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Abstract
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asymptotic properties of infinite dimensional GMM estimation when the weight matrix is formed by
inverting Brownian motion or Brownian bridge covariance kernels. These kernels arise in econometric
work such as minimum Cramér-von Mises distance estimation when testing distributional specification.
The properties of GMM estimation are studied under different environments where the moment condi-
tions converge to a smooth Gaussian or non-differentiable Gaussian process. Conditions are also devel-
oped for testing the validity of the moment conditions by means of a suitably constructed J-statistic. In
case these conditions are invalid we propose another test called the U -test. As an empirical application
of these infinite dimensional GMM procedures the evolution of cohort labor income inequality indices
is studied using the Continuous Work History Sample database. The findings show that labor income
inequality indices are maximized at early career years, implying that economic policies to reduce income
inequality should be more effective when designed for workers at an early stage in their career cycles.
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1 Introduction

The generalized method of moments (GMM) approach to estimation and inference has been adapted to

several nonstandard environments. A particular extension that has proved to be important theoretically and

empirically useful involves the application of GMM when the number of moment conditions is allowed

to pass to infinity with the sample size. An example of such high dimensional GMM occurs with the

use of minimum Cramér-von Mises distance (MCMD) estimation, which is useful in estimating unknown

parameters in a model’s distribution and can be extended to test distributional specification. Early work by

Pollard (1980) and later Cho et al. (2018) showed how to develop limit theory for MCMD estimation in

GMM form with a particular weight matrix. The latter paper applied MCMD to test the Pareto distributional

form for income data in Korea, an approach that is commonly used in estimating top income shares (see

Piketty, 2003; Piketty and Saez, 2003; Atkinson et al., 2011, among others). In another context, Angrist and

Keueger (1991) estimated the monetary return to education in the labor market using two-stage least squares

on U.S. census data with a large number of instruments.

The large sample properties of high dimensional GMM with many moment conditions rely on the

asymptotic behavior of the GMM components and these are case-dependent. For example, when persis-

tently correlated moment conditions are employed in GMM estimation, large sample analysis differs from

that when the moment conditions are weakly correlated as assumed by Carrasco (2012). Therefore, GMM

using the moment conditions for MCMD is very different from that formed by weakly correlated moment

conditions because the moment conditions for MCMD converge to a Brownian bridge (BB) process.

Different weight matrices in GMM may also produce different limit properties. But when the matrix di-

mension grows, inversion inevitably becomes imprecise as the smallest eigenvalue of the matrix approaches

zero. Indeed, the limiting inverse may not exist and computation becomes case-dependent and difficult even

when the limit exists. For example, the BB process for MCMD estimation allows GMM to be computed

using the inverse of the BB covariance matrix, but it is unknown how the inverse matrix affects GMM

asymptotically, irrespective of the existence of the limit inverse. Likewise, if the moment conditions form

a unit-root process (another persistently correlated process) that converges to Brownian motion (BM) upon

standarization, the size of the moment conditions grows and an asymptotically optimal GMM is obtained

by inverting the BM covariance matrix. Nonetheless, its influence on GMM limit behavior is presently un-

known in the literature. The reason is that the limit of the inverse of the BM covariance matrix does not

exist in any standard form of the type that assumes a finite number of moment conditions. These restric-

tions effectively diminish the scope of GMM applications in the literature to reliance on stationary moment

conditions. Challenges of the type just described associated with high dimensional matrix inversions relate
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to the so-called ill-posedness problem associated with the inversion of operators in functional analysis, a

problem that is typically resolved by various forms of regularization.

A primary goal of the present paper is to tackle directly and without regularization the challenges of

high dimensional GMM that are associated with BM and BB covariance matrices, which are in turn induced

by persistently correlated moment conditions. Direct inversion of BM and BB covariance matrices and the

manner of doing so is quite new and opens up a wide range of potential applications. To mention a few of

them here: (i) For empirical processes that converge to a BB process, as for the Kolmogorov-Smirnov (KS)

test, it is necessary to invert the BB covariance matrix when testing a distributional hypothesis within the

GMM framework; (ii) BM and BB processes are widely assumed in finance for series such as stock prices,

interest rates, and option prices among others (e.g., Andersen and Piterbarg, 2010; Hirsa and Neftci, 2014).

If the sample paths of these processes are employed as a series of moment conditions for GMM estimation

it becomes necessary to invert BM or BB covariance matrices; (iii) More generally, the use of covariance

matrices based on BM and BB processes and kernels is common because of convenience of form and ease

of analysis, yet they are rarely applied in empirical work because of the difficulties induced by ill-posedness

problems in inversion.

To meet these needs the main aim of the present study is to provide a unified framework for delivering the

asymptotic properties of GMM when BM or BB covariance matrix inversions are involved in a wide range

of different circumstances where moment conditions are persistently correlated in a manner that yields

a continuous sample path. In particular, our approach allows the moment dimension to grow infinitely

large and makes explicit the variate space and inner product framework that provides the mechanism for

embodying the GMM limit theory. We call these GMM techniques BM-GMM and BB-GMM.

The asymptotic properties of BM- and BB-GMMs depend intimately on two key components – the

weight matrix and the moment conditions – both of which become infinite dimensional in the limit. We

briefly explain here how our theory is developed using these elements. First, the properties of the weight

matrix in BM- and BB-GMMs inevitably affect the limit properties of the estimation procedure, just as they

do in the finite dimensional case. The BM and BB covariance matrices become infinite dimensional as the

moment size grows, and they are often called the BM-kernel and BB-kernel, in accord with their use as

kernels for integral operators. If the moment index is adjusted to fit to the unit interval, the BM and BB

covariance matrices can be positioned on the unit square. Further, as the moment size increases, the cor-

responding BM and BB covariance matrices converge to continuous functions. Hence, when they are both

suitably standardized, the product of a BM (or BB) covariance matrix and a vector (whose standardized

form has a continuous function limit on the unit interval) converges to a double integral formed with the BM
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(or BB) kernel and the limiting continuous function of the standardized vector. We can also represent this

limit using an inner product between two continuous functions such that the first is the integral transform

of the limiting continuous function using the BM (or BB) kernel, and the second is the limiting continuous

function. For our GMM analysis, the GMM distance is constructed using the inverted BM (or BB) covari-

ance matrix as the weight matrix instead of the BM (or BB) covariance matrix itself. This inversion affects

GMM estimation by ensuring that the GMM distance converges to an inner product between the derivatives

or differentials defined by the limit process of the moment conditions. Heuristically, the quadratic form

product that uses the ‘inverted’ BM covariance matrix in finite sample formulations yields asymptotically

an inner product between the ‘dis-integrated’ processes. To the best of our knowledge, this approach and

the associated mathematical development is quite new; and in formulating the GMM distance it delivers

directly the requisite mathematics implied in the prior literature that the inverse BM-kernel operator is a

second-order differential kernel operator (e.g., Carrasco et al., 2007). This linkage is established in the

paper using generalized function analysis.1

Second, infinite dimensional moment conditions also affect the limit properties of GMM. As mentioned

above, there may be two types of infinite dimensional moment conditions: persistently correlated moment

conditions and weakly correlated moment conditions. We distinguish these by their sample path charac-

teristics. If the sample path is continuous, we say that the moment conditions are persistently correlated.

Otherwise, we call them weakly correlated moment conditions. For the current study, we assume persis-

tently correlated moment conditions and leave the case of weakly correlated moment conditions for future

research. This approach is convenient because the large sample analysis of GMM based on the two types of

moment conditions are distinct and better treated in separate work. Further, continuous BM and BB kernels

are incompatible with weakly correlated moment conditions, although we do not necessarily require that the

moment conditions themselves converge to BM or BB processes. Instead, our framework requires that the

moment conditions converge to a twice continuously differentiable Gaussian process or an Itô process for

which BM and BB processes are just special cases. Using this wide class of infinite dimensional moment

conditions, we have a unified framework for investigating the large sample properties of GMM.

In two studies that relate to the present work, Carrasco and Florens (2000) and Amengual et al. (2020)

considered infinite dimensional GMM estimation by using Tikhonov regularization methods. Specifically,

these authors obtained the limit of an infinite dimensional weight matrix by combining its spectrum with

asymptotically negligible bias in a manner analogous to ridge regression so that the methodology is applica-

ble even when the weight matrix is not bounded in the limit. Picard (1910) provided necessary and sufficient

1In this respect the analysis relates to the derivation of least absolute deviation (LAD) asymptotics given in Phillips (1991).
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conditions for the existence of a bounded inverted kernel function. But many popular kernel functions for

empirical applications do not satisfy those conditions. In consequence, it is generally believed that it is

necessary to apply regularization techniques to enable analysis of inverse kernels in such cases. Indeed,

Carrasco and Florens (2000) used regularized kernel inversion to obtain the limit distribution of the esti-

mators defined in terms of the inverse kernel, and Amengual et al. (2020) applied that approach in testing

distributional assumptions by GMM (see also Kirsch, 1996; Carrasco et al., 2007). Neither BM-GMM nor

BB-GMM kernels satisfy Picard’s conditions, so the option of using regularized kernel inversion is available

in the present study. But our approach is instead to develop explicit derivations of the inverse BM-kernel

and inverse BB-kernel, enabling us to develop and analyze GMM asymptotics without having to resort to

the use of regularized kernel inversions.

In addition, the current study addresses overidentification testing. We provide regularity conditions

under which the Sargan J-test statistic (Sargan, 1958; Hansen, 1982) can be validly used for testing overi-

dentification in the high-dimensional moment case. In case the regularity conditions for the J-test do not

hold, we revisit the T -test approach taken in Donald et al. (2003) and provide a new test for the present

setting called the U -test, showing how the two different testing methods supplement each other according

to the context.

High dimensional BM- and BB-GMM methods can be applied in many areas where large datasets are

available to test relevant economic hypotheses. We demonstrate their use in labor economics, focusing

on BB-GMM estimation to measure top labor income shares over time. Among others, Piketty (2003),

Piketty and Saez (2003), and Atkinson et al. (2011) have estimated top income shares in many countries

over time using income data. A key assumption in their approach is that income observations in the right

tail of the distribution closely follow the form of a Pareto tail. In our approach BB-GMM estimation is

conducted under the Pareto tail hypothesis by employing the Continuous Work History Sample (CWHS)

database, which collects labor income data from individuals born in the U.S. between 1960 and 1962. We

test the Pareto tail distributional condition using the U -test. Unless the Pareto tail hypothesis is rejected, we

estimate the top income shares using the BB-GMM approach.

A further goal of our empirical study is to examine the evolution of income inequality within the same

cohort. Previous research has examined income inequality over time using country-level data, which may

not adequately capture structural factors involved in the evolution. Instead, we compute income inequality

indices using observations from the same cohort in the CWHS database over time, enabling us to identify

a standard pattern in income inequality evolution. By constructing several cohorts from the database, we

derive policy implications to reduce income inequality.
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The plan of the present study is as follows. Section 2 develops limit theory in our high dimensional

setting for GMM estimation and the tests for overidentification. A particular focus in this discussion is the

large sample behavior of BB-GMM estimation when it is applied to MCMD estimation, which is subse-

quently treated as a running example in the rest of the paper. Section 3 reports the results of a simulation

study that employs this running example and corroborates the large sample behavior established in Section

2. Section 4 examines the CWHS database and measures various labor income inequality indices, focus-

ing on data classified by gender, education, race, and birth year. Conclusions are drawn in Section 5. All

the main results of the paper are proved in the Online Supplement, together with some additional technical

results and empirical evidence.

For ease of reference we introduce some notation. For an arbitrary function f(·) and j = 1, 2, . . ., we

use (dj/djx)f(x̄) for (dj/dxj)f(x)|x=x̄. Integral operators are shown in boldface, and (a(·), b(·)) is the

L2 inner product of a(·) and b(·), so that (a(·), b(·)) :=
∫
a(u)b(u)du. If A(·) ∈ Ra and B(·) ∈ Rb,

then [A(·), B(·)] denotes the Gramian matrix of A(·) and B(·), viz., the matrix of inner products between

the elements of A(·) and B(·), so that [A(·), B(·)] is an a × b matrix with (i, j)-th element (Ai(·), Bj(·)).

Finally, for i and j = 1, 2, . . . , n, we let in := i
n and jn := j

n . Other notation in the paper is standard.

2 Estimation and Inference for BM-GMM and BB-GMM

This section develops a large sample theory for BM-GMM and BB-GMM estimation and inference. Section

2.1 describes the modeling environment for BM-GMM and BB-GMM together with two running examples.

The large sample theory is discussed in Section 2.2. Section 2.3 extends the large sample theory to testing

for overidentification, and Section 2.4 applies BB-GMM and BM-GMM to the running examples.

2.1 Environments of BM- and BB-GMMs

To fix ideas the standard framework for finite dimensional GMM involves extremum estimation with an

objective function to be minimized that has the form

q̄n(·) := Ḡn(·)′Σ̂−1
n Ḡn(·) with qn(·) := nq̄n(·)

for which there is assumed to be a unique vector θ∗ ∈ Θ satisfying the moment condition E[Ḡn(θ∗)] = 0.

Here Θ is a convex and compact parameter space that is a subset of Rd (d ∈ N) and the sample moment

vector Ḡn(·) is defined by a sequence of strictly stationary and ergodic random variables {Wt ∈ Rr : t =

1, 2, . . . , n} defined on a complete probability space and continuously differentiable on Θ with probability

(prob.) 1. Here, Σ̂n ∈ Rs×s is a symmetric, positive definite matrix for large enough n. Let θ̂n denote
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the GMM estimator obtained as θ̂n := argminθ∈Θ q̄n(θ). The dimension of the moment conditions is the

dimension, s, of Gn(·) := nḠn(·).

Typically in GMM limit theory the number of moment conditions s is invariant to the sample size,

although this is not always the case in practical work as in many problems the underlying theory provides

a large number of possible moment conditions. Hansen (1982) and Bates and White (1985) among many

others explored the asymptotic behavior of the GMM estimator in fixed dimensional settings. Specifically,

if the GMM estimator is approximated as

√
n(θ̂n − θ∗) = −

[
∇θḠn(θ∗)Σ̂

−1
n ∇′

θḠn(θ∗)
]−1 [

∇θḠn(θ∗)Σ̂
−1
n G̃n(θ∗)

]
+ oP(1) (1)

by way of Taylor expansion, where G̃n(θ∗) :=
√
nḠn(θ∗), the limit distribution of the GMM estimator

is obtained by deriving the limit behavior of the components on the right side of (1). If ∇θḠn(θ∗) and

Σ̂n converge to H∗ and Σ with prob. converging to 1, and G̃n(θ∗)
A∼ N (0,Σ∗), then

√
n(θ̂n − θ∗) is

asymptotically normal.

The current study differs from the standard GMM framework as the number of moment conditions s is

allowed to increase with n → ∞. For this purpose we let s = sn be the dimension of the moment conditions

with consequent implications for the weight matrices in GMM estimation. Our particular focus in estimating

θ when Σ̂n has the following possible Σ̈n or Σ̃n. Here the (i, j)-th element of Σ̈n is min(in, jn) and the

dimension of Σ̈n is n, which corresponds to the finite sample analog of a Brownian motion kernel. We

refer to the GMM driven by Σ̈n as Brownian motion GMM (BM-GMM) and we denote the corresponding

estimator as θ̈n. Similarly, Σ̃n is a sample analog of the Brownian bridge kernel, and the (i, j)-th element

is min(in, jn)(1 − max(in, jn)). The dimension of Σ̃n is n − 1, as inclusion of the n-th row and n-

th column would make Σ̃n singular. So Σ̃n is defined by the first (n − 1) rows and columns by letting

i, j = 1, 2, . . . , n − 1. We call the estimator based on Σ̃n the Brownian bridge GMM (BB-GMM) and it is

denoted θ̃n. A primary goal of the paper is to derive the limit properties of BM-GMM and BB-GMM.

