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Abstract
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In contrast with the Lagrange multiplier test that is widely employed for testing the linearity condition, the
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1 Introduction

The smooth transition autoregressive (STAR) model has been widely used in many areas including economics.

It has a property which it shares with other nonlinear models such as the threshold autoregressive model or the

hidden Markov or Markov-switching autoregressive model: it nests a linear autoregressive model. Even more

importantly, these models are not identified when the data-generating process is a linear model. This lack of

identification was first studied by Davies (1977, 1987); see also Watson and Engle (1982). If one estimates

the STAR model before testing the linearity hypothesis, one may end up estimating an unidentified model.

This typically causes numerical problems in estimation, and even when the estimation algorithm converges,

the results are not reliable. It is therefore necessary to test linearity before estimating the STAR model. If the

null of linearity is not rejected, the model builder can simply settle for a linear model and avoid the potential

problems arising from fitting a more complicated nonlinear model.

The testing problem can be tackled head on by constructing an empirical null distribution by simulation or

bootstrap, see, for example, Hansen (1996). Another popular approach consists of circumventing the identi-

fication problem by replacing the alternative by a Taylor series approximation around the null hypothesis and

constructing a Lagrange multiplier (LM) test against this approximate alternative. For this solution, see Saikko-

nen and Luukkonen (1988) and Luukkonen, Saikkonen, and Teräsvirta (1988). Later, Granger and Teräsvirta

(1993) and Teräsvirta (1994) made this test a part of their strategy for building STAR models.

However, the LM test statistic does not comprehensively test for the nonlinearity entailed by the STAR

model. As will be detailed below, the STAR model violates the linearity condition in two different ways, and

the LM statistic tests against only one of these two violations. The main goal of this study is to develop a testing

procedure that complements the existing test by a test that has non-negligible power against arbitrary nonlinear-

ity. Specifically, we resolve the foregoing identification issue by testing for nonlinearity in two different ways

and combining the results into a single test.

An indication of the identification problem is that the model to be tested can be defined by more than one

set of parameter restrictions on the alternative. When one such set is selected, some of the parameters of the

alternative model remain unidentified under the null hypothesis. In this situation it is possible to choose a

different set of restrictions such that the null model is defined using some or all of the parameters that were

unidentified in the previous case. This implies that a different set of parameters, including the one or ones

that defined the previous null model, are now unidentified when this null hypothesis holds. Following the
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previous literature we call this the twofold identification problem. Although the models under the null are

observationally equivalent, testing procedures without any consideration of the twofold identification problem

may not have omnibus power against the null hypothesis of linearity.

We resolve the associated issues by considering the quasi-likelihood ratio (QLR) test statistic, which is

known to have omnibus power against arbitrary nonlinearity. As Stinchcombe and White (1998) pointed out,

a linearity test acquires omnibus power if it is based on an analytic function, which is the case of the STAR

model. As already mentioned, in the LM statistic this analytic function is approximated by a polynomial with

the result that the omnibus power is not achieved. Nevertheless, the LM test is easy to compute and has an

asymptotic χ2 distribution under the null of linearity, which explains its popularity.

The QLR statistic in the context of linearity test is not novel. For instance, Cho, Ishida, and White (2011,

2014), Cho and Ishida (2012), White and Cho (2012), and Baek, Cho, and Phillips (2015), among others, study

testing for neglected nonlinearity using analytic functions and note that the null of linearity can arise in two or

three different ways, each of which carries its own identification problem. They propose a QLR test statistic to

resolve the identification issues. We generalise the results in the previous literature to testing linearity against

the STAR model and develop a testing procedure that is readily available for applications.

A similar testing procedure can be found in the literature on sub-vector inference. In particular, when the

identification of some parameters depends on the identifiability of others, Cheng (2015) considers an inference

method that remains valid uniformly on the parameter space by applying the methodology in Andrews and

Cheng (2014). However, similarly to the LM test, only one side of the alternative hypothesis is concerned. The

Wald test examined by Cheng (2015) does not comprehensively examine the null of linearity as for the QLR

test examined by Andrews and Cheng (2014).

Once the QLR test has been constructed, it is appropriate to study its behaviour by using a Monte Carlo

simulation study. To this end, we consider the case where the exponential smooth transition autoregressive

(ESTAR) model is given as an alternative model, and compare the performance of the QLR test with other tests

available in the literature. The simulation results show that the QLR test has excellent size control and power

and further that the QLR and score-based tests, especially the LM tests detailed in Section 2.2, can complement

each others.

We then revisit two published empirical studies and examine popular nonlinearity assumptions imposed

in applied macroeconomic literature. We first re-examine the macroeconomic data in Auerbach and Gorod-

nichenko (2012) who examined the government multiplier effect using the vector smooth transition autoregres-
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sive (VSTAR) model. They used nonstationary data in their analysis. Following Candelon and Lieb (2013), we

transform Auerbach and Gorodnichenko’s (2012) nonstationary VSTAR model into a stationary vector smooth

transition error-correction (VSTEC) model. This makes it possible for us to apply the QLR (and the LM) test

statistic. As it turns out, the QLR test statistic rejects linearity, which supports the use of the VSTEC model in

studying nonlinear effects of fiscal policy in the US.

In addition, we extend the quarterly US unemployment rate series that has been previously studied by van

Dijk, Teräsvirta, and Franses (2002). They tested linearity by the LM statistic, and in this study we illustrate

the use of the QLR test statistic alongside the LM statistic and find nonlinear features in the series that could

not have been found by the LM or the QLR statistic alone.

The plan of the paper is as follows. Testing linearity in the STAR framework is discussed in Section 2,

where the null limit distribution of the QLR test statistic is derived. Section 3 provides Monte Carlo simulation

results and compare the performance of the QLR test with other tests. Section 4 contains applications of the

QLR test statistic to the multiplier effect of US government spending and the US unemployment rate. Section

5 concludes.

The detailed proofs can be found in the Supplement. There our theory is applied to the ESTAR model and

the logistic smooth transition autoregressive (LSTAR) model. Results on Monte Carlo simulations are reported.

In particular, we demonstrate the use of Hansen’s (1996) weighted bootstrap in the context of the QLR statistic.

2 Testing Linearity against STAR

2.1 Preliminaries

In this subsection, we clarify the difference between the STAR model and the artificial neural network (ANN)

model, in which the QLR test has hitherto been studied (e.g. Cho, Ishida, and White, 2011, 2014; White and

Cho, 2012; Baek, Cho, and Phillips, 2015). This helps to explain how the current study contributes to the

literature on the QLR test by tackling the twofold identification problem within the STAR family of models.

The standard single-hidden layer (univariate) ANN model is specified for stationary variables and has the

following form:

yt = π0 + z̃′tπ +

q∑
j=1

θjf(z′tγj) + εt (1)

where zt := (1, z̃′t)
′ with z̃t := (yt−1, ..., yt−p)

′, f(0) = constant, and π0, π, θj , γj , j = 1, ..., q, are parameters.
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The ANN model (1) thus contains a linear combination of continuous and bounded functions (a hidden layer),

typically logistic ones, although other bounded functions are possible. Nowadays, ANN models in applications

often contain more than one hidden layer, but the single-hidden layer ANN model serves as a benchmark against

which a STAR model may be compared. The twofold identification problem becomes obvious from (1). The

model becomes linear by assuming either θj = 0 or γj = 0 (j = 1, ..., q), so that if θj = 0, γj disappears

from the model; and if γj = 0, π0 and θj are not separably estimable from it. Therefore, Davies’ (1977, 1987)

identification problem arises in two different ways. This makes the Wald test inapplicable, and so the previous

studies focusing on the QLR test apply the likelihood-ratio principle.

