Ã(υ,υ)
∗ (sυ))−1/2Z̃(υ)(sυ); Z̃(υ)(sυ) := Z(υ)(sυ)−A

(υ,λ)
∗ (sυ)′(A

(λ,λ)
∗ )−1Z(λ);

Ã
(υ,υ)
∗ (sυ) := A

(υ,υ)
∗ (sυ)−A

(υ,λ)
∗ (sυ)

′
(A

(λ,λ)
∗ )−1A

(λ,υ)
∗ (sυ);

and for each sτ , Y(τ )(sτ ) := {−A(τ ,τ )
∗ (sτ )}−1/2Z(τ )(sτ ); (ii) Given Assumptions 1 to 3 andH0, θ̈n con-

verges to θ∗ a.s.–P; (iii) Given Assumptions 1 to 7 and H0, LR(2)
n ⇒ H1 +H2; and (iv) Given Assumptions

1 to 7, and H0, LRn ⇒ H0. �

Several remarks are in order regarding Theorem 2. First, Theorem 2(iii) can be understood as a corollary

of Theorem 2(i). Note that if rυ = 0 as υ is fixed at υ∗, Theorem 2(i) implies that

LR(2)
n ⇒ sup

sλ∈∆(λ∗)

{
max[0, sλ

′Z(λ)]2

sλ′(−A
(λ,λ)
∗ )sλ

}
+H2 = H1 +H2. (8)

Here, the final equality holds because ∆(λ∗) = Rrλ by Assumption 7(vi) and the null quasi-likelihood

function is differentiable with respect to λ. Second, the weak limit in Theorem 2(iii) is jointly achieved

with that of LR(1)
n because all of these are obtained by applying the continuous mapping theorem (CMT)
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to Theorem 1(i). Furthermore, H1 and H2 in LR(2)
n are identical to those of LR(1)

n . Third, Z̃(υ)(·) is

obtained by projecting Z(υ)(·) on Z(λ) because the QLR test statistic is constructed by minimizing the

impact of the parameter estimation error that arises when estimating the unknown nuisance parameter λ∗.

Fourth, the orthogonality condition in Assumption 7(iv) and the parameter space condition in Assumption

7(v) asymptotically separate LR(1)
n into the sum of H0, H1, and H2 as given in Theorem 2(i). This implies

that we can ignore the effects of τ when testing H0. Fifth, the null limit distribution of the QLR test is more

complicated than that in Theorem 2 in a general set-up. For example, if λ∗ is a boundary parameter or the

Cartesian product representation in Assumption 7(vi) is not valid, the null limit distribution of the QLR test

statistic is obtained asH′01 −H′1, where

H′1 := sup
sλ∈∆(λ∗)

{
max[0, sλ

′Z(λ)]2

sλ′(−A
(λ,λ)
∗ )sλ

}
,

and

H′01 := sup
(sλ,sξ)∈∆(π∗)

{
max[0,Z(ξ)(sξ) + sλ

′Z(λ)]2

−A(ξ,ξ)
∗ (sξ) + 2sλ′(−A

(λ,ξ)
∗ (sξ)) + sλ′(−A

(λ,λ)
∗ )sλ

}
.

Finally, Liu and Shao (2003) provided an alternative characterization of the quasi-likelihood ratio test using

the Hellinger distance that obtains the null limit distribution as a functional of a Gaussian process as in

Theorem 2. We leave the application of their methodology to the current context as a future research topic.

3.2 Wald Test Statistic

Before redefining the Wald test statistic, we first examine the null limit distribution of the distance between

υ̂n and υ0. Note that the distance between θ̂n and θ∗ that is represented by ĥn(·) cannot be used to test

the null hypothesis because the inference on υ∗ is mixed with that of the other nuisance parameters λ∗ and

τ ∗. The distance ĥn(·) needs to be broken into pieces that correspond to υ, ω, and τ , and this process is

achieved by separating the set of directions ∆(θ∗) into the sets of directions for υ, λ, and τ . Specifically,

for any hd and d ∈ ∆(θ∗), there are h(υ), h(λ), h(τ ), and (sυ, sλ, sτ ) ∈ ∆(υ∗)×∆(λ∗)×∆(τ ∗) such that

hd = (h(υ)sυ
′, h(λ)sλ

′, h(τ )sτ
′)
′
if each parameter space of υ, λ, and τ is approximated by a cone and the

parameter space of θ is approximated by the Cartesian product of these cones, as assumed in Assumptions

7. Therefore, the following equality holds:

sup
d

sup
h
Ln(θ∗ + hd) = sup

{sυ , sλ, sτ }
sup

{h(υ), h(λ), h(τ)}
Ln(θ∗ + (h(υ)sυ

′, h(λ)sλ
′, h(τ )sτ

′)
′
), (9)

and we can apply Wald’s (1943) testing principle to ĥ(υ)
n (·).
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For this purpose, we examine the limit distribution of ĥn(·) := (ĥ
(υ)
n (·), ĥ(λ)

n (·), ĥ(τ )
n (·))

′
. For each

(sυ, sλ, sτ ) ∈ ∆(υ∗)×∆(λ∗)×∆(τ ∗), we let


G(υ)(sυ, sλ)

G(λ)(sυ, sλ)

G(τ )(sτ )

 :=

 G(π)(sυ, sλ)

G(τ )(sτ )

 :=

 {−A
(π,π)
∗ (sυ, sλ)}−1Z(π)(sυ, sλ)

{−A(τ ,τ )
∗ (sτ )}−1Z(τ )(sτ )

 ,

where for each (sυ, sλ), Z(π)(sυ, sλ) := (Z(υ)(sυ),Z(λ)′sλ)
′
. Next, for each (sυ, sλ) ∈ ∆(υ∗) ×

∆(λ∗), we also let  Ġ(υ)(sυ)

Ġ(λ)(sλ)

 :=

 {−A(υ,υ)
∗ (sυ)}−1Z(υ)(sυ)

{s′λ(−A
(λ,λ)
∗ )sλ}−1Z(λ)′sλ

 .
These constitute the limit behavior of ĥn(·). First, note that both (ĥ

(υ)
n (·), ĥ(λ)

n (·))
′

and ĥ(τ )
n (·) are

initially defined on ∆(υ∗) × ∆(λ∗) × ∆(τ ∗), but supposing that A(π,τ )
∗ (dπ,dτ ) = 0 renders the maxi-

mization process in the right side of (9) asymptotically separated into two independent maximization pro-

cedures. Second, ĥ(υ)
n (·) and ĥ(λ)

n (·) cannot be less than zero. Thus, for each (sυ, sλ, sτ ), one of the

following four different events asymptotically arises: (i) ĥ(υ)
n (sυ, sλ, sτ ) > 0 and ĥ(λ)

n (sυ, sλ, sτ ) > 0;

(ii) ĥ(υ)
n (sυ, sλ, sτ ) > 0, ĥ(λ)

n (sυ, sλ, sτ ) = 0; (iii) ĥ(υ)
n (sυ, sλ, sτ ) = 0, ĥ(λ)

n (sυ, sλ, sτ ) > 0; or (iv)

ĥ
(υ)
n (sυ, sλ, sτ ) = 0, ĥ(λ)

n (sυ, sλ, sτ ) = 0. Note that these four different events are asymptotically de-

termined by the sign of G(π)(·) from the fact that it is asymptotically associated with the limit behavior of

(ĥ
(υ)
n (·), ĥ(λ)

n (·)). Furthermore, their signs indicate how the parameter estimation error affects the asymp-

totic distribution of (ĥ
(υ)
n (·), ĥ(λ)

n (·)). For example, if ĥ(λ)
n (sυ, sλ, sτ ) = 0 and ĥ(υ)

n (sυ, sλ, sτ ) > 0,

estimating the nuisance parameter λ∗ does not affect the limit distribution of ĥ(υ)
n (sυ, sλ, sτ ) because

λ̂n(sυ, sλ, sτ ) = λ∗ from the fact that ĥ(λ)
n (sυ, sλ, sτ ) = 0, so that it does not have to be associated with

the parameter estimation error of λ̂n(sυ, sλ, sτ ), implying that
√
nĥ

(υ)
n (sυ, sλ, sτ ) ⇒ Ġ(υ)(sυ). For the

cases of (iii) and (iv), similar interpretations apply. If both λ∗ and υ∗ are interior elements, both parameter

estimation errors for υ∗ and λ∗ cannot be avoided and must be taken into account in obtaining the limit

distribution of ĥ(υ)
n (sυ, sλ, sτ ) and ĥ(λ)

n (sυ, sλ, sτ ).