Example 1: MCMD Estimation Bontemps and Meddahi (2012) test distributional assumptions by GMM

methods using the moment conditions implied by the assumption. Use of BM- and BB-GMMs is more

related to MCMD estimation. In that connection, Pollard (1980) and Cho et al. (2018) examined es-

timating an unknown parameter θ∗ in the distribution function, F (·, θ∗), of a variable xt by minimiz-

ing the Cramér-von Mises distance. Specifically, it was assumed that grouped data {[cj−1, cj),#{xt ∈

[cj−1, cj)} : j = 1, 2, . . . , s; t = 1, . . . , n} are available on xt and θ∗ is estimated by minimizing the

objective function q̄
(s)
n (θ) :=

∑s
j=1{p̂n,j − F (cj , θ)}2 with respect to θ, where for each j = 1, 2, . . . , s,

p̂n,j := n−1
∑n

t=1 I(xt ∈ [c0, cj ]), and {xt : t = 1, 2, . . . , n} is a sequence of independent identically dis-
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tributed (IID) random variables. In this formulation the quantity p̂n,j , giving the proportion of the data in in-

terval j, is treated as the dependent variable, and F (cj , ·) serves as a nonlinear model for p̂n,j . When F (·, θ∗)

correctly matches the distribution of xt, the MCMD estimator of θ∗ is consistent, and its distribution is

asymptotically normal. In particular, if the MCMD estimator is used to construct the Kolmogorov-Smirnov

(KS) statistic to test a distributional hypothesis with an unknown parameter, the null limit distribution is a

functional of a linearly transformed Brownian bridge.

MCMD estimation of this type can be formulated in GMM format. For each j = 1, 2, . . . , s, the

parameter θ∗ satisfies the moment condition E[p̂n,j − F (cj , θ∗)] = 0. Let θ̂(s)n be the GMM extremum

estimator satisfying

θ̂(s)n := argmin
θ∈Θ

(P̂ (s)
n − F (s)(θ))′W (s)(P̂ (s)

n − F (s)(θ)),

where P̂
(s)
n := [p̂n,1, . . . , p̂n,s]

′, F (s)(θ) := [F (c1, θ), . . . , F (cs, θ)]
′, and W (s) is an s× s positive definite

matrix that converges to a positive definite matrix as n tends to infinity. The MCMD estimator is therefore a

GMM estimator with a structure of generalized least squares. The GMM estimator θ̂(s)n is consistent for θ∗

and asymptotically normal under the standard framework that applies when the number of groups s is fixed.

The MCMD estimator is then the special case where the weight matrix is W (s) = Is. As another case, if

the data is grouped and the group dimension is sn = n − 1 with W (sn) = Σ̃−1
n , then MCMD falls within

the framework of BB-GMM. Section 2.4 demonstrates that
√
n(P̂

(s)
n − F (s)(θ∗)) weakly converges to a

Brownian bridge process B0(·) if the distribution of xt is continuous, which motivates Σ̃−1
n as the weight

matrix for GMM. Accordingly, we now refer to MCMD estimation driven by W (sn) = Σ̃−1
n as infinite

dimensional MCMD estimation. □

Example 2: Regression Using Integrated Series Consider two independent, integrated time series ut and

xt ∈ Rk where ∆ut = OP(1) and ∆xt = OP(1) are strictly stationary with E[∆ut] = 0 and E[∆xt] = 0.

Further suppose that yt is generated such that for some unknown β∗ ∈ Rk, yt = x′tβ∗ + ut. Without loss of

generality, let y0 = 0 and x0 = 0. This data generating process (DGP) differs from the cointegrating systems

in Phillips and Durlauf (1986) and Engle and Granger (1987), where a stationary series is assumed for ut

in generating yt and the cointegrating vector β∗ is being estimated. In the present case ut is nonstationary

and the vector β∗ in the generating mechanism is to be estimated, even though the DGP is analogous to the

spurious regression considered in Phillips (1986).

Ordinary least squares (OLS) does not deliver a consistent estimate of β∗. In fact, since xt and ut are

both integrated processes, the OLS estimate β̄n is inconsistent with the following limit behavior (Phillips
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and Durlauf, 1986)

β̄n = β∗ +

(
1

n2

n∑
t=1

xtx
′
t

)−1
1

n2

n∑
t=1

xtut ⇒ β∗ +

(∫ 1

0
Bx(v)Bx(v)

′dv

)−1 ∫ 1

0
BxBu(v)dv, (2)

where Bx(·) := Ω
1/2
x Wx(·) and Bu(·) = σuWu(·) are Brownian motions driven by partial sums of the

innovations ∆xt and ∆ut. Here, Wx(·) and Wu(·) are independent Wiener processes, Ωx is the nonsingular

long run variance matrix of ∆xt and σ2
u is the long run variance of ∆ut. The limit theory (2) depends on the

joint weak convergence
(
n−1/2

∑⌊(·)n⌋
t=1 xt, n

−1/2
∑⌊(·)n⌋

t=1 ut

)
⇒ (Bx(·),Bu(·)) under some mild regularity

conditions (e.g., Phillips and Durlauf (1986), White (2001, ch. 7)), where ⌊a⌋) denotes the integer part of a.

By contrast, BM-GMM estimates β∗ consistently. Since E[ut] = 0 for each t, let β̂n be the infinite

dimensional GMM estimator obtained by extremum estimation as

β̂n := argmin
β

nq̄n(β), where q̄n(β) := Ḡn(β)
′Σ̈−1

n Ḡn(β) with Ḡn(β) := n−1 (y −Xβ) ,

where y := (y1, . . . , yn)
′ and X := (x1, . . . , xn)

′, so that β̂n = (X ′Σ̈−1
n X)−1X ′Σ̈−1

n y. We demonstrate

below that this infinite dimensional GMM estimator is consistent and asymptotically normal with
√
n con-

vergence rate. □

In addition to the above infinite dimension GMM estimations there are other examples where the mo-

ment dimension is determined by the sample size n. Grenander (1981) developed a theory of abstract

inference in function space that deals with parameters in models involving various stochastic processes and

studied best linear unbiased estimation in that context. The abstract space setting relates to the approach

taken in the current study where our focus involves inverse BM and BB kernels. Carrasco and Florens

(2000) also worked with a model that falls into the infinite dimensional GMM framework. They noted the

important limitation that the limiting form of the usual weight matrix (in this setting Σ̈−1
n and Σ̃−1

n ) does not

necessarily exist as a bounded linear operator, because the associated covariance operator does not satisfy

Picard’s (1910) conditions for the existence of a linear inverse operator in the limit. Their approach instead

uses Tikhonov’s regularization, as in ridge regression, so that the inverse operator can be represented in

terms of an approximate spectral decomposition of the covariance operator. This involves bias that vanishes

asymptotically (see also Kirsch, 1996). Amengual et al. (2020) applied this method to test distributional as-

sumptions by GMM. Our MCMD approach, in contrast to these methods, focuses directly on the underlying

kernel and works explicitly with its inverse in a manner that enables the limit behavior of BB-GMM to be

obtained without applying Tikhonov regularization.

Several other high-dimensional studies relate to the present work. Shi (2016) examines estimating a
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nonlinear structural model similar to that of the present paper but with an approach that maximizes a con-

strained empirical likelihood and selects only informative moment conditions. Donald and Newey (2001),

Bai and Ng (2010) and Belloni et al. (2012) also examine estimating linear structural parameters using

high-dimensional moment conditions in environments that differ from the current study, supposing differ-

ent dimension sizes for the moments compared to the current study. Donald and Newey (2001) assume

s2n = o(n) and select the set of instruments to produce an asymptotically efficient GMM estimator based

on mean squared error. Bai and Ng (2010) let sn = o(n) and estimate the parameter by exploiting a fac-

tor structure in the data. Belloni et al. (2012) select informative instrumental variables by means of Lasso

and Post-Lasso regressions to estimate the unknown parameter by two-stage least squares estimation for

log(sn) = o(n1/2).

2.2 Limit Properties of BM- and BB-GMMs

The limit distribution of the BM- and BB-GMM estimators are obtained by deriving the limit behaviors

of the components on the right side of (1), viz., (Ḡn(θ∗),∇θḠn(θ∗), Σ̂n). For the limit distribution, it

is convenient to translate them using functional representation. We first transform Ḡn(θ∗) into a càdlàg

function defined on [0, 1]. For each θ, we let Ḡn,j(θ) be the j-th row element of Ḡn(θ) ∈ Rsn and define

gn(u, θ) :=

 Ḡn,j(θ), if u ∈ [(j − 1)/n, j/n), j = 1, 2, . . . , sn; and

0, if u ∈ [sn/n, 1].

Note that Ḡn(θ) has sn rows, and the above function gn(·, θ) is defined by translating Ḡn(θ) into a function

defined on the unit interval, which represents the space of the standardized index. As a high-level condition,

we suppose that gn(·, ·) → g(·, ·) uniformly on [0, 1]×Θ, where g(·, ·) is a continuous function on [0, 1]×Θ.

This assumption is used for the consistency of the GMMs.

This standardization makes the weak limit analysis of Ḡn(θ∗) straightforward. As sn grows to infinity,

it is appropriate to apply the functional central limit theorem (FCLT). Many applications of FCLT methods

have appeared in the econometric literature since, in one context, the work of Phillips (1987) on limit theory

in unit root time series regression using partial sums, and in another, Cho and White (2011) on limit theory

for generalized runs tests. Here we suppose that g̃n(·, θ∗) :=
√
ngn(·, θ∗) weakly converges to a Gaussian

stochastic process G(·) say, such that for a continuous function ω(·, ·) defined on [0, 1]2, E[G(u1)G(u2)]

= ω(u1, u2). From this weak convergence, the uniform law of large numbers (ULLN) follows for gn(·, θ∗)

so that supu∈[0,1] |gn(u, θ∗)| → 0 with prob. converging to 1.

We focus on two types of Gaussian processes in this work. We suppose that G(·) is either a Gaussian

process in C(2)([0, 1]) with prob. 1, or an Itô process satisfying a stochastic differential equation so that for
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some µ : [0, 1]× Ω 7→ R and σ : [0, 1]× Ω 7→ R, dG(u) = µ(u,G(u))du+ σ(u,G(u))dB̄(u), where B̄(·)

is a Brownian motion. As discussed below, BM-GMM and BB-GMM estimators have different asymptotic

behavior depending on the path properties of G(·). If G(·) is differentiable with prob. 1, ω(·, ·) is also

differentiable on [0, 1]2, and G′(·) becomes another Gaussian process. This further implies that G′′(·) is

also a Gaussian process. On the other hand, if G(·) is an Itô process, ω(·, ·) is not differentiable. There are

many such Gaussian examples, including Brownian motion and Brownian bridge processes. To simplify

notation from now on, we suppress θ∗ in g̃n(·, θ∗), writing g̃n(·) ≡ g̃n(·, θ∗); and we let µ(u) and σ(u)

denote µ(u,G(u)) and σ(u,G(u)), respectively.

We next rewrite ∇θḠn(θ∗) as a set of functions defined on the unit interval that uniformly converges to

a continuous function on the same interval. For j = 1, 2, . . . , sn and j = 1, 2, . . . , d, first let H(j,i)
n be the

j-th row and i-th column element of ∇′
θḠn(θ∗) ∈ Rsn×d, and then for each i = 1, 2, . . . , d further let

Hn,i(u) :=

 H
(j,i)
n , if u ∈ [(j − 1)/n, j/n), j = 1, 2, . . . , sn; and

0, if u ∈ [sn/n, 1],

and Hn(·) := [Hn,1(·), Hn,2(·), . . . ,Hn,d(·)]′. As for gn(·), Hn,i(·) has a jump at each increment of j/n,

where j = 1, 2, . . . , sn. Here, we suppose that the ULLN holds for this stochastic function, so that as n

tends to infinity for each j and for a continuous function Hj(·), supu∈[0,1] |Hn,j(u) − Hj(u)| → 0 with

prob. converging to 1. We also let H(·) := [H1(·), H2(·), . . . ,Hd(·)]′.

As a final functional reformulation, we translate Σ̂n as a two-dimensional càdlàg function defined on

[0, 1]2 by defining

σ̂n(u1, u2) :=

 Σ̂
(j,i)
n , if u1 ∈ [(j − 1)/n, j/n), u2 ∈ [(i− 1)/n, i/n), and j, i = 1, 2, . . . , sn; and

0, if u1 ∈ [sn/n, 1] and u2 ∈ [sn/n, 1],

where Σ̂
(j,i)
n is the j-th row and i-th column element of Σ̂n. For the case of Σ̈n, Σ̂(j,i)

n = min[jn, in], and

we let σ̈n(·, ◦) denote σ̂n(·, ◦), which converges to σ̈(·, ◦) := min[·, ◦] uniformly on [0, 1] × [0, 1]. For the

case of Σ̃n, Σ̂(j,i)
n = min[jn, in](1 −max[jn, in]), and we let σ̃n(·, ◦) denote σ̂n(·, ◦), which converges to

σ̃(·, ◦) := min[·, ◦](1−max[·, ◦]) uniformly on [0, 1]× [0, 1].

The functional representations discussed above make it convenient to represent the associated statistics

by an integral transform. For example, if we let Bn := [bn(
1
n), . . . , bn(

sn
n )]′ and Cn := [cn(

1
n), . . . , cn(

sn
n )]′,

where bn(·) := b(⌊n(·)⌋/n) and cn(·) := c(⌊n(·)⌋/n) with b(·) and c(·) being continuous on [0, 1],

B′
nΣ̂nCn =

sn∑
j=1

sn∑
i=1

bn (jn) cn (in) Σ̂
(j,i)
n = n2

∫ 1

0

∫ 1

0
bn(u1)σ̂n(u1, u2)cn(u2)du1du2.
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Here, ⌊·⌋ denotes the smallest integer greater than the given argument. If we further let Σ̂n be an integral

operator with kernel n2σ̂n(·, ◦), viz., Σ̂nbn(◦) = n2
∫ 1
0 bn(u1)σ̂n(u1, ◦)du1, we also have B′

nΣ̂nCn =

(Σ̂nbn(·), cn(·)). Likewise, the inner product representation for the integral transform of the quadratic

product can apply to a quadratic product with the weight matrix Σ̂−1
n . For an integral operator Ξ̂n with a

kernel ξ̂n(·, ◦), we suppose that

q̄n(θ∗) = Ḡn(θ∗)
′Σ̂−1

n Ḡn(θ∗) =

∫ 1

0

∫ 1

0
gn(u1)ξ̂n(u1, u2)gn(u2)du1du2 = (Ξ̂ngn(·), gn(·)).

Note that ξ̂n(·, ◦) corresponds to the kernel of Σ̂n, viz., n2σ̂n(·, ◦). Likewise, it follows that

∇θḠn(θ∗)Σ̂
−1
n ∇′

θḠn(θ∗) = [Ξ̂nHn(·), Hn(·)] and ∇θḠn(θ∗)Σ̂
−1
n G̃n(θ∗) = [Ξ̂nHn(·), g̃n(·)]

by analogy. Here, [Ξ̂nHn(·), Hn(·)] denotes the Gramian matrix constructed by Ξ̂nHn(·) and Hn(·),

viz., its j-th row and i-column element is (Ξ̂nHn,j(·), Hn,i(·)). The same interpretation also applies to

[Ξ̂nHn(·), g̃n(·)]. Note that these inner products involving the integral transforms are employed to handle

the large dimension of the moment conditions tending to infinity. From now, we specifically let Ξ̃n and

Ξ̈n be the integral operators associated with Σ̂−1
n and Σ̈−1

n , respectively, and their limit operators are also

denoted as Ξ̃ and Ξ̈, respectively.