In contrast, the following STAR model of order p is frequently specified as a prediction model of a time-

series data yt (e.g., Teräsvirta, 1994; Granger and Teräsvirta, 1993): M0 := {h0( · , π, θ, γ) : (π, θ, γ) ∈

Π×Θ× Γ}, where

h0(zt, π, θ, γ) := z′tπ + f(z̃′tα, γ)(z′tθ), (2)

zt := (1, z̃′t)
′ is a (p+1)×1 vector of regressors with a transition variable z̃′tα. Here, z̃t := (yt−1, yt−2, . . . , yt−p)

′,

and α = (0, . . . , 1, 0, . . . , 0)′ denotes a selection vector chosen by the researcher. The other parameter vectors

π := (π0, π1, . . . , πp)
′ and θ := (θ0, θ1, . . . , θp)

′ are the transition parameters, and γ is used to describe the

smooth transition from one extreme regime to the other. Symbols Π, Θ, and Γ denote the parameter spaces

of π, θ, and γ, respectively. The transition function f(·, γ) is a nonlinear, continuously differentiable, and

uniformly bounded function. It is typically either exponential, fE(z̃′tα, γ) := 1 − exp(−γ(z̃′tα)2), or logistic,

fL(z̃′tα, γ) := {1 + exp(−γz̃′tα)}−1; if the transition function is fE(z̃′tα, γ) (resp. fL(z̃′tα, γ)), the model is

called the ESTAR (resp. LSTAR) model. In both cases, γ > 0. This STAR model is a special case of the origi-

nal STAR model in which the transition function f(z̃′tα− c, γ) with a constant c is substituted for f(z̃′tα, γ) in

M0. We set c = 0 inM0 as in the regular exponential autoregressive model in Haggan and Ozaki (1981) and

Auerbach and Gorodnichenko (2012) because the essential property in testing linearity is that f(z̃′tα, ·) is an

analytic function. As we detail below, if c is estimated along with the other parameters, the inference becomes

more complicated than ours, and this complexity limits its applicability.

The main difference between these two models is that the single hidden-layer ANN model contains a lin-

ear combination of several transitions that are themselves functions of linear combinations of elements of zt,

whereas in the standard STAR model a linear combination of these elements is multiplied by a transition func-
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tion usually with a single argument.1 Due to these differences, the analysis of the QLR test statistic needs to

be generalised in order to make the QLR test statistic applicable in the STAR framework. Specifically, Cho,

Ishida, and White (2011, 2014) characterised the null limit distribution of the QLR test statistic in the ANN

context as a functional of a univariate Gaussian process. This limit distribution cannot, however, be applied to

the STAR case because as it turns out, a multivariate Gaussian process is required for the null limit distribution

when testing for the STAR model.

The STAR model has a continuum number of regimes defined by transition functions obtaining values

between zero to unity. This feature makes the model an appealing alternative in empirical studies because

the behaviour of economic agents can often be best described by multiple regimes and smooth transitions

between them. The concept of smooth transition was introduced by Bacon and Watts (1971), in the econo-

metrics literature by Goldfeld and Quandt (1972, pp, 263–264) and first applied in the time series context by

Chan and Tong (1986). For more discussion on the STAR model the reader is referred to van Dijk, Teräsvirta,

and Franses (2002), Teräsvirta (1994), Granger and Teräsvirta (1993), and Teräsvirta, Tjøstheim, and Granger

(2010), among others.

The ESTAR and LSTAR models are specified by transforming the exponential function that is analytic,

so it is generically comprehensively revealing for model misspecification as pointed out by Stinchcombe and

White (1998). Therefore, the estimated parameters in the transition function become statistically significant

such that the nonlinear component necessarily reduces the mean squared error of the model even when the

assumed STAR model is misspecified. This implies that if the linear model is misspecified, the mean square

error obtained from estimating the corresponding STAR model becomes smaller than that from the linear model.

This in turn motivates testing linearity by comparing the estimated mean squared errors from the STAR and the

linear model nested in the STAR. This process delivers an omnibus testing procedure for nonlinearity.

2.2 Brief Review of the LM Test

Before discussing the QLR test, we briefly review the model framework for the LM test statistics to make a

comparison with the QLR test. The following auxiliary model is first estimated for the LM test statistics:

MAUX := {hAUX( · , α0, α1, α2, α3, α4) : (α′0, α
′
1, α
′
2, α
′
3, α
′
4)′ ∈ Θ},

1This argument is most often an element of z̃t, although it can also be a weighted sum of several variables where the weights are
assumed known. STAR models can also contain more than one additive transition, but this seems to be uncommon in applications.
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where

hAUX(zt, α0, α1, α2, α3, α4) := α′0zt + α′1(z̃ttt) + α′2(z̃tt
2
t ) + α′3(z̃tt

3
t ) + α′4(z̃tt

4
t ),

and tt is the transition variable, viz., z̃′tα. This model is obtained by applying a fourth-order Taylor expansion to

the analytic function as an intermediate step to compute the LM test statistics conveniently which test γ∗ = 0.

Luukkonen, Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994) provided detailed rationales of carrying

out testing linearity by examining the coefficients of nonlinear components of the approximate alternative.

To be specific, Teräsvirta (1994) and Escribano and Jordà (?) specify the following four sets of hypotheses

which are commonly considered in empirical studies:

H0,1 : α1∗ = α2∗ = α3∗ = 0|α4∗ = 0 vs. H1,1 : α1∗ 6= 0, α2∗ 6= 0, or α3∗ 6= 0|α4∗ = 0.

H0,2 : α1∗ = α2∗ = α3∗ = α4∗ = 0 vs. H1,2 : α1∗ 6= 0, α2∗ 6= 0, α3∗ 6= 0, or α4∗ 6= 0.

H0,3 : α1∗ = α3∗ = 0 vs. H1,3 : α1∗ 6= 0 or α3∗ 6= 0.

H0,4 : α2∗ = α4∗ = 0 vs. H1,4 : α2∗ 6= 0 or α4∗ 6= 0.

For later purpose, we denote the LM test statistics testingH0,i as LMi,n, i = 1, ..., 4. Here, LM1,n and LM2,n

are general tests against STAR, whereas LM3,n and LM4,n are tests against the LSTAR and ESTAR models,

respectively.

2.3 Data generating process and the QLR Test Statistic

We consider a univariate STAR model and study the null limit behaviour of the QLR test statistic in this

framework. In order to proceed, we make the following assumptions:

Assumption 1. {(yt, z̃′t)′ ∈ R1+p : t = 1, 2, . . .} (p ∈ N) is a strictly stationary and absolutely regular process

defined on the complete probability space (Ω,F ,P), with E[|yt|] < ∞ and mixing coefficient βτ such that for

some ρ > 1,
∑∞

τ=1 τ
1/(ρ−1)βτ <∞. �

Here, the mixing coefficient is defined as βτ := sups∈N E[supA∈F∞s+τ |P(A|Fs−∞) − P(A)|], where Fsτ is the

σ-field generated by (yτ , . . . , yτ+s). Many time series models satisfy this condition, and the autoregressive

process is one of them. It is general enough to cover the stationary time series we are interested in. We impose

the following regular STAR model condition:
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Assumption 2. Let f(z̃′tα, ·) : Γ 7→ [0, 1] be a non-polynomial analytic function with probability 1. Let

Π ∈ Rp+1, Θ ∈ Rp+1, and Γ ∈ R be non-empty convex and compact sets such that 0 ∈ Γ. Let h(zt, π, θ, γ) :=

z′tπ + {f(z̃′tα, γ) − f(z̃′tα, 0)}(z′tθ), and let M := {h( · , π, θ, γ) : (π, θ, γ) ∈ Π × Θ × Γ} be the model

specified for E[yt|zt]. �

Note thatM differs fromM0. The transition function is centered at f(z̃′tα, 0) for analytical convenience. As

f(z̃′tα, 0) is constant, the nonlinearity of the STAR model is not modified by this centering. For example, we

have fE(z̃′tα, 0) = 0 and fL(z̃′tα, 0) = 1/2, so fL will be centered to have value zero. Furthermore, centering

reduces the dimension of the identification problem as we detail below. The parameters to estimate are π, θ,

and γ. Here, the selection vector α is defined by the researcher.

Using Assumption 2, the linearity hypothesis and the alternative are specified as follows:

H0 : ∃π ∈ Rp+1 such that P(E[yt|zt] = z′tπ) = 1; vs. H1 : ∀π ∈ Rp+1, P(E[yt|zt] = z′tπ) < 1.

These hypotheses are the same as the ones in Cho, Ishida, and White (2011, 2014) and Baek, Cho, and Phillips

(2015). As in the previous literature, the focus is on developing an omnibus test statistic but now against STAR,

and the QLR test statistic is a vehicle for reaching this goal. The QLR test statistic is formally defined as

QLRn := n

(
1−

σ̂2
n,A

σ̂2
n,0

)
,

where

σ̂2
n,0 := min

π
n−1

n∑
t=1

(yt − z′tπ)2, σ̂2
n,A := min

π,θ,γ
n−1

n∑
t=1

{yt − z′tπ − ft(γ)(z′tθ)}2,

and ft(γ) := f(z̃′tα, γ)− f(z̃′tα, 0). We let the nonlinear least squares (NLS) estimator (π̂n, θ̂n, γ̂n) minimise

the squared errors with respect to (π, θ, γ). Furthermore, (π∗, θ∗, γ∗) denotes the probability limit of the NLS

estimator: (π∗, θ∗, γ∗) := arg minπ,θ,γ E[{yt− z′tπ−ft(γ)(z′tθ)}2] is the pseudo-true parameter. Note that this

limit is not unique under the null.

