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Abstract

This study uses the quantile ARDL methodology to examine the dynamic link between confirmed
COVID-19 cases and deaths in the U.S. after vaccination, with a particular emphasis on exploring hetero-
geneity across various percentiles. The findings indicate that the confirmed case fatality rate decreased
after vaccination, and the relationship between confirmed cases and deaths varies across different per-
centiles.
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1 Introduction

Since the start of the COVID-19 pandemic, numerous countries worldwide have enforced strict measures to
contain the virus’s spread, and these measures have also entailed substantial economic expenses, leading to
previously unseen financial losses (Forsythe et al., 2020; Deb et al., 2022b).

Vaccination campaigns have had a substantial positive impact on economic recovery from a health eco-
nomics perspective (Utami et al., 2023; Hansen and Mano, 2023) and have also been highly effective in
reducing confirmed cases and deaths.

However, hesitancy and refusal to be vaccinated continue to undermine the effectiveness of these inter-
ventions. Pandemic control efforts can be undermined by vaccine hesitancy and refusal, which also have
significant impacts on the global economy (e.g., Rawlings et al., 2022). Annual productivity losses due to
unvaccinated workers are estimated to be around USD 15 billion, even though vaccinations have already
lowered COVID-related costs by approximately 80% (see Padula et al., 2021). In addition to the economic
consequences, vaccine hesitancy and refusal exhibit substantial heterogeneity. For example, Goel et al.
(2023) demonstrate that US states with higher wealth, a larger elderly population, and more physicians tend
to have lower levels of vaccine hesitancy (e.g., Kountouris and Remoundou, 2024; Tan et al., 2022; McPhe-
dran and Toombs, 2021). Furthermore, vaccine hesitancy is associated with educational attainment, age,
vaccine characteristics, vaccination methods, and media coverage (e.g., Kountouris and Remoundou, 2024;
Tan et al., 2022; McPhedran and Toombs, 2021). Overall, these findings indicate that both the pandemic
and the vaccination campaign have affected the population in heterogeneous ways.

In the current study, we focus on the fatality rate of COVID-19 that associates confirmed cases with
deaths and empirically examine how the rate is formed heterogeneously while considering the vaccination
effect. For this purpose, we characterize the underlying heterogeneity using the conditional quantiles of
the death distribution and next employ the Quantile Autoregressive Distributed Lag (QARDL) methodology
proposed by Cho et al. (2015) to estimate the effect of distributional heterogeneity.

The analysis of the fatality rate considering distributional heterogeneity remains relatively scarce in the
literature. Ullah et al. (2022) note significant differences exist in the number of confirmed cases and deaths
across the US states, providing valuable insights into asymmetric economic activities. Mehta et al. (2023)
and Chang et al. (2023) also apply the Autoregressive Distributed-Lag (ARDL) methodology to analyze
the impact of COVID-19 on real estate, food, and healthcare industries. Nevertheless, the existing studies
pay little attention to heterogeneity in fatality rates, although accommodating its existence provides analysis

outcomes distinct from assuming homogeneity.



QARDL is useful for detecting distributional heterogeneity in fatality rates and examining the effects
of vaccination. Furthermore, the currently available COVID-19 data often contain noise, outliers, biases,
skewness, and truncation issues (e.g., Jing and Cho, 2025). However, quantile regression is robust in han-
dling outliers and capturing heterogeneity as Jiang et al. (2022) demonstrate by focusing on the short-term
forecasts of the confirmed cases. Given that QARDL applies quantile regression to nonstationary series,
its useful features are exploited to estimate the fatality rate defined as the long-run relationship between
confirmed cases and deaths.

The current study contributes to the literature by applying QARDL to COVID-19 data as follows. First,
we provide a novel quantile-based analysis of the COVID-19 fatality rate by explicitly modeling the het-
erogeneous long- and short-run dynamics between confirmed cases and deaths. Unlike existing studies that
rely primarily on mean-based frameworks, our approach reveals distributional heterogeneity in the fatality
rate across different conditional quantiles. Second, we incorporate vaccination effects into the QARDL
framework, offering new empirical evidence on how large-scale vaccination campaigns shape the dynamic
relationship between infection and fatality across different regions of the conditional distribution. Third, the
QARDL methodology enables us to capture nonlinearity, persistence, and heterogeneity in nonstationary
time series. Using this feature, we extend the application of quantile-based time-series analysis to health
economics and epidemiology literature.

