
Supplement to “Comprehensively Testing Linearity Hypothesis Using

the Smooth Transition Autoregressive Model”

DAKYUNG SEONG
School of Economics, University of Sydney, Sydney, Australia

Email: dakyung.seong@sydney.edu.au

JIN SEO CHO
School of Humanities and Social Sciences, Beijing Institute of Technology, Beijing, China

School of Economics, Yonsei University, Seoul, Korea

Email: jinseocho@yonsei.ac.kr

TIMO TERÄSVIRTA
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A Supplement

In this Supplement we examine testing linearity against commonly applied STAR models and also provides

simulation evidence of our methodology. We also demonstrate how Hansen’s (1996) weighted bootstrap is

applied to enhance the applicability of our methodology. Finally, we provide the proofs of the theoretical

results in the paper

A.1 Monte Carlo Experiments and Application of the Weighted Bootstrap

A.1.1 Monte Carlo Experiments Using the ESTAR Model

To simplify our illustration, we assume that for all t = 1, 2, . . ., ut ∼ IID N(0, σ2
∗) and yt = π∗yt−1 + ut

with π∗ = 0.5. Under this DGP, we specify the following first-order ESTAR model: MESTAR := {πyt−1 +

θyt−1{1 − exp[−γy2
t−1]} : π ∈ Π, θ ∈ Θ, and γ ∈ Γ}. The model does not contain an intercept, and the

transition variable is yt−1. The nonlinear function ft(γ) = 1− exp(−γy2
t−1) is defined on Γ which is compact
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and convex, and the exponential function is analytic. This means that the QLR test statistic is generically

comprehensively revealing. To identify the model it is assumed that γ∗ > 0. In our model set-up, we allow 0 to

be included in Γ. The nonlinear function ft(·) satisfies ft(0) = 0. Given this model, the following hypotheses

are of interest: H′0 : ∃π ∈ R,P(E[yt|yt−1] = πyt−1) = 1; vs. H′1 : ∀π ∈ R,P(E[yt|yt−1] = πyt−1) < 1. Two

parameter restrictions make H′0 valid: either θ∗ = 0 or γ∗ = 0. The sub-hypotheses are thus H′01 : θ∗ = 0 and

H′02 : γ∗ = 0.

We first examine the null distribution of the QLR test underH′01. By Theorem 1, the null limit distribution of

this test statistic is given asQLR(1)
n = supγ∈Γ

1
σ̂2
n,0

(u′MF (γ)Z)2/ Z ′F (γ)MF (γ)Z ⇒ supγ∈Γ G̃2
1(γ), where

G̃1(·) is a mean-zero Gaussian process with the covariance structure ρ̃1(γ, γ̃) = c
−1/2
1 (γ, γ)k̃1(γ, γ̃) c̃

−1/2
1 (γ̃, γ̃)

with k̃1(γ, γ̃) = c̃1(γ, γ̃) = σ2
∗{E[y2

t exp(−(γ + γ̃)y2
t )] − E[y2

t exp(−γy2
t )]E[y2

t exp(−γ̃y2
t )]/ E[y2

t ]}. Fur-

thermore, under H′01, yt is normally distributed with E[yt] = 0 and var[yt] = σ2
y := σ2

∗/(1 − π2
∗), so that y2

t

follows the gamma distribution with shape parameter 1/2 and scale parameter 2σ2
∗/(1− π2

∗). Define m̃(γ) :=

(1+2σ2
∗/1− π2

∗γ)−
1
2 , and h̃(γ, γ̃) := 1

σ2
y
([(1 + 2σ2

yγ)(1 + 2σ2
y γ̃)/{1+2σ2

y(γ+γ̃)}]3/2−1). Note that m̃(γ) =

E[exp(−γy2
t )], so that E[y2

t exp(−γy2
t )] = −m̃′(γ). As a result, ρ̃1(γ, γ̃) is further simplified to k̃1(γ, γ̃) =

σ2
∗m̃
′(γ)m̃′(γ̃)h̃(γ, γ̃), and ρ̃1(γ, γ̃) = c̃

−1/2
1 (γ, γ)k̃1(γ, γ̃)c̃

−1/2
1 (γ̃, γ̃) = h̃−1/2(γ, γ)h̃(γ, γ̃)h̃−1/2(γ̃, γ̃).

We next examine the limit distribution of the QLR test statistic under H′02: γ∗ = 0. The first-order

derivative (∂/∂γ)ft(γ) = y2
t−1 exp(−γy2

t−1), which is different from zero even when γ = 0, so that in

this case κ = 1. Thus, we can apply the second-order Taylor expansion to obtain the limit distribution

of the QLR test statistic under H′02. As a result, QLR(2)
n (θ) = 1

σ̂2
n,0

(θ′G′κu)2/θ′G′κGκθ, where θ′G′κu =

θ[
∑
y3
t−1ut −

∑
y4
t−1

∑
yt−1ut/

∑
y2
t−1] and θ′G′κGκθ = θ2[

∑
y6
t−1 − (

∑
y4
t−1)2/

∑
y2
t−1]. Here, θ is a

scalar, so that cancels out, and it follows that QLR(2)
n ⇒ G̃2

2 , where G̃2 ∼ N(0, 1).

These two separate results can be combined, which means that we can examine the limit distribution of

the QLR test under H′0. We have QLRn ⇒ supγ∈Γ G̃2(γ), where G̃(γ) = G̃1(γ), if γ 6= 0; and G̃(γ) =

G̃2, otherwise, and E[G̃(γ)G̃(γ̃)] = ρ̃1(γ, γ̃), if γ 6= 0, γ̃ 6= 0; E[G̃(γ)G̃(γ̃)] = 1, if γ = 0, γ̃ = 0; and

E[G̃(γ)G̃(γ̃)] = ρ̃3(γ), if γ 6= 0, γ̃ = 0 with ρ̃3(γ) := E[G̃1(γ)G̃2] =
√

6σ2
yγ/{h̃1/2(γ, γ)(1 + 2σ2

yγ)} such

that ρ̃2
3(γ) = limγ̃→0 ρ̃

2
1(γ, γ̃) = (

√
6σ2

yγ/{h̃1/2(γ, γ)(1 + 2σ2
yγ)})2. Thus, we conclude that QLRn ⇒

supγ G̃2(γ), which agrees with Theorem 3.