The main reason for proceeding with the QLR statistic is that linearity leads to a twofold identification

problem, and this statistic is able to handle both parts of it. If E[yt|zt] is linear with respect to zt with coefficient

π∗, we can generate a linear function from h(·, π∗, θ∗, γ∗) in two different ways, either by letting θ∗ = 0 or by

assuming γ∗ = 0. Because of this, (π∗, θ∗, γ∗) is not uniquely determined. If θ∗ = 0, h(·, π∗, 0, γ∗) = z′tπ∗, so

that γ∗ is not identified. We call this problem a type I identification problem, under which (π∗, θ∗, γ∗) becomes
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any element in {(π, θ, γ) ∈ Π × Θ × Γ : π = π∗, θ = 0}. If we employed f(z̃′tα − c, γ) instead of f(z̃′tα, γ)

for M as in the original STAR model, neither γ∗ nor the additional c∗ is identified under θ∗ = 0, which

leads to a more complicated identification problem. We fix our interest in the current derivative modelM that

excludes c∗. Alternatively, if γ∗ = 0, h(·, π∗, θ∗, 0) = z′tπ∗, so that θ∗ is not identified. This leads to a type II

identification problem, in which (π∗, θ∗, γ∗) becomes any element in {(π, θ, γ) ∈ Π×Θ×Γ : π = π∗, γ = 0}.

If the transition function is not centered at f(z̃′tα, 0), letting γ∗ = 0 leads to h0(zt, π∗, θ∗, 0) = z′t(π∗ +

f(z̃′tα, 0)θ∗). This makes the type II identification problem more complicated as π∗ and θ∗ are not separately

identified. Centering thus transforms this complication into a relatively straightforward identification problem.

Besides, mainly due to the invariance principle, the null limit distribution does not change by this centering.

Note that π inM0 is reparameterised to π − f(z̃′tα, 0)θ inM, so that the QLR test obtained by this reparam-

eterisation becomes identical to that before the reparameterisation. Without it, the null model investigation has

to be separately conducted by discerning the parameters with the type II identification problem. So, we avoid

the involved complication by the centering and obtain the null limit distribution of the QLR test efficiently.

This centering is also indirectly applied in the literature when the null limit distribution of the LM test statistic

is being derived. If zt contains a constant, this limit distribution is not affected by the centering, because the

centered parameter is merged into the linear component in the Taylor expansion that forms the basis of the LM

test statistic.

Now, the null holds for the following two sub-hypotheses: H01 : θ∗ = 0 and H02 : γ∗ = 0 . The limit

distribution of the QLR test statistic can be derived under both H01 and H02, leading to different null limit

distributions even for the same statistic. We call these derivations type I and type II analyses, respectively.

The null hypothesis of linearity against STAR is properly tested by tackling bothH01 andH02 simultaneously,

and we shall demonstrate that the QLR test is capable of doing this. For this purpose, we derive its null limit

distribution from the separately obtained null weak limits in the spirit of likelihood-ratio principle. Specifically,

we show how the two different weak limits are related to the null limit distribution of the QLR statistic.

Our view to testing linearity by accommodating type I and II analyses differs from the other tests in the

literature. For example, the LM test statistic focuses on testing H02. The main argument for the LM test is

that its asymptotic null distribution is chi-squared, which makes the test easily applicable. As another example,

Cheng (2015) assumes the standard STAR model and analyses the standard Wald statistic for testingH01 in the

vein of the type I identification problem. None of them accommodates the twofold identification problem.
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2.4 The Null Limit Distribution of the QLR Test

We now derive the null limit distribution of the QLR test and highlight the difference between the STAR-

based approach and the ANN-based one. We first study the limit distributions of the QLR test under H01

and H02 separately, combine them and, finally, obtain the limit distribution under H0. For this, we let our

quasi-likelihood (QL) function be

Ln(π, θ, γ) := −
n∑
t=1

{yt − z′tπ − ft(γ)(z′tθ)}2.

2.4.1 Type I Analysis: TestingH01 : θ∗ = 0

In this subsection, we discuss the limit distribution of the QLR test underH01 : θ∗ = 0. The problem is that γ∗ is

not identified under this hypothesis. We obtain the NLS estimator by maximising the QL function with respect

to γ in the final stage for the purpose of testingH01: L(1)
n := maxγ maxθ maxπ −

∑n
t=1{yt−z′tπ−ft(γ)(z′tθ)}2

and let QLR(1)
n denote the QLR statistic obtained by this optimisation process. That is,

L(1)
n := max

γ∈Γ
{−u′Mu+ u′MF (γ)Z[Z ′F (γ)MF (γ)Z]−1Z ′F (γ)Mu},

where u := [u1, u2, . . . , un]′, ut := yt − E[yt|zt], Z := [Z1, Z2, . . . , Zn]′, M := I − Z(Z ′Z)−1Z ′, and

F (γ) := diag[f1(γ), f2(γ), . . . , fn(γ)]. Therefore, we found that

QLR(1)
n := max

γ∈Γ

1

σ̂2
n,0

u′MF (γ)Z[Z ′F (γ)MF (γ)Z]−1Z ′F (γ)Mu

underH01 using the fact that yt = E[yt|zt] +ut = z′tπ∗+ut. Note that the numerator of QLR(1)
n is identical to

n(σ̂2
n,0− σ̂2

n,A) underH01 : θ∗ = 0, so that the QLR test accords withQLR(1)
n . Here, we cannot let γ = 0 when

deriving QLR(1)
n . If γ = 0, the alternative model reduces to the linear model, so that the QLR statistic cannot

test the null model by letting γ = 0. We therefore examine its null limit distribution by supposing γ 6= 0.

We now derive the limit distribution of QLR(1)
n under H01. For this and to ensure a regular null limit

distribution, we impose the following conditions:

Assumption 3. (i) E[ut|zt, ut−1, zt−1, . . .] = 0; and (ii) E[u2
t |zt, ut−1, zt−1, . . .] = σ2

∗ . �

Assumption 4. supγ∈Γ |(∂/∂γ)ft(γ)| ≤ mt. �
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Assumption 5. There exists a sequence of stationary ergodic random variablesmt such that for i = 1, 2, . . . , p,

|z̃t,i| ≤ mt, |ut| ≤ mt, |yt| ≤ mt, and for some ω ≥ 2(ρ − 1),E[m6+3ω
t ] < ∞, where ρ is in Assumption 1,

and zt,i is the i-th row element of zt. �

Assumption 6. For each γ 6= 0, V1(γ) and V2(γ) are positive definite, where for each γ, V1(γ) := E[u2
t r̃t(γ)

r̃t(γ)′] and V2(γ) := E[r̃t(γ)r̃t(γ)′] with r̃t(γ) := (ft(γ)z′t, z
′
t)
′. �

Assumption 3(i) implies that the model in Assumption 2 is not dynamically misspecified, and Assumption

3(ii) means that the errors are conditionally homoskedastic. Here, conditional homoskedasticity is not es-

sential in achieving the main goal of this study, but this assumption will be assumed whenever it facilitates

understanding the theoretical results intuitively. Assumption 4 plays an integral role in applying the tightness

condition in Doukhan, Massart, and Rio (1995) to the QLR test statistic. Here it can be easily verified for

the ESTAR and LSTAR models by noting that |(∂/∂γ)fE(z̃′tα, γ)| = (1 − fE(z̃′tα, γ))(z̃′tα)2 ≤ (z̃′tα)2 and

|(∂/∂γ)fL(z̃′tα, γ)| = fL(z̃′tα, γ)(1− fL(z̃′tα, γ))|(z̃′tα)| ≤ |(z̃′tα)|, so that we can let mt in Assumption 4 be

(z̃′tα)2 and |(z̃′tα)|, respectively. The moment condition in Assumption 5 is stronger than those in Cho, Ishida,

and White (2011, 2014), and it also implies that E[u6
t ] and E[y6

t ] are finite. The multiplicative component

ft(γ)z′tθ in the STAR model makes the stronger moment condition necessary in the current study. Assumption

6 is imposed for the invertibility of the limit covariance matrix. This makes our test statistic non-degenerate.

