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Abstract

We provide mathematical proofs for the results in “Testing for Neglected Nonlinearity
Using Twofold Unidentified Models under the Null and Hexic Expansions” by Cho, Ishida,
and White (2013).
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1 Introduction

This note provides mathematical proofs of the results stated Cho, Ishida, and White (2013).
We avoid possible confusions by indicating the equation numbers in Cho, Ishida, and White
(2013) using square brackets.

2 Appendix

Proof of Lemma 2: (i) We note that
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We can also apply the CLT to > ;" | X;;X;;X;,U; and )"} | Z,U; under Assumption 5, which
imposes the finite moment condition on | X, ;| and |U;| to apply McLeish’s (1974, Theorem 2.3)
CLT on MDA. Therefore, we now have

{ ZZtUt, th iXe i Xe Uy iy 5,0 =1,2,. } ={Z,Z0:0,5,0=1,2,...k},
where Z and Z; ;, are mean-zero normal random variables such that E[ZZ'| = E[U?Z,Z;],
and for each i,j,0,7,5',0' = 1,2,...,k, E[Z;j,Z] = ElU?X1; X Xt 4Z), and E[Z; j 2y j1 o] =
ElU2X1; Xt jXt0Xt Xty Xe o). In particular, the weak limits are non-degenerate by Assump-

tion 5(ii7). In addition, we can apply the ergodic theorem to the other components. In other

words,
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under Assumptions 1 and 5. Given the DGP and the moment conditions, this result easily

follows by the ergodic theorem. Thus, for each d € S¥~1,

\}ﬁung MU = ZZdedg ZUth+oP():>g2(d).
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The weak limit is Op(1) uniformly in d by the fact that for each j =1,2,...,k, |d;| <1 and k is
finite.

We next show that {n~1/2/D3(-)MU} is tight as given in Billingsley (1999) and van der
Vaart and Wellner (1996). For this purpose, we show that for any ¢ > 0, there exists 6 > 0

such that
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Here, we note that
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where we let
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for notational convenience. In addition, we note that

djdidy — djdidy = djdi(de — dg) + d;(d; — di)dg + (dj — d;)didy,

so that
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This implies that
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Similarly, it is not difficult to show that
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This now implies that
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and also that for any d and d,

1
<‘\f/D3 MU — —/Ds(d MU‘>5>

NG
k
<IP’<Sng dy| Z{Wnﬂpt

k
J=11=1
For notational simplicity, we also let
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Given this and the assumptions, applying the ergodic theorem yields that for each j,i,¢ =
ok, Wi L wji and n~?t Z?letzg E[Z,Z}], and the CLT on MDA also yields
that {W, jie,n V230 ZU; = jyi 0 = 1,2,...,k} = Wji, Z : j,i,0 = 1,2,...,k}. Further,

Assumption 5(iii) implies that E[Z,Z;]~! is well defined. Therefore, for each ¢ = 1,2,... k,

Spe=Op(1), and if we let S,, := [Sp1,Sn2, ..., Sni) and |d — d| := [|d1 — di], ..., |dx — dil),
1 / / 3 =1 3
P <ﬁ /D3(d)MU — ¢ Dg(d)MU} > 5) <P (3|d —dJ'S, > 5) <P (3Hd —d||||Su] > 5) :

where the last inequality holds by Cauchy-Schwarz’s inequality. Given this, if § > ||d — EH,

P( sup 3|d-—d|]S.] > 5) <P([ISa] >
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so that if we choose ¢ to be small enough, it is not difficult to show that limsup,,_, . P(||S,|| >
€/(30)) < e. Thus, the tightness follows from this, and this implies that

(3) n VA/D3()MU = Gy(.).

Next, we note that
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Here, we can apply the ergodic theorem easily. For this application, we note that
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so that when the finite moment condition in Assumption 5(i) holds,
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This fact and eq.(2) further imply that for each d € S¥~1,
4) nL/Dy(d)MD;(d)e > Jo(d, d).