The remainder of this paper is organized as follows. Section 2 provides a comprehensive literature
review that forms the basis and motivation of this study. Section 3 details the QARDL estimation methodol-
ogy, highlighting its theoretical framework and advantages over conventional approaches. Section 4 presents
the empirical analysis of the dynamic relationship between confirmed COVID-19 cases and deaths across
different percentiles. Finally, Section 5 summarizes the key findings, discusses their policy implications,

and outlines directions for future research.

2 Literature Review

An increasing number of studies have examined infection and death counts during the COVID-19 pandemic
during the global health crisis. These studies help understand the mechanisms of viral transmission and
fatality and offer valuable guidance for public health policymaking. This dynamic relationship evolves
as vaccination coverage continues to expand. Further investigation into the potential heterogeneity under
widespread vaccination is warranted. Drawing on the existing literature, we discuss the determinants of

COVID-19 fatality, the role of vaccination, recent findings on the dynamic case-fatality relationship, and the



latest methodological advances for empirical analysis in this section.

Existing studies have shown that multiple factors influence COVID-19 fatality. First, demographic char-
acteristics, such as age and gender, play a decisive role in fatality differences (e.g., Verity et al., 2020; Torres
etal., 2023; O’Driscoll et al., 2021). Second, underlying chronic conditions, such as hypertension, diabetes,
and cardiovascular diseases, significantly increase the risk of death (e.g., Lee and Hwang, 2025). In addition,
the adequacy of medical resources, such as the number of general practitioners and hospital beds per capita,
as well as government interventions, including lockdown policies, social distancing, and travel restrictions,
also have important effects on fatality (e.g., Di Porto et al., 2022; Fang et al., 2020).

Widespread vaccination is a crucial pandemic control measure. Multiple empirical studies have demon-
strated that vaccines significantly reduce infection and severe illness rates, thereby indirectly lowering fatal-
ity (e.g., Kim and Lee, 2022). However, vaccine effectiveness exhibits spatial and population heterogeneity,
as elderly individuals, immunocompromised patients, and viral variants may affect vaccine efficacy (e.g.,
Tiu et al., 2022; Mori et al., 2023). Some studies have also suggested that the protective efficacy of vaccines
may gradually decline over time following vaccination (e.g., Suah et al., 2022).

Existing studies suggest a dynamic lag relationship between confirmed cases and deaths (e.g., Jin, 2021).
Some studies employ time series models to forecast and analyze the number of confirmed COVID-19 cases
and deaths (e.g., Liu et al., 2021; Gupta and Pal, 2020; Sujath et al., 2020). Due to its favorable properties
in small samples, the traditional ARDL model has been widely applied in COVID-19 pandemic analysis
(e.g., Chang et al., 2023; Jeris and Nath, 2020). However, the ARDL model assumes homogeneity in the
relationships between variables across all levels, which fails to capture the influence of heterogeneity on
fatality rate under different severity conditions.

In recent years, quantile regression has been widely applied in health research to reveal heterogeneous
effects across different regions of distribution (e.g., Okada, 2018; Chen et al., 2016; Silva et al., 2018). In
the context of COVID-19 research, quantile regression methodology can detect heterogeneous relationships
between confirmed cases and deaths across different regions of the conditional distribution, particularly
capturing the dynamic features at extreme values, such as the observations belonging to the upper tail region
of death distribution (e.g., Jiang et al., 2022; Ribeiro et al., 2021).

The QARDL model combines ARDL’s dynamic properties with quantile regression to identify hetero-
geneity, allowing for short- and long-run dynamics estimation across different percentiles. In the fields of
macroeconomics and finance, QARDL has been popular in effectively capturing nonlinearity and distribu-
tional heterogeneity (e.g., Cho et al., 2015; Hammoudeh et al., 2022). However, its application in health

economics remains relatively new, particularly in the analysis of COVID-19 data.