We have the following lemma:

Lemma 1. Given Assumptions 1, 2, 3(i), 4, 5, 6, and H01, (i) σ̂2
n,0

a.s.→ σ2
∗ := E[u2

t ]; (ii) {n−1/2Z ′ F (·)Mu,

σ̂2
n,0n

−1Z ′F (·)MF (·)Z} ⇒ {Z1(·), A1(·, ·)} on Γ(ε) and Γ(ε) × Γ(ε), respectively, where Γ(ε) := {γ ∈

Γ : |γ| ≥ ε}, Z1(·) is a continuous multivariate Gaussian process with E[Z1(γ)] = 0, and for each γ and γ̃,

E[Z1(γ)Z1(γ̃)′] = B1(γ, γ̃) such that B1(γ, γ̃) := E[u2
t f
∗
t (γ)f∗t (γ̃)′] and A1(γ, γ̃) := σ2

∗E[f∗t (γ)f∗t (γ̃)′] with

f∗t (γ) = ft(γ)zt − E[ft(γ)ztz
′
t] E[ztz

′
t]
−1zt; (iii) if, in addition, Assumption 3(ii) holds, B1(γ, γ̃) = A1(γ, γ̃).

�

There is a caveat to Lemma 1. It is clear from QLR
(1)
n that its limit distribution is determined by the limit

behaviour underH01 of both n−1/2Z ′F (·)Mu and n−1Z ′F (·)M F (·)Z. Furthermore, limγ→0 Z
′F (γ)Mu

a.s.
=

Z ′F (0)Mu = 0 and limγ→0 Z
′ F (γ)MF (γ)Z

a.s.
= Z ′F (0)MF (0)Z = 0. This implies that it is not straight-

forward to obtain the limit distribution of QLR(1)
n around γ = 0. We therefore assume for the moment that 0

is not included in Γ by considering Γ(ε) instead of Γ and accommodate this effect by restricting the QLR test
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statistic to

QLR(1)
n (ε) := max

γ∈Γ(ε)

1

σ̂2
n,0

u′MF (γ)Z[Z ′F (γ)MF (γ)Z]−1Z ′F (γ)Mu.

We relax this restriction when the limit distribution is examined underH0.

Lemma 1 is central in deriving the null limit distribution ofQLR(1)
n (ε) and corresponds to Lemma 1 of Cho,

Ishida, and White (2011). Despite being similar, the two lemmas are not identical; note that Z1(·) is mapped

to Rp+1, i.e., (p + 1)-variate Gaussian process, whereas their lemma obtains a univariate Gaussian process.

This multivariate Gaussian process Z1(·) distinguishes the STAR model-based testing from the ANN-based

approach. By this, the STAR model has a different null limit distribution, and the QLR test based upon the

STAR model has power over alternatives in directions different from those of the ANN-based approach.

Theorem 1. Given Assumptions 1, 2, 3(i), 4, 5, 6, andH01, for each ε > 0, (i) QLR(1)
n (ε)⇒ supγ∈Γ(ε) G1(γ)′

G1(γ), where G1(·) is a Gaussian process such that for each γ and γ̃, E[G1(γ)] = 0 and E[G1(γ)G1(γ̃)′] =

A
−1/2
1 (γ, γ)B1(γ, γ̃)A

−1/2
1 (γ̃, γ̃); (ii) if, in addition, Assumption 3 (ii) holds, then E[G1(γ)G1(γ̃)′] = A

−1/2
1 (γ,

γ)A1(γ, γ̃) A
−1/2
1 (γ̃, γ̃). �

As continuous mapping makes proving Theorem 1 trivial, no proof is given.

Theorem 1 implies that QLR(1)
n (ε) does not asymptotically follow a chi-squared distribution under H01

as does the LM statistic in Luukkonen, Saikkonen, and Teräsvirta (1988), Granger and Teräsvirta (1993), and

Teräsvirta (1994). The difficulty here is that the null limit distribution contains the unidentified nuisance pa-

rameter γ.

2.4.2 Type II Analysis: TestingH02 : γ∗ = 0

Here, the focus is on the limit distribution underH02 : γ∗ = 0. This hypothesis is tested using the LM statistic.

As we know, θ∗ is not identified under H02. We therefore maximise the QL function with respect to θ at the

final stage: L(2)
n := supθ supγ supπ −

∑n
t=1{yt− z′tπ− ft(γ)(z′tθ)}2, and denote the QLR test defined by this

maximisation process by QLR(2)
n .

Several remarks are in order. First, maximising the QL with respect to π is relatively simple due to linear-

ity. We let the concentrated QL (CQL) function be L(2)
n (γ, θ) := supπ Ln(π, θ, γ) = −[y − F (γ)Zθ]′M [y −

F (γ)Zθ], where y := [y1, y2, . . . , yn]. Here, we have to assume θ 6= 0. If θ = 0, the STAR model becomes

linear, so the QLR test statistic cannot compare the null model with the alternative. Second, L(2)
n (·) is not linear

with respect to γ, so that the next stage CQL function with respect to γ cannot be analytically derived. We
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approximate the CQL function with respect to γ around γ∗ = 0 and capture its limit behaviour underH02. The

first-order derivative of L(2)
n (γ, θ) with respect to γ is (d/dγ)L(2)

n (γ, θ) = 2[y − F (γ)Zθ]′M(∂F (γ)/∂γ)Zθ,

where (∂F (γ)/∂γ) := (∂/∂γ) (f(z̃′1α, γ), ..., f(z̃′nα, γ)). For the LSTAR model, ∂fL(z̃′tα, γ)/ ∂γ = fL(z̃′tα,

γ)(1−fL(z̃′tα, γ))z̃′tα and ∂F (0)/∂γ = (1/4)(z̃′1α, ..., z̃
′
nα)′,whereas for ESTAR, it follows that ∂fE(z̃′tα, γ)/

∂γ = (z̃′tα)2(1 − fE(z̃′tα, γ)), so ∂F (0)/∂γ = ((z̃′1α)2, ..., (z̃′nα)2)′, implying that we can approximate

the CQL function by a second-order approximation. Nevertheless, as Luukkonen, Saikkonen, and Teräsvirta

(1988), Teräsvirta (1994), and Cho, Ishida, and White (2011, 2014) pointed out, the first-order derivative of

the CQL is often zero for many other models. For example, in MA := {πyt−1 + θ{1 + exp(γyt−1)}−1 :

(π, θ, γ) ∈ Π × Θ × Γ}, the first-order derivative of the CQL is zero when γ∗ = 0. Due to this, we need

a higher-order approximation. Cho, Ishida, and White (2014) adopt a sixth-order Taylor expansion, whereas

Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta (1994), and Cho, Ishida, and White (2011) use fourth-

order Taylor expansions to obtain the null limit distributions of their tests. The order of expansion is determined

by the functional form of f(z̃′tα, ·).

As we do not assume a specific form for our STAR model, we simply let κ (κ ∈ N) be the smallest order

such that the κ-th order partial derivative with respect to γ is different from zero at γ = 0, so that for all j < κ,

(∂j/∂γj)L(2)
n (0, ·) ≡ 0. For example, κ = 3 forMA. Then, the CQL function is expanded as

L(2)
n (γ, θ) = L(2)

n (0, θ) +
1

κ!

∂κ

∂γκ
L(2)
n (0, θ)γκ + . . .+

1

(2κ)!

∂2κ

∂γ2κ
L(2)
n (0, θ)γ2κ + oP(γ2κ). (3)

Note that for j = 1, 2, . . . , κ − 1, (∂j/∂γj)L(2)
n (0, θ) = 0 by the definition of κ. If κ = 1, the first-order

derivative differs from zero, so that none of the derivatives is zero, meaning that j = 0. The limit behaviours of

the partial derivatives in (3) are given in the following lemma:

Lemma 2. Given Assumption 2, the definition of κ, andH02, for each θ 6= 0, ∂j

∂γj
L(2)
n (0, θ) = 2θ′Z ′Hj(0)Mu

for κ ≤ j < 2κ; and ∂j

∂γj
L(2)
n (0, θ) = 2θ′Z ′H2κ(0)Mu −

(
2κ
κ

)
θ′Z ′Hκ(0)M Hκ(0)Zθ for j = 2κ, where

Hj(γ) := (∂j/∂γj)F (γ). �

Using Lemma 2, we can specifically rewrite (3) as L(2)
n (γ, θ) − L(2)

n (0, θ) =
∑2κ

j=κ
2
j!{θ

′Z ′ Hj(0)Mu}γj −
1

(2κ)!