We now define the Wald test statistic asWn := supsυ∈∆(υ0) n{h̃
(υ)
n (sυ)}{Ŵn(sυ)}{h̃(υ)

n (sυ)}, where

h̃
(υ)
n (sυ) is such that for each sυ ∈ ∆(υ0), Ln(υ0 + h̃

(υ)
n (sυ)sυ, λ̃n(sυ), τ̃n(sυ)) = sup{h(υ),λ,τ}

Ln(υ0 + h(υ)sυ,λ, τ ), and Ŵn(·) is a weight function that estimates a non-random positive function

Ã
(υ,υ)
∗ (·) say, uniformly on ∆(υ0). Note that ĥ(υ)

n (·) is equivalent to h̃(υ)
n (·) under the null from the fact

that suph(υ),λ,τ Ln(υ0 +h(υ)sυ,λ, τ ) is equivalent to sup{sλ,sτ } sup{h(υ),h(λ),h(τ)} Ln(υ0 +h(υ)sυ,λ∗+
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h(λ)sλ, τ ∗ + h(τ )sτ ). This equivalency does not hold under the alternative, and from this the power of

the Wald test is acquired. As the weight function is an important component of the Wald test statistic, we

formally state its condition as follows:

Assumption 8 (Weight Function I). For a function Ŵn(·) that is strictly positive uniformly on ∆(υ0) and

for every n a.s.–P, supsυ∈∆(υ0) |Ŵn(sυ)− Ã(υ,υ)
∗ (sυ)| → 0 a.s.–P. �

In the Wald testing context, the weight function Ã(υ,υ)
∗ (·) is typically the asymptotic variance function of

√
nh̃

(υ)
n (·). If the parameter of interest is on the boundary, the weight function needs to be carefully chosen

because the asymptotic variance function of
√
nh̃

(υ)
n (·) is different from the interior parameter value case.

The null limit distribution of the Wald test statistic is obtained as follows:

Theorem 3. Given Assumptions 1 to 8 and H0,Wn ⇒ H0, provided that max[0, Ỹ(·)]2 is uniquely maxi-

mized a.s.–P. �

Note that the weak limit of the Wald test statistic in Theorem 3 is identical to that given in Theorem 2. We

prove Theorem 3 by noting that for each sυ, maximizing 2{Ln(υ0 +h(υ)sυ,λ, τ )−Ln(υ0,λ∗, τ ∗)} with

respect to h(υ), λ, and τ is equivalent to

sup
{sλ,sτ }

sup
{h(υ),h(λ),h(τ)}

2{Ln(υ0 + h(υ)sυ,λ∗ + h(λ)sλ, τ ∗ + h(τ )sτ )− Ln(υ0,λ∗, τ ∗)}. (10)

For each (sυ, sλ, sτ ), (10) is approximated by a quadratic function of (h(υ), h(λ), h(τ )), and the signs of

ĥ
(υ)
n (sυ, sλ, sτ ) and ĥ(λ)

n (sυ, sλ, sτ ) result in different approximations as discussed earlier. Using As-

sumption 7(vii), we show that the optimization process in (10) results in the consequence of Theorem 3.

3.3 Lagrange Multiplier Test Statistic

The standard LM test statistic needs to be redefined for D-D quasi-likelihood functions when testing whether

the slope of a quasi-likelihood function is asymptotically distributed around zero under the null. We let the

LM test statistic be defined as

LMn := sup
(sυ ,sλ)∈∆(υ0)×∆(λ̈n)

nmax

[
0,
−DLn(θ̈n; sυ)

D̃2Ln(θ̈n; sυ; sλ)

]2

W̃n(sυ, sλ),

where for each (sυ, sλ), ∆(λ̈n) := {x ∈ Rrω : x + λ̈n ∈ cl{C(λ̈n)}, ‖x‖ = 1},

D̃2Ln(θ̈n; sυ; sλ) := D2Ln(θ̈n; sυ)−DLn(θ̈n; sυ; sλ)(D2Ln(θ̈n; sλ))−1DLn(θ̈n; sλ; sυ),
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DLn(θ̈n; sυ; sλ) := lim
h↓0

h−1{DLn(υ0, λ̈n + hsλ, τ̈n; sυ)−DLn(θ̈n; sυ)},

DLn(θ̈n; sλ; sυ) := lim
h↓0

h−1{DLn(υ0 + hsυ, λ̈n, τ̈n; sλ)−DLn(θ̈n; sλ)},

and W̃n(·) is a weight function that satisfies

Assumption 9 (Weight Function II). For a function W̃n(·) that is strictly positive uniformly on ∆(υ0) ×

∆(λ̈n) and for every n a.s.–P, sup(sυ ,sλ)∈∆(υ0)×∆(λ̈n) |W̃n(sυ, sλ)− Ã(υ,υ)
∗ (sυ)| → 0 a.s.–P. �

There are several remarks relevant to the definition of the LM test statistic. First, the LM test statistic

has a structure that yields the same null limit distribution as those of the QLR and Wald tests. That is, the

LM test statistic is defined using the first- and second-order directional derivatives of Ln(υ0 +h(υ)sυ, λ̈n+

h(λ)sλ, τ̈n + h(τ )sτ ) with respect to sυ and sλ, where (υ0
′, λ̈
′
n, τ̈

′
n)
′

= θ̈n, and the “max” operator is

used to capture the non-negativity property of
√
nĥ

(υ)
n (sυ, sλ, sτ ). Second, the LM test statistic is asymp-

totically the supremum of a squared random score function with respect to (sυ, sλ), provided that W̃n(·) is

asymptotically equivalent to −n−1D̃2Ln(θ̈n; ·). Third, W̃n(·) is defined on ∆(υ0) ×∆(λ̈n), and λ∗ is an

interior element of Ω. Note that the domain ∆(λ̈n) estimates ∆(λ∗). The interiority condition lets ∆(λ̈n)

converge to ∆(λ∗) asymptotically. If λ∗ is on the boundary, ∆(λ̈n) can be different from ∆(λ∗), and the

null limit distribution of the LM test statistic is affected by this. Assumption 7(vii) precludes this possibility.

The null limit distribution of the LM test statistic is straightforwardly obtained as follows:

Theorem 4. Given Assumptions 1 to 7, 9, andH0, LMn ⇒ supsυ∈∆(υ0) max[0, Ỹ(υ)(sυ)]2, provided that

max[0, Ỹ(·)]2 is uniquely maximized a.s.–P. �

Therefore, the QLR, Wald, and LM test statistics are asymptotically equivalent under the null.

3.4 Example: Conditional Heteroskedasticity (Continued)

We continue examining King and Shively’s (1993) conditional heteroskedasticity model in this subsection.

For a proper analysis, we further elaborate on the model assumption. If d1 is zero, d2/d1 is not properly

defined. We avoid this by letting d2/d1 have an upper bound. This restriction is equivalent to letting the

parameter space of ρ in the original model have an upper bound strictly less than unity. We also do not

allow that d2 = 0. If it is allowed, the diagonal elements of Ωn(0) contain 00, so that the model is not

again appropriately identified. Furthermore, Rosenberg’s (1973) original purpose to test for conditional

heteroskedasticity does not allow the null model to have a time-varying variance. We therefore let d2 be

strictly positive. Imposing this lower bound condition is equivalent to letting ρ be separated from zero in
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terms of the original model. Consequently, our parameter space for θ is refined into

Θ := {θ ∈ [0, κ̄ cos(π̄/2)]× [0, κ̄ sin(π̄/2)] : c× θ1 ≤ θ2 ≤ c̄× θ1 ∃ c and c̄ > 0}.