Overall, although the determinants of COVID-19 fatality and the effectiveness of vaccination have been
extensively examined in the existing literature, systematic empirical evidence on the existence of quantile-
dependent dynamic differences between confirmed cases and deaths in the post-vaccination period is lack-
ing. This study employs the QARDL methodology to analyze the dynamic relationship between confirmed
cases and deaths across different percentiles in the context of vaccination in the United States, providing
more nuanced evidence for understanding the evolution of the pandemic and offering new empirical insights

for public health policymaking.

3 QARDL Estimation and Inference

Cho et al. (2015) extend the ARDL approach by applying quantile regression and jointly analyzing the short-
and long-run relationships across a range of percentiles, which is known as the QARDL methodology. This
section applies the QARDL methodology to the COVID-19 data environment.

The QARDL methodology assumes different cointegrating coefficients depending on the percentile.

Specifically, it assumes the following relationship:
P q
Vi=0u(1)+ D ¢u(n)Yig+ Y 05(r)Xij + Us(7).
j=1 j=0

This specification is commonly referred to as QARDL(p, ¢) process. Here, AX; is assumed to be a k-
dimensional stationary ergodic process (k € N); the error term U;(7) is defined as Y; — Q- (Yi|Fi—1),
where Q- (Y;|F;—1) is the conditional quantile function on F;_1; F;_1 is the smallest o-field generated by
{X},Y;—1,X}_4,...}: and p and g are the QARDL lag orders such that Uy () is identically and indepen-
dently distributed.

Based on the existing empirical and theoretical analyses, current deaths D; and confirmed cases C}
are cointegrated. That is, a long-run relationship exists between confirmed cases and deaths, which is
represented as

D; = B.Cy + &y,

where (3, denotes the long-run fatality rate (e.g., Brodeur et al., 2021). Here, ¢; represents the cointegration

error. If ¢4 is stationary, the QARDL process is rewritten as follows:

p—1 q—1
ADy = ay + Dy 1 +7:Cp—1 + Z Njx ADy_; + Z 0+ ACy_j + Uy
j=1 j=0



such that U, is identically and independently distributed, which is ensured by letting the lag orders p and ¢
be sufficiently large. By substituting the cointegrating relationship D;_1 = £,Cy_1 + €;_1, we obtain the
following ARDL(p, q) process:

p—1 q—1
ADy = oy + G (Di—1 — BxCi—1) + Z Aj«ADy_; + Z 0« ANCy—j + Uy (D
j=1 §=0

where B3, = —Z—:.

Each parameter in (1) has the following interpretations. First, the Error Correction Model (ECM) pa-
rameter (, measures the smoothing fatality that reflects the adjustment speed of deaths toward the long-run
equilibrium with confirmed cases. Second, the long-run cointegration coefficient (3, measures the fatality
rate. Third, the momentum effect of death growth \, := Z?;i/\j* measures the cumulative impact of the
lagged changes in D, on the current deaths, viz., Z?;i@ADt J/OAD;_;. Finally, the impulse response co-
efficient of the death change to the newly confirmed cases, viz., 6, := ?;ééj*, assesses the impact of the
most recent changes in confirmed cases on the current death change. Note that §, measures the short-run
impact of the change in newly confirmed cases on the change in deaths. It accounts for the effect of mul-
tiple lags, whereas 3, describes the relationship between the number of newly confirmed cases and deaths,
reflecting the pandemic’s long-run fatality rate. In short, é, focuses on the short-run dynamic adjustment,
while (3, represents the pandemic’s long-run fatality rate.

The signs of some parameters are predetermined based on their definitions. First, —1 < (, < Ois
implied by the long-run relationship between C; and D;. A significant and negative coefficient implies a
strong corrective force toward the long-run equilibrium. Second, 0 < S, < 1 is implied by the long-run
relationship. By definition, the long-run relationship between C; and Dy is neither negative nor greater than
unity.