(
2κ
κ

)
θ′Z ′Hκ(0)MHκ(0)Zθγ2κ+oP(γ2κ). To reduce notational clutter, we further letGj := [g1,j , g2,j , . . . ,

gn,j ]
′ := MHj(0)Z, where gt,j := ht,j(0)zt − Z ′Hj(0)Z (Z ′Z)−1Z ′zt and ςn := n1/2κγ with ht,j(0) being
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the t-th diagonal element of Hj(0). Then,

L(2)
n (γ, θ)− L(2)

n (0, θ) =
2κ∑
j=κ

2{θ′G′ju}
j!nj/2κ

ςjn −
1

(2κ)!n

(
2κ

κ

)
{θ′G′κGκθ}ς2κ

n + oP(γ2κ). (4)

We note that if j = κ, n−j/2κG′ju = OP(1) by applying the central limit theorem. Furthermore, for j =

κ + 1, . . . , 2κ− 1, n−j/(2κ)(∂j/∂γj)L(2)
n (γ, θ) = oP(1) and θ′G2κu = oP(n) by the ergodic theorem, so that

they become asymptotically negligible, implying that the smallest j-th component greater than κ and surviving

at the limit becomes the second-final term in the right side of (4). Note that n−1G′κGκ = OP(1), if the

ergodic theorem applies, and the terms with j > 2κ belong to oP(γ2κ) by Taylor’s theorem, so that they are

asymptotically negligible under the null at any rate. Due to this fact, L(2)
n (·, θ) is approximated by the 2κ-th

degree polynomial function in (4), and we provide the following condition for the asymptotic analysis of the

polynomial function:

Assumption 7. For j = κ, κ + 1, . . . , 2κ and i = 0, 1, . . . , p, (i) E[|ut|8] < ∞, E[|ht,j(0)|8] < ∞, and

E[|zt,i|4] <∞; or (ii) E[|ut|4] <∞, E[|ht,j(0)|8] <∞, and E[|zt,i|8] <∞. �

Using Assumption 7, we can apply the CLT to n−1/2G′ju for j = κ, κ + 1, . . . , 2κ. Note that G′ju =∑n
t=1(utgt,j), and E[(utgt,j)

2] <∞ by the moment conditions in Assumption 7 and Cauchy-Schwarz inequal-

ity, so that for j = κ+ 1, . . . , 2κ− 1, n−j/2κG′ju = oP(1). Although the QLR test statistic is approximated by

the 2κ-th degree polynomial function, the moment conditions in Assumption 7 are sufficient to apply the CLT

to the first term in (4).

We establish the following lemma by collecting the asymptotically surviving terms:

Lemma 3. Given Assumptions 1, 2, 7, andH02, QLR(2)
n = supθQLR

(2)
n (θ) + oP(n), where for given θ 6= 0,

QLR
(2)
n (θ) := sup

ςn

1

σ̂2
n,0

{
2

κ!n1/2
{θ′G′κu}ςκn −

1

(2κ)!n

(
2κ

κ

)
θ′G′κGκθς

2κ
n

}

and ς̂κn(θ) maximises the given objective function, so that ς̂κn(θ) = Wn(θ), if κ is odd; and ς̂κn(θ) = max[0,Wn

(θ)], if κ is even, where Wn(θ) := κ!n1/2{θ′G′κu}/{θ′G′κGκθ}. �

Lemma 3 implies that the functional form of QLR(2)
n (·) depends on κ: for each θ 6= 0, QLR(2)

n (θ) =

1
σ̂2
n,0

(θ′G′κu)2

θ′G′κGκθ
, if κ is odd; and QLR(2)

n (θ) = 1
σ̂2
n,0

max
[
0, (θ′G′κu)2

θ′G′κGκθ

]
, if κ is even. If θ is a scalar as in the

previous literature, θ cancels out, so maximisation with respect to θ does not matter at the limit. This implies
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that QLR(2)
n and QLR(2)

n (·) are asymptotically equivalent under H02. On the other hand, if θ is a vector, the

asymptotic null distribution of the test statistic has to be determined by further maximising QLR(2)
n (·) with

respect to θ.

We now derive the regular limit distribution of QLR test statistic under H02. The following additional

condition is sufficient for this:

Assumption 8. V3(0) and V4(0) are positive definite, where for each γ, V3(γ) := E[u2
t r̄t(γ) r̄t(γ)′] and

V4(γ) := E[r̄t(γ)r̄t(γ)′] with r̄t(γ) := (ht,κ(γ)z′t, z
′
t)
′. �

We note that the nuisance parameter γ does not play a significant role in Assumption 8 as it does in the type I

analysis, because QLRn(·) has already concentrated the QL function with respect to γ. Given these regularity

conditions, the key limit results of the components that constitute QLR(2)
n (·) appear in the following lemma:

Lemma 4. Given Assumptions 1, 2, 3(i), 4, 7, 8, and H02, (i) n−1/2G′κu ⇒ Z2, where E[Z2] = 0 and

E[Z2Z ′2] = E[u2
t gt,κg

′
t,κ]; (ii) n−1G′κGκ

a.s.→ A2, where A2 := E[gt,κg
′
t,κ]; and (iii) if, additionally, Assumption

3(iii) holds, E[u2
t gt,κg

′
t,κ] = σ2

∗E[gt,κg
′
t,κ]. �

Using Lemma 4, Theorem 2 describes the limit distribution of QLR(2)
n underH02:

Theorem 2. Given Assumptions 1, 2, 3(i), 4, 7, 8, and H02, (i) QLR(2)
n ⇒ maxθ∈Θ G2

2(θ) if κ is odd; and

if κ is even, QLR(2)
n ⇒ maxθ∈Θ max[0,G2(θ)]2, where G2(·) is a univariate Gaussian process such that for

each θ, E[G2(θ)] = 0 and E[G2(θ)G2(θ̃)] = A
−1/2
2 (θ, θ)B2(θ, θ̃)A

−1/2
2 (θ̃, θ̃), where B2(θ, θ̃) := θ′E[u2

t gt,κ

g′t,κ]θ̃ and A2(θ, θ̃) := σ2
∗θ
′E[gt,κ g

′
t,κ]θ̃; (ii) if, additionally, Assumption 3(iii) holds, E[G2(θ)G2(θ̃)] =

A
−1/2
2 (θ, θ)A2(θ, θ̃)A

−1/2
2 (θ̃, θ̃). �

As Theorem 2 follows from Lemma 4 and continuous mapping, its proof is omitted.

Several remarks are in order. First, the covariance kernel of G2(·) is bilinear with respect to θ and θ̃. This

implies that G2(θ) is a linear Gaussian process with respect to θ. Therefore, if z ∼ N(0,E[u2
t gt,κg

′
t,κ]), z′θ

as a function of θ is distributionally equivalent to G2(·). This fact relates the null limit distribution to the chi-

squared distribution. Corollary 1 of Cho and White (2018) shows that maxθ∈Θ G2
2(θ)

d
= X 2

p+1 if G2(·) is a linear

Gaussian process and E[u2
t gt,κg

′
t,κ] = σ2

∗E[gt,κg
′
t,κ], whereX 2

p+1 is a chi-squared distribution with p+1 degrees

of freedom. Second, the chi-squared null limit distributions of the LM test statistics in Luukkonen, Saikkonen,

and Teräsvirta (1988), Granger and Teräsvirta (1993), and Teräsvirta (1994) follow from the fact that the LM

test statistic is equivalent to the QLR test statistic under H02. Finally, if θ = 0, G2(θ) is not well defined as the
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weak limit in Theorem 2 is obtained by assuming that θ 6= 0. Nevertheless, the null limit distribution of the

QLR test is well represented by Theorem 2 as it obtains the alternative model by letting θ 6= 0.

2.4.3 Limit Distribution of the QLR Test Statistic underH0

In this subsection, we derive the limit distribution of the QLR test under H0 by examining the relationship

between QLR(1)
n and QLR(2)

n . Specifically, using the arguments similar to those of Cho, Ishida, and White

(2011, 2014), we show that QLR(1)
n ≥ QLR

(2)
n , which means the limit distribution under H0 equals that of

QLR
(1)
n .