The inverse kernel ξ̂n(·, ◦) exhibits various asymptotic properties, and the asymptotic behavior of Ξ̂n

critically depends on them. Before examining the asymptotic properties of BM-GMM and BB-GMM, we

first examine the asymptotic behavior of ξ̃n(·, ·) and ξ̈n(·, ◦). The inverse kernel property is substantially

different from being continuous. We first focus on ξ̃n(·, ◦) denoting the kernel function of Ξ̃n, which we

provide in Section A.5. The following lemma delivers the limit behavior of (Ξ̃nbn(·), cn(·)):

Lemma 1. Given that b(·) and c(·) are such that b(0) = c(0) = b(1) = c(1) = 0,
(i) (i.a) if b(·) ∈ C(2)([0, 1]), Ξ̃nbn(·) = −b′′(·) + o(1);

(i.b) if it further holds that c(·) ∈ C(1)([0, 1]), (Ξ̃nbn(·), cn(·)) = (b′(·), c′(·)) + o(1);
(ii) if b(·) and c(·) are continuous functions with finite second variations, n−1(Ξ̃nbn(·), cn(·)) = (db(·),

dc(·)) + o(1), where db(·) and dc(·) denote the differentials of b(·) and c(·), respectively. □

Remarks 1. (i) Lemma 1 shows that the limit properties and convergence rate of (Ξ̂nbn(·), cn(·)) both
depend on the functions attached to the operator.

(ii) Lemma 1 (i.a) shows that the kernel function of Ξ̃ is given by −δ′′(· − ◦), viz., the negative second-
order derivative of the Dirac delta generalized function. Under the condition of Lemma 1 (i.a), we
show that nΣ̃−1

n Bn → −b′′(·) which can be written as −
∫ 1
0 δ′′(u− ·)b(u)du.

(iii) Lemma 1 (i.b) follows by the integration by parts. That is, c(1)b′(1)−c(0)b′(0) =
∫ 1
0 d{c(u)b′(u)} =∫ 1

0 c′(u)b′(u)du +
∫ 1
0 c(u)b′′(u)du. Note that (b′(·), c′(·)) = −(c(·), b′′(·)), as c(0) = c(1) = 0

implies that relation.
(iv) By the bounded second variation condition,

∫ 1
0 (db(u))

2 < ∞ and
∫ 1
0 (dc(u))

2 < ∞. The sample
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path generated by the Brownian bridge process satisfies the conditions in Lemma 1 (ii). For example,
if we let B0(·) be the Brownian bridge process and b(·) = c(·) = B0(·), Lemma 1 (ii) implies
that n−1(Ξ̂nbn(·), cn(·)) ⇒

∫ 1
0 (dB

0(u))2, which is identical to 1 by noting that dB0(u) = −(1 −
u)−1B0(u)du + dW(u), so that (dB0(u))2 = du. If b(·) and c(·) are continuously differentiable, it
simply follows that (db(·), dc(·)) = 0.

(v) The boundary conditions at zero and unity are needed for the desired results. For example, suppose
b(0) ̸= 0 and b(1) ̸= 0 such that for some b0 ̸= 0 and b1 ̸= 0, n2bn(0) = b0 + o(1) and n2bn(1) =

b1+ o(1). It then follows that Ξ̈nbn(·) = g(·)+ o(1) such that g(0) = b0− b′′(0), g(1) = b1− b′′(1),
and for x ∈ (0, 1), g(x) = −b′′(x) under the conditions in Lemma 1 (i.a). Note that the non-zero
boundary conditions modify the limit. □

We next examine Σ̈−1
n by letting ξ̈n(·, ◦) denote the kernel function of Ξ̈n, which is given in Section

A.5. The following lemma reveals the asymptotic properties of (Ξ̈nbn(·), cn(·)):

Lemma 2. Given that b(·) and c(·) are such that b(0) = c(0) = 0,
(i) (i.a) if b(·) ∈ C(2)([0, 1]) and b′(1) = 0, Ξ̈nbn(·) = −b′′(·) + o(1);

(i.b) if it further holds that c(·) ∈ C(1)([0, 1]), (Ξ̈nbn(·), cn(·)) = (b′(·), c′(·)) + o(1);
(ii) if b(·) and c(·) are continuous functions with finite second variations, n−1(Ξ̈nbn(·), cn(·)) = (db(·),

dc(·)) + o(1). □

Remarks 2. (i) Lemma 2 derives the results of Lemma 1 under different conditions for cn(·) and bn(·).
(ii) The result in Lemma 2 (i.a) is consistent with the standard result on the inverse BM-kernel, which is a

kernel for second-order differentiation (e.g., Carrasco et al., 2007). Lemma 2 (i.b) elaborates Lemma
2 (i.a) and obtains the inner product between the derivatives using the inverse BM-kernel.

(iii) The sample path generated by the Brownian motion satisfies the conditions in Lemma 2 (ii). If we
let B(·) be the Brownian motion and b(·) = c(·) = B(·), we obtain that n−1(Ξ̈nbn(·), cn(·)) ⇒∫ 1
0 (dB(u))

2 =
∫ 1
0 du = 1.

(iv) Lemma 2 (ii) provides an intuitive interpretation of the BM- and BB-kernels. The BM-kernel is the
covariance kernel of an integrated process, so that if we use the integral transform operator using its
inverse kernel, it should deliver anti-integrated processes, viz., differentials. Therefore, the quadratic
transform using Σ̈−1

n should converge to the inner product between the differentials of b(·) and c(·),
viz., (db(·), dc(·)). This interpretation also applies to the BB-kernel, and Lemmas 1 (ii) and 2 (ii)
provide conditions for the desired result. Furthermore, if bn(·) and cn(·) converge to differentiable
functions, the quadratic transform converges to the inner product between the derivatives of b(·) and
c(·), viz., (b′(·), c′(·)). Lemmas 1 (i.b) and 1 (i.b) provides the conditions for this result.

(v) As for Lemma 1, the boundary condition at zero is needed for the desired results. For example, if
b(0) ̸= 0 such that for some b0 ̸= 0, n2bn(0) = b0 + o(1), then it follows that Ξ̈nbn(·) = f(·) + o(1)

such that f(0) = b0 − b′′(0) and for x ∈ (0, 1], f(x) = −b′′(x) under the conditions in Lemma 2
(i.a). Hence, a non-zero boundary condition modifies the limit result. □

The properties of Σ̃−1
n and Σ̈−1

n established in Lemmas 1 and 2 facilitate the derivation of the limit

behavior of the BM-GMM and BB-GMM estimators for which the following assumptions are employed.

Assumption 1. (i) (Ω,F ,P) is a complete probability space on which the strictly stationary and ergodic
sequence {Wt ∈ Rp : t = 1, 2, . . . , n} is defined;
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(ii) for each n ∈ N and t = 1, 2, . . . , sn, ḡn,t : Rp·t × Θ 7→ R (sn = n or n − 1) defines the t-
th row component of the moment condition Ḡn(·) such that for each t and n and θ ∈ Θ, ḡn,t(·, θ) is a
measurable function, and for each ω ∈ Ω0 ∈ F , ḡn,t(W t(ω), ·) ∈ C(2)(Θ) and P(ω ∈ Ω0) = 1, where
W t := (W1,W2, . . . ,Wt);

(iii) there is a unique θ∗ ∈ int(Θ) such that E[ḡn,t(θ∗)] = 0, and θ∗ is invariant to t and n, where
Θ ⊂ Rd (d ∈ N) is compact and convex, and ḡn,t(·) := ḡn,t(W

t, ·). □

Assumption 2. For a continuous function, g(·, ·), gn(·, ·) → g(·, ·) with prob. converging to 1 uniformly on
[0, 1]×Θ, and g̃n(·) ⇒ G(·), where G(·) is a Gaussian stochastic process defined on [0, 1] with a continuous
covariance kernel ω(·, ◦) : [0, 1]2 7→ R such that G(0) = 0 with prob. 1 and

(i) G(·) ∈ C(2)([0, 1]) with prob. 1; or
(ii) G(·) is an Itô process satisfying the following stochastic differential equation: for some µ : [0, 1] ×

Ω 7→ R and σ : [0, 1]× Ω 7→ R, dG(u) = µ(u)du+ σ(u)dB̄(u) such that
(ii.a) µ(·, ω) and σ(·, ω) are continuous for each ω ∈ Ω;
(ii.b) for each i = 1, 2, . . . , n, σ(in) is stationary, ergodic, adapted mixingale of size −1 such that

for a continuous function Ψ1 : [0, 1] 7→ R+ and a continuous and symmetric function Ψ2 :

[0, 1]2 7→ R,

cov
[
(∆g̃n (in))

2 , (∆g̃n (jn))
2
]
=

{
n−2Ψ1(in) + o(n−2), if i = j;
n−3Ψ2(in, jn) + o(n−3), if i ̸= j

uniformly in n, where for each i = 1, 2, . . . , n, ∆g̃n (in) := g̃n (in)− g̃n ((i− 1)/n);
(ii.c) E[σ2(·)] is finite uniformly on [0, 1]. □

For the following assumption, we let ⊙ denote the Hadamard product between two matrices.

Assumption 3. For j = 1, 2, . . . , d, there is Hj(·) ∈ L2([0, 1]) such that Hn(·) → H(·) uniformly on [0, 1]

in prob., where H(·) ∈ C(2)([0, 1]), and for continuous C1(·) : [0, 1] 7→ Rd and Cj(·) : [0, 1] 7→ Rd×d

(j = 2, 3, 4),

√
n∆Hn(·) = n−1/2C1(·) + C2(·)∆h̃n(·) + n−1/2C3(·)(h̃n(·)⊙∆h̃n(·)) + n−1C4(·)h̃n(·) +OP(n

−3/2)

such that h̃n(·) ⇒ H(·), where H(·) is a Gaussian stochastic process defined on [0, 1] and
(i) H(·) ∈ C(2)([0, 1]) with prob. 1; or

(ii) H(·) is an Itô process satisfying the following stochastic differential equation: for some ν : [0, 1] ×
Ω 7→ Rd and τ : [0, 1]× Ω 7→ Rd×d, dH(u) = ν(u)du+ τ(u)dB̃(u) such that
(ii.a) ν(·, ω) and τ(·, ω) are continuous for each ω ∈ Ω;
(ii.b) E[tr(τ(·)τ(·)′)] is finite uniformly on [0, 1];
(ii.c) for each i = 1, 2, . . . , n, σ(in)τ(in) is a stationary, ergodic, adapted mixingale of size −1 such

that for a continuous function Γ1 : [0, 1] 7→ Rd×d and a continuous and symmetric function
Γ2 : [0, 1]

2 7→ Rd×d,

cov
[
∆g̃n (in)∆h̃n (in) ,∆g̃n (jn)∆h̃n (jn)

]
=

{
n−2Γ1(in) + o(n−2), if i = j;
n−3Γ2(in, jn) + o(n−3), if i ̸= j

uniformly in n, where for each i = 1, 2, . . . , n, ∆h̃n(in) := h̃n(in)− h̃n((i− 1)/n); and
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(ii.d) for some Φ, dB(·) = ΦdW(·), where B(·) := [B̄(·), B̃(·)]′ and W(·) := [W̄(·), W̃(·)]′ such
that W̄(·) and W̃(·) are two independent Wiener processes, and for each u ∈ [0, 1], W̄(u) ∈ R
and W̃(u) ∈ Rd. □

For the following assumption, let Φ be partitioned as follows:

Φ =

 ϕ11 ϕ12

ϕ21 Φ22

 ,

where ϕ11 ∈ R, Φ22 ∈ Rd×d, so that ϕ12 ∈ R1×d and ϕ21 ∈ Rd×1. Also, let Φ2 := (ϕ21,Φ22) and

ϕ1 := (ϕ11, ϕ12).

Assumption 4. (i) Ad := [C1(·), C1(·)] is positive definite; or
(ii) Au := [C1(·), C1(·)] + [C2(·)τ(·)Φ2, C2(·)τ(·)Φ2] is positive definite. □

Remarks 3. (i) Assumption 1 (i) extends the notion of the moment conditions to be defined by W t

instead of Wt. We introduce this notion to tackle nonstationary moment conditions.
(ii) The conditions stated in Assumption 2 (i and ii) imply different convergence rates for the variation of

g̃n(·), viz., ∆g̃n(·). Assumption 2 (i) supposes that ∆g̃n(·) = OP(n
−1), whereas Assumption 2 (ii)

supposes that ∆g̃n(·) = OP(n
−1/2). Specifically, we can derive that n∆g̃n(·) = G′(·) + oP(1) and

n(∆g̃n(·))2 = σ2(·) + oP(1) under Assumptions 2 (i and ii), respectively.
(iii) As we detail below, the asymptotic distribution of the BM- or BB-GMM estimator is determined by

applying central limit theory (CLT) to the sequence {(∆g̃n(in))
2}. Infinite dimensional MCMD esti-

mation belongs to this case and Assumption 2 (ii.b) is imposed to handle this case. More specifically
it provides the condition required to deliver the asymptotic variance of

∑sn
i=1(∆g̃n(in))

2.
(iv) Assumption 3 imposes continuity conditions on µ(·), σ(·), H(·), C1(·), C2(·), C3(·), and C4(·) to

ensure finite integrals of these functions, continuous functions being integrable on a compact set.
(v) The approximation

√
n∆Hn(·) given in Assumption 3 produces different asymptotic behavior under

Assumptions 3 (i and ii). Under Assumption 3 (i), C2(·)∆h̃n(·) = OP(n
−1), n−1/2C3(·)(h̃n(·) ⊙

∆h̃n(·)) = OP(n
−3/2), and n−1C4(·)h̃n(·) = OP(n

−1). Therefore, n∆Hn(·) = C1(·) + oP(1). We
also note that n∆Hn(·) = H ′(·)+oP(1) by differentiation, which implies that H ′(·) = C1(·). Further,
Assumption 3 (ii) implies that C2(·)∆h̃n(·) = OP(n

−1/2), n−1/2C3(·)(h̃n(·)⊙∆h̃n(·)) = OP(n
−1),

and n−1C4(·)h̃n(·) = OP(n
−1). Therefore, n∆Hn(·) = C1(·) + C2(·)

√
n∆h̃n(·) + oP(1). These

different asymptotic behaviors affect the limit distribution of the BM- and BM-GMM estimator in a
different way. □

We now examine the limit properties of BM- and BB-GMMs. For notational simplicity, we first let

Ān := [Ξ̂nHn(·), Hn(·)] and Dn := [Ξ̂nHn(·), g̃n(·)] and give their limit behavior in the following lemma:

Lemma 3. Given that Assumption 1 holds for Σ̂n = Σ̈n or for Σ̂n = Σ̃n with G(1) = 0 and H(1) = 0,
(i) if Assumptions 2 (i), 3 (i) and 4 (i) hold such that H ′(1) = 0 or G′(1) = 0 for the BM-GMM estimator,

(i.a) qn(θ∗) ⇒ Qd := (G′(·),G′(·));
(i.b) Ān → Ad with prob. converging to 1;
(i.c) Dn ⇒ Dd := [C1(·),G′(·)];
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(ii) if Assumptions 2 (ii), 3 (i), and 4 (ii) hold,
(ii.a) n−1qn(θ∗) → qu := φq(σ(·), σ(·)) with prob. converging to 1, where φq := (ϕ2

11 + ϕ12ϕ
′
12);

(ii.b) Ān → Au with prob. converging to 1;
(ii.c) Dn−n1/2

∑sn
i=1C2(in)∆g̃n(in)∆h̃n(in) ⇒ Du := [C1(·), dG(·)]+[C3(·)(H(·)⊙τ(·)Φ2ϕ

′
1), σ(·)];

(ii.d) if it further holds that [C2(·)τ(·)Φ2ϕ
′
1, σ(·)] = 0 with prob. 1 and Γ is positive definite, Dn ⇒

Dw := Z+Du, where Z ∼ N (0,Γ) and Γ :=
∫ 1
0 Γ1(u)C2(u)C2(u)

′du+
∫ 1
0

∫ 1
0 Γ2(u, v)C2(u)

C2(v)
′dudv. □

Remarks 4. (i) Although we do not state it formally, consistency of the GMMs follows from consistency
of gn(·, ·). That is, q̄n(·) → (Ξg(·, ·), g(·, ·)) with prob. converging to 1 uniformly on Θ, which is
minimized at (Ξg(·), g(·)) by Assumption 1 (iii), so that θ̂n → θ∗ with prob. converging to 1.

