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Abstract

We revisit the twofold identification problem discussed by Cho, Ishida, and White (Neu-
ral Computation, 2011), which arises when testing for neglected nonlinearity by artificial
neural networks. We do not use the so-called “no-zero” condition and employ a sixth-order
expansion to obtain the asymptotic null distribution of the quasi-likelihood ratio (QLR)
test. In particular, we avoid restricting the number of explanatory variables in the acti-
vation function by using the distance and direction method discussed in Cho and White
(Neural Computation, 2012). We find that the QLR test statistic can still be used to handle
the twofold identification problem appropriately under the set of mild regularity conditions
provided here, so that the asymptotic null distribution can be obtained in a manner simi-
lar to that in Cho, Ishida, and White (Neural Computation, 2011). This also implies that
the weighted bootstrap in Hansen (Econometrica, 1996) can be successfully exploited when
testing the linearity hypothesis using the QLR test.
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1 Introduction

Testing for neglected nonlinearity is central to testing model specifications. Linear models are

the simplest of all functional forms for the conditional mean, and econometric specification

popularly assumes linear models. Thus, testing for neglected nonlinearity is the first step

toward a deeper understanding of models.

Artificial neural networks (ANNs) are popularly used for testing for neglected nonlinear-

ity because they are quite powerful, owing to their omnibus power. For example, the testing

methodology introduced by Bierens (1990) is one of many examples in which ANNs are ap-

plied. Moreover, Stinchcombe and White (1998) show that the testing methodology of Bierens

(1990) can be further extended by using other non-polynomial analytic functions.

Numerous testing methodologies using ANNs are now available in the literature, and

their interrelationships remain unclear. Testing methodologies are traditionally classified

into two main groups. The first group, which we call the type I methodology, includes the test-

ing procedures proposed by Bierens (1987, 1990), Bierens and Hartog (1988), Hansen (1996),

and Stinchcombe and White (1998), among others. These testing procedures attempt to test

whether the coefficient of the activation function is zero. The second group, which we call the

type II methodology, includes the testing procedures proposed by Luukkonen, Saikkonen, and

Teräsvirta (1988), Teräsvirta, Lin, and Granger (1993), and Teräsvirta (1994), among others.

They attempt to test whether the coefficients of predictors in the activation function are zero.

Although they provide two different test statistics for testing the linearity, the interrelation-

ships between the two testing methodologies still remain unclear, and therefore, while the

two different sets of tests continue to be used widely, they are used independently.

These two methodologies are different mainly because they assume different alternative

models, as a result of which the model expansions around the null model are also different.

The asymptotic null distribution obtained by the type I methodology is closely associated with

a Gaussian stochastic process. This is mainly because of the so-called Davies’s (1977, 1987)

identification problem, in which the null model cannot be obtained without the identification

problem. On the other hand, this problem is trivially resolved for the type II methodology.

The standard quadratic approximation (e.g. White 1994) cannot be applied instead, and quar-

tic, hexic, or further higher-order approximations are required. This complicates the model

analysis when there is more than a single predictor in the activation function. This is mainly
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because standard matrix algebra is too restrictive to represent model expansions for multiple-

predictor cases.

Recently, some studies attempt to unify these two different methodologies. Cho, Ishida,

and White (2011) (hereafter, CIW) examine a quasi-likelihood ratio (QLR) statistic for the

same goal and show that it can be used to test the two different hypotheses using type I and II

methodologies simultaneously. In addition, they show that the weighted bootstrap suggested

by Hansen (1996) can be successfully exploited when their regularity conditions hold. We call

this the type III methodology.

Nevertheless, CIW focus on a particular set of activation functions and obtain the desired

results. More specifically, they require that the so-called no-zero condition should hold for the

activation functions; otherwise, their theory may not work, and testing the linearity using

ANNs may result in a failure. Indeed, many analytic functions such as a logistic cumula-

tive distribution function (CDF) and sine function do not satisfy the no-zero condition. This

implies that the type III methodology has to be applied in a restrictive manner.

The main goal of this study is to replace this restriction with another and make the use of

ANNs more promising for testing the linearity. Toward this goal, we employ CIW’s method-

ology but modify their regularity conditions. Under these modified regularity conditions, we

analyze the QLR test and obtain its asymptotic null distribution.

We achieve our goal in a conservative manner. In this study, our theory handles another

subset of activation functions, which do not satisfy the no-zero condition. As detailed below,

our analysis requires another condition called “zero-condition” to hold for activation functions.

Although the no-zero condition is replaced by the zero-condition, many activation functions

including those mentioned above can be handled by our theory.

The remainder of this paper is organized as follows. Section 2 describes the motivations

of the current study and introduces the QLR test statistic. Section 3 examines the QLR test

as defined in Section 2. In Section 3.1 and 3.2, we respectively examine the asymptotic null

distribution using type I and II methodologies, respectively; in Section 3.3, we combine these.

In Section 4, we describe Monte Carlo simulations carried out to validate the theoretical

results presented in Section 3. Finally, we present the conclusions in Section 5. Mathe-

matical proofs are separately provided. Interested readers can refer to the following URL:

http://web.yonsei.ac.kr/jinseocho/research.htm.

Note that hereafter, (∂/∂x)f(0) is used to indicate (∂/∂x)f(x)|x=0. We also let “ P→” and “⇒”
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denote convergence in probability and weak convergence as the sample size tends to infinity.

2 ANN Models with Neglected Nonlinearity

We proceed with our discussions by exploiting the regularity conditions in CIW. For this pur-

pose, we first assume the following data generating process (DGP) condition.

Assumption 1 (DGP) {(Yt,X′t)′ ∈ R1+k(k ∈ N) : t = 1, 2, · · · } is a strictly stationary and

absolutely regular process defined on the complete probability space (Ω,F ,P), with E[|Yt|] <∞

and mixing coefficient βτ such that for some ρ > 1,
∑∞

τ=1 τ
1/(ρ−1)βτ <∞. �

Here, Yt and Xt are the target and the explanatory variables (or predictors), respectively,

such that Xt does not contain the constant. This condition is often assumed when analyzing

stationary time-series data. The mixing coefficient βτ is as defined in Doukhan (1994). In

particular, the mixing coefficient condition is imposed to apply the functional central limit

theorem (FCLT) to our statistics defined below.

The main aim of this study is identical to that of CIW’s study: we test E[Yt|Xt] is a linear

function of Zt := (1,X′t)′. Formally, we state our interests as follows.

H0 : for some (α,β′)′ ∈ R1+k, E[Yt|Xt] = α+ X′tβ with probability 1;

H1 : for any (α,β′)′ ∈ R1+k, E[Yt|Xt] = α+ X′tβ with probability less than 1.

These hypotheses and the model provided below have been a popular research topic in the

literature; and the most popular approach is thus far testing by parametric specifications.

The first and notable study in terms of our focus, here, is by Ramsey (1969), who tests for

neglected nonlinearity by adding powers of predicted values to the linear model. When the

estimated coefficients of the powers do not converge to zero, this can be used as a testing basis

for detecting neglected nonlinearity. Nevertheless, this test is severely influenced by outliers,

and other testing procedures are introduced to improve the testing results. Before examining

them, we assume the following model.