The null limit distribution can be approximated numerically by simulating a distributionally equivalent

Gaussian process. To do this we present the following lemma:

Lemma A. 1. If {zk : k = 0, 1, 2, . . .} is an IID sequence of standard normal random variables, G̃(·) d
= G(·),
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where for each γ ∈ Γ := {γ ∈ R : γ ≥ 0}, G(γ) :=
∑∞

k=1 c(γ)ak(γ) [(−1)k
(−3/2

k

)
]1/2zk, c(γ) :=

{
∑∞

k=1(−1)ka2k(γ)
(−3/2

k

)
}−1/2, and a(γ) := 2σ2

yγ/(1 + 2σ2
y γ). �

Note that the term (−1)k
(−3/2

k

)
in Lemma A. 1 is always positive irrespective of k, and for any γ,

lim
k→∞

var

[
ak(γ)

(
(−1)k

(
−3/2

k

))1/2

zk

]
= lim

k→∞
a2k(γ)(−1)k

(
−3/2

k

)
= 0 (A.1)

and h̃(γ, γ) =
∑∞

k=1 a
2k(γ)(−1)k

(−3/2
k

)
. Using these facts Lemma A. 1 shows that for any γ and γ̃ 6= 0,

E[G(γ)G(γ̃)] = ρ̃1(γ, γ̃). Here, the non-negative parameter space condition for Γ is necessary for G(·) to be

properly defined on Γ. Without this condition, G(γ) cannot be properly generated. We note that limγ↓0 G(γ)
a.s.
=

z1, so that if we let z1 = G2, E[G(γ)G2] =
√

6σ2
yγh̃

−1/2(γ, γ)(1 + 2σ2
yγ)−1 = ρ̃3(γ). It follows that the

distribution of G̃(·) can be simulated by iteratively generating G(·). In practice,

G(γ;K) :=

K∑
k=1

ak(γ)

[
(−1)k

(
−3/2

k

)]1/2

zk

/√√√√ K∑
k=1

a2k(γ)(−1)k
(
−3/2

k

)

is generated by choosing K to be sufficiently large . By (A.1), if this is the case, the difference between the

distributions of G(·) and G(·;K) becomes negligible.

We now conduct Monte Carlo experiment and examine the empirical distributions of the QLR statistic under

several different environments. First, we consider four different parameter spaces: Γ1 = [0, 2], Γ2 = [0, 3],

Γ3 = [0, 4], and Γ4 = [0, 5]. They are selected to examine how the null limit distribution of the QLR test is

influenced by the choice of Γ. We obtain the limit distribution by simulating supγ∈Γ Ḡ2(γ;K) 5,000 times with

K = 2, 000, where Γ is in turn Γ1, Γ2, Γ3, and Γ4. Second, we study how the empirical distribution of the QLR

test statistic changes with the sample size. We consider the sample sizes n = 100, 1, 000, 2, 000, and 5, 000.

Figure A.1 summarises the simulation results and shows that the empirical distribution approaches the null

limit distribution under different parameter space conditions. We also provide the estimates of the probability

density functions next to the empirical distributions. For every parameter space considered, the empirical

rejection rates of the QLR test statistics are most accurate when n = 2, 000. The empirical rejection rates

are closer to the nominal levels when the parameter space is small. This result is significant when n = 100:

the empirical rejection rates for Γ = Γ1 are closer to the nominal ones than when Γ = Γ4. Nonetheless,

this difference becomes negligible as the sample size increases. The empirical rejection rates obtained using

n = 2, 000 are already satisfactorily close to the nominal levels, and this result is more or less similar to
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that from 5,000 observations. This suggests that the theory in Section 2 is effective for the ESTAR model.

Considering even larger parameter spaces for γ yielded similar results, so they are not reported here.

A.1.2 Illustration Using the LSTAR Model

As another illustration, we consider testing against the first-order LSTAR model. We assume that the data-

generating process is yt = π∗yt−1 + ut with π∗ = 0.5 and ut = `t with probability 1 − π2
∗; and ut = 0

with probability π2
∗ , where {`t}nt=1 follows the Laplace distribution with mean 0 and variance 2. Under this

assumption, yt follows the same distribution as `t that makes the algebra associated with the LSTAR model

straightforward. For example, the covariance kernel of the Gaussian process associated with the null limit

distribution of the QLR test statistic is analytically obtained thanks to this distributional assumption. This data-

generating process is a variation of the exponential autoregressive model in Lawrence and Lewis (1980). Their

exponential distribution is replaced by the Laplace distribution to allow yt to obtain negative values.

Given this DGP, the first-order LSTAR model for E[yt|yt−1, yt−2, . . .] is defined as follows: M0
LSTAR :=

{πyt−1 + θyt−1{1 + exp(−γyt−1)}−1 : π ∈ Π, θ ∈ Θ, and γ ∈ Γ := [0, γ̄]}. The nonlinear logistic

function {1 + exp(−γyt−1)}−1 contains an exponential function. It is therefore analytic, and this fact delivers

a consistent power for the QLR test statistic. Note, however, that for γ = 0 the value of the logistic function

equals 1/2. This difficulty is avoided by subtracting 1/2 from the logistic function when carrying out the test,

viz.,MLSTAR := {πyt−1 + θyt−1{[1 + exp(−γyt−1)]−1 − 1/2} : π ∈ Π, θ ∈ Θ, and γ ∈ Γ := [0, γ̄]}. By

the invariance principle, this shift does not affect the null limit distribution of the QLR test statistic. We here

let γ ≥ 0 so that the transition function is bounded, which modifies the limit space of ςn into R+. The null and

the alternative hypotheses are identical to those in the ESTAR case.

Before proceeding, note that {1 + exp(−γyt−1)}−1 − 1
2 = 1

2 tanh
(γyt−1

2

)
. Using the hyperbolic tangent

function as in Bacon and Watts (1971) makes it easy to find a Gaussian process that is distributionally equivalent

to the Gaussian process obtained under the null.

Using this fact, the limit distribution of QLR test statistic under H′01 is derived as in before. By Theorem

1, QLR(1)
n = supγ∈Γ

1
σ̂2
n,0

(u′MF 2(γ)Z)/Z ′F (γ)MF (γ)Z ⇒ supγ∈Γ G̈2
1(γ), where G̈1(·) is a mean-zero

Gaussian process with the covariance structure ρ̈1(γ, γ̃) := c̈
−1/2
1 (γ, γ)k̈1(γ, γ̃)c̈

−1/2
1 (γ̃, γ̃). The function

k̈1(γ, γ̃) is equivalent to c̈1(γ, γ̃) by the conditional homoskedasticity condition, and for each nonzero γ and γ̃,

we now obtain that k̈1(γ, γ̃) = 1
4E[y2

t tanh(γyt2 ) tanh( γ̃yt2 )] −1
4E[y2

t tanh(γyt2 )]E[y2
t tanh( γ̃yt2 )]/ E[y2

t ]. In the

proof of Lemma A. 2 given below, we further show that k̈1(γ, γ̃) =
∑∞

n=1 bn(γ)bn (γ̃), where b1(γ) := 1√
2
(1−
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2a(γ)) with a(γ) :=
∑∞

k=1 (−1)k−1/(1 + γk)3 and for n = 2, 3, . . ., bn(γ) :=
√
n(n+ 1)

∑∞
k=1(−1)k−1

(γk)n−1/(1 + γk)n+2.