(ii) Lemma 3 (i) corresponds to the results in Lemmas 1 (ii) and 2 (ii). It also follows that Qd =

−(G′′(·),G(·)), Ad = −[H ′′(·), H(·)], and Dd = −[H ′′(·),G(·)] by Lemma 1 (i) and 2 (i).
(iii) The process G′(·) in Lemma 3 (i) is a continuous Gaussian process because the derivative of a Gaus-

sian process is Gaussian, here with covariance kernel ω̇(u1, u2) := (∂2/∂u1∂u2)ω(u1, u2).
(iv) The variable Dd is normally distributed. That is, Dd ∼ N (0, Bd), where Bd := [Ω̇C1(·), C1(·)] =∫ 1

0

∫ 1
0 C1(u1)ω̇(u1, u2)C1(u2)

′du1du2 by letting Ω̇ be the integral transform operator with the kernel
function ω̇(·, ◦).

(v) By Lemma 3 (ii.c) the BM-GMM and BB-GMM are asymptotically biased, unless the probability
limit of

∑sn
i=1∆g̃n(in)∆h̃n(in)C2(in) is zero. Here,

∑sn
i=1∆g̃n(in)∆h̃n (in)C2(in) →

∫ 1
0 σ(u)τ(u)

C2(u)du with prob. converging to 1, so that if the final entity is zero, we can apply the CLT to obtain
the limit distribution of n1/2

∑sn
i=1∆g̃n(in)∆h̃n(in)C2(in), giving the normal random variable Z in

Lemma 3 (ii.d). Assumption 3 (ii.c) provides regularity conditions for the CLT.
(vi) The limit distribution of the infinite dimensional MCMD estimator is obtained by applying Lemma 3

(ii.d). For this application, the functions corresponding to C1(·), C2(·), and C3(·) are found from the
model assumption. Further, σ(·) ≡ 1, C ′

1(·) = C3(·), so that it holds that Du = 0 by integration by
parts. Hence, if

∫ 1
0 C2(u)du = 0, Γ1(·) = c1, and Γ2(·, ◦) = c2 for some constants c1 and c2, then

Γ = c1[C2(·), C2(·)] because
∫ 1
0

∫ 1
0 Γ2(u, v)C2(u)C2(v)

′dudv = c2
∫ 1
0 C2(u)du

∫ 1
0 C2(v)

′dv = 0.
We demonstrate these properties in Section 2.4. □

In the next step we derive the limit distributions of the BM-GMM and BB-GMM using Lemma 3. The

limit distributions are obtained by noting that
√
n(θ̂n− θ∗) = −Ā−1

n Dn+oP(1). The asymptotics are given

in the following result.

Theorem 1. Let Assumption 1 hold for Σ̂n = Σ̈n or for Σ̂n = Σ̃n with G(1) = 0 and H(1) = 0,
(i) if Assumptions 2 (i), 3 (i), and 4 (i) hold such that H ′(1) = 0 or G′(1) = 0 for the BM-GMM estimator,√

n(θ̂n − θ∗) ⇒ −A−1
d Dd;

(ii) if Assumptions 2 (ii), 3 (ii), and 4 (ii) hold such that [C2(·)τ(·)Φ2ϕ
′
1, σ(·)] = 0 with prob. 1,

√
n(θ̂n−

θ∗) ⇒ −A−1
u Dw. □
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2.3 Testing Overidentification Using BM-GMM and BB-GMM

For testing overidentification using BM-GMM and BB-GMM we consider the following hypotheses: for

every t,

H0 : for some θ∗ ∈ Θ, E[ḡn,t(θ∗)] = 0 versus H1 : for each θ ∈ Θ,E[ḡn,t(θ)] ̸= 0.

Note that H0 is one of the regularity conditions given in Assumption 1. We consider two types of tests.

First, we follow Sargan (1958) and Hansen (1982) with their motivation for an overidentification test

defined as Jn := qn(θ̂n). In standard cases, the J-test follows a chi-squared null distribution asymptotically

under H0 and is unbounded under H1. But this null limit distribution is modified if the number of moment

conditions tends to infinity. Second, we examine the following standardized J-test:

Un :=
Jn − n · qu√

v2nn
,

where v2n is a consistent estimator for v2 :=
∫ 1
0 Ψ1(u)du +

∫ 1
0

∫ 1
0 Ψ2(u, v)dudv. Here, qu and vn can be

determined by the model assumptions. For example, in infinite dimensional MCMD estimation, qu = 1 and

v2 = 4 as we show in Section 2.4. The U -test is motivated from Donald et al. (2003) and Dovonon and

Gospodinov (2024) by noting that the J-test may not be bounded under the null hypothesis. Specifically,

they examined

Tn :=
Jn − (sn − d)√

2(sn − d)
,

and showed that its null limit distribution is a standard normal under their model setup. Note that Tn is

defined by supposing that qu = 1 and v2 = 2, but the U -test supposes that qu and v2 do not necessarily

satisfy this condition. The following result gives the null limit behavior of the tests.

Theorem 2. Given Assumption 1,
(i) if Assumptions 2 (i), 3 (i), and 4 (i) hold, Jn ⇒ Jd := (ΠdG(·),G(·)) under H0, where Πd := Ξ−Λd,

Λd is an integral transform operator with kernel λ(·)′A−1
d λ(◦), λ(◦) := ΞH(·), and Ξ is an integral

operator such that for b(·) ∈ C(2)([0, 1]), Ξb(·) = −b′′(·); and
(ii) if Assumptions 2 (ii), 3 (ii) and 4 (ii) hold for Σ̂n = Σ̈n or Σ̂n = Σ̃n with G(1) = 0 and H(1) = 0 such

that [C2(·)τ(·)Φ2ϕ
′
1, σ(·)] = 0 with prob. 1 and for some vn, v2n → v2 < ∞ with prob. converging to

1, then Un
A∼ N (0, 1) under H0. □

Remarks 5. (i) Carrasco and Florens (2000) also provide an overidentification test having a structure
similar to Un under their GMM estimation framework.

(ii) The null limit distribution of the J-test in Theorem 2 (i) is provided under the same structure as in
Theorem 1 (i). The only difference lies in the fact that the limiting inverse kernel operator is fixed to
Πd in Theorem 2 (i). Note that Jd = (G′(·),G′(·))− [H ′(·)′,G′(·)]A−1

d [H ′(·),G′(·)] by the definition
of Πd.
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(iii) We cannot apply the J-test when the conditions in Theorem 2 (ii) hold as it converges to a constant
qu as stated in Lemma 3 (ii.a). For this reason we need to apply the U -test for overidentification.

(iv) Finally, the J-test acquires asymptotic power when the weak limit of g̃(·) is unbounded in prob.
Under H1, there is no θ such that E[ḡn,t(θ)] ̸= 0, and it is reasonable to suppose that for some
ν(·) ∈ L2([0, 1]) and θo ∈ Θ,

√
n(gn(·, θo) − ν(·)) = OP(1), where θo is the probability limit of

BM-GMM or BB-GMM. Then Jn = OP(n) under H1 so that the J-test has nontrivial asymptotic
power. Power of the U -test is acquired in a similar way to the J-test. Therefore, the U -test increases
under the alternative, implying that its rejection region is determined by one-sided testing. □

2.4 Applications of BB-GMM and BM-GMM

This section proceeds to examine the running examples using the theory in Sections 2.2 and 2.3.

Example 1: Infinite-Dimensional MCMD Estimation The asymptotics of the MCMD estimator are

modified when observations are from a continuous distribution and GMM estimation is used. Let xt be a

continuous random variable with a distribution function G(·), and pn,t := G(x(t)), where x(t) is the t-th

smallest realization of an IID data set: {xt : t = 1, . . . , n}. First, focus on {p̂n,t − F (x(t), θ)} as the

moment condition corresponding to Pollard (1980) and Cho et al. (2018). Note that p̂n,t = p̂n(pn,t) :=

n−1
∑n

j=1 I(G(xj) ≤ pn,t) = t/n, so that p̂n,t is trivially obtained without estimating any quantity. Next,

let ĉn(·, θ) := F (G−1(p̂−1
n (·)), θ) and then F (x(t), θ) = ĉn(t/n, θ) noting that t/n = p̂n(pn,t), which

implies that {p̂n,t − F (x(t), θ)} = {t/n − ĉn(t/n, θ)}. Further, suppose that F (·, θ) ≡ G(·) if and only if

θ ̸= θ∗. Then, g̃n(·) :=
√
n{(·) − ĉn(·, θ∗)} ⇒ Bo(·); and g̃n(·) is not bounded for θ ̸= θ∗, so that we can

use {(·)− ĉn(·, θ)} as the moment condition for GMM.

The moment condition can also be stated via order statistics. Note that F (xt, θ∗) is a standard uniform

IID random variable, so that F (x(t), θ∗) is the t-th smallest observation of (n − 1) IID uniform random

variables. Hence, for each t, E[F (x(t), θ∗)] = t/n = p̂t,n by theorem d of Hájek and Šidák (1967, p. 39)

which implies that, for each t, p̂t,n − F (x(t), θ∗) can serve as a proper moment condition for GMM.

Next estimate the unknown parameter θ∗ by BB-GMM. To do so let P̂n := [p̂n,1, . . . , p̂n,n−1]
′ =

[ 1n , . . . ,
n−1
n ]′ and Fn(θ) := [F (x(1), θ), . . . , F (x(n−1), θ)]

′, and further let

θ̃n := argmin
θ∈Θ

q̄n(θ), where q̄n(·) := Ḡn(·)′Σ̃−1
n Ḡn(·) and Ḡn(·) := P̂n − Fn(·).

Therefore, letting gn(·, θ) := p̂n(·)− d̂n(·, θ), where

d̂n(u, θ) :=

 ĉn(jn, θ), if u ∈ [(j − 1)/n, jn) for j = 1, 2, . . . , n− 1;

1, if u ∈ [(n− 1)/n, 1],
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it follows that
√
ngn(·, θ∗) = g̃n(·) and q̄n(θ) =

∫ 1
0

∫ 1
0 gn(u1, θ)ξ̃n(u1, u2)gn(u2, θ)du1du2. We further

note that d̂n(·, ◦) → d(·, ◦) := F (G−1(·), ◦) uniformly on [0, 1]×Θ by the definition of d̂n(·, ◦) and from

the fact that p̂n(·) → (·) with prob. converging to 1, so that gn(·, ◦) → g(·, ◦) := (·)− d(·, ◦) uniformly on

[0, 1]×Θ with prob. converging to 1 such that gn(0, ·) ≡ 0 and gn(1, ·) ≡ 0 uniformly in n, and g(0, ·) ≡ 0

and g(1, ·) ≡ 0.

Under these regularity conditions for the infinite dimensional MCMD estimator, the following asymp-

totic properties hold.

Theorem 3. Given the regularity conditions for the infinite dimensional MCMD estimator and H0,
(i) θ̃n → θ∗ with prob. converging to 1;

(ii) q̄n(θ∗) → 1 with prob. converging to 1;

(iii)
√
n(θ̃n − θ∗)

A∼ N (0, 2[H ′(·), H ′(·)]−1), where H(·) := −∇θd(·, θ∗); and

(iv) Un := (Jn − n)/
√
4n

A∼ N (0, 1). □

Remarks 6. (i) Theorem 3 (i) is shown by noting that q(·) := −
∫ 1
0

∫ 1
0 δ′′(u1−u2)g(u1, ·)g(u2, ·)du1du2

is minimized at θ∗. Theorem 3 (ii) holds by applying Lemma 3 (ii.a).
(ii) To show Theorem 3 (iii), we first approximate the infinite dimensional MCMD estimator as

√
n(θ̃n−

θ∗) = −Ā−1
n Dn + oP(1), where Ān := ∇′

θFn(θ∗)Σ̃
−1
n ∇θFn(θ∗) = [Ξ̃nHn(·), Hn(·)] and Dn :=

∇′
θFn(θ∗)Σ̂

−1
n

√
n(P̂n − Fn(θ∗)) = [Ξ̂nHn(·), g̃n(·)] with Hn(·) := ∇θgn(·, θ∗), implying that we

can let hn(·) in Assumption 3 be identical to gn(·). Next, we show that Ān = [Ξ̂nHn(·), Hn(·)] →
A := 2[H ′(·), H ′(·)] and [Ξ̂nHn(·), g̃n(·)]

A∼ N (0, 8[H ′(·), H ′(·)]), so that the desired result follows.
Here, the distribution of (∆g̃n(·))2 plays a crucial role when deriving the limit distribution of Dn.
We note that (∆g̃n(·))2 = n(∆d̂n(·))2 − 2∆d̂n(·) + n−1 and that each ∆d̂n(in) := d̂n(in, θ∗) is
an increment of the order statistics constructed by IID uniform random variables (e.g., David and
Nagaraja, 2003, section 6.4) which is referred to as the elementary coverage or the spacing (e.g.,
Wilks, 1948; Rao and Kuo, 1984). From this feature, (∆d̂n(

1
n), . . . ,∆d̂n(1))

′ follows a Dirichlet
distribution with parameter ιn. We use this feature to derive the limit distribution of Dn.

(iii) Theorem 3 (ii) implies that we cannot apply J-test for overidentification testing. Instead, U -test is
applied. The goodness-of-fit test proposed by Greenwood (1946) is related to the U -test. We note
that qn(θ∗) − n = n{

∑n−1
i=1 (∆g̃n(in))

2 − 1} = n{n
∑n−1

i=1 (∆d̂n(in))
2 − 2} + oP(n

−1), where the
first equality follows from (A.31) in Section A.1 of the Online Supplement, and the second equality
holds by the fact that g̃n(·) :=

√
n((·) − d̂n(·)). Here, n2

∑n−1
i=1 (∆d̂n(in))

2 is the goodness-of-fit
test proposed by Greenwood (1946) with each ∆d̂n(in) being the elementary coverage or spacing
described above. Using the distributional condition of the elementary coverage, Section A.3.2 in
the Online Supplement shows that var(

∑n−1
i=1 (∆g̃n(in))

2 − 1) = 4n−1 + o(n−1), implying that
√
n{
∑n−1

i=1 (∆g̃n(in))
2 − 1} A∼ N (0, 4), so that (qn(θ∗)− n)/

√
n

A∼ N (0, 4).
(iv) The T -test proposed by Donald et al. (2003) does not follow the standard normal distribution under the

null hypothesis. That is, Tn follows N (0, 2) because Tn =
√
2Un+oP(1) under the null. We also note

that the T -test could be useful if the martingale difference array (MDA) CLT could have been applied
to Jn−n. Although this is not feasible under the current DGP condition, if we could let n of (∆g̃n(·))2

tend to infinity before applying the CLT, we could approximate (∆g̃n(·))2 by (∆W(·))2 + oP(1) by
noting that g̃n(·) ⇒ B0(·) and dB0(u) = −(1− u)−1B0(u)du+ dW(u), so that it would follow that

18



√
n{
∑n−1

i=1 (∆W(in))
2 − 1} = n−1/2

∑n−1
i=1 {n(∆W(in))

2 − 1}. Note here that n(∆W(in))
2 − 1

is an MDA, so that the MDA CLT leads to
√
n{
∑n−1

i=1 (∆W(in))
2 − 1} A∼ N (0, 2). This property

implies that if Jn −n were an MDA, the T -test would follow a standard normal asymptotically under
the null hypothesis. Nonetheless, the sample size n of (∆g̃n(·))2 has to tend to infinity along with the
application of the CLT, making it impossible to apply the MDA CLT here. It is necessary to take the
serial correlation structure of (∆g̃n(·))2 into account when applying the CLT, ensuring that the U -test
is a valid test asymptotically.