The following lemma generalises the approach in Cho, Ishida, and White (2011, 2014):

Lemma 5. Let n(γ) := Z ′F (γ)Mu and D(γ) := Z ′F (γ)MF (γ)Z ′ with n(j)(γ) := (∂j/∂γj)n(γ), and

D(j)(γ) := (∂j/∂γj)D(γ). Under Assumptions 1, 2 and 3, (i) for j < κ, limγ→0 n
(j)(γ)

a.s.
= 0 and

limγ→0D
(j)(γ)

a.s.
= 0; (ii) limγ→0 n

(κ)(γ)
a.s.
= G′κu; and (iii) limγ→0D

(κ)(γ)
a.s.
= G′κGκ. �

The limit obtained by letting γ → 0 under H01 can be compared with that obtained under H02. More

specifically, using Lemma 5 and L’Hôpital’s rule, we obtain that limγ→0 n(γ)′D(γ)−1n(γ)
a.s.
= limγ→0 n

(κ)

(γ)′D(κ)(γ)
−1
n(κ)(γ)

a.s.
= u′Gκ(G′κGκ)−1G′κu. From this, it follows that QLR(1)

n ≥ supθQLR
(2)
n (θ) as

QLR(1)
n = sup

γ∈Γ

1

σ̂2
n,0

n(γ)′D(γ)−1n(γ) ≥ lim
γ→0

1

σ̂2
n,0

n(γ)′D(γ)−1n(γ)
a.s.
=

1

σ̂2
n,0

u′Gκ(G′κGκ)−1G′κu.

Furthermore, QLR(2)
n (θ) is asymptotically equal to σ̂−2

n,0u
′Gκθ (θ′G′κGκθ)

−1 θ′G′κu. Thus, it follows that

QLR
(1)
n ≥ supθ QLR

(2)
n (θ) + oP(1), if Gκ(G′κGκ)−1G′κ − Gκθ(θ′G′κGκθ)−1θ′G′κ is positive semidefinite

irrespective of θ. To show this, we first note that the two terms are idempotent and symmetric matrices, and

make use of Exercise 8.58 in Abadir and Magnus (2005, p. 233). Then, {Gκ(G′κGκ)−1G′κ}{Gκθ(θ′G′κGκ

θ)−1θ′G′κ} = Gκθ(θ
′G′κGκθ)

−1θ′G′κ, so that it is positive semidefinite. This implies

QLRn = max[QLR(1)
n , QLR(2)

n ] + oP(1) = max[QLR(1)
n , sup

θ
QLR

(2)
n (θ)] + oP(1) = QLR(1)

n + oP(1).

Given that Γ(ε) was considered in Theorem 1 to remove γ = 0 from Γ, if we select ε as small as possible to

have QLRn = QLRn(ε) + oP(1) so that we can let γ → 0 as posited in Lemma 5, it is now straightforward to

show that the null limit distribution of the QLR test is characterised by the Gaussian process in Theorem 1. That

is, under the conditions in Theorems 1 and 2, the null limit distribution of the QLR test statistic is obtained by
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combining Theorems 1 and 2. For this purpose, we first combine Assumptions 6 and 8 into a new assumption:

Assumption 9. For each γ 6= 0, V5(γ) and V6(γ) are positive definite, where V5(γ) := E[u2
t r̈t(γ)r̈t(γ)′],

V6(γ) := E[r̈t(γ)r̈t(γ)′], and r̈t(γ) := (ht,κ(0)z′t, ft(γ)z′t, z
′
t)
′. �

Next, we provide the limit distribution of the QLR test underH0 in the following theorem:

Theorem 3. Given Assumptions 1, 2, 3(i), 4, 5, 7, 9, and H0, (i) QLRn ⇒ supγ∈Γ G1(γ)′G1 (γ), where G1(·)

is a Gaussian process such that for each γ and γ̃, E[G1(γ)] = 0 with E[G1(γ)G1 (γ̃)′] = A
−1/2
1 (γ, γ)B1(γ, γ̃)

A
−1/2
1 (γ̃, γ̃); (ii) if Assumption 3(ii) additionally holds, then E[G1 (γ)G1(γ̃)′] = A1(γ, γ)−1/2A1(γ, γ̃)A

−1/2
1 (γ̃,

γ̃). �

Theorem 3 immediately follows from Theorems 1 and 2 and from our earlier argument thatQLRn = QLR
(1)
n +

oP(1), which is why we do not prove it in the Supplement. Note that the consequence of Theorem 3 is the same

as that of Theorem 1, although the null hypothesis is extended fromH01 toH0 by enlarging the parameter space

from Γ(ε) to Γ with sufficiently small ε. Also note that the Gaussian process G1(·) is obtained by supposing

that γ 6= 0. Otherwise, a meaningful QLR test statistic is not properly defined.

The null limit distribution in Theorem 3 is derived as in Cho, Ishida, and White (2011, 2014) and Baek,

Cho, and Phillips (2015). Nevertheless, our proofs generalise theirs due to the complexity associated with the

STAR model. Furthermore, from Section 2.2, it can be easily seen that the LM test statistics only test H02. In

addition, it also extends the Wald test principle exploited by Cheng (2015) to test H01 but not H02. The QLR

statistic tests the linear model hypothesis by combining the null hypotheses neglected by the LM and Wald tests

separately.

3 Simulations

In this section we report results of two simulation studies. To begin with, we apply our theory to the ESTAR

and LSTAR models and check its validity by simulation. The idea of this set of simulations is simply to see

how well the empirical null distribution of the QLR statistic matches the theoretical distribution under different

assumptions on the parameter space Γ. Assuming that the errors of the model are standard normal, we derive

the covariance kernel in Theorem 3 analytically using the ESTAR model, which enables us to represent the null

limit distribution as an infinite sum of functions of γ multiplied by Gaussian random coefficients. We can then

compare the null limit distribution with the empirical null distribution of the QLR test obtained under various
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assumptions on the model. The detailed results, which are given in the Supplement, indicate that Theorem 3

is valid. In the Supplement, we also report another simulation result using the LSTAR model, obtaining the

same conclusion as for the ESTAR model. In addition to this, we apply Hansen’s (1996) weighted bootstrap to

the QLR test and show that it can be usefully exploited when the covariance kernel of the Gaussian process in

Theorem 3 is not available (see also Cho et al., 2011).

The purpose of the second simulation study is to evaluate the relative performance of the QLR test by

comparing its empirical size and power with those of some other tests applied in the literature. First, we examine

the LM tests presented in Section 2. Second, a referee prompted us to make comparisons with the score-based

test proposed by Ling and Tong (2011), LT test for short. It has the advantage that it is straightforward to

compute and applicable under rather mild regularity conditions. Furthermore, in contrast with the QLR test

whose critical values are obtained by the bootstrap, the ones for the LT test are readily available.

We detail the second simulation. For this simulation, the time series {yt}Tt=1 is assumed to follow the

ESTAR process:

yt = π∗yt−1 − θ∗yt−1{1− exp(−γ∗y2
t−1)}+ ut (5)

where ut ∼ IIDN(0, 1), and the following ESTAR model is specified for {yt}:

MESTAR := {yt = πyt−1 − θyt−1{1− exp(−γy2
t−1)}: π ∈ Π, θ ∈ Θ and γ ∈ Γ}.

The nonlinear analytic function ft(γ) = 1 − exp(−γ∗y2
t−1) satisfies the aforementioned conditions and is

widely employed in empirical applications. We simulate (5) using a number of designs. We set π∗ = 0.5 and

consider four different values of θ∗, viz. θ∗ = 0 (under H0) and θ∗ = 0.2, 0.4, 0.6. The transition parameter

γ∗ either equals zero (under H0) or is drawn from the uniform U(r0 − 1, r0) distribution for r0 = 1, 2, 3. The

QLR test is computed over the parameter space Γ = [0, 2], which means that for r0 = 3, the modelMESTAR

is misspecified. This in turn could have an adverse effect on the performance of the test.

As is done in the first set of simulations, the QLR test is computed in two different ways. First, given

that the data generating process in (5) is equivalent to that in the first simulation study under H0, we can use

the null distribution in the Supplement to compute the asymptotic critical values of the QLR test. The test

statistic is denoted by QLREn,∗. Sometimes, the error distribution may not be known, however, and then, as

already mentioned, we can use Hansen’s (1996) weighted bootstrap for obtaining the critical value of the test,

see also Cho et al. (2011). The test statistic obtained via the bootstrap is denoted as QLREn . The parameter
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a required for the LT statistic is set to equal the 0.05 quantile of the empirical cumulative distribution of the

lagged dependent variable yt−1. Furthermore, following Ling and Tong (2011), the vector β is a vector of ones.

Two sample sizes are used, 200 and 500 observations, and the number of replications is 2,000.

The results are reported in Table 1 using the 5% level of significance. As already mentioned, if θ∗ = 0 or

γ∗ = 0, linearity holds with probability 1, so that for both cases, the p-values represent the empirical size of the

tests. We see that there is no difference between QLREn,∗ and QLREn . These two tests and the two LM tests,

LM1,n and LM2,n, have the size under control in all cases considered. Meanwhile, the LT test is undersized,

which agrees with the results in Ling and Tong (2011). When the alternative is true, the results show that the

QLR tests are somewhat more powerful than the LM tests, which suggests that testing the two null hypotheses

simultaneously pays off. Another observation is that for both tests, the power reaches its maximum when γ∗ is

drawn from U(0, 1) distribution and begins to decline when the distribution shifts to the right. This is due to

the fact that the ESTAR model approaches a linear one when γ∗ →∞.