We extend the ARDL expression to QARDL specification and allow for heterogeneous relationships

between confirmed cases and deaths. For each percentile 7 € (0, 1), the following is the QARDL(p, q)

model:
p—1 qg—1
ADt = oz*(T) + C*(T)(thl - 5*(7')0,5,1) + Z )\j*(T)ﬁthj + Z 5j*(7')Athj + Ut(T). (2)
J=1 7=0

This specification allows the coefficients in (1) to differ from those of different percentiles so that hetero-
geneous cointegrating relationships exist between D; and C}. Here, the percentile 7 represents the different

location of the conditional distribution of deaths on the past information, which can differ from explicitly de-



fined population groups or individual-level mortality risk. Accordingly, QARDL captures the distributional
heterogeneity in deaths over time.

Although the quantile-specific estimates do not explicitly identify the underlying sources of heterogene-
ity, they reflect the differences across the regions of conditional death distribution. Higher percentiles corre-
spond to observations in which death is highly likely to occur within the conditional distribution. Meanwhile,
lower percentiles correspond to observations with relatively fewer deaths. As Ullah et al. (2022) highlight,
significant differences exist in the projections of confirmed COVID-19 cases and deaths across the US states.
(see also Deb et al., 2022a; Hansen and Mano, 2023). This suggests potential systematic variations in the
fatality rate, leading to the existence of heterogeneous relationships across the regiosn of conditional death
distribution. The QARDL model in (2) characterizes heterogeneity in terms of distributional differences in
deaths.

To detect heterogeneous relationships, the Wald test principle is applied to the estimated coefficients.
Specifically, we test for different relationships between confirmed cases and deaths across percentiles. The

following four null hypotheses are considered:

HS§ : ¢.(0.25) = . (0.5) = (.(0.75), HY - 8.(0.25) = 8.(0.5) = B.(0.75),
H{ = A (0.25) = A\, (0.5) = A\(0.75), HY - 6,(0.25) = 6,(0.5) = 6,(0.75).

The heterogeneous relationship provides valuable policy implications. For example, strategically de-
veloped control measures can be implemented to efficiently curb the spread of the virus to the extent of
heterogeneity. As another example, the vaccination campaign can result in different consequences depend-

ing on the heterogeneity.

4 Empirical Analysis

In this section, we conduct the empirical analysis by applying the QARDL methodology to the empirical
data in the United States.

First, we describe the data used in this study. The US COVID-19 confirmed case and death data are ob-
tained from the World Health Organization’s Coronavirus Dashboard.! Given the crucial role of vaccination
in the pandemic progress, we explicitly incorporate the timing of vaccine administration into our sample se-

lection. The first COVID-19 vaccine dose was administered on December 8, 2020 outside of clinical trials.

'The data are available at the following URL: https://ourworldindata.org/covid-vaccinations.
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As of December 8, 2021, approximately 55.9% of the global population received at least one dose; 45.5%
completed two doses; and 4.3% received booster shots.

The sample period is from December 8, 2020, to December 7, 2021. This sample period enables us to
analyze the dynamic relationship between confirmed cases and deaths in the context of large-scale vaccina-
tion efforts. All daily observations are collected to capture the fluctuations and potential dynamic features
between the two variables.

A preliminary empirical analysis is conducted before the empirical estimation results are discussed.
First, Table 1 reports the descriptive statistics of daily new confirmed COVID-19 cases and deaths per million
population in the United States over the sample period. The average number of daily new confirmed cases is
276.17 per million, with a substantially dispersed distribution as reflected by the standard deviation of 188.50
and a wide range between the minimum (24.46) and maximum (863.48) values. Similarly, daily deaths
per million exhibit noticeable variation. The mean and standard deviation are 4.00 and 3.01, respectively.
The positive skewness and excess kurtosis in both series indicate extreme observations and heavy-tailed
distributions, highlighting pronounced non-normality and heterogeneity of the data. This motivates the use
of the QARDL framework. Second, we apply the Augmented Dickey—Fuller (ADF) unit root test to the
same data. Table 2 shows the test results. Unit root hypothesis cannot be rejected for confirmed cases and
deaths at standard significance levels. Hence, the variables are, at most, an integrated series of order one,

indicating that the two series satisfy the integration order condition to apply the QARDL methodology.