(v) The U -test is distribution-free. Note that the same null hypothesis is commonly tested by the KS-test,
but its null limit distribution is affected by parameter estimation error, which makes its application
inconvenient (e.g., Durbin, 1973). □

Example 2: Regression Using Integrated Series The DGP condition satisfies the regularity conditions in

Assumptions 2 (ii) and 3 (ii). In view of the joint weak convergence
(
n−1/2

∑⌊(·)n⌋
t=1 xt, n

−1/2
∑⌊(·)n⌋

t=1 ut

)
⇒

(Bx(·),Bu(·)) =
(
Ω
1/2
x Wx(·), σuWu(·)

)
, we set µ(·) ≡ 0, σ(·) ≡ 1, ν(·) ≡ 0, τ(·) ≡ Ik, C1(·) ≡ 0,

C2(·) ≡ Ik, C3(·) ≡ 0, and C4(·) ≡ 0, so that Φ2 = (0k×1,Ω
1/2
x ) and ϕ1 = (σu, 01×k) from the fact that

Φ =

 σu 01×k

0k×1 Ω
1/2
x

 .

The zero off-diagonal blocks in Φ follow from the independence of xt and ut. Therefore, Lemma 3 (ii.b)

implies that Ān := n−2X ′Σ̈−1
n X → Ωx in prob. Further, we note that Φ2ϕ

′
1 = 0k×1, so that Lemma 3 (ii.d)

implies that Dn
A∼ N (0,Γ) with Γ =

∫ 1
0 Γ1(u)du+

∫ 1
0

∫ 1
0 Γ2(u, v)dudv, the asymptotic covariance matrix

of n−1/2
∑n

t=1∆ut∆xt. The matrix Γ can be consistently estimated by standard HAC methods under mild

regularity conditions. Combining all these results, we have
√
n(β̂n−β∗)

A∼ N (0,Ω−1
x ΓΩ−1

x ) by Theorem 1

(ii). Although the BM-GMM estimator is consistent and asymptotically normal, it is not an asymptotically

efficient estimator. The asymptotic covariance matrix has a sandwich form, meaning that efficiency can

be improved by selecting a weight matrix that exploits the structure of Γ. We leave this development in a

general setting to future research.

We can also test for overidentification. It follows from Lemma 3 (ii.a) that qu = σ2
u. Further, v2 :=∫ 1

0 Ψ1(u)du+
∫ 1
0

∫ 1
0 Ψ2(u, v)dudv, which is the asymptotic covariance matrix of n−1/2

∑n
t=1(∆u2t − σ2

u)

and is consistently estimable by HAC methods. Therefore, Un
A∼ N (0, 1) under H0 : E[yt − β∗xt] = 0 for

all t = 1, 2, . . . , n.

Finally, we note that BM-GMM is equivalent to OLS obtained by regressing ∆xt on ∆yt. By defini-

tion of Σ̈n and the initial value condition (x′0, y0)
′ = 0, Ān = n−1

∑n
t=1∆xt∆x′t and n−2X ′Σ̈−1

n y =

n−1
∑n

t=1∆xt∆yt, so that β̂n = (
∑n

t=1∆xt∆x′t)
−1
∑n

t=1∆xt∆yt. If the initial value condition is vio-

lated, then β̂n = (
∑n

t=2∆xt∆x′t)
−1(
∑n

t=2∆xt∆yt) + oP(1) as x1x
′
1 = oP(n) and x1y1 = oP(n). This
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shows that the BM-GMM is almost identical to the BM-GMM. □

3 Monte Carlo Simulation

This section reports the results of Monte Carlo simulations on the finite sample performance of the BB-

GMM and BM-GMM procedures in the running examples used above. The simulations were designed with

the infinite dimensional MCMD estimator to corroborate the properties of GMM estimation. Addressing

Theorems 1 (ii) and 2 (ii) specifically, two different DGP conditions were considered, with xt following

exponential or normal distributions. Distributional hypotheses were tested employing the U -test and the

limit distribution of the infinite dimensional MCMD estimator was used to test hypotheses on the unknown

parameter.

The plan for the simulation is as follows. First, if xt is exponentially distributed, then P(xt ≤ x) =

1−exp(−θ∗x), which is denoted as xt ∼ Exp(θ∗). Likewise, if xt ∼ N (θ∗, 1), we have P(xt ≤ x) = Φ(x−

θ∗), where Φ(·) is the standard normal CDF. The unknown parameter is estimated by infinite dimensional

MCMD using

θ̂n := argmin
θ∈Θ

(P̂n − Fn(θ))
′Σ̂−1

n (P̂n − Fn(θ)).

For the exponential distribution the j-th row element of Fn(θ) is given be 1 − exp(−θx(j)); and for the

normal distribution the j-th row element of Fn(θ) is Φ(x(j)−θ). In the Online Supplement, we demonstrate

that
√
n(θ̂n − θ∗)

A∼ N (0, 2θ2∗) for the exponential distribution and
√
n(θ̂n − θ∗)

A∼ N (0, 2) for the normal

distribution.

Second, we conduct simulations by supposing null DGPs for testing hypotheses with the U -test. For

this purpose, we let θ∗ = 1 and 0, so that xt ∼ Exp(1) and xt ∼ N (0, 1) for the exponential and normal

cases, respectively. These parameter values are selected arbitrarily. In each DGP setting, we compute the

empirical rejection rates of the U -test for significance levels of 1%, 5%, and 10% with 10,000 independent

repetitions. The empirical rejection rates under the null hypothesis for each test are reported in Tables 1 and

2.

Third, we compare the U -test with a corresponding test involving Tikhonov regularization. In particular,

applying Carrasco and Florens (2000, theorem 10), we have the following τ -test that corresponds to the U -

test

τn :=
J̇n − ṗn√

q̇n
,

where J̇n := nq̇n(θ̇n;αn), θ̇n := argminθ∈Θ q̇n(θ;αn), q̇n(θ;αn) := (P̂n−Fn(θ))
′Σ̂

1/2
n (Σ̂n+αnI)

−1Σ̂
1/2
n

(P̂n − Fn(θ)), ṗn :=
∑n−1

j=1 âj , q̇n := 2
∑n−1

j=1 â
2
j , and âj := λ̂2

j/(λ̂
2
j + αn) where λ̂j is the j-th largest
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

U -test

Exponential
1% 0.50 0.58 0.87 1.06 1.02 0.76 1.04
5% 1.70 2.43 3.70 3.73 4.00 4.09 4.62

10% 4.19 6.28 7.75 8.26 8.65 8.50 9.44

Normal
1% 0.34 0.79 0.76 0.88 0.95 0.93 1.02
5% 1.27 2.85 3.24 3.72 3.91 4.00 4.72

10% 3.92 6.26 7.51 8.23 8.30 8.97 9.54

τ -test

Exponential
1% 0.31 0.60 0.79 0.82 0.92 1.04 0.93
5% 0.84 1.46 2.06 2.31 2.56 2.74 3.60

10% 1.42 2.34 4.42 5.54 6.24 6.94 8.00

Normal
1% 0.29 0.64 0.88 0.84 0.87 0.84 0.94
5% 0.67 1.45 2.16 2.49 2.64 2.74 3.46

10% 1.18 2.35 4.58 5.83 6.37 6.39 8.17

Table 1: EMPIRICAL REJECTION RATES OF THE U - AND τ -TESTS UNDER THE NULL (IN PERCENT).
This table shows the empirical rejection rates of the U - and τ -tests under the exponential and normal distri-
butional hypotheses.

eigenvalue of Σ̂n. Note that this test is identical to Tn if αn = 0 for every n. Following theorem 10 in

Carrasco and Florens (2000), we let αn = n−1/4 for asymptotic optimality and the test is then asymptotically

standard normal under the null. The simulation findings under the null are summarized as follows.

(a) For each case, as the sample size n increases, the distribution of the U -test converges to the standard

normal. Table 1 demonstrates that the empirical rejection rates are close to 1%, 5%, and 10% for the

exponential and normal distribution cases when n = 1, 000. This observation confirms that the U -test

follows the null limit distribution predicted in Theorem 2 (ii). The empirical distributions of the U -test

provide further support: the left column of Figure 1 displays these distributions and in each case the

empirical distribution approaches the CDF of the standard normal as n increases. Section A.4 of the

Online Supplement also provides QQ-plots of the empirical distributions to corroborate convergence.

(b) The empirical distribution of the infinite dimensional MCMD estimator provides further support. The

right column of Figure 1 displays the empirical distributions of the infinite dimensional MCMD esti-

mators and these evidently closely approach the N (0, 2) CDF as n increases.

(c) When comparing the U -test with the τ -test, it is apparent that the empirical rejection rates of the

U -test converge to the nominal levels faster than the τ -test. When n is small, the level distortions

of the τ -test are large. Even for n = 1, 000, the empirical rejection rates of τ -test are still far from

nominal levels, although they appear to be converging to nominal levels. These findings indicate that

the U -test controls type-I errors better than the τ -test. □
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

U -test

Exponential
1% 0.59 1.86 4.44 7.53 12.30 16.42 39.23
5% 1.61 4.65 10.93 17.62 24.90 31.88 59.70

10% 3.33 7.71 16.82 25.33 33.88 41.61 70.51

Normal
1% 1.63 2.96 4.90 5.81 5.50 6.05 4.11
5% 4.15 7.83 12.06 13.41 13.84 14.53 11.91

10% 6.96 12.23 18.25 20.17 21.02 22.02 18.69

τ -test

Exponential
1% 1.10 2.85 4.64 5.75 7.61 9.18 14.20
5% 2.53 5.85 9.10 11.24 14.25 16.63 24.95

10% 3.87 7.76 12.92 15.74 19.48 22.68 32.07

Normal
1% 0.56 1.28 1.81 2.33 2.46 2.99 3.83
5% 1.26 2.71 4.00 5.02 5.91 6.79 9.13

10% 1.96 3.92 6.37 7.97 9.43 11.01 14.31

Table 2: EMPIRICAL REJECTION RATES OF THE U -TEST AND τ -TESTS UNDER THE LOCAL ALTER-
NATIVE (IN PERCENT). This table shows the empirical rejection rates of the U - and τ -tests under local
alternatives. For the exponential case, xt,n := yt +

1
2

√
zt/n, where yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; and

for the normal case, xt,n := yt +
1
4y

4
t /
√
n, where yt ∼ N (0, 1).

(a) Exponential distribution case
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(b) Normal distribution case
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Distribution of the U -test Distribution of the MCMD estimator

Figure 1: EMPIRICAL DISTRIBUTIONS OF THE U -TEST UNDER THE NULL AND THE MCMD ESTI-
MATOR. For n = 100, 300, 500, and 1, 000, each figure shows the null distributions of the U -test or the
empirical distributions of the MCMD estimator. The distributions are obtained by repeating 10,000 inde-
pendent experiments, and the limit distributions are drawn together for comparison purpose. The legends of
the exponential distribution case apply to the normal distribution case.
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Finally, simulations were conducted to examine the local power properties of the U -test. For this pur-

pose, the DGP conditions were modified as follows: (i) for the exponential case, xt,n := yt+
1
2

√
zt/n, with

yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; and (ii) for the normal case, xt,n := yt +
1
4y

4
t /
√
n, with yt ∼ N (0, 1).2

Importantly, as n increases the empirical distribution of xt,n gets closer to that of yt but the finite sample

distribution of xt,n is not the same as that of yt in each case. Similar to the null simulations, 10,000 inde-

pendent experiments were conducted under the local alternatives and empirical rejection rates of the tests

are reported in Table 2. These results are summarized as follows.

(a) The U -test demonstrates non-negligible local power in each case. As the sample size n increases, the

empirical rejection rates of the U -test exceed the nominal significance levels. Notably, the empirical

local power of the U -test remains relatively stable as n increases for the normal case compared to the

exponential case. This suggests that the U -test performs well in detecting local departures from the

null hypothesis, especially for the normal distribution case.

(b) When comparing powers of the U - and τ -tests, the empirical rejection rates of the U -test are higher

than those of the τ -test. □

This simulation comparison shows that use of the exact inverse operator for the BB-kernel can reduce finite

sample size distortion and increase local power.

Beyond the above reported results, further simulations were conducted and the findings are discussed in

the Online Supplement. Comparisons of the U -test with the test proposed by Amengual et al. (2020) were

also considered. Under the same local alternatives as given in the present section, the empirical rejection

rates of the U -test were found to be greater than those of the test in Amengual et al. (2020). The Online

Supplement also reports simulation evidence using the model in the second running example.

4 Empirical Application

This section reports the findings of an empirical implementation of infinite dimensional MCMD estimation

to examine distributional hypotheses concerning labor income data in the U.S. The Pareto distribution has

been popular in research on income distributions throughout a large body literature. Since Kuznets (1953,

1955) first examined top income shares in U.S. income data, this statistic has commonly been used for an in-

come inequality index supplementing the Gini coefficient, as the latter does not focus on income inequality

associated with the tail of the distribution. In particular, Piketty (2003), Piketty and Saez (2003), Atkin-

son (2005, 2007), Atkinson and Leigh (2007, 2008), and Moriguchi and Saez (2008), among others, use

2For the normal distribution case, we generated the local-to-zero component by y4
t /

√
n. When the local-to-zero component was

generated by
√

zt/n as for the exponential case, simulations showed that the deviations were insufficient to produce non-negligible
local power for both the U - and τ -tests.
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the Pareto distribution in measuring the top x-percent income shares of many countries such as Australia,

France, Japan, New Zealand, U.K., and the U.S. over long periods to reveal how the estimated top income

shares have evolved over time. The findings indicate that the top income shares have increased since the

1970s, signaling a general deterioration in income equality. The results are based on the Pareto distribu-

tion assumption and top income share estimates obtained from the methodologies in these studies could be

biased unless the Pareto distribution condition holds for the data.