Next, we derive the limit distribution of the QLR test statistic underH′02. Note that for γ = 0, (∂/∂γ)ft(γ)

= yt−1 exp(γyt−1)/[1 + exp(−γyt−1)]2 6= 0, implying that κ is unity as for the ESTAR case, so that we can

apply a second-order Taylor expansion to obtain the limit distribution of the QLR test statistic under H′02:

QLR
(2)
n (θ) = 1

σ̂2
n,0

(θ′G′κu)2/(θ′G′κGκθ), where, similarly to the ESTAR case, θ′G′κu = θ
4 [
∑
y2
t−1ut −∑

y3
t−1

∑
yt−1ut/

∑
y2
t−1] and θ′G′κGκθ = θ2

16 [
∑
y4
t−1 − (

∑
y3
t−1)2/

∑
y2
t−1]. From this, it follows that

QLR
(2)
n ⇒ G̈2

2 , where G̈2 ∼ N(0, 1).

Therefore, we conclude that QLRn ⇒ supγG̈2(γ), where G̈(γ) := G̈1(γ), if γ 6= 0; and G̈(γ) := G2,

otherwise. The limit variance of G̈(γ) is given as ρ̈(γ, γ̃) := E[G̈(γ)G̈(γ̃)] such that E[G̈(γ)G̈(γ̃)] = ρ̈1(γ, γ̃)

if γ 6= 0 and γ̃ 6= 0; E[G̈(γ)G̈(γ̃)] = 1, if γ = 0 and γ̃ = 0; and E[G̈(γ)G̈(γ̃)] = ρ̈3(γ), if γ 6= 0 and

γ̃ = 0, where ρ̈3(γ) := E[G̈(γ)G̈2] = k̈
−1/2
1 (γ, γ)r̈1(γ)q̈−1/2 with r̈1(γ) := 1

2E
[
y3
t−1 tanh

(γyt−1

2

)]
and

q̈ := E[y4
t ] − E[y3

t ]
2/E[y2

t ]. From this it follows that QLRn ⇒ supγ∈Γ G̈2(γ). Furthermore, E[y3
t ] = 0 and

E[y4
t ] = 24 given our DGP, so that

ρ̈3(γ) =
E[y3

t tanh(γyt/2)]

4
√

6k̈
1/2
1 (γ, γ)

. (A.2)

Here, we note that

E[y3
t tanh(γyt/2)] =

1

8γ4

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
(A.3)

by some tedious algebra assisted by Mathematica, where PG(n, x) is the polygamma function: PG(n, x) :=

dn+1/d xn+1 log(Γ(x)). Inserting (A.3) into (A.2) yields

ρ̈3(γ) =
1

32
√

6γ4k̈
1/2
1 (γ, γ)

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
. (A.4)

In addition, we show in Lemma A. 3 given below that applying L’Hôpital’s rule iteratively yields that

lim
γ̃↓0

ρ̈2
1(γ, γ̃) =

[
1

32
√

6γ4k̈
1/2
1 (γ, γ)

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]]2

. (A.5)

This fact implies that plimγ↓0G̈2
1(γ) = G̈2

2 . That is, the weak limit of the QLR test statistic under H′02 can be

obtained from G̈2
1(·) by letting γ converging to zero, so that QLRn ⇒ supγ∈Γ G̈2

1(γ) underH′0.
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Next, we derive another Gaussian process that is distributionally equivalent to G̈(·) and conduct Monte

Carlo simulations using it. The process is presented in the following lemma.

Lemma A. 2. If {zk}∞k=1 is an IID sequences of standard normal random variables, then for each γ and γ̃ ∈

Γ := {γ ∈ R : γ ≥ 0}, G̈(·) d
= Ġ(·), where Z̈1(γ) :=

∑∞
n=1 bn(γ)zn and Ġ(γ) :=

(∑∞
n=1 b

2
n(γ)

)−1/2 Z̈1(γ).

�

We prove Lemma A. 2 by showing that the Gaussian process Ġ(·) given in Lemma A. 2 has the same

covariance structure as G̈(·), and for this purpose, we focus on proving that for all γ, γ̃ ≥ 0, E[G̈(γ)G̈(γ̃)] =

E[Ġ(γ)Ġ(γ̃)]. If γ, γ̃ > 0, the desired equality trivially follows from the definition of Ġ(·). On the other

hand, applying L’Hôpital’s rule iterative shows that plimγ↓0Ġ(γ) =
√

3
2 z1 + 1

2z2 ∼ N(0, 1), so that if we let

Ġ2 := limγ↓0 Ġ(γ), then for γ 6= 0, E[Ġ(γ)Ġ2] =
[√

3b1(γ) + b2(γ)
]
/{2k̈1/2

1 (γ, γ)}. We show in the proof of

Lemma A. 2 that the term on the right side is identical to ρ̈3(γ) in (A.4), so that the covariance kernel of Ġ(·) is

identical to ρ̈(·, ·). This fact implies that G̈(·) has the same distribution as Ġ(·), and Ġ2 can be regarded as the

weak limit obtained under H′02.

Lemma A. 2 can be used to obtain the approximate null limit distribution of the QLR test statistic. We cannot

generate Ġ(·) using the infinite number of bn(·), but we can simulate the following process to approximate the

distribution of Ġ(·): Ġ(γ;K) := (
∑K

n=1 b
2
K,n(γ))−1/2

∑K
n=1 bK,n(γ)zk, where for n = 2, 3, . . . , bK,1(γ) :=

(1−2aK(γ))/
√

2, aK(γ) :=
∑K

k=1 (−1)k−1/(1 + γk)3 and bK,n(γ) :=
√
n(n+ 1)

∑K
k=1 (−1)k−1(γk)n−1/

(1 + γk)3. If K is sufficiently large, the distribution of Ġ(·;K) is close to that of Ġ(·) as can be easily affirmed

by simulations.

We conduct Monte Carlo Simulations for the LSTAR case as in the ESTAR case. The only aspect different

from the ESTAR case is that the DGP is the one defined in the beginning of this section. Simulation results are

summarised into Figure A.2. We use the same parameter spaces Γ = Γi, i = 1, ..., 4, as before, and we can

see that the empirical distribution and PDF estimate of the QLR test approach the null limit distribution and its

PDF that are obtained using Ġ(·;K) with K = 2, 500. This shows that the theory in Section 2 is also valid for

the LSTAR model. When the parameter space Γ for γ becomes even larger, we obtain similar results. To save

space, they are not reported.
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A.1.3 Application of the Weighted Bootstrap

The standard approach to obtaining the null limit distribution of the QLR test is not applicable for empirical

analysis because it requires knowledge of the error distribution. Without this information it is not possible in

practice to obtain a distributionally equivalent Gaussian process. Hansen’s (1996) weighted bootstrap is useful

for this case. We apply it to our models as in Cho and White (2010), Cho, Ishida, and White (2011, 2014), and

Cho, Cheong, and White (2011).