Assumption 2 (Model) For a non-polynomial analytic function Ψ : R 7→ R such that Ψ(0) 6=

0, we let

(1) f(Xt ;α,β, λ, δ) := α+ X′tβ + λΦ(X′tδ),
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where Φ(·) := Ψ(·) − Ψ(0). We define a model asM := {f( · ;α,β, λ, δ) : (α,β, λ, δ) ∈ A ×B ×

Λ ×∆}, where A ⊂ R, B ⊂ Rk, Λ ⊂ R, and ∆ ⊂ Rk are non-empty compact and convex sets

such that 0 ∈ int(Λ) and 0 ∈ int(∆). �

Note that the final term in the right-hand side (RHS) of eq. (1) plays a similar role to the

powers given by Ramsey (1969). The main difference from Ramsey’s specification is that it

contains unknown parameters in Ψ(·), and this causes the identification problem under the

null. More specifically, when we let (α∗,β
′
∗, λ∗, δ

′
∗)
′ be the parameter such that E[Yt|X∗] =

f(Xt;α∗,β∗, λ∗, δ∗), the null hypothesis can be stated as follows.

H01 : λ∗ = 0 or H02 : δ∗ = 0.

The literature can be divided into three subgroups in terms of the methodologies used to han-

dle these hypotheses. The first group handles H01 : λ∗ = 0, and we call this approach the

type I methodology. Bierens (1990) lets1 Ψ(·) = exp(·) and tests H01 : λ∗ = 0. Bierens (1990)

shows that any departure from the linearity can be consistently detected using his test statis-

tic. Nevertheless, this approach suffers from the so-called Davies’s (1977, 1987) identification

problem. When the coefficient of Ψ(·) is zero, the coefficient δ∗ cannot be identified. This

yields a null distribution that is different from the conventional chi-squared distribution even

asymptotically. In general, test statistics constructed by the type I methodology weakly con-

verge to a function of a Gaussian stochastic process under the null. Due to this, many studies

try to find asymptotic null distributions directly or to introduce alternative testing procedures

that do not suffer from these issues. For example, Hansen (1996) provides the weighted boot-

strap procedure, and Lee, Granger, and White (1993) introduce another test statistic to apply

the conventional chi-squared distribution as its asymptotic null distribution. As another ex-

tension of a type I methodology, Stinchcombe and White (1998) show that the omnibus power

property suggested by Bierens (1990) is not only exhibited by the exponential function but also

by any non-polynomial analytic function. For example, logistic CDF, sine, cosine, tangent, and

other analytic functions can also be used for the same goal.

The second group handles H02 : δ∗ = 0, and we call this approach the type II methodol-

ogy. Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta, Lin, and Granger (1993), and
1More precisely, Bierens’s (1990) model is slightly different from the model in Assumption 2. He transforms

the predictors in the activation function into bounded variables by tan−1(·). Nevertheless, Stinchcombe and White

(1998) show that the omnibus power of Bierens’s (1990) test is attributable to the exponential function and not

the transformation.
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Teräsvirta (1994), among others, examine this hypothesis and introduce relevant test statis-

tics. These are mostly constructed using the principle of the Lagrange multiplier (LM) test.

By assuming H02 : δ∗ = 0, λ∗ is not identified as before. Nevertheless, this problem turns out

to be trivial because their asymptotic null distributions are not affected by this. One inter-

esting aspect of this, though, is that it needs higher-order approximations. When the score

is computed, the first-order derivative is identically zero, so that it cannot be used to define

LM tests; then next-order derivatives have to be exploited as an effective score. For example,

if Bierens’s (1990) exponential function is used as the activation function, the second-order

derivatives are relevant scores for defining LM tests. In another way, this also implies that

the testing procedure using the LM testing principle can be complicated. When the number

of explanatory variables exceeds one, the definition of the LM test needs to be re-considered,

and deriving its asymptotic null distribution accordingly becomes complicated.

The third group attempts to combine type I and II methodologies and examine a testing

procedure under both H01 and H02. We call this the type III methodology. CIW examine the

QLR test statistic defined as

QLRn := n(1− σ̂2
n,A/σ̂

2
n,0),

where σ̂2
n,0 := minα,β n

−1
∑n

t=1(Yt − f(Xt;α,β, 0, δ))2 with δ being a placeholder, and σ̂2
n,A :=

minα,β,λ,δ n
−1
∑n

t=1(Yt − f(Xt;α,β, λ, δ))2. As two different identification problems lurk under

the null, CIW call this the twofold identification problem. They show that the QLR test has

the capability of testing both H01 and H02 simultaneously without necessarily focusing on

a particular null hypothesis. More specifically, they obtain the asymptotic distributions of

the QLR test under H01 and H02 separately and then combine them to obtain the asymptotic

distribution under H0. In this process, they attempt to acquire the omnibus power property

targeted by the type I methodology and the power desired by the type II methodology.

Nevertheless, the analysis given by the type III methodology restricts the scope of models.

They assume the “no-zero” condition, which means that the second-order derivative of Ψ(·)

at zero is not zero. Many analytic functions such as the exponential function advocated by

Bierens (1990) and the cosine function satisfy the no-zero condition. On the other hand, many

other functions such as the logistic function advocated by White (1992) and the sine function

do not satisfy this condition.
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In this study, we eliminate this restriction and examine the asymptotic null distribution

of the QLR test. Specifically, we instead assume the following condition.

Assumption 3 (Zero) When we let cj := (∂j/∂xj)Ψ(0) and j = 0, 1, 2, . . ., c2 = 0, c3 6= 0, and

ci is finite for every i ≥ 3. �

CIW assume that c2 6= 0 and approximate their quasi-likelihood function by a quartic expan-

sion. As Assumption 3 supposes that c2 = 0, the no-zero condition does not hold any longer,

and the quartic approximation cannot be applied either. As detailed below, it turns out that a

sixth-order (hexic) approximation is effective under Assumption 3.

In achieving our goal, we relax a couple of limitations used in the previous studies. First,

we do not restrict the number of variables in Xt to one. Many previous studies (e.g. White and

Cho, 2012) assume that the number of predictors in the activation function to be one so that

higher-order approximations can be easily obtained. Second, we do not restrict the parameter

space so that the QLR test is equivalent to the LM tests under the null. White and Cho (2012)

show that the QLR test is equivalent to the LM test when the space for λ is restricted not

to include zero. We intentionally include zero in the space of λ and test both H01 and H02

simultaneously.

Before moving to the next section, there are several relevant remarks. First, we note

that the current model assumption is not identical to the model assumption in CIW, in which

the activation function is not centered by Ψ(0). In other words, their model is specified as

α + X′tβ + λΨ(X′tδ), and this specification leads to another identification problem. The inter-

cept value is identified as α∗ + λ∗Ψ(0) under H02 : δ∗ = 0, but α∗ and λ∗ are not separately

identified. This implies that the distribution of the QLR test has to be obtained in two differ-

ent ways under H02 and the derivation process can be laborious. On the other hand, many

difficulties disappear under our current model assumption. Only λ∗ is not identified under

H02 : δ∗ = 0. Second, the twofold identification problem also exists in a different context.

We observe that testing conditional heteroskedasticity using the model introduced in Rosen-

berg (1973) and King and Shively (1993) also suffers from the twofold identification problem.

Third, different approaches with similar motivations are also found in the literature. Cho and

Ishida (2012) and Baek and Cho (2012) approach this in a different way. They let Φ(·) be a

power function with unknown power coefficient and test the effect of omitted power transfor-

mation and neglected nonlinearity, respectively. Under their model conditions, the conven-
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tional second-order expansion is sufficient for model approximations although identification

problems have to be handled in more complicated ways. In this sense, their approaches are

different from ours. This also implies that model analysis depends upon the functional form

of the nonlinear component.