Our empirical application is motivated by much ongoing research on income distributions and inequality

where there is a need to test underlying distributional assumptions on which empirical findings are often

based. In particular, we utilize this paper’s infinite dimensional MCMD methodology to test the Pareto

distribution hypothesis and investigate the evolution of income inequality in the U.S over time. Previous

studies, such as Piketty and Saez (2003), have pointed out that the recent increase in top income shares is

primarily driven by the rise of the capital income share. This means that a small segment of the population

has a significant proportion of total income, mainly by way of capital income. Apart from capital income

share, Piketty and Saez (2003) highlight a persistent rise of labor income inequality in the U.S. since the

1970s. This aspect of labor income inequality has also been studied by Katz and Murphy (1995); Katz

and Autor (1999); Ciccone and Peri (2005); Eisenbarth and Chen (2022) and others, who examine labor

market inequality by analyzing the distribution of wage structures. Their findings consistently show that

wage inequality has continuously increased in the U.S. labor market. For instance, Katz and Autor (1999)

report that earnings inequality has risen for both males and females, and wage disparities based on education,

occupation, and age have also widened. Moreover, wage dispersion has expanded within demographic and

skill groups, providing valuable insights into the dynamics of labor income inequality in the U.S.

Our main focus is to investigate how labor income inequality has evolved within the same cohort over

time. The overall distribution of the wage structure is influenced not only by the inherent demand charac-

teristics of the labor market but also by various heterogeneous factors, such as race, gender, education, and

other determinants. This observation leads us to examine labor market inequality by isolating and removing

the effects of heterogeneity from the data. By doing so, we aim to gain a better understanding of the con-

tributions of these heterogeneous effects to overall income inequality. This involves comparing inequality

indices obtained from different cohorts to discern the changes in labor income inequality over time while ac-

counting for the impact of various demographic and socioeconomic factors. By controlling for these factors

and focusing on the evolution of labor income inequality within specific cohorts, we can uncover important

insights into the dynamics of income inequality in the U.S. labor market.

Our empirics utilize the Continuous Work History Sample (CWHS) database, which contains annual
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labor income data before tax for 15,000 individuals in the U.S. from 1980 to 2018. The individuals in

the CWHS database were born between 1960 and 1962, and their gender, education, and race information

is also provided. Leveraging this information, we classify the observations into cohorts based on gender,

education, and race to ensure that individuals within the same cohort share certain degrees of homogeneity

without losing a significant number of observations. Table A.9 in the Online Supplement presents the

distribution of the cohorts. A similar data analysis was conducted by d’Albis and Badji (2022) using French

data, albeit with a different research objective. Their study used aggregate data pertaining to the same

generation to estimate the functional shape of Gini coefficients over time and evaluate income inequality

within that generation. Our empirical research goal differs in that we utilize the cohort datasets to focus on

labor income inequality dynamics within specific cohorts in the U.S. labor market.3

To do so the infinite dimensional MCMD methodology of Section 2.4 is employed. Our focus is in top

income shares as in Piketty and Saez (2003) and Atkinson et al. (2011). But prior to computing the top

income shares we test the hypothesis that the labor income datasets follow a Pareto law. The test is applied

for each annual labor income data set that belongs to the same cohort and the Pareto parameter is fitted using

the infinite dimensional MCMD estimator. If the U -test does not reject the Pareto distribution condition,

then we proceed to compute the top 5% income share of each data set and apply the methodology developed

by Piketty and Saez (2003) and Atkinson et al. (2011). This approach ensures that we apply the top income

share methodology only when the data satisfy the Pareto distribution condition. Otherwise, the methodology

may be inconsistent for the desired top income share.

The present methodology can suffer from pre-testing bias because a type-I error from estimating the top

income share carries over to testing the Pareto hypothesis. Hence, the level of significance needs to be set

as small as possible to reduce the type-I error. If the sample size is large, the significance level can be safely

decreased (type-II error of the U -test is not a concern). But if n is small or moderate, the estimated top

income share should be analyzed with caution.

We conduct specific procedures for each cohort in the CWHS data, classified by the following character-

istics: gender (female and male); education (high school or below, which also includes some college but no

degree cases, Bachelor (BA) or equivalent degrees which includes associate degrees, Master (MA) or equiv-

alent degrees, and Doctorate or equivalent degrees, which includes professional degrees); and race (white or

Caucasian, black or African American, Asian, and others including American Indian, Native Hawaiian or

other Pacific Islander, and two or more race individuals).

3Although degrees of freedom reduce when focusing on specific cohorts, this issue is not critical for the CWHS data because the
sample size of each group is fairly large as Table A.9 reports. In case degrees of freedom are substantially reduced, we can instead
specify a mixture of Pareto distributions such that each Pareto distribution is specified for a particular cohort income distribution,
thereby enabling use of all observations without losing degrees of freedom.

25



For each cohort data, we test the Pareto distribution hypothesis using the U -test. The null hypothesis

H0 is formulated as follows: H0 : P(yt ≤ y) = 1 − (bx/y)
θ, where yt denotes the t-th individual’s labor

income, and bx represents the minimum value of the income variable, ensuring that yt is distributed on

[bx,∞). The Pareto distribution hypothesis is intended to capture the right tail distribution of the income

data. Our focus is on the top 10% of income observations and the top 5% income shares are estimated from

each cohort data.

Application of the U -test for each cohort using the datasets from 1980 to 2018 leads to the results

reported in Table A.10 of the Online Supplement. We summarize the inferential findings as follows. First,

we cannot find evidence that the Pareto distribution is inappropriate when labor income data are collected

from more homogeneous sectors of individuals. Second, the Pareto hypothesis appears appropriate at higher

income levels that are obtained by increasing bx. These findings together imply that the Pareto distribution

can be regarded as a dominant feature for the top 10%-income observations.

The next step in the analysis involves estimating the Pareto parameter θ∗ using infinite dimensional

MCMD.4 Estimation results are presented in Figures 2, 3, 4, and 5. Figure 2 displays the estimated top

5% income shares as functions of time between 1980 and 2018 for female and male cohorts. Each series

is classified based on individual birth years. Missing points in the figures indicate that the U -test rejects

the Pareto hypothesis for the data of that year. The level of significance is set to 1% for the U -test. Most

missing values occur in the early 1980s, which is the time before the majority of individuals entered the job

market.5 Similarly, Figures 3 and 4 show the estimated top 5% labor income shares for datasets classified by

education and race. Additionally, Figure 5 illustrates the estimated top 5% income share when the datasets

are not classified. We summarize the findings and implications as follows.

(a) In general, the top 5% income share functions depicted in Figures 2 to 5 exhibit a hump-shaped

pattern. For each cohort, the top income share index reaches its lowest values around 1980 and then

sharply rises until around 1992. However, since then, it gradually decreases. This trend is consistently

observed across all cohorts, and the peak level of top 5% labor income inequality is typically reached

when most workers are in the early stages of their careers and are actively seeking jobs. During this

transitional period, it is expected that labor income inequality would increase, which can be termed as

“frictional inequality.” Notably, labor income inequality tends to reach its highest level before workers

reach the age of 60, reflecting the passage to retirement during the latter period of a working life.

4In the Online Supplement we discuss how θ∗ is associated with the top x-percent income share and the Gini coefficient under
the Pareto distribution assumption; and use of the top x-percent income share for income inequality is justified.

5If the Pareto hypothesis is rejected, an alternative distribution can be used to estimate the top income share. For example, log-
normal and SU distributions are popularly assumed for income distribution. In the current study we focus on the Pareto distribution,
following the approach in Piketty and Saez (2003).
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Figure 2: TOP 5% INCOME SHARES OF GENDER COHORTS BETWEEN 1980 AND 2018. The figures
show the top 5% income share coefficients of gender cohorts estimated by imposing the Pareto distribution
to the top 10% CWHS observations. Missing values signify the p-value of the U -test less than 1%. The
same legend applies to all sub-figures.

(b) The hump-shaped top 5% income share trends observed in Figures 2 to 5 have important implications

for reducing labor income inequality. In addition to the policy implications derived from the labor

market inequality literature (e.g., Katz and Murphy, 1995; Katz and Autor, 1999; Ciccone and Peri,

2005; Eisenbarth and Chen, 2022), the hump-shaped indices suggest that labor income inequality

can be significantly reduced by targeting the frictional inequality observed during early career years.

To achieve this, economic policies aimed at reducing unemployment, setting a minimum wage, or

increasing welfare benefits could be more effective for workers in the early stages of their careers, as

frictional income inequality is commonly observed across all cohorts. By implementing such targeted

policies during this transitional period overall labor income inequality could be mitigated.

(c) When analyzing the gender effect, we observe from Figure 2 that males generally exhibit more volatile

top 5% income shares than females. After reaching the maximum top income share, it decreases

gradually for females, while it declines more rapidly for males. For instance, focusing on the 1960

cohort, the maximum top 5% income share is around 0.26 for females and 0.24 for males, and it

decreases at a slower rate for females compared to males. This suggests that labor income inequality

is more pronounced for females than males within the 1960 cohort. Similar results are found for the

1962 cohort, with males showing a higher maximum index value than females for the 1961 cohort.

(d) When analyzing the education effect, we observe from Figure 3 that individuals with an MA or equiv-

alent degree show the most volatile top 5% income shares compared to other degree holders. The

maximum top income share values of individuals with an MA or equivalent degree are higher than

those of other degree holders, and they maintain relatively higher top 5% income share values for

27



(a) High school or below (b) BA or equivalent

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(c) MA or equivalent (d) Doctorate or equivalent

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Figure 3: TOP 5% INCOME SHARES WITHIN THE SAME EDUCATION COHORTS BETWEEN 1980 AND

2018. The figures show the top 5% income share coefficients within the same education cohorts estimated
by imposing the Pareto distribution to the top 10% CWHS observations. Missing values signify the p-value
of the U -test less than 1%. The same legend applies to all sub-figures.

some time. In contrast, the top 5% income share values of individuals with a doctorate or equivalent

degree are generally less volatile and smaller than those of other degree holders. The top income share

values obtained using all observations, as shown in Figure 5, are roughly between those of individuals

with an MA and doctorate or equivalent degree. This finding implies that labor income for individ-

uals with an MA or equivalent degree is more unequally distributed than that of individuals with a

doctorate or equivalent degree.

(e) Another notable feature of the education effect is observed from Figure 3, where we see that it takes

more years for individuals with a high school diploma or lower education levels to reach the maximum

top income share compared to individuals with higher education levels. Additionally, the maximum

values are not reached rapidly for the former group. For instance, the 1960 cohort reaches its maxi-

mum in 2002, and there are other years before 2002 with slightly smaller index values. This aspect

implies that unequal labor income is persistently distributed over a long period for individuals with a
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(c) Asian

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 4: TOP 5% INCOME SHARES WITHIN THE SAME RACE COHORTS BETWEEN 1980 AND 2018.
The figures show the top 5% income share coefficients within the same race cohorts estimated by imposing
the Pareto distribution to the top 10% CWHS observations. Missing values signify the p-value of the U -test
less than 1%. The same legend applies to all sub-figures.

high school diploma or lower education levels. A similar feature is observed for individuals with a

BA or equivalent degree, although it is not as strong as for those with a high school diploma or lower

education levels.

(f) When examining the race effect, we observe from Figure 5 that different races exhibit different pat-

terns in their top 5% labor income shares. White and Caucasian cohorts generally show lower top

income shares compared to the other races, and their coefficients remain more or less stable across

different birth years, indicating a relatively stable pattern. On the other hand, black and African Amer-

ican cohorts show varying patterns depending on the birth year. Specifically, the cohort born in 1960

maintains lower and stable top income shares, whereas the cohort born in 1962 shows the more typical

income share pattern. That is, the top income share sharply increases during their early career years
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Figure 5: TOP 5% INCOME SHARES USING AGGREGATED OBSERVATIONS FOR EACH YEAR BETWEEN

1980 AND 2018. The figures show the top 5% income share coefficients of aggregated observations esti-
mated by imposing the Pareto distribution to the top 10% CWHS observations. Missing values signify the
p-value of the U -test less than 1%.

but slowly improves as the cohort members age.6 For the Asian case, the cohort born in 1960 exhibits

a distinct pattern from the others, with its index sharply increasing between 1999 and 2000, and again

in 2008, during the Asian and the subprime financial crises. The other Asian cohorts are less sensitive

to the financial crises and show more stable top income shares.

(g) When examining the birth year effect, we observe that the top income share values of the 1960 cohort

are generally lower than those of the other cohorts. For each cohort, the index of the 1960 cohort re-

mains persistently lower than the other cohorts, while the 1961 cohort shows consistently but slightly

higher values than the 1960 cohort. This finding suggests that the income inequality is influenced by

the birth year, and there are differences in income distribution patterns across different cohorts. □

From this empirical analysis we infer that labor income inequality is influenced by heterogeneous factors

such as gender, education, race, and year of birth. Further, for each group the income inequality among the

same group members typically worsens during early career years but slowly improves with time. These

inferential findings have different policy implications for reducing labor income inequality within the same

group. In Section A.6.3 of the Online Supplement, we also provide estimated Gini coefficients in parallel

with Figures 2 to 5 to affirm the empirical results of this section in a different manner.

5 Concluding Summary

If the moment dimension in GMM estimation expands to infinity proportional to the sample size, the limit

properties of GMM differ from standard case where the number of moment conditions is fixed. Specifically,

6Although we do not report the results here, these different patterns between the 1960 and 1962 cohorts were supported by
confidence bands for the estimated top income share series.
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the limit properties are influenced by the stochastic properties of the moment conditions and the employed

weight matrix. This study has derived the asymptotic properties of GMM when inverse Brownian motion or

Brownian bridge kernels are used for the weight matrix. These kernels arise in a natural way in econometric

work such as minimum Cramér-von Mises distance estimation, which arises in testing distributional specifi-

cation. We consider different scenarios where the moment conditions converge to either a smooth Gaussian

or a non-differentiable Gaussian process. By leveraging the individual properties of the Brownian motion

and Brownian bridge kernels, we show how asymptotic behavior can be fully characterized using the inner

products of functionals derived from these Gaussian processes.

The paper also explores conditions under which the standard J-test can serve as an appropriate statistic

for testing overidentification. In cases where the standard conditions do not hold, we propose an alternative

test called the U -test, inspired by the T -test introduced by Donald et al. (2003) and Dovonon and Gospodi-

nov (2024). Throughout the discussions on GMM estimation, we use the infinite dimensional MCMD

estimation and regression analysis using integrated series as the running examples. In particular, we illus-

trate the usefulness of the infinite dimensional MCMD approach extending the MCMD estimation in Pollard

(1980) and Cho et al. (2018) through Monte Carlo simulations and apply it in an empirical study.

Our empirical application analyzes labor income based on the CWHS database. We estimate the top

5% income shares of labor income as a function of time, covering the period from 1980 to 2018. These

cohort datasets are classified based on gender, education, race, and birth year. These data are analyzed using

the new U -test to test the Pareto distribution hypothesis and estimate the Pareto parameter using infinite

dimensional MCMD estimation. The results show that labor income inequality within the same cohort

tends to be maximized during early career years for most of the cohort data. This observation suggests that

economic policies aimed at reducing income inequality will likely be more effective if they specifically target

workers in their early career years. Such policies can play a crucial role in reducing frictional inequality and

contribute to a more equitable distribution of labor income.
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A Appendix

The Appendix has six sections. Sections A.1 and A.2 explore the limit behavior of the quantities formed

by transforming an Itô Process and a smooth Gaussian process. Section A.3 presents the moments of the

statistics forming the infinite dimensional MCMD estimator, and Sections A.4 and A.5 provide additional

simulation evidence and proofs of the main results, respectively. Section A.6 offers supplementary empirical

studies to those in the paper.