Although the relevant weighted bootstrap is available in Cho, Cheong, and White (2011), we provide here

a version adapted to the structure of the STAR model. We consider the previously studied ESTAR and LSTAR

models, in which the transition function ft(γ) is respectively given by 1− exp(−γy2
t−1) for the ESTAR model

and {1 + exp(γyt−1)}−1 − 1/2 for the LSTAR model. However, the discussions made in this section can

be applied to other transition functions as well. Specifically, we first let θ̃n denote the least squares estimator

under the null and let ũn,t := yt − yt−1θ̃n. Then, using the residuals (ũn,1, . . . , ũn,n), we compute the score

sn,t(γ) = {W̃n(γ)}−1/2 d̃n,t(γ) for each grid point of γ ∈ Γ, where

W̃n(γ) := n−1

(
n∑
t=1

ũ2
n,tf

2
t (γ)ztz

′
t −

n∑
t=1

ũ2
n,tft(γ)ztz

′
t[

n∑
t=1

ũ2
n,tztz

′
t]
−1

n∑
t=1

ũ2
n,tft(γ)ztz

′
t

)

and

d̃n,t(γ) := ztft(γ)ũn,t − n−1
n∑
t=1

ũ2
n,tft(γ)ztz

′
t[n
−1

n∑
t=1

ũ2
n,tztz

′
t]
−1ztũn,t.

Given the score function sn,t(γ), we construct the following pseudo-QLR test statistic:

QLRb,n := sup
γ∈Γ

1√
n

n∑
t=1

s̃n,t(γ)′
1√
n

n∑
t=1

s̃n,t(γ)

and s̃n,t(γ) := sn,t(γ)zb,t, where zb,t ∼ IID (0, 1) with respect to b and t, b = 1, 2, . . . , B, and B is the

number of bootstrap replications. For example, we can resample zb,t from the standard normal distribution.

For possible two-point distributions, see Davidson et al. (2007). Finally, we estimate the empirical p-value by

p̂n := B−1
∑B

b=1 I[QLRn < QLRb,n], where I[·] is the indicator function. When the null hypothesis holds,

this proportion converges to α.

The intuition of the weighted bootstrap is straightforward. Note that if the null hypothesis is valid, the

QLR test statistic is bounded in probability, and its null limit distribution can be revealed by the covariance

structure of s̃n,t(·) asymptotically. That is, for each γ and γ̃, E[s̃n,t(γ)s̃n,t(γ̃)′] converges to E[G1(γ)G1(γ̃)′]
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from the fact that zb,t is independent of d̃n,t(·) such that its population mean is zero and variance is unity. This

means that E[s̃n,t(γ)s̃n,t(γ̃)′] is asymptotically equivalent to W̃−1/2
n (γ)E[d̃n,t(γ)d̃n,t(γ̃)′]W̃

−1/2
n (γ̃), which is

asymptotically equivalent to E[G1(γ)G1(γ̃)′] as given in Theorem 3. Therefore, the null limit distribution can be

asymptotically revealed by the resampling distribution ofQLRb,n. On the contrary, if the alternative hypothesis

is valid, the QLR test statistic is not bounded in probability, but QLRb,n is bounded in probability from the fact

that zb,t is distributed around zero, so that the chance for the QLR test statistic to be bounded by the critical

value obtained by the resampling distribution of QLRb,n gets smaller, as n increases. This aspect implies that

the weighted bootstrap is asymptotically consistent.

We conduct a small-scale Monte Carlo experiment to study the performance of the empirical p-values. The

DGP is given in Section A.1.1 and A.1.2. To compute the empirical p-values, we set B = 300 and obtain p̂(i)
n

for i = 1, 2, . . . , 2, 000. Then, for a specified nominal value of α, we compute 1
2000

∑2000
i=1 I[p̂(i)

n < α].

The simulation results are displayed in the percentile-percentile (PP) plots for the ESTAR and LSTAR

models in Figures A.3 (ESTAR) and A.4 (LSTAR). The horizonal unit interval stands for α, and the vertical unit

interval is the space of p-values. As a function of α, the aforementioned proportion should converge to the 45-

degree line under the null hypothesis. As before, the four parameter spaces are considered: Γ = Γi, i = 1, ..., 4.

The results are summarised as follows. First, as a function of α, the proportion 1
2000

∑2000
i=1 I[p̂(i)

n < α] does

converge to the 45-degree line. Second, the empirical rejection rates estimated by the weighted bootstrap

are closest to the nominal levels when the parameter space is small. Although the overall finite sample level

distortions are smaller for the ESTAR model than the LSTAR model, the empirical rejection rate is close to

the nominal significance level if α is close to zero. Finally, as the size of the parameter space increases, more

observations are needed to better approximate the 45-degree line in the PP plots. We have conducted simulations

using even larger parameter spaces and obtained similar results. We omit reporting them for brevity.

A.2 Proofs

Proof of Lemma 1. (i) Given Assumptions 1, 2, 3, and 5, it is trivial to show that σ̂2
n,0

a.s.→ σ2
∗ by the ergodic

theorem.

(ii) The null limit distribution of QLR(1)
n is determined by the two terms in QLR(1)

n : Z ′F (·)Mu and Z ′F (·)M

F (·)Z. We examine their null limit behaviour one by one and combine the limit results using the converging-

together lemma in Billingsley (1999, p. 39).

(a) We show the weak convergence part of n−1/2Z ′F (·)Mu. Using the definition of M := I −Z(Z ′Z)−1
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Z ′ we have Z ′F (γ)Mu = Z ′F (γ)u − Z ′F (γ)Z(Z ′Z)−1Z ′u, and we now examine the components on the

right-hand side of this equation separately. For each γ ∈ Γ, we define f̂n,t(γ) := ft(γ)utzt− (
∑n

t=1 ft(γ)ztz
′
t)

(
∑n

t=1 ztz
′
t)
−1
∑n

t=1 ztut, f̃n,t(γ) := ft(γ)utzt − E[ft(γ)ztz
′
t]E[ztz

′
t]
−1
∑n

t=1 ztut and show that

sup
γ∈Γ(ε)

∥∥∥∥∥n−1/2
n∑
t=1

[
f̂n,t(γ)− f̃n,t(γ)

]∥∥∥∥∥
∞

= oP(1), (A.6)

where Γ(ε) := {γ ∈ Γ : |γ| ≥ ε} and ‖ · ‖∞ is the uniform matrix norm. We have

sup
γ∈Γ(ε)

∥∥∥∥∥ 1√
n

n∑
t=1

[
f̂n,t(γ)− f̃n,t(γ)

]∥∥∥∥∥
∞

≤ sup
γ∈Γ(ε)

∥∥∥∥∥∥
(

1

n

n∑
t=1

ft(γ)ztz
′
t

)
(

1

n

n∑
t=1

ztz
′
t

)−1

− E[ztz
′
t]
−1

n−1/2
n∑
t=1

ztut

∥∥∥∥∥∥
∞

+ sup
γ∈Γ(ε)

∥∥∥∥∥
{(

n−1
n∑
t=1

ft(γ)ztz
′
t

)
− E[ft(γ)ztz

′
t]

}
E[ztz

′
t]
−1n−1/2

n∑
t=1

ztut

∥∥∥∥∥
∞

. (A.7)

We show that each term on the right-hand side of (A.7) is oP(1). Now, {ztut,Ft} is a martingale difference

sequence, where Ft is the smallest σ-field generated by {ztut, zt−1ut−1, . . .}. Therefore, E[ztut|Ft−1] = 0,

E[|Zt,jut|2] = E[u4
t ]