3 Asymptotic Null behavior of the QLR Test

We obtain the asymptotic null distributions of the QLR test by type I and II methodologies

separately and identify their interrelationship in the final stage. More specifically, we first

assume H01 : λ∗ = 0 and derive the asymptotic null distribution in Section 3.1 by following

CIW. As its derivation is similar to CIW, we present only the key to the current study unless

confusion would otherwise arise. Next, we assume H02 : δ∗ = 0 and obtain the asymptotic

null distribution by a further higher-order expansion in Section 3.2. Finally, we combine the

separate results and derive the asymptotic null distribution under H0 : λ∗ = 0 or δ∗ = 0 in

Section 3.3.

Here, we define some notations that will be used throughout this paper. For simplicity, we

let the quasi-likelihood (QL) function be

Ln(α,β, λ, δ) := −
n∑
t=1

(Yt − α− X′tβ − λΦt(δ))2,

where Φt(δ) := Φ(X′tδ). Thus, it also holds that σ̂2
n,0 ≡ maxα,β −n−1Ln(α,β, 0, δ) and σ̂2

n,A ≡

maxα,β,λ,δ −n−1Ln(α,β, λ, δ).

3.1 Asymptotic Null Distribution under H01 : λ∗ = 0

We now consider the asymptotic distribution of the QLR test under H01 : λ∗ = 0. As δ∗ is not

identified, we first concentrate the QL with respect to (α,β, λ) and operate the unidentified δ∗

in the last. In other words, we let

QLR(1)
n :=

{
n− 1

σ̂2
n,0

min
δ

min
λ

min
α,β

n∑
t=1

(Yt − f(Xt;α,β, λ, δ))2

}

and examine its asymptotic behavior under H01. Note that QLR(1)
n is another representation

of QLRn.

We obtain the asymptotic null behavior of QLR(1)
n by following CIW’s approach. If we let

L
(1)
n (λ; δ) := maxα,β Ln(α,β, λ, δ) and note that L(1)

n (λ; δ) = −[Y− λΦ(δ)]′M[Y− λΦ(δ)], where
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Y := [Y1, . . . , Yn]′, Φ(δ) := [Φ(X′1δ), . . . ,Φ(X′nδ)]′, M := I− Z(Z′Z)−1Z′, and Z := [Z1, . . . ,Zn]′, it

is not difficult to obtain

QLR(1)
n ≡ max

δ

{Φ(δ)′MU}2

σ̂2
n,0Φ(δ)′MΦ(δ)

,

where U := [U1, . . . , Un]′ and for each t, Ut = Yt − E[Yt|Xt]. Furthermore, if we let Ψ(δ) :=

[Ψ(X′1δ), . . . ,Ψ(X′nδ)]′, it also follows that

(2) QLR(1)
n ≡ max

δ

{Ψ(δ)′MU}2

σ̂2
n,0Ψ(δ)′MΨ(δ)

.

It is mainly because Φ(δ) = Ψ(δ) − c0ι, so that Φ(δ)′MU = Ψ(δ)′MU and Φ(δ)′MΦ(δ) =

Ψ(δ)′MΨ(δ), where ι is an n × 1 vector of ones. We now note that this form is identical to

eq. (5) in CIW, so that we can borrow their results for our derivation. For this purpose, the

following assumptions are imposed.

Assumption 4 (Regularity I) (i) For a sequence of stationary and ergodic random variables

{Mt}, |Ut| ≤Mt, for j = 1, 2, . . . , k, |Xt,j | ≤Mt, and for some κ ≥ 2(ρ− 1), E[M4+2κ
t ] <∞;

(ii) supδ∈∆ |Ψt(δ)| ≤ Mt and for j = 1, 2, . . . , k, supδ∈∆ |(∂/∂δj)Ψt(δ)| ≤ Mt, where for t =

1, 2, . . . , n, Ψt(δ) := Ψ(X′tδ);

(iii) E[Ut|Xt, Ut−1,Xt−1, . . .] = 0; and

(iv) For each ε > 0 and δ ∈∆(ε), V̄1(δ) and V̄2(δ) are positive definite, where for given ε > 0,

∆(ε) := {δ ∈∆ :
∑k

j=1 |δj | ≥ ε},

V̄1(δ) :=

 E[U2
t Ψt(δ)2] E[U2

t Ψ(δ)Z′t]

E[U2
t ZtΨ(δ)] E[U2

t ZtZ′t]

 and V̄2(δ) :=

 E[Ψt(δ)2] E[Ψ(δ)Z′t]

E[ZtΨ(δ)] E[ZtZ′t]

 . �

These assumptions are sufficient for deriving the asymptotic null distribution. The moti-

vations of these conditions are already given in CIW. In particular, Assumption 4(i) is imposed

to apply the FCLT of Doukhan, Massart, and Rio (1995). With this condition holding along

with the mixing coefficient condition in Assumption 1, it is not difficult to apply the FCLT. We

also modify our parameter space condition into ∆(ε). As noted by CIW, if δ = 0, Φ(0) = 0,

implying that QLR(1)
n is not appropriately defined. We avoid this by removing 0 from ∆, and

this is given in the form of ∆(ε). We also let

QLR(1)
n (ε) := max

δ∈∆(ε)

{Ψ(δ)′MU}2

σ̂2
n,0Ψ(δ)′MΨ(δ)

to accommodate the influence of this modification. Given this, the following result is derived

based on theorem 1 of CIW.
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Theorem 1 (CIW (Theorem 1)) Given Assumptions 1, 2, 4, and H01, for each ε > 0,

QLR(1)
n (ε)⇒ sup

δ∈∆(ε)
Ḡ0(δ)2,

where Ḡ0(·) is a mean-zero Gaussian stochastic process such that for each δ and δ̃ ∈∆(ε),

ρ̄(δ, δ̃) := E[Ḡ0(δ)Ḡ0(δ̃)] =
T1(δ, δ̃)

{σ2
∗J1(δ, δ)}1/2{σ2

∗J1(δ̃, δ̃)}1/2

with T1(δ, δ̃) := E[U2
t Ψ∗t (δ)Ψ∗t (δ̃)] and J1(δ, δ̃) := E[Ψ∗t (δ)Ψ∗t (δ̃)], where σ2

∗ := E[U2
t ] and for

each δ ∈∆(ε) and t = 1, 2, . . . , n, Ψ∗t (δ) := Ψt(δ)− E[Ψt(δ)Z′t]E[ZtZ′t]−1Zt. �

The proof of Theorem 1 is already given in CIW and is not restated here.

3.2 Asymptotic Null Distribution under H02 : δ∗ = 0

We now examine the asymptotic distribution of the QLR test under H02 : δ∗ = 0. This lets us

first maximize the QL with respect to (α,β, δ) and finally with respect to λ. In other words,

our QLR test is now analyzed by examining

QLR(2)
n :=

{
n−min

λ
min
δ

min
α,β

1

σ̂2
n,0

n∑
t=1

(Yt − f(Xt;α,β, λ, δ))2

}
.

We note that QLR(2)
n is another representation of QLRn. We simply minimize QL with respect

to λ in the last as it is unidentified under H02.

Our analysis of QLR(2)
n here is quite different from that in CIW because we replace their

no-zero condition with Assumption 3.

We manage these different results in the following manner. We first concentrate the QL

by maximizing it with respect to (α,β). The concentrated QL is now obtained as L(2)
n (δ;λ) :=

−[Y − λΦ(δ)]′M[Y − λΦ(δ)], and we next approximate the concentrated QL using Taylor’s

expansion with respect to δ. As pointed out by CIW, the first-order derivative of this does

not play any role, and this is the same for our case, too. We thus approximate it using a

higher-order expansion. Nevertheless, a further higher-order approximation is needed under

Assumption 3. It is mainly because the second-order derivative is identical to zero as detailed

below. It turns out that a sixth-order expansion is appropriate as in White and Cho (2012).