By this modification, d2/d1 is constrained to [c, c̄], and we can avoid the multifold identification problem

of Cho and Ishida (2012); Cho, Ishida, and White (2011, 2014); White and Cho (2012); Baek, Cho, and

Phillips (2015); and Cho and Phillips (2016).

The first-order directional derivative in (1) can be partitioned into three pieces: DLn(γ∗, σ
2
∗,θ∗;d) =

Z1,n(d) + Z2,n(d) + Z3,n(d), where for each d,

Z1,n(d) :=
dγ
′

σ2
∗

n∑
t=1

QtUt, Z2,n(d) :=
n∑
t=1

[
dσ2

2σ4
∗

+
(d2

1 + d2
2)1/2W 2

t

2σ2
∗{1−m(d2/d1)2}

]
(U2

t − σ2
∗),

Z3,n(d) :=
(d2

1 + d2
2)1/2

σ2
∗{1−m(d2/d1)2}

n∑
t=2

UtWt

t−1∑
t′=1

Ut′Wt′m(d2/d1)t−t
′
,

and m(d2/d1) := 2 tan−1(d2/d1)/π. Here, {QtUt} and {U2
t − σ2

∗} are sequences of identically and

independently distributed (IID) random variables, and {UtWt
∑t−1

t′=1 Ut′Wt′m(d2/d1)t−t
′} is a martingale

difference array (MDA), so that Assumption 6(iv) holds for Z1,n(d), Z2,n(d), and Z3,n(d), and the CLT for

MDA can be applied to them. Furthermore, the asymptotic tightness also holds for n−1/2DLn(γ∗, σ
2
∗,θ∗; · ).

As Z1,n(·) and Z2,n(·) are linear with respect to QtUt and (U2
t − σ2

∗), respectively, it is trivial to show their

asymptotic tightness. For the asymptotic tightness of Z3,n(·), we let εt := WtUt and m := m(d2/d1) and

show that {n−1/2
∑n

t=2 εt
∑t−1

t′=1 εt′m
t−t′} is asymptotically tight by applying Hansen (1996b). First, his

theorem 1 holds if E[W 4
t ] < ∆4 <∞. Next, his λ and a are identical to one in our context, so that

lim sup
n→∞

1

n

n∑
t=1

E[ε2
t (
t−1∑
τ=1

ετm
t−τ )2] = (σ∗∆)4

(
m2

1−m2

)
<∞

for any m, and the Lipschitz constant Mt :=
∑t−1

τ=1(t− τ)m̈t−τ−1|εtετ | satisfies the moment condition:

lim sup
n→∞

1

n

n∑
t=1

E[M2
t ] = (σ∗∆)4

(
1 + 2m̈− 2m̈3 − m̈4

(1− m̈)5(1 + m̈)3

)
<∞

by the standard argument that |m(·)| is uniformly and strictly bounded by one andE[|ε2
t ετεt′ |] < (σ∗∆)4 <

∞, where m̈ := max[|m(c)|, |m(c̄)|]. These facts imply that his theorem 2 holds, and Assumption 5(iii)

also follows from this: n−1/2DLn(γ∗, σ
2
∗,θ∗; · ) ⇒ Z(·), where for each d and d̃, E[Z(d)Z(d̃)] =
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B∗(d, d̃) := B
(1)
∗ (d, d̃) +B

(2)
∗ (d, d̃) +B

(3)
∗ (d, d̃) with (d, d̃), B(1)

∗ (d, d̃) := 1
σ2
∗
dγ
′E[QtQt

′]d̃γ ,

B
(2)
∗ (d, d̃) := E

{[
dσ2√
2σ2
∗

+
(d2

1 + d2
2)1/2W 2

t√
2{1−m2}

][
d̃σ2√
2σ2
∗

+
(d̃2

1 + d̃2
2)1/2W 2

t√
2{1− m̃2}

]}
,

B
(3)
∗ (d, d̃) :=

(d2
1 + d2

2)1/2(d̃2
1 + d̃2

2)1/2

{1−m2}{1− m̃2}

[
mm̃E[W 2

t ]2

1−mm̃

]
,

and m̃ := m(d̃2/d̃1).

The limit behavior of the second-order directional derivative is related to B∗(d, d̃). By applying the law

of large numbers to (2), we obtain

D2Ln(γ∗, σ
2
∗,θ∗;d) =−

nd2
σ2

2σ4
∗
− 1

σ2
∗
dγ
′Qn′Qndγ −

dσ2(d2
1 + d2

2)1/2

σ4
∗

Un′ [Ωn(m)] Un

+
(d2

1 + d2
2)

2

{
tr
[
Ωn(m)2

]
− 2

σ2
∗
Un′[Dn(m) + On(m)]Un

}
+ oP(n),

where Dn(·) is a diagonal matrix with the diagonal elements of Ωn(·)2, and On(·) is such that Dn(·) +

On(·) ≡ Ωn(·)2. Applying theorem 3.7.2 of Stout (1974) shows that n−1D2Ln(γ∗, σ
2
∗, θ∗;d) = −B∗(d,

d) + oP(1). The ULLN further strengthens this to: supd |n−1D2Ln(γ∗, σ
2
∗,θ∗;d) + B∗(d,d)| = oP(1),

which also leads to the information matrix equality. This follows mainly because D2Ln (γ∗, σ
2
∗,θ∗; ·)

is differentiable on ∆(θ∗), so that Assumption 5(iii) holds with respect to the second-order directional

derivatives. Therefore, 2{Ln(γ̂n, σ̂
2
n, θ̂n) − Ln(γ∗, σ

2
∗,θ∗)} ⇒ supd[0,Y(d)]2 by Theorem 1(iii), where

Y(d) := {B∗(d,d)}−1/2Z(d), and for each d and d̃,

E[Y(d)Y(d̃)] =
B∗(d, d̃)

{B∗(d,d)}1/2{B∗(d̃, d̃)}1/2
.

The main interests of King and Shively (1993) can be analyzed by the three test statistics. First, we

reconcile the parameters in the model with the parameters defined in the previous subsections. Specifically,

we let υ = (θ1, θ2)′, λ = σ2, τ = γ, and π = (σ2, θ1, θ2)
′. Then, for each d and d̃,

B∗(d, d̃) =

 B
(π,π)
∗ (dπ, d̃π) 0′

0 1
σ2
∗
dγ
′E[QtQ

′
t]d̃γ

 ,
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and

B
(π,π)
∗ (dπ, d̃π) =

 1
2σ4
∗
dσ2 d̃σ2

1
2σ2
∗
dσ2 h̃E[W 2

t ]

1
2σ2
∗
d̃σ2hE[W 2

t ] hh̃
[

1
2E[W 4

t ] + kE[W 2
t ]2
]
 ,

where for each (d1, d2) and (d̃1, d̃2), h̃ := h(d̃1, d̃2), h := h(d1, d2) := (d2
1 + d2

2)1/2/(1−m2), and

k := k(d2/d1, d̃2/d̃1) := mm̃/(1−mm̃). Because of the information matrix equality and the fact that

B∗(d, d̃) is block diagonal, the null limit distribution associated with each block matrix can be separately

examined. Furthermore, σ−2
∗ dγ

′E[QtQt
′]d̃γ is associated only with γ, so that it can be ignored when

deriving the null limit distributions of the test statistics. We further note that ι3′B∗(d, d̃)ι3 = B
(1)
∗ (d, d̃) +

B
(2)
∗ (d, d̃) + B

(3)
∗ (d, d̃), where each B(i)

∗ (d, d̃) (i = 1, 2, 3) is the covariance constituting the independent

Gaussian stochastic processes that we have already derived above.