<Insert Tables 1 and 2 around here>

4.1 Full Sample Analysis

Here, we report the results of QARDL estimation based on the full sample. The lag orders are settop =7
and ¢ = 2 according to the Bayesian information criterion (BIC). As shown in Table 3, the estimated coeffi-
cients are statistically significant across all percentiles, indicating the robustness of the model specification
and the existence of heterogeneous dynamic relationships across different percentile levels.

To better illustrate the quantile-dependent effects, we plot the estimation results in Figure 1. The figure
presents the estimated trajectories of the four key parameters: (. (7), B«(7), Ax(7), and d.(7) across the
percentiles ranging from 0.1 to 0.9. We also provide the 90% confidence bands of the estimated parameters

to assess the precision and statistical significance of the estimates at each percentile.

<Insert Figure 1 and Table 3 around here>



The quantile-specific coefficient estimates reveal clear evidence of location asymmetry, indicating that
the dynamic relationship between confirmed cases and deaths systematically varies across different regions
of the conditional death distribution. The heterogeneous effects captured by the QARDL model highlight
that the distributional effect produces different estimates for different percentiles, which is often overlooked
in conventional mean-based model estimation.

The estimation results are summarized as follows. First, the ECM parameter |(,(7)| indicates a clear
downward trend in the adjustment speed for the increase in the percentile level. Specifically, at lower per-
centiles (e.g., 7 = 0.1), the adjustment speed reaches as high as 33.2%, implying that the system corrects
deviations from the long-run equilibrium at a relatively faster pace. This suggests that short-term fluctua-
tions in the relationship between confirmed cases and deaths are more easily absorbed and stabilized at lower
conditional quantiles of deaths. In contrast, at higher percentiles (e.g., 7 = 0.9), the estimated adjustment
speed drops sharply to 7.6%, indicating that the convergence to the long-run equilibrium is substantially
slower. This slower adjustment process reflects the fact that factors such as overloaded healthcare system,
shortage of medical resources, delays in reporting, and increasing uncertainty regarding treatment effective-
ness may contribute to the prolonged deviation from the equilibrium. Based on this finding, we conclude
that the heterogeneity in adjustment speed across different percentiles contributes to the joint distribution
between confirmed cases and deaths.

Second, the estimation results of the fatality rate 3, (7) reveal a clear upward trend for the increase in the
percentile level, indicating another significant heterogeneity across different percentiles. At lower percentile
levels (e.g., 7 = 0.1), the estimated fatality rate is relatively low, with 5(7) = 0.01, suggesting that the
proportion of deaths relative to confirmed cases remains small. This is consistent with the relatively lower
number of deaths at lower conditional quantiles of deaths, which may reflect, on average, more favorable
epidemiological and healthcare conditions. In contrast, at higher percentile levels (e.g., 7 = 0.9), the
fatality rate rises sharply to 0.04, indicating that the death count increases substantially relative to confirmed
cases. This sharp rise can be attributed to overwhelmed healthcare systems, the shortage of intensive care
resources, or a higher proportion of vulnerable groups, such as the elderly and individuals with pre-existing
medical conditions. These findings further support the view of Ullah et al. (2022) that significant variations
in COVID-19 fatality rates exist in the United States, and our model effectively captures this feature through
the heterogeneity characterized by the conditional distribution of deaths.

Third, the estimation results of the momentum parameter A, (7) show a decreasing trend for the increase
in the percentile level, declining from —2.27 at 7 = 0.1 to —3.60 at 7 = 0.9. This pattern indicates that

the momentum effect is more escalated at higher percentiles. Specifically, the increasingly negative value



of \.(7) suggests that past deaths exert a stronger suppressive effect on current deaths as the pandemic
intensifies. A weaker moment parameter is estimated at lower percentile levels with lower death conditional
quantile. The weaker momentum effect implies that past values have less influence on current deaths. In
contrast, the momentum effect becomes more pronounced at higher percentile levels, indicating that past
deaths have a stronger dampening impact on current deaths.

Fourth, the estimated response coefficient d, (7) fluctuates between 0.008 and 0.01 across all percentiles.
This indicates that a short-run fluctuation in confirmed cases has a positive impact on the change in deaths.
This result highlights that even low levels of variation in confirmed cases affect the short-term death count.