A higher-order approximation can be complicated because of the laborious differentiations

involved. In particular, when the dimension of δ exceeds one, it becomes more complicated.2

2White and Cho (2012) avoid this complication by letting the dimension of δ be one.
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In this study, we avoid this by exploiting the distance and direction method in CIW, Cho and

White (2012), and Cho (2012). Specifically, for any two elements δ∗ and δ, there is (h,d) such

that

(3) δ ≡ δ∗ + hd,

where h ≥ 0 and d ∈ Sk−1 := {x ∈ Rk : x′x = 1}. If δ and δ∗ are identical, it is mainly

because h = 0 uniformly in d. Furthermore, for a particular direction, the distance between δ

and δ∗ is captured by h, a single number, so that for each d, we can apply Taylor’s expansion

with respect to h and treat d as a nuisance parameter. Thus, for given δ, we now let (h,d) ∈

R+×Sk−1 capture the identity, L(2)
n (δ;λ) ≡ L(2)

n (hd;λ). Here, δ∗ = 0 underH02. For a particular

direction d, applying Taylor’s sixth-order expansion with respect to h yields the following

expansion.

L(2)
n (hd;λ) =L(2)

n (0;λ) +
∂

∂h
L(2)
n (0;λ)h+

1

2!

∂2

∂h2
L(2)
n (0;λ)h2 +

1

3!

∂3

∂h3
L(2)
n (0;λ)h3(4)

+
1

4!

∂4

∂h4
L(2)
n (0;λ)h4 +

1

5!

∂5

∂h5
L(2)
n (0;λ)h5 +

1

6!

∂6

∂h6
L(2)
n (0;λ)h6 + oP(h6).

We contain the partial derivatives constituting the RHS in the following lemma.

Lemma 1 Given Assumptions 2 and 3, the following holds under H02 : δ∗ = 0: for each

d ∈ Sk−1,

(i) (∂/∂h)Ln(hd;λ)|h=0 = c1λι
′D1(d)MU = 0;

(ii) (∂2/∂h2)Ln(hd;λ)|h=0 = 2λc2ι
′D2(d)MU− 2λ2c2

1ι
′D1(d)MD1(d)ι = 0;

(iii) (∂3/∂h3)Ln(hd;λ)|h=0 = 2λc3ι
′D3(d)MU;

(iv) (∂4/∂h4)Ln(hd;λ)|h=0 = 2λc4ι
′D4(d)MU;

(v) (∂5/∂h5)Ln(hd;λ)|h=0 = 2λc5ι
′D5(d)MU; and

(vi) (∂6/∂h6)Ln(hd;λ)|h=0 = 2λc6ι
′D6(d)MU − 20λ2c2

3ι
′D3(d)MD3(d)ι, where for each d ∈

Sk−1 and m = 1, 2, . . ., we let

Dm(d) :=


(X′1d)m 0 · · · 0

0 (X′2d)m · · · 0
...

... . . . ...

0 0 · · · (X′nd)m

 ,

and D0(d) := I. �

11



The partial derivatives in Lemma 1 are derived relatively easily because the dimension of h

is one. Obtaining the partial derivatives can also be simplified by the fact that MD1(d)ι =

MXd = 0. The proof of Lemma 1 is elementary.

Lemma 1 explains the necessity of higher-order expansions. We note that the second-order

derivative is identical to zero under H02, and therefore, we cannot apply the central limit the-

orem (CLT) to this. On the other hand, we can apply CLT to the next-order derivative. This

explains why a further higher-order expansion is needed for the QLR test. This result is

different from that in CIW. Under their no-zero condition, the second-order derivative is ob-

tained as (∂2/∂h2)Ln(hd;λ)|h=0 = 2λc2ι
′D2(d)MU, and we can apply the CLT to this, leading

to a quartic expansion as a relevant order of expansion.

A sixth-order expansion is relevant to our model, and the asymptotic behavior of this

expansion is determined by the terms constituting the partial derivatives. Before examining

them, we first provide the following regularity conditions.

Assumption 5 (Regularity II) (i) E[|Ut|4] < ∞ and for j = 1, 2, . . . , k, E[|Xt,j |32] < ∞; or

E[|Ut|8] <∞ and for j = 1, 2, . . . , k, E[|Xt,j |16] <∞;

(ii) E[Ut|Xt, Ut−1,Xt−1, . . .] = 0; and

(iii) For each j = 1, 2, . . . , k, we let Xt(j:k) := [Xt,j , Xt,j+1, . . . , Xt,k]
′ and also let

Ct := [Xt,1vech[Xt(1:k)X′t(1:k)]
′, Xt,2vech[Xt(2:k)X′t(1:k−1)]

′, . . . , Xt,kvech[Xt(k:k)X′t(1:1)]
′]′.

Given this, Ṽ1 and Ṽ2 are positive definite, where

Ṽ1 :=

 E[U2
t CtC′t] E[U2

t CtZ′t]

E[U2
t ZtC′t] E[U2

t ZtZ′t]

 and Ṽ2 :=

 E[CtC′t] E[CtZ′t]

E[ZtC′t] E[ZtZ′t]

 . �

Assumption 5 is provided for regular asymptotic behaviors of relevant statistics. Specifically,

Assumption 5(i) provides higher-order finite moment conditions. They are necessary when

applying the CLT and the ergodic theorem (e.g. White 2001). Assumption 5(ii) is the same

MDA condition as that given by Assumption 4(iii). We repeat this condition to avoid referring

to Assumption 4. Assumption 5(iii) is required to obtain a non-degenerate null distribution,

and it corresponds to the absence of perfect multicolinearity in a conventional linear model.

When a quartic approximation applies, CIW provide a similar condition using vech[X′tXt]. We

extend this to the vector Ct, which extends the notion of vech[X′tXt] to the half-vectorization

of the three-dimensional Cartesian product of Xt, Xt ⊗ Xt ⊗ Xt. This implies that Assumption

12



5(iii) does not hold if one of the elements in Xt is obtained by squaring another element or by

multiplying two different elements in Xt.

If the asymptotic behavior of each derivative is available, we can combine them to obtain

the asymptotic null distribution of the test. We first contain the asymptotic behaviors in the

following lemma.

Lemma 2 Given Assumptions 1, 2, 3, 5, and H02 : δ∗ = 0,

(i) {n−1/2ι′D3(·)MU, n−1ι′D3(·)MD3(·)ι} ⇒ {G2(·),J2(·, ·)}, where G2(·) is a mean-zero Gaus-

sian stochastic process such that for each d and d̃ ∈ Sk−1,

E[G2(d)G2(d̃)] = T2(d, d̃) :=
k∑
i=1

k∑
j=1

k∑
`=1

k∑
i′=1

k∑
j′=1

k∑
`′=1

didjd`d̃i′ d̃j′ d̃`′E[U2
t V
∗
t,ji`V

∗
t,j′i′`′ ],

J2(d, d̃) :=
k∑
i=1

k∑
j=1

k∑
`=1

k∑
i′=1

k∑
j′=1

k∑
`′=1

didjd`d̃i′ d̃j′ d̃`′E[U2
t V
∗
t,ji`V

∗
t,j′i′`′ ],

and for each i, j, ` = 1, 2, . . . , k, V ∗t,ji` := Xt,jXt,iXt,` − E[Xt,jXt,iXt,`Z′t]E[ZtZ′t]−1Zt; and

(ii) ι′D4(·)MU = OP(n1/2), ι′D5(·)MU = OP(n1/2), and ι′D6(·)MU = OP(n1/2). �

We now combine all our derivations obtained so far into eq. (4) and obtain the asymptotic null

distribution. We first rewrite eq. (4) as

L(2)
n (hd;λ)− L(2)

n (0;λ) =
2λc3

3!n3/6
ι′D3(d)MUδ3

n +
2λc4

4!n4/6
ι′D4(d)MUδ4

n +
2λc5

5!n5/6
ι′D5(d)MUδ5

n(5)

+
2λc6

6!n
ι′D6(d)MUδ6

n −
20λ2c2

3

6!n
ι′D3(d)MD3(d)ιδ6

n +OP(n−1/6),

where δn := n1/6h, and we note that maximizing the LHS with respect to h is asymptoti-

cally equivalent to maximizing the RHS with respect to δn. We also note that the fourth-

, fifth-, and sixth-order derivatives are uniformly negligible in d by Lemma 2(ii). That is,

n−4/6ι′D4(·)MU = oP(1), n−5/6ι′D5(·)MU = oP(1), and n−1ι′D6(·)MU = oP(1). Therefore, eq.