A.1 Limit Difference of Transformed Itô Process

We derive the differential of a transformed Itô process. For this examination, suppose that a limit of a process

is constructed as follows: X̄n(·) :=
√
n(X(·)−X̂n(·)) ⇒ G(·), where X̂n(·) is a sample average of random

processes defined on [0, 1], X(·) is its population mean, and G(·) is an Itô process satisfying Assumption 2

(ii) in the main paper. Here, we suppose that X(·) is differentiable on [0, 1] and X̂n(·) converges to X(·)

uniformly on [0, 1]. For example, we can consider an empirical process as a specific example: g̃n(·) :=
√
n{(·) − d̂n(·)} ⇒ B0(·), where d̂n(·) := d̂n(·, θ∗), which determines the limit distribution of the infinite

dimensional MCMD estimator. For this case, X̂n(·) = d̂n(·), X(·) = (·), and G(·) = B0(·), such that

µ(u,G(u)) = −(1 − u)−1B0(·) and σ(u,G(·)) = 1. As before, we let µ(·) and σ(·) abbreviate µ(·,G(·))

and σ(·,G(·)), respectively.
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Given this, for a function f : R 7→ R in C(2)([0, 1]), we let Qn(·) := f(X̂n(·)) and derive the limits

of the quantities associated with ∆Qn(in) for i = 0, 1, 2, . . . , n. Here, for each t = 0, 1, 2, . . . , n and a

function h : [0, 1] 7→ R, we let ∆h(in) := h(in)− h( i−1
n ) for notational simplicity.

A.1.1 Limit Behavior of
√
n∆Qn(·)

We obtain the limit behavior of
√
n∆Qn(·) by applying Itô’s lemma. Note that

∆Qn(·) = f ′(X̂n(·))∆X̂n(·) + oP(1) (A.1)

by Taylor expansion. Now ∆X̂n(·) = ∆X(·)− n−1/2X̄n(·) and ∆X(·) can be approximated by X ′(·)/n.

Therefore, we obtain that

∆X̂n(·) =
1

n
X ′(·)− 1√

n
∆X̄n(·) + oP(1), (A.2)

implying that
√
n∆Qn(·) = f ′(X̂n(·)){n−1/2X ′(·)−∆X̄n(·)}+ oP(1) (A.3)

by plugging (A.2) into (A.1). The stochastic differential equation of
√
n∆Qn(·) is obtained from this

limit. Note that X̂n(·) converges to X(·) uniformly on [0, 1], and ∆X̄n(·) is approximated by dG(·).

Therefore, if we let dQ(·) denote the limit of
√
n∆Qn(·), it follows that dQ(·) = −f ′(X(·))µ(·)du −

f ′(X(·))σ(·)dW(·).

For example, for the infinite dimensional MCMD estimator we have Hn(·) = H(d̂n(·)). This fact

implies that

√
n∆Hn(·) = H ′(·){n−1/2 −

√
n∆d̂n(·)}+ oP(1) = n−1/2H ′(·)−H ′(·)∆g̃n(·) + oP(1) (A.4)

by noting the definition of g̃n(·) :=
√
n{(·) − d̂n(·)} and that d̂n(·) → (·) uniformly on [0, 1] with prob.

converging to 1. This fact can be related to Assumption 3 by noting that C1(·) = H ′(·), C2(·) = −H ′(·)

and h̃(·) = g̃n(·).

A.1.2 Limit Behavior of n
∑n

t=1{∆Qn(in)}2

We examine the limit of n
∑n

t=1{∆Qn(in)}2. From the first equality of (A.3), we note that
∑n

i=1{
√
n∆Qn

(in)}2 =
∑n

i=1{f ′(X̂n(in))}2{ 1
n(X

′(in))
2+(∆X̄n(in))

2}+oP(1) =
1
n

∑n
i=1{f ′(X(in)) }2{(X ′(in))

2+

σ2(in)}+oP(1), where the second equality holds by noting that X̂n(·) converges to X(·) uniformly on [0, 1]

and that
∑n

i=1{f ′(X̂n(in))}2(∆X̄n(in))
2 =

∑n
i=1{f ′(X(in))}2(∆G(in))2+oP(1) =

1
n

∑n
i=1{f ′(X(in))

}2σ2(in)+oP(1). From this we derive n
∑n

i=1{∆Qn(in)}2 ⇒
∫ 1
0 {f

′(X(u))}2{(X ′(u))2 +σ2(u,G(u))}du.

This result can also be generalized. If we let Q̃n(·) := h(X̂n(·)) for a function h : R 7→ R in C(2)([0, 1]),

2



then we have n
∑n

i=1{∆Qn(in)}{∆Q̃n(in)} ⇒
∫ 1
0 f ′(X(u))h′(X(u)) {(X ′(u))2 + σ2(u,G(u))}du. For

example, for the infinite dimensional MCMD estimator, Hn(·) = H(d̂n(·)) and d̂n(·) → (·) uniformly on

[0, 1] with prob. converging to 1, and X(·) = (·). Hence, n
∑n

i=1∆Hn(in)∆Hn(in)
′ → 2

∫ 1
0 H ′(u)H ′(u)′du

with prob. converging to 1 by noting that X ′(·) ≡ 1 and σ(·) ≡ 1 for the Brownian bridge.

A.1.3 Limit Behavior of n
∑n

t=1∆Qn(in)∆X̄n(in)

Here we examine the limit behavior of n
∑n

t=1∆Qn(in)∆X̄n(in). Note that (A.3) implies that

n∆Qn(·) =f ′(X̂n(·)){X ′(·)−
√
n∆X̄n(·)}

+
1

2
f ′′(X̂n(·))

(
1

n
(X ′(·))2 − 2√

n
X ′(·)∆X̄n(·) + (∆X̄n(·))2

)
+ oP(1) (A.5)

by a second-order Taylor expansion. This expansion is obtained by using the following approximation:

(∆X̂(·))2 = 1
n2 (X

′(·))2 − 2
n
√
n
X ′(·)∆X̄n(·) + 1

n(∆X̄n(·))2 + oP(1) based on (A.2). From this, we now

obtain that

n
n∑

t=1

{
∆Qn (in)∆X̄n (in)

}
=

n∑
i=1

f ′
(
X̂n (in)

)
X ′ (in)∆X̄n (in)

−
√
n

n∑
i=1

f ′
(
X̂n (in)

) (
∆X̄n (in)

)2
+ oP(1), (A.6)

using the fact that (∆X̄n(·))2 = n−1σ2(·) + oP(1). Note that the second-order term of (A.5) vanishes to

0 with prob. converging to 1. This fact implies that the limit behavior of n
∑n

t=1∆Qn(in)∆X̄n(in) by

focusing on the first-order approximation of n∆Qn(·). Therefore

n

n∑
t=1

{
∆Qn (in)∆X̄n (in)

}
+
√
n

n∑
i=1

f ′
(
X̂n (in)

) (
∆X̄n (in)

)2 ⇒ ∫ 1

0
f ′(X(u))X ′(u)dG(u). (A.7)

We derive the weak limit of n
∑n

t=1{∆Qn (in)∆X̄n (in)} by elaborating the second term of the left

side in (A.6). Here,
∑n

i=1 f
′(X̂n(in))(∆X̄n(in))

2 = 1
n

∑n
i=1 f

′(X̂n(in))σ
2(in)+oP(1) ⇒

∫ 1
0 f ′(X(u))σ2

(u)du. Therefore, if we further suppose that
∫ 1
0 f ′(X(u))σ2(u)du = 0 and that n−1/2

∑n
i=1 f

′(X(in))σ
2

(in) → 0 with prob. converging to 1, we can derive the weak limit of n
∑n

t=1{∆Qn(in)∆X̄n(in)} more

specifically. For this derivation, first note that

√
n

n∑
i=1

f ′
(
X̂n (in)

) (
∆X̄n (in)

)2
=

√
n

n∑
i=1

f ′ (X (in))
(
∆X̄n (in)

)2
−

n∑
i=1

f ′′ (X (in))
√
n
(
X (in)− X̂n (in)

) (
∆X̄n (in)

)2
+ oP(1), (A.8)
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using the fact that

f ′(X̂n(·)) = f ′(X(·))− f ′′(X(·))(X(·)− X̂n(·)) + oP(1). (A.9)

Next, note that
√
n
∑n

i=1 f
′(X(in))(∆X̄n(in))

2 =
√
n
∑n

i=1 f
′(X(in)){(∆X̄n(in))

2− 1
nσ

2(in)}+ oP(1)

from the supposition that n−1/2
∑n

i=1 f
′(X(in))σ

2(in) = oP(1); and applying a CLT to the right side gives
√
n
∑n

i=1 f
′(X(in))(∆X̄n(in))

2 ⇒ Z ∼ N (0,Γ), where Γ := limn→∞ n
∑n

i=1

∑n
j=1 f

′(X(in))f
′(X(jn

))E[{(∆X̄n(in))
2− 1

nσ
2(in)}{(∆X̄n(jn))

2− 1
nσ

2(jn)}]. Third, note that (∆X̄n(·))2 = n−1σ2(·)+oP(1),

and this implies that
∑n

i=1 f
′′(X(in))

√
n(X(in)− X̂n(in))(∆X̄n (in))

2 = 1
n

∑n
i=1 f

′′(X(in))
√
n(X(in)

−X̂n(in))σ
2(in) + oP(1) ⇒

∫ 1
0 f ′′(X(u))G(u)σ2(u)du from the supposition that

√
n(X(·) − X̂n(·)) ⇒

G(·). Combining these two weak limits with (A.8) gives
√
n
∑n

i=1 f
′(X̂n(in))(∆X̄n(in))

2 ⇒ Z −
∫ 1
0 f ′′(

X(u)) G(u)σ2(u)du, which further implies that n
∑n

t=1{∆Qn(in)∆X̄n(in)} ⇒ −Z +
∫ 1
0 f ′′(X(u))G(u)

σ2(u)du+
∫ 1
0 f ′(X(u))X ′(u)dG(u) by (A.7).

For example, if we consider the infinite dimensional MCMD estimator, Hn(·) = H(d̂n(·)) and d̂n(·) →

(·) uniformly on [0, 1] with prob. converging to 1. If we further elaborate on (A.4) expanding it by using

the fact that H ′(d̂n(·)) = H ′(·)−H ′′(·)((·)− d̂n(·)) + oP(1), it follows that
√
n∆Hn(·) = n−1/2H ′(·)−

H ′(·)∆g̃n(·) − n−1/2H ′′(·)g̃n(·)∆g̃n(·) + oP(n
−1). Furthermore, g̃n(·) :=

√
n{(·) − d̂n(·)} ⇒ B0(·), so

that σ2(·) ≡ 1, and the proof of Theorem 3 shows that
∫ 1
0 H ′(u)du = 0 and n−1/2

∑n
i=1H

′(in) = o(1)

using theorem 1 (c) of Chui (1971). Hence, n
∑n−1

t=1 {∆Hn(in)∆g̃n(in)} ⇒ −Z +
∫ 1
0 H ′′(u)B0(u)du +∫ 1

0 H ′(u)dB0(u), where Z A∼ N (0, 8[H ′(·), H ′(·)]), and
∫ 1
0 H ′′(u)B0(u)du+

∫ 1
0 H ′(u)dB0(u) = 0 as the

proof of Theorem 3 verifies.

A.2 Limit Differences of Smooth Gaussian Processes

This section derives the limit behavior of the same quantities examined in Section A.1 by supposing that

G(·) satisfies the condition in Assumption 2 (i). That is, G(·) is differentiable with prob. 1 instead of being

an Itô process. Note that the convergence rate of ∆X̄n(·) is different from that of Section A.1. Specifically,

Assumption 2 (i) implies that n∆X̄n(·) = G′(·) + oP(1). This different feature produces different limit

behavior in the quantities involved.

A.2.1 Limit Behavior of
∑n

i=1∆Qn(in)

We first examine the limit behavior of
√
n∆Qn(·). If we combine (A.2), (A.3), and (A.9), we can derive the

following:

√
n∆Qn(·) =

1√
n
f ′(·)X ′(·)− f ′(·)∆X̄n(·)−

1√
n
f ′′(·)X̄n(·)∆X̄n(·) + oP(1), (A.10)
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so that n∆Qn(·) = f ′(·)X ′(·)+ oP(1). Therefore, it follows that
∑n

i=1∆Qn(·) = 1
n

∑n
i=1 f

′(in)X
′(in)+

oP(1) →
∫ 1
0 f ′(u)X ′(u)du with prob. converging to 1.

A.2.2 Limit Behavior of n
∑n

t=1{∆Qn(in)}2

By (A.10), n
∑n

i=1{∆Qn(in)}2 = 1
n

∑n
i=1{f ′(in)X

′(in)}2 + oP(1) →
∫ 1
0 {f

′(u)X ′(u)}2du with prob.

converging to 1. The limit is identical to (f ′(·)X ′(·), f ′(·)X ′(·)).

A.2.3 Limit Behavior of n
∑n

t=1∆Qn(in)∆X̄n(in)

By (A.10) and the fact that n∆X̄n(·) = G′(·)+oP(1), it follows that n
∑n

i=1∆Qn(in)∆X̄n(in) =
1
n

∑n
i=1

f ′(in)X
′(in)n∆X̄n(in) + oP(1) ⇒

∫ 1
0 f ′(u)X ′(u)G′(u)du = (f ′(·)X ′(·),G′(·)).

A.3 Asymptotics of Quantities involved in Infinite Dimensional MCMD Estimation

This section explores the asymptotic variances of the quantities constituting the infinite dimensional MCMD

estimator. For this, we first note that (∆d̂n(
1
n),∆d̂n(

2
n), . . . ,∆d̂n(1))

′ follows a Dirichlet distribution with

parameter ιn. Using this condition, the following hold: for each i and j = 1, 2, . . . , n− 1 (i ̸= j),

E
[
∆d̂n (in)

]
=

1

n
, (A.11)

E
[(

∆d̂n (in)
)2]

=
2

n(n+ 1)
, (A.12)

E
[(

∆d̂n (in)
)3]

=
6

n(n+ 1)(n+ 2)
, (A.13)

E
[(

∆d̂n (in)
)4]

=
24

n(n+ 1)(n+ 2)(n+ 3)
, (A.14)

E
[(

∆d̂n (in)
)2

∆d̂n (jn)

]
=

2

n(n+ 1)(n+ 2)
, (A.15)

E
[(

∆d̂n (in)
)2 (

∆d̂n (jn)
)2]

=
4

n(n+ 1)(n+ 2)(n+ 3)
. (A.16)

A.3.1 The Variance of
√
n
∑n−1

i=1 H ′
j(in){n(∆d̂n(in))

2 − 2n
n(n+1)}

The asymptotic variance of
√
n
∑n−1

i=1 H ′
j(in){n(∆d̂n(in))

2 − 2n
n(n+1)} is shown to be 20(H ′

j(·), H ′
j(·)).

For simplicity let Un,i := n(∆d̂n(in))
2 − 2n

n(n+1) , then var[
√
n
∑n−1

i=1 H ′
j(in){n(∆d̂n(in))

2 − 2n
n(n+1)}] =

n
∑n−1

i=1

∑n−1
ℓ=1 H ′

j(in)H
′
j(ℓn)E[Un,iUn,ℓ], where ℓn := ℓ

n . Here, note that E[Un,iUn,ℓ] = n2E[(∆d̂n(in))
2

(∆d̂n(ℓn))
2]− 4n2

n(n+1)E[(∆d̂n(in))
2] + 4n2

n2(n+1)2
. If i ̸= ℓ, E[Un,iUn,ℓ] = −16n−3 + o(n−3) by (A.12) and

(A.16); and if i = ℓ, E[Un,iUn,ℓ] = 20n−2 + o(n−2) by (A.12) and (A.14). Combining these two facts, it

5



follows that var[
√
n
∑n−1

i=1 H ′
j(in){n(∆d̂n(in))

2− 2n
n(n+1)}] =

20
n

∑n−1
i=1 (H

′
j(in))

2− 16
n2 (
∑n−1

i=1 H ′
j(in))

2+

o(1) → 20
∫ 1
0 (H

′
j(u))

2du = 20(H ′
j(·), H ′

j(·)) since
∑n−1

i=1 H ′
j(in) = o(n−1) by theorem 1 (c) of Chui

(1971).