As can be expected, the power of the tests increases with the sample size. Perhaps not unexpectedly, the

two QLR tests still have power when the model is misspecified, i.e., when γ∗ is drawn from U(2, 3). We also

considered the parameter spaces Γ = [0, i], i = 3, 4, 5, but did not find any difference in results (not reported

here). Finally, the LT statistic, denoted LTn in Table 1, does not perform particularly well, which may partly

be due to the fact that the transition function is nonmonotonic in yt−1 under the alternative.

4 Two Empirical Examples

In this section, we apply the QLR tests against the ESTAR and LSTAR models, denoted by QLREn and QLRLn ,

to two empirical examples. As in the previous section, these are compared with the LM tests against the four

alternative hypotheses outlined in Section 2.2.

4.1 Testing linearity of the Fiscal Multiplier Effect

We first test the hypothesis of nonlinear government spending effect to other macro economic variables by

revisiting the empirical work of Auerbach and Gorodnichenko (2012) who specified a VSTAR model for yt :=

(gt, τt, qt)
′ with gt, τt, and qt being log real government spending, log real government net tax receipts, and log

real GDP deflated by the 2012 GDP deflator, respectively.

Because the time series used by Auerbach and Gorodnichenko (2012) are not stationary, we cannot apply
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our tests to their VSTAR model (they do not test linearity). Following Candelon and Lieb (2013), we bypass

this difficulty by first converting this model into the following VSTEC form:

∆yt = Ψ1∗(L)wt−1 + ft(γ∗)Ψ2∗(L)wt−1 + ut, (6)

where ut = (u1t, u2t, u3t)
′,wt−1 := [y∗′t−1,∆y

′
t−1]′, Ψ1∗(L) := [αR∗, Π̃R∗(L)], and Ψ2∗(L) := [αD∗, Π̃D∗(L)]

with αD∗ := αR∗−αE∗ and Π̃D∗(L) := Π̃R∗(L)−Π̃E∗(L). Here, Π̃R∗(L) and Π̃E∗(L) are the VSTEC coeffi-

cients associated with the recession and expansion periods, respectively; β∗ is them−dimensional cointegrating

vector, which is invariance to the economic state; and y∗t−1 = β′∗yt−1 (e.g., Rothman, van Dijk, and Franses,

2001; Hubrich and Teräsvirta, 2013). In addition, α∗ denotes the adjustment coefficient, which is a 3 × m

matrix, and it is assumed that α∗ = (1− ft(γ∗))αE∗+ ft(γ∗)αR∗, where αE∗ is not necessarily equal to αR∗.2

We now test the nonlinear effect of government spending in the following order. First, we marginalise the

model (6) under the normality condition of ut as assumed by Auerbach and Gorodnichenko (2012). That is,

∆yjt = θ′j∗∆y−jt + ξj1∗(L)′wt−1 + ft(γ∗)ξj2∗(L)′wt−1 + εjt, (7)

for j = 1, 2, 3, where θ′j∗ := E[ujtu−jt]E[u−jtu
′
−jt]

−1, and, further, ξj1∗(L)′ := ψj1∗(L)′− θ′j∗ψ−j1∗(L)′ and

ξj2∗(L)′ := ψj2∗(L)′−θ′j∗ψ−j2∗(L)′. Here, ujt and u−jt denote the j-th row element of ut and the 2×1 vector

obtained by removing ujt from ut, respectively. Furthermore, for each i = 1 and 2, ψji∗(L)′ and ψ−ji∗(L)′

are the j-th row vector of Ψi∗(L) and 2 × (m + 3) matrix obtained by removing the j-th row from Ψi∗(L),

respectively. Second, we estimate the model. For this, we first let β̂n denote the maximum likelihood estimator

for β∗ estimated from (6), which is super-consistent (see Johansen, 1995), making it possible to estimate the

other parameters by NLS by replacing y∗t−1 with ŷt−1 := β̂′nyt−1. Finally, we use the marginal model of (7) as

our baseline model for testing for nonlinearity, where wt−1 is replaced with ŵt−1 := [ŷ′t−1,∆y
′
t−1]′. We apply

the QLR and LM tests for each j = 1, 2, 3. Note that rejecting the linearity hypothesis in at least one individual

equation is sufficient for rejecting the linearity hypothesis of the whole VSTEC equation.

We now report our empirical findings using the data of Auerbach and Gorodnichenko (2012), which is

comprised US quarterly macroeconomic variables. Their sample ranges from 1947Q1 to 2008Q4. In order to

estimate the cointegration rank m, we apply Johansen’s (1988, 1991) trace testing procedure with lag equal to

2The model above is similar to the one considered in Candelon and Lieb (2013), but our model is different from theirs as our
model assumes a continuum of states and is not restricted to have αE∗ = αR∗. In addition, we test the linearity hypothesis under the
assumption of conditional heteroscedasticity, without imposing a restriction on the error covariance matrix.
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3 selected by AIC and BIC3 and cannot reject the hypothesis that m = 2 at the 5% significance level. Using

this rank, we estimate the cointegration coefficient β∗ to obtain ŷt−1. Next, we apply the diagnostic testing

procedure to validate the assumption on the nonlinearity. As explained above, we replace wt−1 in the marginal

model with ŵt−1 := [ŷ′t−1,∆y
′
t−1]′ and test the linearity hypothesis by the QLR tests based upon ESTAR and

LSTAR models. We report the p-values of the QLR and LM tests in Table 2, where the p-values for our tests

are obtained by applying Hansen’s (1996) weighted bootstrap with 20,000 replications. In general, both the

QLR and LM tests strongly reject the linearity hypothesis. However, when the dependent variable is given

by gt, the estimated p-value of LM3,n is far above the significance level. A similar result is found when we

apply LM4,n to the model whose dependent variable is given by τt. Although the latter could be caused by

specifying the exponential transition function under the alternative, this is in contrast with the testing results of

QLR statistic that reports substantially small p-values irrespective of the dependent variables. This suggests, at

least in this particular case, the QLR test would be more robust, and both tests could be used complementary to

each other. In general, the linearity testing results imply that the linear error-correction model is not adequate

and the VSTEC model can better capture the dynamic interrelationship among the variables.

4.2 Application to US Unemployment Rates

We now examine the performance of the tests when the QLR test is applied to the monthly US unemployment

rate. van Dijk, Teräsvirta, and Franses (2002) tested linearity of the series running from June 1968 to December

1999. We perform the tests both with their time series and the same series extended to August 2015.4

van Dijk, Teräsvirta, and Franses (2002) point out that the US unemployment rate is a persistent series with

an asymmetric adjustment process and strong seasonality. They specify a STAR model with monthly dummy

variables mainly because first differences of the seasonally unadjusted unemployment rate of males aged 20

and over is used for ∆yt. They test linearity against STAR assuming that the transition variable is a lagged

twelve-month difference of the unemployment rate. The alternative (STAR) model has the following form (the

3The lag order is also identical to that selected by Auerbach and Gorodnichenko (2012). To test serial correlation in the errors of
the specified VSTEC model, we applied the multivariate Ljung-Box test and failed to reject the null of no serial correlation at 5% level
of significance. Testing results are available from the authors upon request.

4The data set used by van Dijk, Teräsvirta, and Franses (2002) is available at <http://swopec.hhs.se/hastef/abs/
hastef0380.htm> that was originally retrieved from the Bureau of Labor Statistics.
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lag length has been determined by AIC):

∆yt = π0 + π1yt−1 +

15∑
p=1

πp+2∆yt−p +

11∑
k=1

π17+kdt,k

+

θ0 + θ1yt−1 +

15∑
p=1

θp+2∆yt−p +

11∑
k=1

θ17+kdt,k

 f(∆12yt−d, γ) + ut,

where yt is the monthly US unemployment rate in question; ∆yt is the first difference of yt; f(·, ·) is a nonlinear

transition function; ∆12yt is the twelve-month difference of yt; dt,k is the dummy for month k; and ut ∼ IID

(0, σ2). The twelve-month difference ∆12yt−d is not included as an explanatory variable in the null (linear)

model. The theory in Section 2 can nonetheless be used without modification as a null model including ∆12yt−d

can be thought of having a zero coefficient for this variable. Following van Dijk, Teräsvirta, and Franses (2002),

we test linearity by letting ∆12yt−d, d = 1, 2, . . . , 6, be the transition variable.