(5) can also be written as

(6) L(2)
n (hd;λ)− L(2)

n (0;λ) =
2λc3

3!n1/2
ι′D3(d)MUδ3

n −
20λ2c2

3

6!n
ι′D3(d)MD3(d)ιδ6

n + oP(1).

Furthermore, the asymptotic behavior of {n−1/2ι′D3(·)MU, n−1ι′D3(·)MD3(·)ι} is given by

Lemma 2(i). We now combine all these and obtain the asymptotic null distribution as fol-

lows.
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Theorem 2 Given Assumptions 1, 2, 3, 5, andH02 : δ∗ = 0,QLR(2)
n ⇒ supd∈Sk−1 max[0, G̃0(d)]2,

where G̃0(·) to be a continuous mean-zero Gaussian stochastic process defined on Sk−1 such that

for each d and d̃ ∈ Sk−1,

E[G̃0(d)G̃0(d̃)] = ρ̃(d, d̃) :=
T2(d, d̃)

{σ2
∗J2(d,d)}1/2{σ2

∗J2(d̃, d̃)}1/2
. �

In fact, the given consequence in Theorem 2 comes from the notice that

QLR(2)
n = sup

d∈Sk−1

1

σ̂2
n,0

max

[
0,

ι′D3(d)MU√
ι′D3(d)MD3(d)ι

]2

+ oP(1),(7)

and applying Lemma 2(i) to this delivers the desired result. Here, we note that λ is not

associated with the asymptotic null distribution. Although λ is not identified underH02 : δ∗ =

0, its role is asymptotically negligible under H02. This follows from the fact that λ is canceled

off while maximizing the RHS of eq. (6) with respect to δn. Thus, maximizing the LHS of eq.

(6) with respect to λ is asymptotically innocuous. The asymptotic weak limit is also associated

with “max[0, ·]”. By definition, the distance δn cannot be less than zero. This lets “max[0, ·]” be

involved with the weak limit.

Before moving to the next subsection, we note that model approximations using higher-

order expansions are also found in the literature. Cho and White (2007, 2010) provide rel-

evant conditions under which higher-order approximations are necessary for obtaining the

asymptotic null distribution of their likelihood-ratio tests. They examine fourth-, sixth-, and

eighth-order expansions and derive the asymptotic null distribution of the test.

3.3 Asymptotic Null Distribution under H0 : λ∗ = 0 or δ∗ = 0

We now derive the asymptotic null distribution of the QLR test underH0 : λ∗ = 0 or δ∗ = 0. In

fact, this derivation requires the results in Theorems 1 and 2 to be combined. We start from

the approximation of QLR(1)
n and derive its interrelationship with QLR

(2)
n . We note that eq.

(2) can also be represented using (h,d). That is,

QLR(1)
n = sup

d∈Sk−1

sup
h

{Ψ(hd)′MU}2

σ̂2
n,0Ψ(hd)′MΨ(hd)

.

We now examine what happens to

{Ψ(hd)′MU}2

σ̂2
n,0Ψ(hd)′MΨ(hd)

,
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as h converges to zero. As pointed out by Theorem 1, if h = 0 then Ψ(0)′MU = c0ι
′MU = 0 and

Ψ(0)′MΨ(0) = c2
0ι
′Mι = 0. We therefore apply L’Hôpital’s rule to this ratio. For notational

simplicity, for each (h,d), we let

Nn(h,d) := {Ψ(hd)′MU}2 and Dn(h,d) := Ψ(hd)′MΨ(hd).

The following lemma provides the partial derivatives of Nn(h,d) and Dn(h,d) with respect to

h.

Lemma 3 Given Assumptions 2 and 3, for each d ∈ Sk−1,

(i) For ` = 0, 1, 2, 3, 4, and 5, limh↓0N
(`)
n (h,d) = 0 a.s.−P and limh↓0D

(`)
n (h,d) = 0 a.s.−P;

(ii) limh↓0N
(6)
n (h,d) = 20c2

3{ι′D3(d)MU}2 a.s.−P; and

(iii) limh↓0D
(6)
n (h,d) = 20c2

3ι
′D3(d)MD3(d)ι a.s.−P. �

Indeed, for ` = 0, 1, 2, 3, and 4, Lemma 3(i) holds as a corollary of lemma 7 of CIW. Lemmas

3 provides additional derivatives. Readers can find the proofs of Lemmas 3(i) with ` = 5 and

3(ii and iii) from the URL mentioned above.

This now implies that the QLR test under H01 : λ∗ = 0 can be used to treat the QLR test

under H02 : δ∗ = 0 as a special case. More specifically, we can claim the following.

Lemma 4 Given Assumptions 2 and 3, QLR(1)
n ≥ QLR(2)

n + oP(1).

Thus, QLR(1)
n asymptotically dominates QLR(2)

n . Proving Lemma 4 is almost identical to that

in CIW. Lemma 4 implies that the asymptotic distribution of the QLR test can be obtained

under both H01 : λ∗ = 0 and H02 : δ∗ = 0 by combining the regularity conditions for QLR(1)
n

with those for QLR(2)
n . The following set of conditions is provided for this goal.

Assumption 6 (Regularity III) (i) For some κ ≥ 2(ρ − 1), E[|Ut|4+2κ] < ∞ and for j =

1, 2, . . . , k, E[|Xt,j |32] <∞; or E[|Ut|8] <∞ and for j = 1, 2, . . . , k, E[|Xt,j |16] <∞;

(ii) supδ∈∆ |Ψt(δ)| ≤Mt and for j = 1, 2, . . . , k, supδ∈∆ |(∂/∂δj)Ψt(δ)| ≤Mt;

(iii) E[Ut|Xt, Ut−1,Xt−1, . . .] = 0; and

(iv) For each ε > 0 and δ ∈ ∆(ε), V̄1(δ) and V̄2(δ) are positive definite, where for given ε,

∆(ε) := {δ ∈∆ :
∑k

j=1 |δj | ≥ ε},

V̈1(δ) :=


E[U2

t Ψt(δ)2] E[U2
t Ψ(δ)Z′t] E[U2

t Ψ(δ)C′t]

E[U2
t ZtΨ(δ)] E[U2

t ZtZ′t] E[U2
t ZtC′t]

E[U2
t CtΨ(δ)] E[U2

t CtZ′t] E[U2
t CtC′t]

 and
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V̈2(δ) :=


E[Ψt(δ)2] E[Ψ(δ)Z′t] E[Ψ(δ)C′t]

E[ZtΨ(δ)] E[ZtZ′t] E[ZtC′t]

E[CtΨ(δ)] E[CtZ′t] E[CtC′t]

 . �

Using this set of assumptions, we can obtain the asymptotic distribution underH01 orH02.