1/2E[|Zt,j |4]1/2 ≤ E[m4
t ]

1/2E[Z4
t,j ]

1/2 < ∞, and E[u2
t ztz

′
t] is positive definite. Thus,

n−1/2
∑n

t=1 ztut is asymptotically normal. Next, we note that n−1/2
∑n

t=1 ft(γ)utzt is also asymptotically

normal. This follows from the fact that {ft(γ)utzt,Ft} is a martingale difference sequence, and for each j,

|ft(γ)utzt,j |2 ≤ m6
t , and E[m6

t ] < ∞ by Assumptions 4 and 5. Furthermore, supγ∈Γ ‖n−1
∑n

t=1 ft(γ)ztz
′
t −

E[ft(γ)ztz
′
t]‖∞ = oP(1) by Ranga Rao’s (1962) uniform law of large numbers. Thus,

sup
γ∈Γ(ε)

∥∥∥∥∥
{
n−1

n∑
t=1

ft(γ)ztz
′
t − E[ft(γ)ztz

′
t]

}
E[ztz

′
t]
−1n−1/2

n∑
t=1

ztut

∥∥∥∥∥
∞

= oP(1). (A.8)

This shows that the second term of (A.7) is oP(1). We now demonstrate that the first term of (A.7) is also

oP(1). By Assumption 4 and the ergodic theorem, we note that ‖n−1
∑n

t=1 ztz
′
t − E[ztz

′
t]‖∞ = oP(1), and

|
∑n

t=1 ft(γ)zt,jzt,i| ≤
∑n

t=1m
3
t = OP(n), so that (A.8) follows, leading to (A.6). Therefore, n−1/2Z ′F (γ)M

u
A∼ N [0, B1(γ, γ)] by noting that E[f̃n,t(γ)f̃n,t(γ)′] = B1(γ, γ). Using the same methodology, we can show
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that for each γ, γ̃ ∈ Γ(ε),

1√
n

 Z ′F (γ)Mu

Z ′F (γ̃)Mu

 A∼ N

 0

0

 ,

 B1(γ, γ) B1(γ, γ̃)

B1(γ̃, γ) B1(γ̃, γ̃)

 .
Finally, we have to show that {f̃n,t(·)} is tight. First note that by Assumptions 1, 2, and 4, it follows that

|ft(γ)zt,jut− ft(γ̃)zt,jut| ≤ mt |zt,jut| |γ− γ̃| for each j. From this we obtain that sup|γ−γ̃|<η |ft(γ)zt,jut−

ft(γ̃)zt,jut|2+ω ≤ m2+ω
t |zt,jut|2+ωη2+ω ≤ m6+3ω

t η2+ω, so that it follows that E[sup|γ−γ̃|<η |ft(γ)zt,jut −

ft(γ̃)zt,jut|2+ω]
1

2+ω ≤ E[m6+3ω
t ]

1
2+ω η for each j. This implies that {n−1/2ft(·)zt,jut} is tight because Os-

siander’s L2+ω entropy is finite.

Next, for some c > 0, it holds that ‖E[ft(γ)ztz
′
t]E[ztz

′
t]
−1ztut−E[ft(γ̃)ztz

′
t]E[ztz

′
t]
−1ztut‖∞ = ‖E[{ft(γ)

−ft(γ̃)}ztz′t]E[zt z
′
t]
−1ztut‖∞ ≤ cm2

t

∥∥E[ztz
′
t]
−1
∥∥
∞ ‖E[{ft(γ)− ft(γ̃)}ztz′t]‖∞ by the property of the uni-

form norm and Assumption 5. Also note that ‖E[ft(γ)ztz
′
t − ft(γ̃)ztz

′
t]‖∞ ≤ ‖E[{ft(γ) − ft(γ̃)}ztz′t]‖1 and

by Assumption 4, for each i, j = 1, 2, . . . , m + 1, |zt,jzt,i[ft(γ) − ft(γ̃)]| ≤ m3
t |γ − γ̃|, where ‖[gi,j ]‖1 :=∑

i

∑
j |gi,j |. Therefore,

∥∥E[ft(γ)ztz
′
t]E[ztz

′
t]
−1ztut − E[ft(γ̃)ztz

′
t]E[ztz

′
t]
−1ztut

∥∥
∞

≤ cm2
t

∥∥E[ztz
′
t]
−1
∥∥
∞
∥∥E[{ft(γ)− ft(γ̃)}ztz′t]

∥∥
∞ ≤ c

2(m+ 1)m2
t

∥∥E[ztz
′
t]
−1
∥∥
∞ E[m3

t ]|γ − γ̃|. (A.9)

This inequality (A.9) implies that {n−1/2E[ft(·)ztz′t]E[ztz
′
t]
−1ztut} is also tight. Hence, it follows that for

some b < ∞, E[sup|γ−γ̃|<η |f̃t(γ) − f̃t(γ̃)|2+ω] ≤ b · η. That is, {n−1/2
∑n

t=1 f̃n,t(·)} is tight. From this and

the fact that the finite-dimensional multivariate CLT holds, the weak convergence of {n−1/2
∑n

t=1 f̃n,t(·)} is

established.

(b) Next, we examine the limit behaviour of n−1Z ′F (·)F (·)Z. Note that n−1Z ′F (γ)F (γ)Z = n−1
∑n

t=1

f2
t (γ)ztz

′
t −

{
n−1

∑n
t=1 ft(γ)ztz

′
t

}{
n−1

∑n
t=1 ztz

′
t

}−1 {n−1
∑n

t=1 ft(γ)ztz
′
t} and, given Assumptions 1, 2,

3, 4, and 6, supγ∈Γ(ε) ‖n−1
∑n

t=1 f
2
t (γ) ztz

′
t − E[f2

t (γ)ztz
′
t]‖

a.s.→ 0 and supγ∈Γ(ε) ‖n−1
∑n

t=1 ft(γ)ztz
′
t −

E[ft(γ)zt z
′
t]‖

a.s.→ 0 by Ranga Rao’s (1962) uniform law of large numbers. Therefore, from the fact that

‖n−1
∑n

t=1 ztz
′
t − E[ztz

′
t]‖∞ = oP(1), it follows that supγ∈Γ(ε) |n−1Z ′F (γ)MF (γ)Z − {E[f2

t (γ)ztz
′
t] − E[

ft(γ)ztz
′
t]E[ztz

′
t]
−1 E[ft(γ)ztz

′
t]}| = oP(1). Applying the converging-together lemma yields the desired result.