Finally, we conduct parameter heterogeneity tests across different percentiles. In the bottom panel of
Table 3, we report the Wald test statistics for the null hypotheses described in Section 3. The test results
strongly reject the null hypotheses for (.(7), 5.(7), and A\ (7), indicating that the parameters exhibit sig-
nificant heterogeneity across different percentiles. This implies that the speed of error correction, fatality
rate, and momentum effect substantially vary with pandemic severity. This further highlights the importance
of incorporating quantile-dependent dynamics in the relationship between confirmed cases and deaths. In
contrast, the test for 0, (7) fails to reject the null hypothesis, suggesting that the short-run dynamics captured

by 0. (7) does not show a significant variation across different percentiles.

4.2 Sub-Sample Analysis

In this section, we examine the impact of the vaccination campaign on the parameters across different
percentiles over different sample periods.

First, we clarify the objective of the sub-sample analysis, which is distinctive from the full-sample
analysis. The full-sample estimation aims to capture the average quantile-dependent dynamic relationship
between confirmed cases and deaths over the entire sample period. In contrast, we conduct a sub-sample
analysis to examine whether this relationship evolves in response to the vaccination rollout and the changing
pandemic conditions. We can assess the temporal stability of the QARDL estimates and identify potential
structural changes that may not be evident from the full-sample analysis by allowing the model parameters
to possibly differ across rolling sub-samples.

To this end, we first plot the estimates of the four parameters. Figure 2 shows the estimates obtained
using observations in numerous samples along with their 90% confidence bands. A robust rolling estimation
technique with a window length of 266 days is employed to ensure sufficient observations. Specifically, the
rolling window approach shifts the sample window forward one day at a time until the end of the sample

period is reached. This approach enables us to dynamically track the evolution of parameter estimates



in response to pandemic and vaccination changes. As shown in Figure 2, the rolling quantile regression
estimates display pronounced time-varying patterns across different percentile levels. This indicates that
the relationship between confirmed cases and deaths is not only heterogeneous across percentiles but also

dynamically evolves.
<Insert Figure 2 around here>

We specifically examine the parameters estimated. First, the estimated degree of smoothing fatality
|C«(7)| decreases as the percentile increases throughout the entire period. Location asymmetry is relatively
strong in the early period, with the average adjustment speed being approximately 22.0%, 14.0%, and 12.0%
for 7 = 0.25, 7 = 0.5, and 7 = 0.75, respectively. In the middle period, the location asymmetry peaks at
30.0%, 20.0%, and 10.0%, respectively. However, the location asymmetry weakens in the later period. All
the estimated values are about 20% for all percentiles. The United States began its vaccination campaign
in December 2020 and accelerated its schedule in the spring of 2021. A broad vaccination infrastructure
was established during the first few months of the year, which led to significant changes in the parameter
estimates from December 02, 2021 to April 11, 2021.

Second, the rolling quantile regression estimates of 3,(7) show a clear downward trend, indicating a
significant decrease in the fatality rate after the vaccination campaign began. Although vaccination is not
explicitly included as an explanatory variable in the empirical model, the observed time variation in the
estimated parameters coincides closely with the vaccination rollout period. Therefore, this result may show
the systematic change in the case-fatality relationship associated with the vaccination phase, although it may
not strictly describe the causal effect. In addition, (. (7) exhibits significant location asymmetry throughout
the entire period, such that the estimated [, (7) increases as 7 increases. In the early period, the fatality rate
is approximately estimated as 1.20%, 1.70%, and 2.20% for 7 = 0.25, 7 = 0.5, and 7 = (.75, respectively.
However, these estimated rates drop to 1.10%, 1.40%, and 1.80% over time, respectively. The decline in
fatality rate is more pronounced at higher percentiles. That is, the vaccination has exerted a stronger effect
at higher conditional death quantiles.

Third, the momentum effect of the death change exhibits a location asymmetry in the later period, with
A« (7) being —3.0, —3.5, and —4.0 at 7 = 0.25, 7 = 0.5, and 7 = 0.75, respectively. In contrast, the rolling
quantile regression estimates of (,(7) remain stable at approximately 0.005 throughout the entire sample
period.