When Assumption 6 is imposed, Assumptions 4 and 5 hold. The following theorem states the

synthesis of the results that we have separately obtained above.

Theorem 3 Given Assumptions 1, 2, 3, 6, and the null H0 : λ∗ = 0 or δ∗ = 0, QLRn ⇒

suph,d G̈0(h,d)2, where

G̈0(h,d) :=

 Ḡ0(hd), if h 6= 0;

G̃0(d), otherwise.
�

As Theorem 3 is directly implied by Theorems 1 and 2. By the definition of G̈0(·), its covariance

structure can be identified as follows: for each (h,d) and (h̃, d̃),

ρ̈(d, d̃) :=


ρ̄(hd, h̃d̃), if h 6= 0 and h̃ 6= 0;

ρ̃(d, d̃), if h = 0 and h̃ = 0;

ρ̂(d, h̃d̃), if h = 0 and h̃ 6= 0,

where for each (d, h̃d̃),

ρ̂(d, h̃d̃) :=
T3(d, h̃d̃)

{σ2
∗J2(d,d)}1/2{σ2

∗J1(h̃d̃, h̃d̃)}1/2

and T3(d, h̃d̃) :=
∑k

j=1

∑k
i=1

∑k
`=1 djdid`E[U2

t Ψ∗t (h̃d̃)V ∗t,ji`]. We define the covariance between

n−1/2Ψ(h̃d̃)′MU and n−1/2ι′D3(d)MU as T3(d, h̃d̃), and they are the scores we could apply

the CLT on MDA to in Sections 3.1 and 3.2, respectively. By Assumption 6, the separately

obtained Gaussian stochastic processes in Sections 3.1 and 3.2 are not irrelevant processes

any longer, and their dependence structure is now captured by ρ̂(·, ·).

We also note that the correlation functions used to define ρ̈(·, ·) are closely interrelated

with each other. For identifying this interrelationship, we impose the following conditions.

Assumption 7 (Domination) (i) For each ` = 0, 1, . . . , 6 and j = 1, 2, . . . , k + 1, E[suph,d |(∂`

/∂h`)Ξt,j(hd)|2] <∞, where for each j = 1, 2, . . . , k + 1, Ξt,j(hd) := Ψt(hd)Zt,j ; and

(ii) For each ` and m = 0, . . . , 6 such that `+m ≤ 6, E[sup
h,d,h̃,d̃

|(∂`+m/∂h`∂h̃m)Λt(hd, h̃d̃)|2

] <∞, where Λt(hd, h̃d̃) := Ψt(hd)Ψt(h̃d̃). �
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We provide the following lemma to formally state the interrelationship.

Lemma 5 Given Assumptions 1, 2, 3, 6, 7, and the null hypothesis H0 : λ∗ = 0 or δ∗ = 0,

(i) limh↓0 ρ̄(hd, h̃d̃) = sgn[c3]ρ̂(d, h̃d̃); and

(ii) lim
h̃↓0 limh↓0 ρ̄(hd, h̃d̃) = ρ̃(d, d̃). �

This lemma implies that the Gaussian stochastic process obtained under H01 : λ∗ = 0 can

generate the asymptotic Gaussian stochastic process under H02 : δ∗ = 0 as a special case, so

that G̃0(·) can be treated as a special case of Ḡ0(·). Therefore, we do not have to separately

derive the asymptotic null distribution under H02 : δ∗ = 0 when the conditions provided so

far are satisfied. We formally state this result in the following theorem.

Theorem 4 Given Assumptions 1, 2, 3, 6, 7, andH0 : λ∗ = 0 or δ∗ = 0, QLRn ⇒ supδ∈∆ Ḡ0(δ)2.

�

Note that the asymptotic null distribution is captured by Ḡ0(·) and we do not restrict the

parameter space as in Theorem 1. We adopt this idea from CIW although our interest lies in

a different expansion.

Before moving to the next section, we provide additional comments on the QLR test. We

note that the current examination provides a clue to the use of activation functions. Given

that it is determined by the researcher, its selection influences the performances of the tests. If

the researcher has a particular nonlinearity as an alternative in mind, the activation function

can be easily determined. For example, if the concerned nonlinearity is better approximated

by a cubic function, it is better to choose the activation function satisfying the zero-condition.

On the other hand, if the researcher does not have a particular alternative, several aspects

of the tests can be considered to determine the activation function. First, the activation func-

tions satisfying the no-zero condition should perform better than those satisfying the zero

condition in terms of asymptotic standard as their convergence rate is bigger than the cur-

rent QLR test. Second, we can select better activation functions by comparing the powers of

the tests under the Pitman-type local alternative. Under certain regularity conditions, the

local powers of the QLR tests can be compared by using the optimality argument in Davies

(1977). Third, we can also consider constructing a QLR test by adding two activation functions

together to the RHS such that they respectively satisfies the zero and no-zero conditions. As

their convergence rates are different, the QLR test has to be redefined to accommodate this,
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and the local power of the test can be different from the QLR tests in CIW and the current

paper. We leave examining these as future research topics.

4 Model Exercise and Monte Carlo Experiments

4.1 Model Exercise

Before conducting our experiments, we first examine a simple model and affirm the theoretical

results in the previous section. We assume that Yt = 0.5Yt−1 + Ut with Ut ∼ IID N(0, σ2
∗) and

also that the following model is specified for E[Yt|Yt−1, Yt−2, . . .]:

M := {f(Yt−1; ·, · · ·) : f(Yt−1;α, β, λ, δ) := α+ βYt−1 + λ sin(δYt−1),

α ∈ A, β ∈ (−1, 1), λ ∈ [−c̄, c̄], δ ∈ ∆},

where A and ∆ are compact sets in R containing zero as an interior element, and c̄ is a finite

positive number. Furthermore, we suppose that Ut exhibits conditional homoskedasticity, and

we let Zt be (1, Yt−1)′ for this exercise, implying that Xt = Yt−1. Thus, our null model is a

simple AR(1) model. As there is a single predictor in the activation function, we can decom-

pose δ into hd such that d ∈ {−1, 1} and h ≥ 0. In addition to this, E[Yt|Yt−1] = 0.5Yt−1

from the fact that {Yt} is an AR(1) process. We further note that (d/dx) sin(x)|x=0 = 1 and

(d2/dx2) sin(x)|x=0 = 0, so that the no-zero condition in CIW does not hold for this activation

function, whereas Assumption 3 holds. By this fact, we analyze the asymptotic null distribu-

tion using the methodology that we provided in the previous section when testing H01 : λ∗ = 0

or H02 : δ∗ = 0.

Given this DGP and model assumptions, we now obtain that for each δ and δ̃,

T1(δ, δ̃) = E[U2
t ]E[Ψ∗t (δ)Ψ

∗
t (δ̃)]

= σ2
∗ exp

[
−(δ2 + δ̃2)

σ2
∗

2

] [
1

2
exp(δδ̃σ2

∗)−
1

2
exp(−δδ̃σ2

∗)− δδ̃σ2
∗

]
,

and

J1(δ, δ) = exp(−δ2σ2
∗)

{
1

2
exp(δ2σ2

∗)−
1

2
exp(−δ2σ2

∗)− δ2σ2
∗

}
,

so that we can derive

(8) ρ̄(δ, δ̃) =
sinh(δδ̃σ2

∗)− δδ̃σ2
∗

{sinh(δ2σ2
∗)− δ2σ2

∗}1/2{sinh(δ̃2σ2
∗)− δ̃2σ2

∗}1/2
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by following the definition of ρ̄(·, ·) and using the fact that sinh(x) = exp(x)/2 − exp(−x)/2.