The null limit distributions of the test statistics are more easily obtained by the unique features of

B
(π,π)
∗ (dπ, d̃π): first, let

B̃
(π,π)
∗ (dπ, d̃π) :=

 B̈
(π,π)
∗ (dπ, d̃π) 0

0′ qE[W 2
t ]2

 ,

B̈
(π,π)
∗ (dπ, d̃π) :=

1

2σ2
∗

 hh̃σ2
∗E[W 4

t ] d̃σ2hE[W 2
t ]

dσ2 h̃E[W 2
t ] 1

σ2
∗
dσ2 d̃σ2

 ,
and q := q(d1, d2, d̃1, d̃2) := hh̃k, and note that ι3′B̃

(π,π)
∗ (dπ, d̃π)ι3 = B

(2)
∗ (d, d̃) + B

(3)
∗ (d, d̃) and

ι2
′B̈

(π,π)
∗ (dπ, d̃π)ι2 = B

(2)
∗ (d, d̃). Here, the Gaussian stochastic process associated with B̈

(π,π)
∗ (dπ, d̃π)

is independent of that associated with qE[W 2
t ]2 because B̃

(π,π)
∗ (dπ, d̃π) is block diagonal. Furthermore,

B̈
(π,π)
∗ (dπ, d̃π) is bilinear with respect to h(d1, d2) and dσ2 . Using these facts, we can derive the null limit

distributions of the three test statistics: first, the null limit distribution of the QLR test statistic is obtained

as LRn ⇒ sups2/s1∈[c,c̄] max[0, Ỹ(θ)(s1, s2)]2 by Theorem 2(iv), where Ỹ(θ)(·) is a standard Gaussian

stochastic process with covariance structure

c(s2/s1, s̃2/s̃1)

{c(s2/s1, s2/s1)}1/2{c(s̃2/s̃1, s̃2/s̃1)}1/2

and for each (s2/s1, s̃2/s̃1), c(s2/s1, s̃2/s̃1) := 1
2var(W 2

t ) + k(s2/s1, s̃2/s̃1)E[W 2
t ]2. This structure is

homogenous of degree zero with respect to s1 and s2, so that Ỹ(θ)(·) can be equivalently stated as a function

of s2/s1.
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Second, we apply the Wald test statistic to this model. By the requirement of Theorem 3, we let the

weight function be

Ŵn(s̃2/s̃1, s2/s1) :=
1

(1−m2)(1−m2)

[
v̂arn(W 2

t )

2
+ kÊn[W 2

t ]2
]
,

where Ên[W 2
t ] := n−1

∑n
t=1W

2
t and v̂arn[W 2

t ] := n−1
∑n

t=1W
4
t − (n−1

∑n
t=1W

2
t )2. This statistic

satisfies Assumption 8, and the Wald test statistic is accordingly defined as

Wn := n{h̃(θ)
n (s2/s1)}Ŵn(s2/s1, s2/s1){h̃(θ)

n (s2/s1)},

andWn ⇒ sups2/s1∈[c,c̄] max[0, Ỹ(θ)(s1, s2)]2 under the null by Theorem 3, where h̃(θ)
n (s2/s1) is such that

Ln(γ̃n, σ̃
2
n, h̃

(θ)
n (s2/s1)s1, h̃

(θ)
n (s2/s1)s2) = sup

(h(θ),γ,σ2)

Ln(γ, σ2, h(θ)s1, h
(θ)s2)

and s2
1 + s2

2 = 1.

Finally, we apply the LM test statistic. Following the definition of the LM test statistic, we let

LMn := sup
s2/s1∈[c,c̄]

n

{
max

[
0, DLn(γ̈n, σ̈

2
n,0; s1, s2)

]
−D̃2Ln(γ̈n, σ̈

2
n,0; s1, s2, sσ2)

}2

Ŵn(s2/s1, s2/s1),

where

DLn(γ̈n, σ̈
2
n,0; s1, s2) := {2σ̈2

n}−1{Un(γ̈n)′Ωn (m(s2/s1)) Un(γ̈n)− σ̈2
ntr[Ωn (m(s2/s1))]},

D̃2Ln(γ̈n, σ̈
2
n,0; s1, s2, sσ2) :=

1

2

{
tr(Ωn(m(s2/s1)2))− 2

σ̈2
n

Un(γ̈n)′Ωn(m(s2/s1)2)Un(γ̈n)

}
−
[
n

2
− 1

σ̈2
n

Un(γ̈n)′Un(γ̈n)

]−1

{Un(γ̈n)′Ωn (m(s2/s1)) Un(γ̈n)}2,

(γ̈n, σ̈
2
n) is such that Ln(γ̈n, σ̈

2
n,0) = sup(γ,σ2) Ln(γ, σ2,0), and the same weight matrix is used as for the

Wald test statistic. Here, D̃2Ln(γ̈n, σ̈
2
n,0; s1, s2, sσ2) is indexed only by (s1, s2) because sσ2 disappears

by construction. Theorem 4 now implies that LMn ⇒ sups2/s1∈[c,c̄] max[0, Ỹ(θ)(s1, s2)]2, so that all three

test statistics are asymptotically equivalent under the null.

The null limit distributions of the three test statistics can be uncovered by simulation. Note that the
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covariance structure of Ỹ(θ)(·) is the same as that of

Ÿ(θ)(s1, s2) :=
1

c(s2/s1, s2/s1)1/2

{var(W 2
t )

2

}1/2

Z0 + E[W 2
t ]
∞∑
j=1

m(s2/s1)jZj

 ,
where Zj ∼ IID N(0, 1). Due to this IID condition, simulating Ÿ(θ)(·) is not hard. When simulating

Ÿ(θ)(·), var(W 2
t ) and E[W 2

t ] must be estimated, and the running index j must be truncated at a moderately

large level so that it does not significantly affect the null limit distribution.

We conduct Monte Carlo simulations using this method. The DGP for Yt = Ut ∼ IID N(0, 1) and

Wt ∼ IID N(0, 1) that is independent of Ut. We assume that the parameters other than α∗, σ2
∗ , θ1∗, and θ2∗

are known and let c = 0.5, c̄ = 1.5. Figure 1 shows the empirical distributions of the QLR test statistic for

various sample sizes and the null limit distribution obtained by simulating sup(s1,s2) max[0, Ŷ(θ)(s1, s2)]2

2,000 times, where for each (s1, s2),

Ŷ(θ)(s1, s2) :=
1

ĉn(s2/s1, s2/s1)1/2

{ v̂arn(W 2
t )

2

}1/2

Z0 + Ên[W 2
t ]

150∑
j=1

m(s2/s1)jZj

 .
The empirical distribution of the QLR test statistic approaches the limit distribution as n increases, affirming

our theory on the test statistics.

The null limit distribution of the QLR test can be uncovered by several simulation methods. The Monte

Carlo method proposed by Dufour (2006) can be used because the model is correctly specified for this

model. Hansen’s (1996b) weighted bootstrap can also be used to estimate the asymptotic p-values.

4 Conclusion

The current study examines the estimation and inference of D-D quasi-likelihood functions and provides

conditions under which the QML estimator behaves regularly. Specifically, we show that the QML esti-

mator has a distribution different from that of standard D quasi-likelihood functions by showing that it is

represented as a functional of a Gaussian stochastic process indexed by direction. Furthermore, the analysis

assuming a D quasi-likelihood function can be treated as a special case of D-D quasi-likelihood function

analysis. Furthermore, the standard QLR, Wald, and LM test statistics are redefined to fit the structure of

D-D quasi-likelihood functions. These modifications are provided for general D-D quasi-likelihood func-

tions, and we show that the three test statistics possess null limit distributions represented as functionals

of the same Gaussian stochastic process. We further reveal that the three test statistics are asymptotically
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equivalent under the null and some mild regularity conditions that can be popularly used for empirical ex-

aminations.