We here note that the ergodic theorem applies without associating it with its coefficient
did;dedyd;ydy. Therefore, we can also claim the ULLN for the convergence in eq. (4), mainly
because the space of d is a bounded unit circle, and k is finite. That is,
1
(5)  sup |—¢/D3(d)MDs(d)e — Jo(d, d)| = 0.
desk—1 [TV

Finally, we can combine eqs. (3) and (5) by the converging-together-lemma.
6) {n V2Dy(-)MU,n L/D3(-)MD3(-)e} = {Ga(-), Jo(-, )}

(i) We can derive similar results for other partial derivatives. That is, the moment con-
dition given by Assumption 5(i) is sufficient for McLeish’s (1974) CLT on MDA, so that all of
n~1/2/D5(-)MU, n~/2/D,(-)MU, and n~/2/D3(-)MU are Op(1) as desired. [ |

Proof of Theorem 2: We note that for each d € S¥71, if we let izn(d) maximize the LHS of eq.

[6], it asymptotically corresponds to maximizing the RHS of eq. [6] with respect to §,. We



obtain the following result:

b {LD ()i n) = LD (O 1)} = 1 max[
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/' Ds3(d)MU
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= max]0, go(d)] ,

where for each d € S¥!, Gy(d) := {027(d,d)}1/2Gy(d), and the last weak convergence
follows from the continuous mapping theorem. Thus, for each d and d, E[Gy(d)] = 0 and

E[Go(d)Go(d)] = p(d, d). This is the desired result. [ ]

Proof of Lemma 3: (i) We focus on ¢ = 5, as explained in the text. First, some tedious algebra

shows that
5
(D 2 Na(h, d) =20{%) (d) MU} (%2 () MU}

+10{ &Y (hd)MUH{ ¥ (hd) MU} + 2{¥ (hd)MU}{ ¥ (hd)’MU},

where for each m, ®™ (hd) := (9™ /0h™)® (hd). We also note that for each m, limy, o ©™ (hd)’

MU = ¢,,//D(0)MU a.s.—P, so that
5
1}58 88h5 n(h, d) =20c2c3{¢'Do(d)MU}{¢/D3(d)MU} + 10c;c4{¢'D1 (d)MU}{/D4(d)MU}

+ 2¢pcs {L/D() (d)MU} {L/D5 (d)MU}

a.s.—P. We further note that c; = 0, ¢/'D;(d) = d'X/, and Dy(d) = I,,, so that exploiting the fact
that M is the idempotent matrix constructed by Z := [¢,X] implies that limy o (9°/0h®) N, (h, d)
= 0 a.s. —P. Second, we now examine the denominator. We note that some algebra yields that

5
(8) ;M,Dn(h, d) = 209 (hd)M®?) (hd) + 108" (hd)ME Y (hd) + 2® (hd)ME®) (hd),

so that it now follows that
5

lﬁﬁ)l 88h5 Dy, (h,d) = 20c2c3¢'D3(d)MDs(d)e + 10ci ¢4’ Dy (d)MD(d)e + 2coc5e'Do(d)MD5(d)e

a.s.—P. From the fact that coc = 0 and M is the idempotent matrix constructed by Z, it also
trivially holds that (0°/0h%) D, (h,d) = 0 a.s. —P.
(i1) We differentiate eq. (7) one more time with respect to 2 and obtain
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6 Na(hd) =30{ ¥ (hd)MU}{®? (hd)’MU} + 20{ ¥ (hd)MU}{¥® (hd) MU}

9)
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and obtain

lim — N,

hlo aa; (h, d) =30c2c4{t'Ds(d)MU}e'Ds(d)MU} + 20¢3{'D3(d)MU}{¢'Dy(d)MU}

+ 126165{L’D1(d>MU}{L,D5 (d)MU} + 2COCG{L,DO (d)MU}{L,DG (d)MU}

a.s.—P. We now note that co = 0, ¢/'Do(d)M = 0, and ¢/'D;(d)M = 0, so that

6

lim —

im o6 Vn(h, d) = 20c3{¢'D3(d)MU}{¢/D3(d)MU} = 20c3{¢'D3(d)MU}*

a.s.—P, as desired.
(i1i) We again differentiate eq. (8) with respect to » and obtain

6
88116 D (h, d) =30{ T (hd)M®? (hd)} + 20{ ¥ (hd)’M®®) (hd)}

+12{¥O) (hd)ME WV (hd)} + 2{® ) (hd)'M¥ (hd)}

and from this,

lim —

6
i 38h6 Dy (h,d) =30cocst’Dy(d)MDy(d)e + 20c3'D3(d) MDs(d)e

+ 120165L,D5(d)MD1 (d)b + QCQC6L/D6(d)MD0(d)L.