We also note that T2(d, d̃) = d3d̃3E[U2
t ]E[V ∗2t ] = 6d3d̃3σ8

∗, where Vt := Y 3
t−1 − 3σ2

∗Yt−1, and

J2(d, d) = 6d6σ6
∗. This implies that ρ̃(d, d̃) = d3d̃3/{d6d̃6}1/2 by the definition of ρ̃(·, ·). Finally,

T3(d, h̃d̃) = d3E[U2
t ]E[V ∗t Ψ∗t (h̃d̃)] = −d3δ̃3σ8

∗ exp(−σ2
∗ δ̃

2/2), so that

ρ̂(d, h̃d̃) = −
−σ8
∗d

3δ̃3 exp
(
−σ2
∗ δ̃

2

2

)
{6σ8

∗d
6}1/2{σ2

∗ exp(−h̃2d̃2σ2
∗)[sinh(h̃2d̃2σ2

∗)− h̃2d̃2σ2
∗]}1/2

by the definition of ρ̂(·, ·). From this, it simply follows that limh↓0 ρ̄(hd, h̃d̃) = −ρ̂(d, h̃d̃) by

applying L’Hôpital’s rule repeatedly. The negative sign in the RHS is attributable to the

fact that (d3/dx3) sin(x)|x=0 = −1, implying that sgn[c3] = −1. This is the result implied by

Lemma 5(i). In addition, lim
h̃↓0 limh↓0 ρ̄(hd, h̃d̃) = ρ̃(d, d̃), so that the covariance structure of

the Gaussian stochastic process obtained under H02 : δ∗ = 0 is obtained from the Gaussian

stochastic process derived under H01 : λ∗ = 0. This implies that the Gaussian stochastic

process obtained under H01 : λ∗ = 0 can be used to deliver the asymptotic behavior of the

Gaussian stochastic process derived under H02 : δ∗ = 0.

4.2 Monte Carlo Simulations

In this subsection, we conduct Monte Carlo experiments using the model exercise examined

in the previous subsection.

We first generate the asymptotic distribution of the QLR test under H0. The key element

for this is generating a Gaussian stochastic process with the correlation structure in eq. (8).

We note that sinh(x) =
∑∞

j=1 x
(2j−1)/(2j − 1)!, so that if we let

B(δ;σ2
∗) :=

1

{sinh(δ2σ2
∗)− δ2σ2

∗}1/2
∞∑
j=1

(δσ∗)
2j+1√

(2j + 1)!
Zj ,

where Zj ∼ IID N(0, 1), for each δ and δ̃,

E[B(δ;σ2
∗)B(δ̃;σ2

∗)] =
1

{sinh(δ2σ2
∗)− δ2σ2

∗}1/2{sinh(δ̃2σ2
∗)− δ̃2σ2

∗}1/2

∞∑
j=1

(δδ̃σ2
∗)

2j+1

(2j + 1)!

=
sinh(δδ̃σ2

∗)− δδ̃σ2
∗

{sinh(δ2σ2
∗)− δ2σ2

∗}1/2{sinh(δ̃2σ2
∗)− δ̃2σ2

∗}1/2
.

In other words, the covariance structure of Ḡ0(·) is identical to that of B(·;σ2
∗). Therefore,

B(·;σ2
∗)

d
= Ḡ0(·). This also implies that the asymptotic null distribution can be obtained by

generating supδ∈∆ B(δ;σ2
∗)

2 iteratively.
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For this goal, we instead consider the following Gaussian stochastic process: for each δ ∈

∆,

B̄(δ; σ̂2
n) :=

1

{sinh(δ2σ̂2
n)− δ2σ̂2

n}1/2
150∑
j=1

(δσ̂n)2j+1√
(2j + 1)!

Zj ,

where σ̂2
n := (n − 1)−1

∑n
t=2 Û

2
t and Ût is the prediction error obtained by estimating the null

model. Note that B(·;σ2
∗) contains unknown σ2

∗, and we cannot draw independent standard

normal random variables an infinite number of times. We instead estimate σ2
∗ and draw 150

standard normal random variables.

The environments for our Monte Carlo experiments are set up as follows. First, we con-

sider four different parameter spaces. We let ∆1 := [−0.5, 0.5], ∆2 := [−1.0, 1.0], ∆3 :=

[−1.5, 1.5], and ∆4 := [−2.0, 2.0]. Note that the asymptotic null distribution is influenced by

the size of ∆, so that different critical values must be applied for different parameter spaces.

Second, we gradually increase the sample size and investigate how the empirical null distri-

bution varies under each parameter space. The sample sizes we consider here are n = 100,

200, 400, 600, 1, 000, and 2, 000. The total number of replications is 2,000. We also obtain

the asymptotic distributions by simulating supδ∈∆ B̄(δ; σ̂2
n)2 50,000 times. This environment

is almost identical to those considered by CIW.

<<<<<<< Insert Figure 1 around here. >>>>>>>>

Our Monte Carlo simulation results can be summarized as follows. First, Figure 1 shows

the asymptotic null distributions obtained by simulating supδ∈∆ B̄(δ;σ2
∗)

2. As the parame-

ter space becomes larger, the associated critical values also increase, and the probability of

obtaining a larger value of supδ∈∆ B(δ;σ2
∗)

2 increases as shown in Figure 1.

<<<<<<< Insert Table 1 around here. >>>>>>>>

Second, we examine the empirical rejection rates of the QLR test. The simulation results

are presented in Table 1, in which we consider two cases separately. As the first case, the

critical values obtained from Figure 1 are applied, and as the second case, we assume that σ2
∗

is unknown. By generating supδ∈∆ B(δ; σ̂2
n)2 iteratively, we obtain the critical values. As σ̂2

n is

different for each iteration, different critical values have to be applied. Through this process,

we aim to examine how estimating σ2
∗ modifies the empirical rejection rates.
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<<<<<<< Insert Figure 2 around here. >>>>>>>>

We summarize the simulation results as follows. First, the simulation results are similar

irrespective of whether the unknown σ2
∗ is estimated. The differences between the empirical

rejection rates in Table 1 are very small for every cell in the table. Furthermore, the differ-

ence decreases as the sample size increases. Second, the empirical rejection rates converge to

the nominal levels as the sample size increases. When the sample size is small, the empirical

rejection rates are relatively imprecise. We can see this aspect from Figure 2, in which we

draw the empirical distributions of the QLR tests and the asymptotic distribution for each

parameter space. Third, more desirable results are obtained when the parameter space of δ is

moderately large. When ∆1 is selected, the empirical rejection rates are relatively imprecise,

and they become worse for small sample sizes. Figure 2 also shows that the empirical distri-

butions for ∆1 are more or less different from the asymptotic distribution although the other

empirical distributions are almost identical to their asymptotic distributions.

<<<<<<< Insert Table 2 around here. >>>>>>>>

Third, we examine the application of the weighted bootstrap to the QLR test. The covari-

ance structure of B(·;σ2
∗) is unknown if the distribution of Ut is unknown. This implies that

we cannot apply the critical values obtained from Figure 1. Hansen (1996) suggests applying

the weighted bootstrap for such a case, and CIW show through Monte Carlo experiments that

it can be successfully exploited if the no-zero condition holds. As the weighted bootstrap is

already explained by Hansen (1996), CIW, and Cho, Cheong, and White (2011), we do not

explain its implementation here again. Our simulation results are presented in Table 2 and

Figures 3. The estimated lines show the estimated p-values. Under the null, the estimated

lines should lie along the 45-degree line to be successful.