(iii) This result trivially follows from the fact that E[u2
t |zt] = σ2

∗ . �
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Proof of Lemma 2. Given Assumption 2, H02, and the definition of Hj(γ), the j-th order derivative of

L(2)
n ( · , θ) is obtained as

∂j

∂γj
L(2)
n (γ, θ) = −

j∑
k=0

(
j

k

){
∂k

∂γk
(y − F (γ)Zθ)′

}
M

{
∂j−k

∂γj−k
(y − F (γ)Zθ)

}

= 2θ′Z ′Hj(γ)Mu−
j−1∑
k=1

(
j

k

)
θ′Z ′Hj(γ)MHj−k(γ)Zθ (A.10)

by iteratively applying the general Leibniz rule. We now evaluate this derivative at γ = 0. Note that Hj(0) = 0

if j < κ by the definition of κ. This implies that (∂j/∂γj)L(2)
n (0, θ) = 0 for j = 1, 2, . . . , κ − 1. This also

implies that
(
j
k

)
θ′Z ′Hj(0)MHj−k(0)Zθ = 0 for j = κ, κ + 1, . . ., 2κ − 1. Therefore, ∂j

∂γj
L(2)
n (0, θ) =

2θ′Z ′Hj(0)Mu. Finally, we examine the case in which j = 2κ. For each j < 2κ, Hj(0) = 0 and Hκ(0) 6= 0,

so that the summand of the second term in the right side of (A.10) is different from zero only when j = 2κ and

k = κ: ∂2κ

∂γ2κ
L(2)
n (0, θ) = 2θ′Z ′H2κ(γ)Mu−

(
2κ
κ

)
θ′Z ′Hκ(γ)MHκ(γ)Zθ. This completes the proof. �

Proof of Lemma 3. Given Assumptions 1, 2, 7, andH02, we note that

QLR(2)
n := sup

θ
QLR

(2)
n (θ)

= sup
θ

sup
ς

1

σ̂2
n,0

[
2{θ′G′κu}ςκ

κ!
√
n

− 1

(2κ)!n

{(
2κ

κ

)
θ′G′κGκθ

}
ς2κ

]
+ oP(n). (A.11)

Then, the first-order condition with respect to ς implies that ς̂κn(θ) = Wn(θ), κ is odd; and ς̂κn(θ) = max[0,Wn(θ)],

if κ is even by noting that ς̂κn(θ) cannot be negative. If we plug ς̂κn(θ) back into the right side of (A.11), the

desired result follows. �

Proof of Lemma 4. Before proving Lemma 4, we first show that for each j, Z ′Hj(0)Mu = OP(n1/2), so

that j = κ + 1, . . . , 2κ − 1, Z ′Hj(0)Mu = oP(nj/2κ). Note that for j = κ + 1, . . . , 2κ, Z ′HjMu =∑n
t=1 ztht,j(0)ut−

∑n
t=1 ztht,j(0)z′t (

∑n
t=1 ztz

′
t)
−1∑n

t=1 ztut. First, we apply the ergodic theorem to n−1
∑

t

ztht,j(0)z′t and n−1
∑

t ztz
′
t, respectively. Second, given Assumptions 1, 2, 3, 7, and 8, following the proof of

Lemma 1, we have that n−1/2
∑

t ztut is asymptotically normal. Furthermore, for all j = κ + 1, . . . , 2κ,

n−1/2
∑

t ztht,j(0)ut is asymptotically normal. For this verification, note that {ztht,j(0)ut,Ft} is a mar-

tingale difference sequence, so that for each j, E[ztht,j(0)ut|Ft−1] = 0. Next, we prove that for each j,

E[z2
t,ih

2
t,j(0)u2

t ] <∞. First note that using Assumption 7, E[|z2
t,ih

2
t,j(0)u2

t |] ≤ E[|ut|4]1/2E[|h2
t,j(0)z2

t,i|2]1/2 ≤

E[|ut|4]1/2E[|ht,j(0)|8]1/4 E[|zt,i|8]1/4 < ∞ by the Cauchy-Schwarz’s inequality. For the same reason, E[|z2
t,i
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h2
t,j(0)u2

t |] ≤ E[|ut ht,j(0)|4]1/2E[|zt,i|4]1/2 ≤ E[|ut|8]1/2E[|ht,j(0)|8]1/2 E[|zt,i|4]1/2 < ∞. By Assumption

8, E[u2
t zth

2
t,j(0)z′t] is positive definite. It then follows by Theorem 5.25 of White (2001) that n−1/2

∑
t ztht,j(0)

ut is asymptotically normal. Thus, Z ′Hj(0)Mu = OP(n1/2).

We now consider the statements (i)–(iii).

(i) First, we show that θ′Z ′Hκ(0)Mu = OP(n1/2). By the definition of M ,

Z ′Hκ(0)Mu =
n∑
t=1

ztht,κ(0)ut −
n∑
t=1

ztht,κ(0)z′t

[
n∑
t=1

ztz
′
t

]−1 n∑
t=1

ztut. (A.12)

We examine all sums on the right-hand side of (A.12). First, ht,κ(0) is a function of zt, which implies that, given

the moment condition in Assumption 7, n−1
∑
ztht,κ(0)z′t obeys the ergodic theorem. Second, similarly under

Assumptions 1, 2, 3, 7, 8, and H02, n−1
∑
ztz
′
t also obeys the ergodic theorem. Third, given the assumptions

and the proof of Lemma 1, we have already proved that n−1/2
∑
ztut is asymptotically normally distributed.

Finally, n−1/2
∑
ztht,κ(0)ut is asymptotically normal, and the proof is similar to that of the asymptotic nor-

mality of n−1/2
∑

t ztht,j(0)ut (j = κ+ 1, . . . , 2κ). All these facts imply that Z ′Hκ(0)Mu = OP(n1/2).

(ii) n−1G′κGκ
a.s.→ A2 by the ergodic theorem.

(iii) Note that

Z ′Hκ(0)MHκ(0)Z =
n∑
t=1

zth
2
t,κ(0)z′t −

n∑
t=1

ztht,κ(0)z′t

[
n∑
t=1

ztz
′
t

]−1 n∑
t=1

ztht,κ(0)z′t. (A.13)

The limit of (A.13) is revealed by applying the ergodic theorem to each term on the right-hand side of this

expression. Consequently, n−1Z ′Hκ(0)MHκ(0)Z
a.s.→ E[gt,κg

′
t,κ], where E[gt,κg

′
t,κ] := E[ztH

2
2κ(0)z′t] −

E[ztH2κ(0)z′t]E[ztz
′
t]
−1 E[ztH2κ(0) z′t]. This completes the proof. �

Proof of Lemma A. 2. The distributional equivalence between Ġ(·) and G̈(·) can be established by showing that

for all γ, γ̃ ≥ 0, E[G̈(γ)G̈(γ̃)] = E[Ġ(γ)Ġ(γ̃)]. We will proceed in three steps. First, we derive the functional

form of ρ̈(γ, γ̃). We show that if γ, γ̃ > 0, then k̈1(γ, γ̃) =
∑∞

n=1 bn(γ)bn(γ̃). This in turn implies that for

γ, γ̃ > 0, ρ̈(γ, γ̃) = k̈
−1/2
1 (γ, γ)sum∞n=1bn(γ)bn(γ̃)k̈

−1/2
1 (γ̃, γ̃). It follows that the specific functional form of

ρ̈(γ, γ̃) can be obtained from this result and (A.4).