Appendix: Proofs

Before proving the main claims of the paper, we provide the following preliminary lemmas:

Lemma A1. Given Assumptions 1 to 6, for each d ∈ ∆(θ∗), (i) n−1/2DLn(θ∗;d)⇒ Z(d), whereZ(d) ∼

N(0, B∗(d)); (ii) n−1D2Ln(θ∗;d) converges toA∗(d) a.s.–P; (iii)
{
n−1/2DLn(θ∗;d), n−1D2Ln(θ∗;d)

}
⇒ {Z(d), A∗(d)}. �

Lemma A2. Given Assumptions 1 to 6, for each d ∈ ∆(θ∗), (i)
√
nĥn(d) ⇒ max[0,G(d)], where

G(d) := {−A∗(d)}−1Z(d); (ii)
√
n(θ̂n(d) − θ∗) ⇒ max[0,G(d)]d; (iii) 2{Ln(θ̂n(d)) − Ln(θ∗)} ⇒

max[0,Y(d)]2, where for each d, Y(d) := {−A∗(d)}1/2G(d). �

Lemma A3. Given Assumptions 1 to 6, (i) for all ε > 0, there is δ > 0 such that

lim sup
n→∞

Pn

(
sup

‖d1−d2‖<δ
n−1/2|DLn(θ∗;d1)−DLn(θ∗;d2)| > ε

)
< ε,

where Pn is the empirical probability measure; (ii) for all ε > 0, there is n(ε) a.s.−P such that if n > n(ε),

supd∈∆(θ∗) |n
−1D2Ln(θ∗;d)−A∗(d)| < ε. �

Lemma A3(i) implies that the first-order directional derivative weakly converges to a Gaussian stochas-

tic process indexed by d (e.g., Billingsley, 1999). In our time-series data context, theorem 1 of Hansen

(1996b) provides sufficient regularity conditions for this. Lemma A3(i) is used to show the desired weak

convergence of the QML estimator with r > 1, and we suppose that ∆(θ∗) has an uncountable number of

directions when proving Lemma A3(i).

Proof of Lemma A1:(i) To show the given claim, we verify the conditions of Wooldridge and White

(1988). First, Assumption C.1 of Wooldridge and White (1988) is satisfied by Assumption 6(iii) because

we can let n−1/2
∑
`t (θ∗;d) be their

∑
Znt. Second, the conditions (i, ii, iii) of Assumption C.2 in

Wooldridge and White (1988) trivially hold by our assumptions that ‖D`t(θ∗;d)‖s < ∆ for any t, ντ is

of size −1/(1 − γ) < −1/2, and {Yt} is a strong mixing sequence of size −sq/(s − q) < −s/(s − 2)

because s > q ≥ 2, respectively. Third, condition (iv) of Assumption C.2 is easily verified from the fact

that ‖`t(θ∗;d)‖s < ∆ < ∞ uniformly in d for any t. Finally, their condition in Assumption A.5 is not
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necessary for Lemma A1 because our goal is not to obtain the standard normal distribution. Their corollary

3.1 implies the desired result.

(ii) Given Assumptions 1 and 6(ii), we can apply the ergodic theorem.

(iii) Given Lemmas A1(i and ii), the given weak convergence follows from theorem 3.9 of Billingsley

(1999, p. 37). �

Proof of Lemma A2: (i) For given d, if we maximize (3) with respect to h subject to h ≥ 0, it follows that

ĥn(d) = max[0, {−D2Ln(θ̄n(d);d)}−1DLn(θ∗;d)] using Khun-Tucker theorem. We further note that

θ̄n(d)→ θ∗ a.s.−P because θ̂n converges to θ∗ a.s.–P, so that
√
nĥn(d)⇒ max[0, {−A∗(d)}−1Z(d)] by

Lemma A1(iii). The desired result now follows from the definition of G(d).

(ii) From the definition of ĥn(d), θ̂n(d) ≡ θ∗ + ĥn(d)d. Lemma A2(i) yields the given result.

(iii) Given that arg max
h̃∈R+ [2Z(d)h̃+A∗(d)h̃2] = max[0,G(d)],

max
h̃∈R+

[2Z(d)h̃+A∗(d)h̃2] = max[0, {−A∗(d)}1/2G(d)]2.

Thus, the desired result follows from (4). �

Proof of Lemma A3: (i) Given Lemma A1(i), if {n−1/2
∑
D`t(θ∗; · )} is asymptotically tight, the desired

result follows from the finite dimensional multivariate CLT based on the Cramér-Wold device, which we do

not prove by its self-evidence.

The asymptotic tightness can be proved by verifying the conditions of theorem 4 in Hansen (1996a).

First, from the fact that {Yt} is a strong mixing sequence of −sq/(s− q), for some ε > 0, α−(s−q)/(sq)
τ =

O(τ−1−ε), so that
∑∞

τ=1 α
−(s−q)/(sq)
τ <∞. Second, ‖Mt‖s <∞ for any t from the stationarity assumption

of {Mt} in Assumption 6(iv). Third, ‖D`t(θ∗;d)‖s < ∞ uniformly in d for any t from Assumption

6(iv). Fourth, given that ντ is of size −1/(1 − γ), for some ε > 0, ντ = O(τ−1/(1−γ)−ε), implying that∑∞
τ=1 ν

1−γ
τ < ∞. Finally, it is already assumed in Assumption 6(iv) that q > (r − 1)/(γλ). These results

verify the conditions in theorem 4 of Hansen (1996a), and the asymptotic tightness of {n−1/2
∑
D`t(θ∗; · )

follows.

(ii) By Assumption 5(iii), |n−1D2Ln(θ;d1) − n−1D2Ln(θ;d2)| ≤ n−1
∑
Mt‖d1 − d2‖λ. Fur-

thermore, we can apply the ergodic theorem to {n−1
∑
Mt}, so that for any ω ∈ F , P(F ) = 1, and

ε > 0, there is an n∗(ω, ε) such that if n ≥ n∗(ω, ε), |n−1
∑
Mt − E[Mt]| ≤ ε, and this implies that

n−1
∑
Mt ≤ E[Mt]+ε. For the same ε, we may let δ := ε/(E[Mt]+ε). Then, n−1

∑
Mt‖d1−d2‖λ ≤ ε,

whenever ‖d1−d2‖λ ≤ δ, because n−1
∑
Mt‖d1−d2‖λ ≤ n−1

∑
Mtδ = n−1

∑
Mtε/(ε+E[Mt]) ≤ ε.

That is, for any ω ∈ F , P(F ) = 1 and ε > 0, there is n∗(ω, ε) and δ such that if n ≥ n∗(ω, ε) and
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‖d1−d2‖λ ≤ δ, |n−1D2Ln(θ;d1)−n−1D2Ln(θ;d2)| < ε, which means that {n−1D2Ln(θ; · )}∞n∗(ω,ε) is

equicontinuous. Therefore, it follows that n−1D2Ln(θ; · ) converges to A∗(·) uniformly on ∆(θ∗) a.s.−P

by Rudin (1976, p. 168). �

Proof of Theorem 1: (i) Given Lemmas A3(i and ii), the desired weak convergence follows from theorem

3.9 of Billingsley (1999, p. 37).

(ii) The given result follows from Lemma A2(i), Theorem 1(i), and the definition of G(·).

(iii) We can apply the CMT to (5).

(iv) To prove the given claim, we apply the argmax continuous mapping theorem in van der Vaart and

Wellner (1996). Note that ∆(θ∗) is bounded, and Ln(θ̂n(·))−Ln(θ∗)⇒ max[0,Y(·)]2 by (4) and Lemma

A3. Given thatD`t(θ; ·) andD2`t(θ; ·) are continuous by Assumption 5, max[0,Y(·)]2 must be continuous

on ∆(θ∗) almost surely. Furthermore, ∆(θ∗) is a subset of a compact space, so that it trivially follows that

d∗ is tight, and d̂n is uniformly tight. Given that d∗ is unique almost surely, the regularity conditions in

theorem 3.2.2 of van der Vaart and Wellner (1996) are satisfied by this, leading to the desired result. �

Proof of Corollary 1: For an efficient proof, we first prove (vi) and (vii) before (iv) and (v).