Finally, the p-values of the Wald tests are presented based on the rolling estimates in Figure 3. The results

show that the null hypotheses of parameter constancy for {(7) and 3(7) are strongly rejected throughout
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the entire sample period, indicating that both the error correction speed and fatality rate exhibit persistent
heterogeneity over time and across different percentiles. This suggests that even under continuous vacci-
nation progress, both the adjustment process toward long-run equilibrium and the fatality dynamics remain
highly sensitive to pandemic conditions. However, the location asymmetry of \.(7) is statistically signifi-
cant only in the later sample period. This finding reflects that the dynamic feedback between past and current
deaths becomes increasingly complex and asymmetric as the pandemic evolves. In contrast, the test results
for (. (7) indicate that its location asymmetry is not statistically significant throughout the entire period,

suggesting a relatively stable behavior over time.
<Insert Figure 3 around here>

Taken together, our findings confirm the existence of significant asymmetries in the dynamic relationship
between the number of confirmed cases and deaths. More importantly, the continued presence of hetero-
geneity even after the large-scale vaccination implies that the underlying distributional differences in how
the pandemic affects various segments of the population have not been eliminated. This further highlights
the need for flexible and risk-sensitive public health policies that fully account for such heterogeneous effects

in the post-vaccination phase.

5 Conclusion

This study exploits the QARDL methodology and examines the heterogeneous dynamic relationship be-
tween confirmed COVID-19 cases and deaths. Furthermore, we investigate the role of vaccination cam-
paigns in shaping this relationship. Heterogeneity is assessed based on distributional differences in deaths
across conditional quantiles. The empirical results reveal significant differences in the dynamic linkage be-
tween infection and mortality across different regions of the conditional death distribution. Despite persis-
tent heterogeneity in fatality rates, vaccination campaigns have played a crucial role in reducing the fatality
rate of COVID-19, with more pronounced effects observed in the upper tail of the conditional death distri-
bution. These findings contribute to the existing literature that often overlooks heterogeneity for empirical
analysis.

The current study also offers important implications for public health policymakers, highlighting the
need for targeted vaccination strategies and resource allocation to effectively protect vulnerable popula-
tions. The quantile-dependent empirical outcomes suggest that state-contingent strategies should be used in
public health policies. The observed vaccination effect implies that timely vaccination and medical interven-

tions substantially benefit mortality outcomes at the higher conditional percentile, suggesting that when the
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mortality outcomes are elevated, policymakers should prioritize vaccination coverage, booster deployment,
and healthcare resources. In contrast, when the mortality outcomes are low, policies should focus more
on disease monitoring, early detection, and preventive measures to stabilize short-run fluctuations without
imposing excessive burdens on the healthcare system. Overall, the findings highlight that a one-size-fits-
all policy may be inefficient, and adaptive, quantile-informed strategies can improve the effectiveness of
the public health system. As the pandemic continues to evolve with the emergence of new variants and
the potential decline of vaccine-induced immunity, further research is warranted to explore the long-term
dynamics and refine policy interventions accordingly.

Although this study provides insights into the quantile-dependent dynamic relationship between con-
firmed COVID-19 cases and deaths, several directions remain for future research. First, future studies should
incorporate variant-specific data to examine whether the heterogeneous effects identified in this study per-
sist or change across different virus strains as new variants continue to emerge. Second, more detailed
individual-level data, such as age, comorbidities, and vaccination status, can be employed to capture het-
erogeneity across demographic groups more efficiently. Finally, to conduct cross-country comparisons and
assess the influence of different healthcare systems, public health interventions, and vaccination strategies
on the short- and long-run relationships between confirmed cases and deaths, the QARDL framework can

be extended to multi-country panel data.
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Variable Mean Median Max Min Std. Dev.  Skewness  Kurtosis n
Confirmed Cases 276.17 221.21 863.48 24.46 188.50 0.74 2.74 365
Deaths 4.00 3.18 14.96 0.30 3.01 0.94 3.13 365

Table 1: DESCRIPTIVE STATISTICS OF DAILY COVID-19 CONFIRMED CASES AND DEATHS IN THE
UNITED STATES. This table reports descriptive statistics for daily new confirmed COVID-19 cases and
deaths per million population in the United States from December 8, 2020 to December 7, 2021.