Second, similarly for all γ, γ̃ ≥ 0, we derive the functional form of ρ̇(γ, γ̃) and compare it to ρ̈(γ, γ̃). To

12



do all this, we first note that for all γ, γ̃ > 0,

k̈1(γ, γ̃) =
1

4
E
[
y2
t tanh

(γyt
2

)
tanh

(
γ̃yt
2

)]
− 1

4
E
[
y2
t tanh

(γyt
2

)]
E
[
y2
t tanh

(
γ̃yt
2

)]/
E[y2

t ]

=
1

4
E
[
y2
t tanh

(γyt
2

)
tanh

(
γ̃yt
2

)]
. (A.14)

This follows from that fact that for any x ∈ R, tanh(x) = − tanh(−x) and that yt follows the Laplace

distribution with mean zero and variance 2, so that E
[
y2
t tanh ( γyt/2)

]
= 0. Given this, we can apply the

Dirichlet series to tanh(·) to obtain the functional form of k̈1(·, ·). Thus, for any x ∈ R, tanh(x) = sgn(x)(1−

2
∑∞

k=0(−1)k exp(−2|x|(k + 1))) and, furthermore, that E
[
s2
t exp(−stγk)

]
= 2/ (1 + γk)3 and E[s2

t ] = 2,

where st := |yt| follows the exponential distribution with mean 1 and variance 2. Applying these to (A.14)

yields

k̈1(γ, γ̃) = E
[
y2
t

4
tanh

(γyt
2

)
tanh

(
γ̃yt
2

)]
= E

[
s2
t

4

]
− E

[
s2
t

2

∞∑
k=1

(−1)k−1 exp(−sγk)

]
− E

[
s2
t

2

∞∑
k=1

(−1)k−1 exp(−sγ̃k)

]

+ E

s2
t

∞∑
j=1

∞∑
k=1

(−1)k+j−2 exp(−st(γk + γ̃j))


=

1

2
−
∞∑
k=1

(−1)k−1

(1 + γk)3
−
∞∑
k=1

(−1)k−1

(1 + γ̃k)3
+
∞∑
j=1

∞∑
k=1

(−1)j+k−2 2

(1 + γk + γ̃j)3
.

Next, for |x| < 1 we have (1− x)−3 =
∑∞

n=1
n(n+1)

2 xn−1, so that (1 + γk + γ̃j)−3 = (1 + γk)−3(1 +

γ̃j)−3
(

1− γk
1+γk

γ̃j
1+γ̃j

)−3
, where we note that (1 − γk

1+γk
γ̃j

1+γ̃j )
−3 =

∑∞
n=1

n(n+1)
2

(
γk

1+γk
γ̃j

1+γ̃j

)n−1
. There-

fore, it follows that

k̈1(γ, γ̃) =
1

2
−
∞∑
k=1

(−1)k−1

(1 + γk)3
−
∞∑
k=1

(−1)k−1

(1 + γ̃k)3
+
∞∑
n=1

∞∑
j=1

∞∑
k=1

(−1)j+k−2n(n+ 1)(γk)n−1(γ̃j)n−1

(1 + γk)n+2(1 + γ̃j)n+2
.

Furthermore,

∞∑
n=1

∞∑
j=1

∞∑
k=1

(−1)j+k−2n(n+ 1)
(γk)n−1

(1 + γk)n+2

(γ̃j)n−1

(1 + γ̃j)n+2

=2
∞∑
k=1

(−1)k−1

(1 + γk)3

∞∑
j=1

(−1)j−1

(1 + γ̃j)3
+
∞∑
n=2

n(n+ 1)
∞∑
k=1

(−1)k−1(γk)n−1

(1 + γk)n+2

∞∑
j=1

(−1)j−1(γ̃j)n−1

(1 + γ̃j)n+2
,
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which is equal to 2a(γ)a(γ̃) +
∑∞

n=2 bn(γ)bn(γ̃), where for n = 2, 3, . . ., a(γ) :=
∑∞

k=1 (−1)k−1/(1 + γk)3

and bn(γ) :=
√
n(n+ 1)

∑∞
k=1 (−1)k−1(γk)n−1/(1 + γk)n+2. In particular, b1(γ) := 2−1/2(1 − 2a(γ)),

so that k̈1(γ, γ̃) = 1
2 − a(γ) − a(γ̃) + 2a(γ)a(γ̃) +

∑∞
n=2 bn(γ)bn(γ̃) = 1

2(1 − 2a(γ))(1 − 2a(γ̃)) +∑∞
n=2 bn(γ) bn(γ̃) =

∑∞
n=1 bn(γ)bn(γ̃). Then, for each γ and γ̃ > 0, ρ̈1(γ, γ̃) := E[G̈1(γ)G̈1(γ̃)] =

k̈
−1/2
1 (γ, γ)

∑∞
n=1 bn(γ)bn(γ̃)k̈

−1/2
1 (γ̃, γ̃). In addition, for γ > 0, we examine ρ̈3(γ) := E[G̈1(γ)G̈2]. Note

that from (A.4), ρ̈3(γ) = {E[y3
t tanh(γyt/2)]}/{4

√
6k̈

1/2
1 (γ, γ)} = [48γ4 + PG(3, 1 + 1

2γ ) − PG(3, 1+γ
2γ )]/

{32
√

6γ4k̈
1/2
1 (γ, γ)} as affirmed by Mathematica. It follows that the specific functional form of ρ̈(γ, γ̃) is

given as

ρ̈(γ, γ̃) =



k̈1(γ,γ̃)

k̈
1/2
1 (γ,γ)k̈

1/2
1 (γ̃,γ̃)

, if γ > 0 and γ̃ > 0;

1, if γ = 0 and γ̃ = 0;
48γ4+PG(3,1+ 1

2γ
)−PG(3, 1+γ

2γ
)

32
√

6γ4k̈
1/2
1 (γ,γ)

, if γ > 0 and γ̃ = 0,

. (A.15)

Third, we examine the covariance kernel of Ġ(·), viz., ρ̇(·, ·). If we let γ, γ̃ > 0, ρ̇(γ, γ̃) := E[Ġ(γ)·G(γ̃)] =

k̈
−1/2
1 (γ, γ)

∑∞
n=1 bn(γ)bn(γ̃)k̈

−1/2
1 (γ̃, γ̃) = k̈

−1/2
1 (γ, γ)k̈1( γ, γ̃)k̈

−1/2
1 (γ̃, γ̃) = ρ̈1(γ, γ̃). Furthermore, by

some tedious algebra, plimγ↓0Z̈2
1 (γ) = 0, plimγ↓0

∂
∂γ Z̈

2
1 (γ) = 0, plimγ↓0

∂2

∂γ2
Z̈2

1 (γ) = 1
8{3
√

2Z1 +
√

6Z2}2,

plimγ↓0k̈1(γ, γ) = 0, plimγ↓0
∂
∂γ k̈1(γ, γ) = 0, and plimγ↓0

∂2

∂γ2
k̈1(γ, γ) = 3, so that plimγ↓0Ġ2(γ) = (

√
3

2 z1 +

1
2z2)2, which implies Ġ2 := plimγ↓0Ġ(γ) =

√
3

2 z1 + 1
2z2 ∼ N(0, 1). Consequently, if γ > 0,

E[Ġ(γ)Ġ2] = k̈
−1/2
1 (γ, γ)E

[
Z̈1(γ)