(i) As the weak convergence is proved for a general function in Theorem 1, we verify only the pointwise

weak convergence for this case. From the definition of DLn(θ∗;d) = ∇θLn(θ)′d, and n−1/2∇θLn(θ∗)

⇒ Z by theorem 1 of Doukhan, Massart, and Rio (1995). Therefore, n−1/2DLn(θ∗;d) ⇒ Z′d for every

d ∈ ∆(θ∗).

(ii) We note that D2Ln(θ;d) = d′∇2
θLn(θ∗)d, so that n−1∇2

θLn(θ∗) → A∗ a.s.–P by the ergodic

theorem. Therefore, the given result follows from the definition of G(d).

(iii) We can use the definition of ĥn(d). That is, θ̂n(d) = θ∗ + ĥn(d)d. The given result follows from

the fact that
√
nĥn(d)⇒ max[0,G(d)] and Corollary 1(ii).

(vi) By the definition of Y(·) of Theorem 1, for each d, Y(d) = {d′(−A∗)d}−1/2Z′d, so that Theorem

1(iii) implies the desired result.

(vii) From the fact that cl{C(θ∗)} = R̄r, there is d? ∈ ∆(θ∗) such that max[0,Z′d?] = Z′d? and

d? = −d if max[0,Z′d] = 0. Thus, the given “max” operator can be ignored for this case. That is,

d∗ = arg maxd∈∆(θ∗) d
′ZZ′d{d′(−A∗)d}−1. For notational simplicity, if we let

v :=
(−A∗)

1/2d

{d′(−A∗)d}1/2
,

it follows that v′v = 1 and v′(−A∗)
−1/2ZZ′(−A∗)

−1/2v = d′ZZ′d{d′(−A∗)d}−1. Given this, we

note that maxv v
′(−A∗)

−1/2ZZ′(−A∗)
−1/2v = maxd d

′ZZ′d{d′(−A∗)d}−1, and it is equal to the max-
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imum eigenvalue of (−A∗)
−1/2ZZ′(−A∗)

−1/2, which is equal to Z′(−A∗)
−1Z. It is mainly because

rank((−A∗)
−1/2ZZ′(−A∗)

−1/2) = 1 (so that there is a single positive eigenvalue, and the other eigenval-

ues are zero), and the sum of eigenvalues is equal to tr[(−A∗)
−1/2ZZ′(−A∗)

−1/2] = Z′(−A∗)
−1Z. These

two facts lead to the desired result.

(iv) This follows trivially from the definition of d∗.

(v) By the same reason as in the proof of (vii), we can ignore the “max” operator, so that
√
n(θ̂n−θ∗)⇒

Z′d∗{d∗′(−A∗)d∗}−1d∗. Given this and the proof of (vii), if we let

v∗ :=
(−A∗)

1/2d∗

{d∗′(−A∗)d∗}1/2
,

v∗ is the eigenvector of (−A∗)
−1/2ZZ′(−A∗)

−1/2 corresponding to the maximum eigenvalue given as Z′

(−A∗)
−1Z, so that

(−A∗)
−1/2ZZ′(−A∗)

−1/2v∗ = Z′(−A∗)
−1Zv∗ (11)

by the definition of eigenvector. This implies that

v∗
′(−A∗)

−1/2ZZ′(−A∗)
−1/2v∗ = Z′(−A∗)

−1Zv∗
′v∗ = Z′(−A∗)

−1Z (12)

because v∗′v∗ = 1. Plugging the definition of v∗ to the left side of (12) leads to that Z′d∗{d∗′(−A∗)d∗}−1 =

(d∗
′Z)−1Z′(−A∗)

−1Z. Thus, Z′d∗{d∗′(−A∗)d∗}−1d∗ = (d∗
′Z)−1Z′(−A∗)

−1Zd∗. Also, plugging the

definition of v∗ to (11) yields that (d∗
′Z)−1Z′(−A∗)

−1Zd∗ = (−A)−1Z. Therefore,
√
n(θ̂n − θ∗) ⇒

Z′d∗{d∗′(−A∗)d∗}−1d∗ = (−A∗)
−1Z. This completes the proof. �

Proof of Theorem 2: (i) We note that for any hd such that h ∈ R+ and d ∈ ∆(π∗), there are h(π) ∈ R+,

h(τ ) ∈ R+, sπ ∈ ∆(π∗), and sτ ∈ ∆(τ ∗) such that hd = [h(π)sπ
′, h(τ )sτ

′]
′

by Assumption 7. Thus,

Ln(θ∗ + hd) = Ln(π∗ + h(π)sπ, τ ∗ + h(τ )sτ ), implying that

2{Ln(π∗ + h(π)sπ,τ ∗ + h(τ )sτ )− Ln(π∗, τ ∗)} = 2DLn(π∗, τ ∗; sπ)h(π)

+ 2DLn(π∗, τ ∗; sτ )h(τ ) +D2Ln(π∗, τ ∗; sπ)(h(π))2 +D2Ln(π∗, τ ∗; sτ )(h(τ ))2

+ 2DLn(π∗, τ ∗; sπ; sτ )h(π)h(τ ) + oPsπ (1) + oPsτ (1),

where DLn(π∗, τ ∗; sπ; sτ ) is the directional derivative of DLn( · , · ; sπ) with respect to sτ evaluated

at (π∗, τ ∗), and supd suph Ln(θ∗ + hd) = sup{sπ ,sτ } sup{h(π),h(τ)} Ln(π∗ + h(π)sπ, τ ∗ + h(τ )sτ ).
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Therefore, LR(1)
n = supd suph 2{Ln(θ∗ + hd)− Ln(θ∗)} implies that

LR(1)
n = sup

sπ
sup
h(π)

{2DLn(θ∗; sπ)h(π) +D2Ln(θ∗; sπ)(h(π))2 + oPsπ (1)}

+ sup
sτ

sup
h(τ)
{2DLn(θ∗; sτ )h(τ ) +D2Ln(θ∗; sτ )(h(τ ))2 + oPsτ (1)}, (13)

where we exploited the facts that n−1DLn(π∗, τ ∗; sπ, sτ ) has probability limit zero by Assumption 7(iv)

and that DLn(θ∗; · ) and DLn(θ∗; · ) are OP(n1/2) by Theorem 1(i).

Given this, note that H2,n := supsτ suph(τ){2DLn(θ∗; sτ )h(τ ) + D2Ln(θ∗; sτ )(h(τ ))2} ⇒ H2.

Thus, we may focus on the weak limit of supsπ suph(π){2DLn(θ∗; sπ)h(π) + D2Ln(θ∗; sπ)(h(π))2}

which is denoted as H01,n. From the fact that for any hdπ such that h ∈ R+ and dπ ∈ ∆(π∗), there are

h(λ) ∈ R+, h(υ) ∈ R+, sλ ∈ ∆(λ∗), and sπ ∈ ∆(π∗) such that hdπ = [h(λ)sλ
′, h(υ)sυ

′]
′

and

H01,n = sup
{sυ ,sλ}

sup
{h(υ),h(λ)}

2DLn(θ∗; sυ)h(υ) + 2DLn(θ∗; sλ)h(λ) + 2DLn(θ∗; sλ; sυ)h(λ)h(υ)

+D2Ln(θ∗; sυ)(h(υ))2 +D2Ln(θ∗; sλ)(h(λ))2,

where DLn(θ∗; sλ; sυ) is the directional derivative of DLn( · ; sλ) with respect to sυ evaluated at θ∗.