<<<<<<< Insert Figure 3 around here. >>>>>>>>

We can summarize the simulation results as follows. First, the weighted bootstrap yields

asymptotically consistent results as the sample size increases. This result differs from that

obtained by CIW. Their simulation results, driven by the logistic CDF, yield slightly different

results from the 45 degree line even for fairly large sample sizes. Note that the logistic CDF

also requires a sixth-order expansion as does the sine function. This implies that the selection
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of the activation function is very important for obtaining precise empirical rejection rates

under the null. Second, the simulation results obtained by the weighted bootstrap are better

than those obtained by the asymptotic critical values, although the difference is not large.

In addition, the simulation results are worse when ∆1 is applied to the data set with small

sample sizes.

5 Conclusion

We revisit CIW’s twofold identification problem, which arises when testing for neglected non-

linearity using an ANN framework. We replace their “no-zero” condition to the next level

and apply a sixth-order expansion. Specifically, we apply a sixth-order expansion and obtain

the asymptotic null distribution of the QLR test. In particular, we do not restrict the num-

ber of explanatory variables in the activation function by following the distance and direction

method in Cho and White (2012).

We show that the QLR test can be used to combine the null distributions obtained sep-

arately by type I and II methodologies as defined in this paper. This implies that a further

higher-order expansion can be applied to capture the asymptotic null distribution even if the

no-zero condition does not hold. Furthermore, Hansen’s (1996) weighted bootstrap can be

usefully exploited for the QLR test statistic.
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When σ2
∗ is known

QLR(∆1)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.10 0.65 1.10 0.75 0.80 1.20
5.00 % 2.60 2.65 4.40 4.50 4.55 4.85
10.0 % 7.00 6.50 9.10 9.20 9.25 10.10
15.0 % 10.55 11.40 13.30 14.40 14.15 15.85

QLR(∆2)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.75 0.90 1.00 0.45 1.10 0.75
5.00 % 3.70 4.05 4.15 4.25 4.95 4.90
10.0 % 8.20 9.30 8.50 8.80 9.85 10.05
15.0 % 12.25 13.70 14.10 14.75 14.90 14.15

QLR(∆3)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.70 0.85 0.50 0.70 0.95 1.00
5.00 % 3.65 4.30 4.75 4.05 4.70 4.65
10.0 % 7.80 9.05 9.90 9.20 10.30 9.70
15.0 % 11.30 13.95 15.35 14.40 15.55 15.45

QLR(∆4)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.80 1.00 1.10 1.25 0.95 1.20
5.00 % 4.55 5.40 6.20 6.55 5.30 5.85
10.0 % 8.80 10.70 10.85 11.75 11.20 11.60
15.0 % 13.80 15.20 16.80 17.50 16.70 17.05

When σ2
∗ is estimated

QLR(∆1)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.15 0.50 1.05 0.80 0.75 1.35
5.00 % 2.75 3.00 4.55 4.40 4.60 5.00
10.0 % 6.80 6.90 9.25 9.70 9.25 10.10
15.0 % 10.20 11.20 13.35 14.85 14.25 16.00

QLR(∆2)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.75 0.95 0.80 0.45 1.20 0.65
5.00 % 3.85 4.10 4.30 4.20 5.20 4.90
10.0 % 8.25 8.90 8.75 9.35 10.25 9.80
15.0 % 12.70 14.10 14.35 14.25 15.15 14.25

QLR(∆3)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.75 1.10 0.40 0.75 0.90 1.15
5.00 % 3.80 4.45 4.85 4.20 5.00 4.65
10.0 % 7.70 9.30 10.20 9.70 10.60 9.90
15.0 % 12.10 14.00 15.50 15.35 15.65 15.80

QLR(∆4)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.95 1.05 1.00 1.15 0.95 1.20
5.00 % 3.90 5.10 5.60 6.40 5.10 5.45
10.0 % 9.05 10.50 11.05 11.35 11.00 11.15
15.0 % 13.75 15.00 16.30 17.55 16.25 16.80

Table 1: EMPIRICAL REJECTION RATES USING THE ASYMPTOTIC DISTRIBUTIONS (IN PER-
CENT). Number of Replications: 2,000, DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1),
Model: Yt = α + βYt−1 + λ sin(δYt−1) + Ut, ∆1 = [−0.5, 0.5], ∆2 = [−1.0, 1.0], ∆3 = [−1.5, 1.5],
∆4 = [−2.0, 2.0], and K = 150
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Asymptotic Distribution QLR(∆1)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.50 0.90 0.50 0.80 0.90 1.30
5.00 % 3.35 4.45 4.35 4.25 4.60 4.95
10.0 % 6.65 8.00 8.85 9.30 8.95 10.45
15.0 % 11.15 12.60 13.85 14.45 13.50 14.65

Asymptotic Distribution QLR(∆2)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.80 0.70 0.95 0.95 0.95 0.50
5.00 % 4.75 4.65 4.85 4.45 5.45 4.10
10.0 % 10.15 9.65 10.55 8.95 9.80 9.05
15.0 % 14.95 14.50 15.15 14.05 15.00 14.20

Asymptotic Distribution QLR(∆3)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.75 1.05 0.85 1.00 0.75 1.05
5.00 % 4.60 4.90 4.05 4.95 3.70 4.55
10.0 % 8.90 10.00 8.85 10.25 8.35 9.80
15.0 % 14.70 15.45 14.00 14.55 13.55 14.25

Asymptotic Distribution QLR(∆4)

Nominal Level \ Sample Size 100 200 400 600 1,000 2,000
1.00 % 0.85 0.65 1.50 0.90 0.60 0.80
5.00 % 4.55 4.50 5.35 4.25 4.45 4.35
10.0 % 9.70 9.45 10.50 7.95 9.30 9.05
15.0 % 14.55 14.45 15.20 12.35 14.85 13.40

Table 2: EMPIRICAL REJECTION RATES USING THE WEIGHTED BOOTSTRAP (IN PERCENT).
Number of Replications: 2,000, DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1), Model: Yt =
α+ βYt−1 + λ sin(δYt−1) +Ut, ∆1 = [−0.5, 0.5], ∆2 = [−1.0, 1.0], ∆3 = [−1.5, 1.5], ∆4 = [−2.0, 2.0],
and K = 150
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Figure 1: ASYMPTOTIC NULL DISTRIBUTIONS OF THE QLR STATISTICS. Number of Repli-
cations: 50,000, Model: Yt = α + βYt−1 + λ sin(δYt−1) + Ut, ∆1 = [−0.5, 0.5], ∆2 = [−1.0, 1.0],
∆3 = [−1.5, 1.5], ∆4 = [−2.0, 2.0], and K = 150
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∆1 = [−0.5, 0.5] ∆2 = [−1.0, 1.0]

∆3 = [−1.5, 1.5] ∆4 = [−2.0, 2.0]

Figure 2: ASYMPTOTIC AND EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTICS.
Number of Replications: 2,000, DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1), Model: Yt =
α+ βYt−1 + λ sin(δYt−1) + Ut, and K = 150
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∆1 = [−0.5, 0.5] ∆2 = [−1.0, 1.0]

∆3 = [−1.5, 1.5] ∆4 = [−2.0, 2.0]

Figure 3: ESTIMATED p-VALUES OF THE QLR STATISTICS BY THE WEIGHTED BOOTSTRAP.
Number of Replications: 2,000, DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1), Model: Yt =
α+ βYt−1 + λ sin(δYt−1) + Ut, and K = 150
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