Our test results using the same series as van Dijk, Teräsvirta, and Franses (2002) are reported in the top

panel of Table 3. Both the LM tests and QLRLn reject linearity when d = 2, and, besides, LM3,n that has

power against LSTAR yields p = 0.037 for d = 2. The p-values of QLRLn , however, lie at or below 0.05 for

all six lags, suggesting that at least in this particular case this QLR test is more powerful than the LM tests. The

smallest p-value is even here attained for d = 2. The results from QLREn are quite different in that they reject

the null only for d = 1, 2, but not for other lags. This makes sense as this statistic is designed for ESTAR , and

asymmetry in the unemployment rate is best described by an LSTAR model.

The bottom panel of Table 3 contains the results from the series extended to August 2015.5 Now there seems

to be plenty of evidence of asymmetry: all p-values of LM1,n are rather small. LM3,n also has small values for

the first three lags, as has LM2,n. The p-values from QLRLn are smallest of all, which is in line with the results

in the top panel. Even QLREn rejects the null of linearity at the 5% level for d = 1, 2, 3, 4, 5. This outcome

may be expected as the QLR statistics are omnibus tests and as such respond to any deviation from the null

hypothesis as the sample size increases. Note, however, that even LM4,n now yields two p-values (d = 2, 3)

that lie below 0.05, although the test does not have the omnibus property. The behaviour of the unemployment

rate during and after the financial crisis (a quick upswing and slow decrease) has probably contributed to these

results.
5The recent observations of the monthly US unemployment rate are available at <http://beta.bls.gov/dataViewer/

view/timeseries/LNU04000025>.
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5 Conclusion

The current study examines the null limit distribution of the QLR test statistic for neglected nonlinearity using

the STAR model. The QLR test statistic contains a twofold identification problem under the null, and we explic-

itly examine how the twofold identification problem affects the null limit distribution of the QLR test statistic.

We show that the QLR test statistic is shown to converge to a functional of a multivariate Gaussian process

under the null of linearity by extending the testing scope of the LM test statistic in Luukkonen, Saikkonen, and

Teräsvirta (1988), Granger and Teräsvirta (1993), and Teräsvirta (1994).

Finally, two empirical examples are revisited to demonstrate use of the QLR test statistic. We test for ne-

glected nonlinearity in the multiplier effect of US government spending and the growth rates of US unemploy-

ment using the QLR test statistic by revisiting the empirical data examined by Auerbach and Gorodnichenko

(2012) and van Dijk, Teräsvirta, and Franses (2002), respectively. Through these examinations, the QLR test

statistic turns out useful for detecting the nonlinear structure among the economic variables and complements

the Lagrange multiplier test statistic in Teräsvirta (1994).
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γ∗
n 200 500

Test\θ∗ 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0

QLREn 4.85 4.80 4.85 4.80 5.35 5.00 5.35 5.00
QLREn,∗ 4.50 4.60 4.50 4.60 5.15 4.95 5.15 4.95
LM1,n 4.10 4.80 4.10 4.05 5.00 5.00 4.50 4.10
LM2,n 3.70 4.30 3.75 4.20 4.40 4.90 3.95 3.95
LM3,n 4.45 4.15 4.05 4.80 4.45 3.70 4.30 3.80
LM4,n 4.50 5.15 4.00 5.55 5.45 5.50 4.60 4.20
LTn 2.90 2.80 2.90 2.80 2.15 3.30 2.15 3.30

U[0,1]

QLREn 5.05 11.05 25.05 43.80 5.00 17.95 49.45 80.05
QLREn,∗ 4.60 10.95 24.65 42.75 5.15 17.75 49.60 79.75
LM1,n 4.10 8.85 19.95 38.05 5.00 16.40 44.45 74.70
LM2,n 3.70 7.30 16.60 31.45 4.40 13.10 38.10 69.25
LM3,n 4.45 4.55 5.35 4.55 4.45 3.85 4.40 4.75
LM4,n 4.50 10.10 21.75 38.60 5.45 16.75 47.45 77.35
LTn 3.20 3.65 6.30 8.55 3.10 5.05 12.35 22.35

U[1,2]

QLREn 5.05 9.35 19.50 36.30 5.00 14.65 42.80 72.95
QLREn,∗ 4.60 8.80 18.65 35.15 5.15 14.35 41.30 72.50
LM1,n 4.10 6.90 10.40 16.45 5.00 8.90 18.65 35.90
LM2,n 3.70 5.45 8.90 15.40 4.40 7.80 15.60 32.25
LM3,n 4.45 4.80 5.80 5.15 4.45 3.95 4.95 4.90
LM4,n 4.50 7.75 15.35 29.15 5.45 11.65 29.60 60.05
LTn 3.20 3.20 3.80 6.20 3.10 3.90 7.20 13.25

U[2,3]

QLREn 5.05 6.90 11.35 19.20 5.00 8.80 22.80 46.05
QLREn,∗ 4.60 6.75 10.40 18.15 5.15 8.50 21.75 45.00
LM1,n 4.10 5.70 6.60 8.50 5.00 6.30 8.85 13.20
LM2,n 3.70 4.90 6.20 7.85 4.40 5.65 7.30 12.05
LM3,n 4.45 4.90 5.75 4.95 4.45 4.00 4.70 4.95
LM4,n 4.50 6.30 9.00 14.90 5.45 7.40 13.10 25.90
LTn 3.20 3.00 2.95 3.55 3.10 3.15 4.35 5.25

Table 1: EMPIRICAL REJECTION RATES OF THE QLR, LM, AND LING AND TONG’S (2011) TESTS AT

5% LEVEL OF SIGNIFICANCE (IN PERCENT). Notes: The empirical rejection rates of the linearity tests are
reported. The rates ofQLREn andQLREn,∗ are computed using 300 bootstrap replications and the critical values
obtained from the null limit distribution in the Supplement, respectively. The parameter space of γ is set to be
[0, 2]. The parameter value a for the LT test is let to be 5%-quantile of data (y1, . . . , yn−1) for each replication.
The number of replications is 2,000.
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Linearity tests \ variables ∆gt ∆τt ∆qt
QLRLn 0.000 0.004 0.000
QLREn 0.000 0.000 0.009
LM1,n 0.000 0.000 0.000
LM2,n 0.000 0.000 0.000
LM3,n 0.530 0.000 0.000
LM4,n 0.035 0.000 0.122

Table 2: p-VALUES OF THE DIAGNOSTIC TEST STATISTICS. Notes: The p-values of the linearity tests for the
VSTEC model is reported. The figures in QLRn row show the p-values of the QLR test statistics for linearity
based upon the LSTAR VSTEC model, and they are obtained using 20,000 bootstrap replications. The variables
in the first row denote the dependent variables in the marginal models. Boldface p-values indicate significance
levels less than or equal to 0.05.

Periods Transition Variable LM1,n LM2,n LM3,n LM4,n QLRLn QLREn

1968.06∼1999.12

∆12yt−1 0.150 0.532 0.412 0.895 0.000 0.045
∆12yt−2 0.037 0.093 0.057 0.195 0.000 0.028
∆12yt−3 0.162 0.326 0.163 0.555 0.012 0.054
∆12yt−4 0.665 0.745 0.546 0.619 0.014 0.098
∆12yt−5 0.662 0.886 0.954 0.830 0.003 0.099
∆12yt−6 0.588 0.306 0.121 0.234 0.003 0.157

1968.06∼2015.08

∆12yt−1 0.000 0.000 0.000 0.098 0.000 0.000
∆12yt−2 0.000 0.000 0.000 0.016 0.000 0.000
∆12yt−3 0.001 0.000 0.008 0.045 0.000 0.014
∆12yt−4 0.008 0.012 0.070 0.111 0.000 0.009
∆12yt−5 0.038 0.237 0.274 0.861 0.000 0.049
∆12yt−6 0.003 0.068 0.017 0.582 0.000 0.350

Table 3: LINEARITY TESTS FOR THE MONTHLY US UNEMPLOYMENT RATE. Notes: The p-values of the
linearity tests for the first differenced monthly US unemployment rate are provided. The p-values in the top
panel are obtained using observations from 1968.06 to 1999.12, and the p-values of the bottom panel are
obtained using observations from 1968.06 to 2015.08. The null linear model is given as AR(15) by AIC, and
the twelve-month differences are considered as a transition variable. Boldface p-values indicate significance
levels less than or equal to 0.05.
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