Given this, if we apply the ULLN and FCLT to H01,n,

H01,n ⇒ H0 +H1 = sup
{sυ ,sλ}

sup
{h(υ), h(λ)}

2Z(υ)(sυ)h(υ) + 2sλ
′Z(λ)h(λ) + 2sλ

′A
(λ,υ)
∗ (sυ)h(λ)h(υ)

+A
(υ,υ)
∗ (sυ)(h(υ))2 + sλ

′A
(λ,λ)
∗ sλ(h(λ))2 (14)

by Theorem 1, and there are four different possible cases for the solutions of (h(υ), h(λ)) in the right side of

(14): for each (sυ, sλ) if we let ĥ(υ)(sυ, sλ) and ĥ(λ)(sυ, sλ) maximize the right side of (14), it follows

either (i) ĥ(υ)(sυ, sλ) > 0 and ĥ(λ)(sυ, sλ) > 0; (ii) ĥ(υ)(sυ, sλ) > 0 and ĥ(λ)(sυ, sλ) = 0; (iii)

ĥ(υ)(sυ, sλ) = 0 and ĥ(λ)(sυ, sλ) > 0; or (iv) ĥ(υ)(sυ, sλ) = 0 and ĥ(λ)(sυ, sλ) = 0.

We examine the limit distribution of each case. First, if ĥ(υ)(sυ, sλ) > 0 and ĥ(λ)(sυ, sλ) > 0, the

right side of (14) is identical to

sup
{sυ ,sλ}

[Z(υ)(sυ) sλ
′Z(λ)]

 −A(υ,υ)
∗ (sυ) −sλ′A

(λ,υ)
∗ (sυ)

−sλ′A
(λ,υ)
∗ (sυ) −sλ′A

(λ,λ)
∗ sλ

−1  Z(υ)(sυ)

sλ
′Z(λ)

 ,
and maximizing this with respect to sλ for a given sυ yields Ỹ(υ)(sυ)2 + (Z(λ))

′
(−A

(λ,λ)
∗ )−1(Z(λ)). Sec-
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ond, if ĥ(λ)(sυ, sλ) > 0 and ĥ(υ)(sυ, sλ) = 0, the right side of (14) is identical to 2sλ
′Z(λ)+sλ

′A
(λ,λ)
∗ sλ,

and maximizing this with respect to sλ leads to (Z(λ))
′
(−A

(λ,λ)
∗ )(Z(λ)) as its maximum. Also, Ỹ(υ)(sυ)

cannot be greater than zero. Otherwise, it must follow that ĥ(υ)(sυ, sλ) > 0 which is contradictory. Third, if

ĥ(λ)(sυ, sλ) = 0 and ĥ(υ)(sυ, sλ) = 0, for the same sυ, sλ cannot be optimal to maximizing the right side

of (14) from the fact that λ∗ is an interior element of Λ. We can ignore the case in which ĥ(λ)(sυ, sλ) =

0. Therefore, combining the first two cases, we obtain that H0 = supsυ∈∆(υ∗) max[0, Ỹ(υ)(sυ)]2 and

H1 = (Z(λ))
′
(−A

(λ,λ)
∗ )(Z(λ)). This implies that it is necessary for Ỹ(υ)(sυ) to be greater than zero, if

ĥ(υ)(sυ, sλ) is greater than zero.

(ii) We can apply the ULLN.

(iii) We letH00,n := supsλ suph(λ){2DLn(θ∗; sλ)h(λ)+D2Ln(θ∗; sλ)(h(λ))2} and note thatLR(2)
n =

H00,n +H2,n + oP,sλ(1) + oP,sτ (1). Furthermore, H00,n = sup{sυ ,sλ} sup{h(υ),h(λ)} 2DLn(θ∗; sυ)h(υ) +

2DLn(θ∗; sλ)h(λ) + 2DLn(θ∗; sλ; sυ)h(λ)h(υ) +D2Ln(θ∗; sυ)(h(υ))2 +D2Ln(θ∗; sλ)(h(λ))2 subject

to h(υ) = 0. Note that H00,n = H01,n without the constraint h(υ) = 0. Therefore, H00,n ⇒ H1

given the fact that H01,n ⇒ H0 + H1 as given in (14). Thus, LR(2)
n ⇒ H1 + H2 from the fact that

(H01,n, H2,n)⇒ (H0 +H1,H2).

(iv) The desired result holds by continuous mapping because it follows that (LR(1)
n ,LR(2)

n ) ⇒ (H0 +

H1 +H2,H1 +H2) as shown in (i) and (iii). �

Proof of Theorem 3: We exploit (13) further. First, applying the CMT to Theorem 1(i) shows that

(n−1/2DL
(τ )
n (·), n−1D2L

(τ )
n (·))⇒ (Z(τ )(·), A(τ ,τ )

∗ (·)). Thus,

sup√
nh(τ)

2DLn(θ∗; sτ )h(τ ) +D2Ln(θ∗; sτ )(h(τ ))2 ⇒ sup
h(τ)∈R+

2Z(τ )(sτ )h(τ ) +A
(τ ,τ )
∗ (sτ )(h(τ ))2,

so that
√
nĥ

(τ )
n (sτ ) ⇒ max[0, {−A(τ ,τ )

∗ (sτ )}−1Z(τ )(sτ )] = max[0,G(τ )(sτ )]. This holds even as a

function of sτ . That is,
√
nĥ

(τ )
n (·)⇒ max[0,G(τ )(·)].

Next, for any h(π)dπ such that h(π) ∈ R+ and dπ ∈ ∆(π∗), there are h(υ) ∈ R+, h(λ) ∈ R+, and
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(sυ, sλ) ∈ ∆(υ∗)×∆(λ∗) such that h(π)dπ = [h(υ)sυ
′, h(λ)sλ

′]
′
. Therefore,

sup
h(π)

{2DLn(θ∗;dπ)h(π) +D2Ln(θ∗;dπ)(h(π))2}

= sup
(h(υ),h(λ))

2{DLn(θ∗; sυ)h(υ) +DLn(θ∗; sλ)h(λ) +DLn(θ∗; sυ, sλ)h(υ)h(λ)}

+D2Ln(θ∗; sυ)(h(υ))2 +D2Ln(θ∗; sλ)(h(λ))2

⇒ sup
(h(υ),h(λ))

2{Z(sυ)h(υ) + s′λZ(λ)h(λ) + s′λA
(λ,υ)
∗ (sυ)h(υ)h(λ)}

+A
(υ,υ)
∗ (sυ)(h(υ))2 + s′λA

(λ,λ)
∗ sλ(h(λ))2. (15)

Given this, h(υ) and h(λ) have to be at least greater than or equal to zero. This implies that the follow-

ing four different inequality constraints can be possibly associated with this maximization process: first,

if any equality condition does not bind,
√
n(ĥ

(υ)
n (sυ, sλ, sτ ), ĥ

(λ)
n (sυ, sλsτ ))

′
⇒ G(π)(sυ, sλ) by the

standard first-order condition and Lemma A1. This occurs if every component of G(π)(sυ, sλ) is strictly

greater than zero. Second, if G(υ)(sυ, sλ) < 0, it simply holds that ĥ(λ)(sυ, sλ) = max[0, Ġ(λ)(sυ, sλ)],

and
√
n(ĥ

(υ)
n (sυ, sλ, sτ ), ĥ

(λ)
n (sυ, sλ, sτ ))

′
⇒ (0,max[0, Ġ(λ)(sυ, sλ)])

′
. Third, if ĥ(λ)(sυ, sλ) = 0

in the right side of (15) because G(λ)(sυ, sλ) < 0, ĥ(υ)(sυ, sλ) = max[0, Ġ(υ)(sυ, sλ)]. This implies

that
√
n(ĥ

(υ)
n (sυ, sλ, sτ ), ĥ

(λ)
n (sυ, sλ, sτ ))

′
⇒ (max [0, Ġ(υ)(sυ, sλ)], 0)′. Fourth, it must follow that

√
n(ĥ

(υ)
n (sυ, sλ, sτ ), ĥ

(λ)
n (sυ, sλ, sτ ))