We now note that c; = 0, ¢'Do(d)M = 0, and ¢'D;(d)M = 0, so that limy,o(9°/0h%)D,,(h,d) =

20c%(/D3(d)MDy3(d)e a.s.—P. This is the desired result and completes the proof. [
Proof of Lemma 4: We simply note that
¥ (hd)MU}? . {¥(hd)'MU}?
LR = { > 1
LF" = sup sup 62 oW (hd) MW (hd) ~ 4ogi1 110 62 (W (hd)'M¥ (hd)
as. {/D3(d)MU}? N 1 max 0 Ds3(d)MU
desh 1 52, D3(d)MDs(d)e ~ gegi1 62 ' \/VD;(d)MD;(d)e
= QLR® + op(1).
|

That is, QLRS) > QLRg) + op(1). This is the desired result.

Before proving Lemma 5, we first prove the following preliminary lemma, which is elemen-

tary by the given conditions. For notational simplicity, we let E(g’m) (hd, 71,3) = (9™ 8h£87Lm)
To(hd, hd) and 7. (hd, hd) := (8*/Oh’) T (hd, hd).



Lemma A1l Given Assumptions 1, 2, 3, 6, 7, and Hg : A\x = 0 or §, = 0, the following holds.
(i) For j = 0,1,2, limpo 7,7 (hd, hd) = 0;
(i7) limy, o 7’1 (hd hd) = c3T3(d, hd);
(iii) For j = 0,1,2,3,4,5, limy, 0 7\ (hd, hd) = 0;
(iv) limp o 7.0 (hd, hd) = 20275 (d, d);
(v) For j = 0,1,2,3,4,5,6, lim; hmth(“ (hd, hd) = 0;
(vi) For j =1,2,3,4,5, hm hmth1 (hd, hd) =0,
(vii) For j = 2,3,4, lim;, o 11mh 10 T.9 (hd, hd) = 0; and
(viii) limg;  limyyo 7,V (hd, hd) = 3T (d, d). O

Most parts follow by repeatedly using Lebesgue’s dominated convergence theorem and the
facts that 1 — F[Z}|E[Z,Z;)'Z; = 0, X; — E[X,Z}|E[Z,Z;)"'Z; = 0, and the condition that c; = 0.
We omit the proofs for brevity.

Proof of Lemma 5: (i) For this proof, we apply Taylor’s expansion with respect to 4. In other

words,
Tithd,hd) = lim S~ 7.9 (hd, )b + o(h?) = T, DR + ol1?)
by Lemma A1(; and i7) and
6 I ) 202
I J j 6\ __ 3 6 6
(10) Ji(hd,hd) = 1}%; ﬁjl (hd, hd)h? + o(h®) = =2 To(d, d)h° + o(h?)

by Lemma A1(v). This now implies that
c3T3(d, hd)

(2027y(d, d)} 12 {02 71(d, d)} /2 sgn[cs|p(d, hd),

lim p(hd, hd) =
ﬁﬁ}p( , hd)
as desired.

(z7) We again apply Taylor’s expansion to 77 (hd, E:l) with respect to (h, ﬁ). We note that

—3:3) i—17 3 73
71 (hd, hd) _%fglé%zzﬂ (hd, hd)h' "' h7 + o((h* + h®)?)

= B (0 T R + o7 + TP

by Lemma Al(v, vi, vii, and viii). Using this lemma and eq. (10) yields

lim lim p(hd, hd) = 4To(d,d) =75(d,d).
Rio hi0 {3027(d, d)}1/2{0302.72d d)}1/2
This is the desired result and completes the proof. |
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