Variable Dickey-Fuller p-value Reject
Confirmed Cases -1.6461 0.7666 No
Deaths -1.3483 0.8740 No

Table 2: ADF TEST RESULTS FOR DAILY CONFIRMED COVID-19 CASES AND DEATHS. This table
reports ADF test statistics and corresponding p-values for daily COVID-19 confirmed cases and deaths in
the United States over the period from December 8, 2020, to December 7, 2021. The optimal lags are
selected by Bayesian information criterion.
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T G(7) B(T) A(T) 0+ (7)
01 -0.3323%*%* 0.0120%** -2.2685%** 0.0093***
’ (0.0243) (0.0012) (0.1546) (0.0013)
02 -0.2544#*%* 0.0126%** -2.5575%** 0.009***
’ (0.0227) (0.0009) (0.2603) (0.0012)
03 -0.2405%** 0.0126%** -3.0958%*** 0.0082%***
’ (0.0231) (0.0007) (0.3469) (0.0015)
0.4 -0.2129%*%* 0.0129%*** -3.1513%** 0.00827%**
' (0.0239) (0.0009) (0.3741) (0.0013)
0.5 -0.1788%** 0.016%** -3.3311%** 0.0078%***
' (0.0197) (0.0012) (0.3586) (0.0014)
0.6 -0.1646%** 0.0186%** -3.5187*** 0.0088%***
) (0.0294) (0.0018) (0.2636) (0.0018)
0.7 -0.1315%** 0.0238*** -3.7000%** 0.0097%***
) (0.0242) (0.0028) (0.2610) (0.0018)
0.3 -0.0966%** 0.0278%** -3.5458%** 0.0093***
) (0.0297) (0.0065) (0.2190) (0.0017)
0.9 -0.0760%** 0.03971*** -3.6006%** 0.0104**=*
) (0.0190) (0.0100) (0.1986) (0.0012)

Wald Tests
p-values 0.0004 0.0001 0.0795 0.6576

Table 3: QARDL ESTIMATION RESULTS. (i) QARDL estimation results are based on the following model:

AD; = (1) +C(T) Dio1 +7:(7) Coot + 252 M (T)AD -+ 3920 65 (1) AC,; + Ui(7) = cua(7) +
Go(T)(Dym1 = Bu(T)Cim1) + Y02t Nju(T)ADyj + 32970 654 (1) ACy_j + Uy (7). (i) Standard errors are in

parentheses, and those for the long-run coefficient are calculated using the delta method. (iii) The p-values of

the Wald tests are computed to test the hypotheses: Hg : (4(0.25) = («(0.5) = (.(0.75), Hg : 5:(0.25) =

B+(0.5) = B.(0.75), H} : X\(0.25) = \(0.5) = A\e(0.75), H] : 6.(0.25) = 0,(0.5) = 6,(0.75). (iv) *
indicates a significance level of p < 0.05, ** indicates a significance level of p < 0.01, and *** indicates a

significance level of p < 0.001.
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Figure 1: PARAMETER ESTIMATES USING THE WHOLE SAMPLE. The middle lines show the estimated
parameters obtained by using all observations for different percentile levels: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, along with 90% confidence bands.
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Figure 2: PARAMETER ESTIMATES (.(7), B«(T), A(T), AND 0.(7) USING THE ROLLING WINDOW
METHOD. The figures show the estimated parameters using the rolling window method with 90% confi-
dence bands, and each window is constructed by 266 observations. Three different percentiles levels are
employed: 0.25, 0.5, 0.75.
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Figure 3: THE p-VALUES OF THE WALD TESTS. The figures show the estimated p-values of the Wald
tests: (i) Wy (8) tests HY : 3.(0.25) = 8.(0.5) = B.(0.75); (ii) Wy (C) tests HS : ¢.(0.25) = ¢.(0.5) =
G+ (0.75); (iil) Wi () tests Hp = Ai(0.25) = A(0.5) = \(0.75); and (iv) W),,(6) tests HY : 6.(0.25) =
3,(0.5) = 04(0.75). The horizontal axis indicates the last observation of the window.
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