′
⇒ (0, 0)′ for any other case. Therefore, if we combine all these

and apply Theorem 1(i),

√
n


ĥ

(υ)
n (·)

ĥ
(λ)
n (·)

ĥ
(τ )
n (·)

⇒

G(υ)(·)

G(λ)(·)

0

1{min[G(υ)(·),G(λ)(·)]≥0} +


max[0, Ġ(υ)(·)]1{G(υ)(·)≥0>G(λ)(·)}

max[0, Ġ(λ)(·)]1{G(λ)(·)≥0>G(υ)(·)}

max[0,G(τ )(·)]

 ,

and this implies that

√
nh̃(υ)

n (·)⇒ max[0,G(υ)(·)]1{min[G(υ)(·),G(λ)(·)]≥0} + max[0, Ġ(υ)(·)]1{G(υ)(·)≥0>G(λ)(·)}

under H0. Therefore, it now follows that

Wn ⇒ sup
sυ∈∆(υ0)

max[0,G(υ)(sυ, s̄λ(sυ))]2Ã
(υ,υ)
∗ (sυ)1{min[G(υ)(sυ ,s̄λ(sυ)),G(λ)(sυ ,s̄λ(sυ))]>0}

+ max[0, Ġ(υ)(sυ)]2Ã
(υ,υ)
∗ 1{G(υ)(sυ ,s̄λ(sυ))≥0>G(λ)(sυ ,s̄λ(sυ))},
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where for each sυ,

s̄λ(sυ) := arg sup
sλ

[Z(υ)(sυ) sλ
′Z(λ)]

 −A(υ,υ)
∗ (sυ) −sλ′A

(λ,υ)
∗ (sυ)

−sλ′A
(λ,υ)
∗ (sυ) −sλ′A

(λ,λ)
∗ sλ

−1  Z(υ)(sυ)

sλ
′Z(λ)

 ,
Here, for a given sυ, optimizing process with respect to s̄λ(sυ) lets G(λ)(sυ, s̄λ(sυ)) > 0 because λ∗ is

an interior element of Λ. Therefore,

Wn ⇒ sup
sυ∈∆(υ0)

max[0,G(υ)(sυ, s̄λ(sυ))]2Ã
(υ,υ)
∗ = sup

sυ∈∆(υ∗)
max[0, Ỹ(υ)(sυ)]2 = H0,

and this completes the proof. �

Proof of Theorem 4: For notational simplicity, we suppose that τ ∗ is known. By Theorem 2(i), this

supposition simplifies our proof without losing generality.

To show the given claim, we derive the convergence limit of each component that constitutes the LM

test statistic. First, there is n∗ a.s.−P such that if n > n∗, ∆(λ̈n) = ∆(λ∗). We note that λ∗ is an interior

element by Assumption 7(vii), so that ∆(λ∗) = {x ∈ Rrω : ‖x‖ = 1}, and further for an open ball

with radius ε > 0 denoted as B(λ∗, ε) such that B(λ∗, ε) ⊂ Λ, there is n(ε) a.s.–P, so that if n > n(ε),

λ̈n ∈ B(λ∗, ε) by Theorem 2(ii). This implies that λ̈n is an interior element, too. Thus, if we let n∗ > n(ε),

∆(λ̈n) = {x ∈ Rrω : ‖x‖ = 1}, which is ∆(λ∗). Second, n−1/2DLn(θ̈n; · ) ⇒ Z̈(υ)( · ; s̈λ). Applying

the mean-value theorem shows that for each sυ there is λ̇(sυ) such that

DLn(θ̈n; sυ)−DLn(θ∗; sυ) = {DLn(υ0, λ̇n(sυ), τ ∗; sυ; s̈λ,n)}{ḧ(λ)
n (s̈λ,n)}

= DLn(υ0, λ̇n(sυ), τ ∗; sυ; s̈λ,n){−D2Ln(υ0, λ̄n(sυ), τ ∗; s̈λ,n)}−1DLn(θ∗; s̈λ,n), (16)

where (ḧ
(λ)
n (s̈λ,n), s̈λ,n) := arg suph(λ),sλ Ln(υ0,λ∗+h(λ)sλ, τ ∗), and the last equality follows from the

mean-value theorem: there is λ̄n(sυ) such that (16) holds. Given this and Theorem 2(ii), we can apply the

ULLN:

sup
sυ ,sλ

|n−1DLn(υ0, λ̇n(sυ), τ ∗; sυ; sλ)− s′λA
(υ,λ)
∗ (sυ)| P→ 0, and

sup
sυ ,sλ

|n−1D2Ln(υ0, λ̄n(sυ), τ ∗; sλ)− s′λA
(λ,λ)
∗ sλ|

P→ 0.

Furthermore, it trivially holds that n−1/2(DLn(θ∗; · ), DLn(θ∗; s̈λ,n)) ⇒ (Z(υ)(·), s̈′λZ(λ)) by the facts

that n−1/2(DLn(θ∗; sυ), DLn(θ∗; sλ)) (as functions of sυ and sλ, respectively) weakly converges to

(Z(υ)(·), (·)′Z(λ)) and that max[0, DLn (θ∗; s̈λ,n)]2{−D2Ln(θ∗; s̈λ,n)}−1 ⇒ max[0,Y(λ)(s̈λ)]2, where
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s̈λ := arg supsλ∈∆(λ∗) max[0,Y(λ)(sλ)]2. Thus, it follows that n−1/2 DLn(θ̈n; · ) ⇒ Z̈(υ)( · ; s̈λ) by

continuous mapping, where

Z̈(υ)(sυ; s̈λ) := Z(υ)(sυ)− (s̈′λA
(υ,λ)
∗ (sυ))(s̈′λA

(λ,λ)
∗ s̈λ)−1Z(λ)′ s̈λ.

We note that Z̈(υ)(sυ; s̈λ) = Z(υ)(sυ) −A
(υ,λ)
∗ (sυ)′{A(λ,λ)

∗ }−1Z(λ) by the definition of s̈λ and Corol-

laries 1(iv and v). Note that the final entry was defined as Z̃(υ)(sυ) earlier. Third, we apply the ULLN

and obtain that sup(sυ ,sλ) |n−1D̃2 (θ̈n; sυ, sλ) − Ã(υ,υ)
∗ (sυ, sλ)| → 0 a.s.–P, where Ã(υ,υ)

∗ (sυ, sλ) :=

A
(υ,υ)
∗ (sυ)− s′λA

(υ,λ)
∗ (sυ)(s′λA

(λ,λ)
∗ sλ)−1A

(λ,υ)
∗ (sυ)′sλ. Therefore, it now follows that

LMn ⇒ sup
sυ∈∆(υ0)

(
max[0, Z̃(υ)(sυ)]2

infsλ∈∆(λ∗){−Ã
(υ,υ)
∗ (sυ, sλ)}

)
.

Here, note that infsλ∈∆(λ∗){−Ã
(υ,υ)
∗ (sυ, sλ)} = −A(υ,υ)

∗ (sυ)+supsλ∈∆(λ∗){A
(υ,λ)
∗ (sυ)

′
sλ}{sλ′A

(λ,λ)
∗

sλ}−1{sλ′A
(λ,υ)
∗ (sυ)} = −{A(υ,υ)

∗ (sυ)−A
(υ,λ)
∗ (sυ)

′
{A(λ,λ)
∗ }−1A

(λ,υ)
∗ (sυ)} = −Ã(υ,υ)

∗ (sυ). There-

fore, LMn ⇒ supsυ∈∆(υ0) max[0, Ỹ(υ)(sυ)]2 as desired. �
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Figure 1: EMPIRICAL AND ASYMPTOTIC DISTRIBUTIONS OF THE QLR TEST STATISTIC. This figure
shows the null limit distribution of the QLR test statistic and the empirical distributions of the QLR test
statistic for n = 50, 200, and 1,000. The number of iterations is 2,000.
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