(√
3

2
z1 +

1

2
z2

)]
= k̈

−1/2
1 (γ, γ)

[√
3

2
b1(γ) +

1

2
b2(γ)

]

=
1

32
√

6γ4k̈
1/2
1 (γ, γ)

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
. (A.16)

The last equality follows from the fact that b1(γ) = 1
8
√

2γ3
[8γ3 − PG(2, 1 + 1

2γ ) + PG(2, 1+γ
2γ )], b2(γ) =

1
16
√

6γ4
[6γPG(2, 1

2γ )− 6γPG(2, 1+γ
2γ ) + PG(3, 1

2γ )− PG(3, 1+γ
2γ )], PG(2, 1

2γ )− PG(2, 1 + 1
2γ ) = −16γ3, and

PG(3, 1
2γ )− PG(3, 1 + 1

2γ ) = 96γ4, as obtained by Mathematica. Equation (A.16) then leads to the following

functional form for ρ̇(γ, γ̃) := E[Ġ(γ)Ġ(γ̃)]:

ρ̇(γ, γ̃) =



k̈1(γ,γ̃)

k̈
1/2
1 (γ,γ)k̈

1/2
1 (γ̃,γ̃)

, if γ > 0 and γ̃ > 0;

1, if γ = 0 and γ̃ = 0;
48γ4+PG(3,1+ 1

2γ
)−PG(3, 1+γ

2γ
)

32
√

6γ4k̈
1/2
1 (γ,γ)

, if γ > 0 and γ̃ = 0,
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which is identical to the functional form of ρ̈(·, ·) in (A.15). This allows the conclusion that G̈(·) has the same

distribution as Ġ(·). �

In the following, we provide additional supplementary claim in (A.5) that is given in the following lemma:

Lemma A. 3. Given the DGP and Model conditions in Section A.1.2, limγ̃↓0 ρ̈
2
1(γ, γ̃) = [48γ4 + PG(3, 1 +

1
2γ )− PG(3, 1+γ

2γ )]2/{32
√

6γ4k̈
1/2
1 (γ, γ)}2. �

Lemma A. 3 implies that plimγ↓0G̈2
1(γ) = G̈2

2 , so that supγ∈Γ G̈2
1(γ) ≥ G̈2

2 and QLRn ⇒ supγ∈Γ G̈2
1(γ).

Proof of Lemma A. 3. From the definition of ρ̈1(γ, γ̃), note that ρ̈2
1(γ, γ̃) := k̈−1

1 (γ, γ) k̈2
1(γ, γ̃)k̈−1

1 (γ̃, γ̃).

Furthermore, we have plimγ̃↓0k̈
2
1(γ, γ̃) = 0, plimγ̃↓0

∂
∂γ̃ k̈

2
1(γ, γ̃) = 0, plimγ̃↓0k̈1(γ̃, γ̃) = 0, plimγ̃↓0(∂/∂γ̃)

k̈1(γ̃, γ̃) = 0, plimγ̃↓0(∂2/∂γ̃2)k̈1(γ̃, γ̃) = 3, and plimγ̃↓0
∂2

∂γ̃2
k̈2

1(γ, γ̃) = ({48γ4+PG(3, 1+ 1
2γ )−PG(3, 1+γ

2γ )}

/{32
√

2γ4})2 by some algebra using Mathematica. This property implies that limγ̃↓0 ρ̈
2
1(γ, γ̃) = ({48γ4 +

PG(3, 1 + 1
2γ ) − PG(3, 1+γ

2γ )}/ {32
√

2γ4})2/{3k̈1(γ, γ)} = [48γ4 + PG(3, 1 + 1
2γ ) − PG(3, 1+γ

2γ )]2/{32
√

6γ4k̈
1/2
1 (γ, γ)}2. This completes the proof. �
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Γ1 = [0, 2] Γ1 = [0, 2]

Γ2 = [0, 3] Γ2 = [0, 3]

Γ3 = [0, 4] Γ3 = [0, 4]

Γ4 = [0, 5] Γ4 = [0, 5]

Figure A.1: EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTIC AND ITS NULL LIMIT DISTRI-
BUTION (ESTAR MODEL CASE). Notes: (i) Number of Iterations: 5,000; (ii) DGP: yt = 0.5yt−1 + ut and
ut ∼ IID N(0, 1); (iii) Model: yt = πyt−1 + θyt−1{1 − exp(−γy2

t−1)} + ut and ut ∼ IID N(0, 1); and (iv)
Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], Γ4 = [0, 5].
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Γ1 = [0, 2] Γ1 = [0, 2]

Γ2 = [0, 3] Γ2 = [0, 3]

Γ3 = [0, 4] Γ3 = [0, 4]

Γ4 = [0, 5] Γ4 = [0, 5]

Figure A.2: EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTIC AND ITS NULL LIMIT DISTRI-
BUTION (LSTAR MODEL CASE). Notes: (i) Number of Iterations: 5,000; (ii) DGP: yt = 0.5yt−1 + ut and
ut = it`t, where {it} is an IID sequence in which P{it = 1} = 1−0.52 and {`t} ∼ Laplace(0, 2); (iii) Model:
yt = πyt−1 + θyt−1{(1 + exp(−γyt−1))−1} + ut and ut = it`t, where {it} is an IID sequence in which
P{it = 1} = 1− 0.52 and {`t} ∼ Laplace(0, 2); and (iv) Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], Γ4 = [0, 5].
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Γ1 = [0, 2] Γ2 = [0, 3]

Γ3 = [0, 4] Γ4 = [0, 5]

Figure A.3: PP PLOTS OF THE QLR STATISTIC USING THE WEIGHTED BOOTSTRAP (ESTAR MODEL

CASE). Notes: (i) Number of Iterations: 2,000, Bootstrap Iterations: 300; (ii) DGP: yt = 0.5yt−1 + ut and
ut ∼ IID N(0, 1); (iii) Model: yt = πyt−1 + θyt−1{1 − exp(−γy2

t−1)} + ut and ut ∼ IID N(0, 1); and (iv)
Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], Γ4 = [0, 5].
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Γ1 = [0, 2] Γ2 = [0, 3]

Γ3 = [0, 4] Γ4 = [0, 5]

Figure A.4: PP PLOTS OF THE QLR STATISTIC USING THE WEIGHTED BOOTSTRAP (LSTAR MODEL

CASE). Notes: (i) Number of Iterations: 2,000, Bootstrap Iterations: 300; (ii) DGP: yt = 0.5yt−1 + ut and
ut = it`t, where {it} is an IID sequence in which P{it = 1} = 1−0.25 and {`t} ∼ Laplace(0, 2); (iii) Model:
yt = πyt−1 + θyt−1{(1 + exp(−γyt−1))−1− 1/2}+ut and ut = it`t, where {it} is an IID sequence in which
P{it = 1} = 1− 0.52 and {`t} ∼ Laplace(0, 2); and (iv) Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], Γ4 = [0, 5].
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