A.3.2 The Variance of
∑n−1

i=1 (∆g̃n(in))
2 − 1

The asymptotic variance of
∑n−1

i=1 (∆g̃n(in))
2 − 1 is now shown to be 4n−1 + o(n−1). We first note

that ∆g̃n(·) =
√
n( 1n − ∆d̂n(·)), so that (∆g̃n(·))2 = n(∆d̂n(·))2 − 2∆d̂n(·) + n−1. This fact implies

that
∑n−1

i=1 (∆g̃n(in))
2 − 1 = n

∑n−1
i=1 (∆d̂n(in))

2 − 2 + 2∆d̂n(1) − 1
n by noting that

∑n−1
i=1 ∆d̂n(in) =

1 − ∆d̂n(1). Hence, it follows that E[(∆g̃n(in))
2] = n−1

n(n+1) = o(n−1) from (A.11) and (A.12), so that

var[
∑n−1

i=1 (∆g̃n(in))
2 −1] = n2

∑n−1
i=1

∑n−1
j=1 E[(∆d̂n(in))

2(∆d̂n(jn))
2]−4n

∑n−1
i=1 E[(∆d̂n(in))

2]+4+

o(n−1), implying that var[
∑n−1

i=1 (∆g̃n(in))
2 − 1] = 4n3+20n2+72n

n(n+1)(n+2)(n+3) + o(n−1) = 4
n + o(n−1) by (A.12),

(A.14), and (A.16).

A.3.3 The Covariance between
∑n−1

i=1 H ′
j(in)∆g̃n(in) and

√
n
∑n−1

i=1 H ′
j(in){n(∆d̂n(in))

2 − 2n
n(n+1)}

We show that −4(H ′
j(·), H ′

j(·)) is the asymptotic covariance between
∑n−1

i=1 H ′
j(in)∆g̃n(in) and

√
n
∑n−1

i=1

H ′
j(in)Un,i, where Un,i := n(∆d̂n(in))

2− 2n
n(n+1) as in Section A.3.1. We note that cov[

∑n−1
i=1 H ′

j(in)∆g̃n

(in),
√
n
∑n−1

i=1 H ′
j(in)Un,i] =

∑n−1
i=1

∑n−1
ℓ=1 H ′

j(in)H
′
j(ℓn)[n

2E[(∆d̂n(in))
2∆d̂n(ℓn)]− 2n

n+1 ] since ∆g̃n(·)

= n−1/2 −
√
nd̂n(·) and using (A.11) and (A.12), where ℓn := ℓ

n . We further use the moment conditions in

(A.13) and (A.15) to obtain that cov[
∑n−1

i=1 H ′
j(in)∆g̃n(in),

√
n
∑n−1

i=1 H ′
j (in)Un,i] = − 4n

(n+1)(n+2)

∑n−1
i=1

H ′
j(in)

2 + 4n2

(n+1)(n+2)(
1
n

∑n−1
i=1 H ′

j(in))
2 → −4(H ′

j(·), H ′
j(·)), because

∑n−1
i=1 H ′

j(in) = o(n−1) by theo-

rem 1 (c) of Chui (1971).

A.4 Additional Simulation Evidence

In this section, we provide additional simulation evidence for the infinite dimensional MCMD estimator.

We also compare the U -test with the distributional specification test proposed by Amengual et al. (2020).

Before proceeding with our discussion, we provide additional evidence in support of the simulation

results in Section 3. Figure 1 provides the finite sample distributions of the U -test under the null and the

MCMD estimator together with their limit distributions. Here, we provide their QQ-plots in Figure A.1. For

n = 100 and 1, 000, the QQ-plots are drawn, and the figures demonstrate that the QQ-plots approach the

45-degree line as the sample size increases from 100 to 1, 000. In addition, we note that the null distribution

of the U -test converges to the standard normal distribution rather slowly when compared to the distribution

of the MCMD estimator. For the normal distribution case, the empirical distribution of the MCMD estimator

is almost identical to the limit normal distribution even when n = 100.
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(a) Exponential distribution case
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(b) Normal distribution case
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7

QQ-Plot of the U -test QQ-Plot of the MCMD estimator

Figure A.1: QQ-PLOTS OF THE U -TEST UNDER THE NULL AND THE MCMD ESTIMATOR. For n =
100 and 1, 000, each figure shows the QQ-plots the U -test and the MCMD estimator against their limit
distributions. The QQ-plots are obtained by repeating 10,000 independent experiments. The same legend
applies to all sub-figures.

A.4.1 Simulation Evidence of t-Test

This section provides additional findings in support of the present approach by examining the t-test of the

current study in comparison with the t-test based on Tikhonov regularization. Using the infinite dimensional

MCMD estimator we report simulations conducted to elaborate the properties of GMM estimation. For

this purpose, we use the two DGP conditions in Section 3, with xt following an exponential or normal

distribution. The simulation design is as follows.

First, if xt follows an exponential distribution, then P(xt ≤ x) = 1 − exp(−θ∗x), denoted as xt ∼

Exp(θ∗). Likewise, for xt ∼ N (θ∗, 1), we have P(xt ≤ x) = Φ(x − θ∗), and the unknown parameter is

estimated by the infinite dimensional MCMD detailed in Section 3.

Second, we conduct simulations by supposing null DGPs for testing the hypotheses of the t-test. For this

purpose, we let θ∗ = 1 and 0 for the exponential and normal cases, respectively. In each DGP environment,

7



we compute the empirical rejection rates of t-test for significance levels of 1%, 5%, and 10% with 10,000

independent repetitions.

Third, the t-test is developed from the asymptotic distribution of the infinite dimensional MCMD esti-

mator. For this, using the distributional hypotheses we obtain

H(p) =

 1
θ∗
(1− p) log(1− p), for the exponential distribution;

ϕ(Φ−1(p)), for the normal distribution,

if the models are correctly specified, where ϕ(·) is the probability density function (PDF) of a standard

normal distribution. In all cases, limp→0H(p) = 0, limp→1H(1) = 0. Furthermore,

∫ 1

0
(H ′(u))2du =

 1
θ2∗
, for the exponential distribution;

1, for the normal distribution.

Therefore, it follows that

√
n(θ̂n − θ∗)

A∼

 N (0, 2θ2∗), for the exponential distribution;

N (0, 2), for the normal distribution

by Theorem 3 (iii), so that if we let

tn :=


√
n(θ̂n−c)√

2θ̂2n
, for the exponential distribution;

√
n(θ̂n−c)√

2
, for the normal distribution,

it follows N (0, 1) under the joint hypothesis that θ∗ = c and that the distributional condition is correct. For

all cases, Un
A∼ N (0, 1) under the same conditions. If the t-test rejects the null, it is not evident which

specific condition is violated in the joint hypotheses. To address this issue, both the U -test and the t-test

need to test the distributional hypothesis. If the U -test rejects the distributional hypothesis, inference from

the t-test is not informative. But if the t-test rejects the null while the U -test does not, it is evident that

θ∗ ̸= c. This combined approach provides a more comprehensive assessment of the hypotheses.

In addition, we define the following test by Tikhonov’s regularization method:

t′n :=


√
n(θ̇n−c)√

θ̇2n
, for the exponential distribution;

√
n(θ̇n − c), for the normal distribution,

where θ̇n is defined in Section 3. This test is defined by noting that theorem 8 in Carrasco and Florens (2000)

implies that
√
n(θ̇n−θ∗)

A∼ N (0,
∫ 1
0 (H

′(u))2du). Our earlier derivations show that
∫ 1
0 (H

′(u))2du = θ2∗ for

the exponential distribution, and
∫ 1
0 (H

′(u))2du = 1 for the normal distribution. The asymptotic variances

8



Test Distribution Level \ n 50 100 200 300 400 500 1, 000

t-test

Exponential
1% 2.57 1.72 1.62 1.22 1.32 1.22 1.03
5% 7.87 6.39 5.86 5.50 5.40 5.66 5.14
10% 13.16 11.52 11.01 10.40 9.91 10.40 10.17

Normal
1% 0.89 1.02 0.73 1.11 0.91 0.97 1.04
5% 4.35 4.89 4.46 4.51 4.91 4.88 4.89
10% 8.67 9.26 9.07 9.18 9.87 9.48 9.74

t′-test

Exponential
1% 2.93 2.05 1.50 1.47 1.45 1.38 1.31
5% 8.82 7.32 6.48 6.04 6.30 6.12 5.61
10% 14.54 12.66 12.09 11.44 11.61 11.66 11.02

Normal
1% 1.43 1.32 1.17 1.25 1.08 1.03 1.13
5% 6.54 6.23 5.97 5.69 5.48 5.08 5.25
10% 11.80 11.48 10.88 10.92 10.83 10.25 10.34

Table A.1: EMPIRICAL REJECTION RATES OF THE t- AND t′-TESTS UNDER THE NULL (IN PERCENT).
This table shows the empirical rejection rates of the t- and t′-tests under the joint hypothesis that θ∗ = c
and that the distributional condition is correct. For the exponential and normal cases, we let θ∗ = 1 and 0,
respectively.

are straightforwardly obtained by applying Lemma 1 (i.b) to theorem 8 of Carrasco and Florens (2000), and

letting αn = n−1/4 to satisfy the condition in theorem 8. Under the null, t′n is then asymptotically standard

normal.

The null simulation results are given in Table A.1 and are summarized as follows.

(a) As the sample size n increases the distribution of the t-test converges to the standard normal. Table

A.1 shows that the empirical rejection rates are close to 1%, 5%, and 10% for the exponential and

normal distribution cases when n = 200, 300, 400, 500, and 1, 000. These results corroborate the

limit theory of the t-test under the null given in Theorem 1 (ii).

(b) Comparison of the t-test and t′-test results shows that the empirical rejection rates of the t-test also

converge to the nominal levels faster than the t′-test. Although the finite sample distortions are not as

severe as the U -test, the t-test nevertheless controls type-I errors better than the t′-test. □

Finally, simulations were conducted to examine the local power properties of the t-test. For this purpose,

we employ the same local DGP conditions in Section 3: (i) for the exponential case, xt,n := yt +
1
2

√
zt/n,

with yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; and (ii) for the normal case, xt,n := yt +
1
4y

4
t /
√
n, with

yt ∼ N (0, 1). Local powers of the t-test are examined together with those of the t′-test. Similar to the

null simulations, 10,000 independent experiments were repeated under the local alternatives and empirical

rejection rates of the tests are reported in Table A.2. These results are summarized as follows.

(a) The t-test exhibits non-negligible local power in each case. As the sample size n increases, the

empirical rejection rates of the t-test tend to exceed the nominal significance levels, again indicating

that the t-test exhibits local power. Similar to the U -test, the empirical local power of the t-test
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

t-test

Exponential
1% 4.53 5.66 7.56 10.61 13.37 15.77 29.30
5% 12.94 15.59 20.37 26.26 30.33 35.19 52.49
10% 20.47 24.35 31.05 37.23 43.03 47.09 64.67

Normal
1% 0.64 0.86 2.14 3.62 5.09 5.84 6.49
5% 2.68 5.06 11.68 17.30 20.88 23.26 23.67
10% 5.55 11.31 23.09 31.65 36.58 39.04 39.04

t′-test

Exponential
1% 5.65 5.19 4.67 4.67 4.54 4.61 4.34
5% 14.03 14.05 12.80 13.32 13.62 13.38 13.66
10% 20.99 21.28 20.20 20.73 21.54 20.84 21.81

Normal
1% 1.04 1.33 1.27 1.40 1.17 1.58 1.91
5% 5.32 5.41 5.57 6.22 6.23 6.36 7.01
10% 10.19 10.61 10.82 11.10 11.69 12.00 12.81

Table A.2: EMPIRICAL REJECTION RATES OF THE t- AND t′-TESTS UNDER THE LOCAL ALTERNATIVE

(IN PERCENT). This table shows the empirical rejection rates of the t- and τ ′-tests under local alternatives.
For the exponential case, xt,n := yt+

1
2

√
zt/n, where yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; and for the normal

case, xt,n := yt +
1
4y

4
t /
√
n, where yt ∼ N (0, 1).

Test Distribution Level \ n 50 100 200 300 400 500 1, 000

U -test Pareto
1% 0.47 0.74 0.85 0.89 0.84 0.92 0.97
5% 1.38 2.71 3.48 4.33 3.87 4.10 4.42

10% 4.14 6.74 7.69 8.73 8.20 9.16 9.48

τ -test Pareto
1% 0.35 0.51 0.83 0.94 0.89 0.94 0.91
5% 0.84 1.58 2.25 2.20 2.68 2.81 3.42

10% 1.34 2.46 4.52 5.29 6.84 7.29 7.85

Table A.3: EMPIRICAL REJECTION RATES OF THE U - AND τ -TESTS UNDER THE NULL (IN PERCENT).
This table shows the empirical rejection rates of the U - and τ -tests under the Pareto distributional hypothesis.

remains relatively stable for the normal distribution case across different sample sizes, suggesting that

the t-test performs well in detecting local departures from the null hypothesis, particularly for the

normal distribution case.

(b) When comparing powers of the t- and t′-tests, the empirical rejection rates of the t-test are higher than

those of the t′-test for the two distributions. □

This simulation comparing our approach with the t-test based on Tikhonov’s regularization method shows

that the BB-kernel reduces finite sample size distortion and increases local power.

A.4.2 Testing the Pareto Distributional Hypothesis

We repeat the simulation experiments in Sections 3 and A.4.1 using the Pareto distribution. This separate

experiment is conducted by noting that the empirical application in Section 4 exploits testing the Pareto

distributional hypothesis. The plan for the simulation parallels earlier simulations.

First, if xt follows a Pareto distribution bounded from 1, we have P(xt ≤ x) = 1− (1/x)θ∗ , denoted as
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

t-test Pareto
1% 2.68 1.87 1.34 1.19 1.23 1.13 1.27
5% 7.64 6.75 5.60 5.44 5.42 5.58 5.21

10% 13.24 11.64 10.38 10.58 10.44 10.92 9.66

t′-test Pareto
1% 2.65 2.09 1.86 1.46 1.51 1.35 1.32
5% 8.76 7.15 6.60 6.11 6.16 6.21 5.85

10% 14.55 12.99 12.23 11.55 11.76 11.53 10.74

Table A.4: EMPIRICAL REJECTION RATES OF THE t- AND t′-TESTS UNDER THE NULL (IN PERCENT).
This table shows the empirical rejection rates of the t- and t′-tests under the joint hypothesis that θ∗ = c and
that the distributional condition is correct under the Pareto distribution condition with θ∗ = 1.

xt ∼ Pa(θ∗, 1), and the infinite dimensional MCMD is obtained as

θ̂n := argmin
θ∈Θ

(P̂n − Fn(θ))
′Σ̂−1

n (P̂n − Fn(θ)),

where the j-th row element of Fn(θ) is 1−
(
1/x(j)

)θ.

Second, using the Pareto distributional hypothesis we obtain H(p) = 1
θ∗
(1 − p) log(1 − p) if the

models are correctly specified. Here, limp→0H(p) = 0, limp→1H(1) = 0, and
∫ 1
0 (H

′(u))2du = 1
θ2∗

.

Therefore, it follows that
√
n(θ̂n − θ∗)

A∼ N (0, 2θ2∗) by Theorem 3 (iii), so that t-test can be defined as

tn :=
√
n(θ̂n − c)/

√
2θ̂2n, which is the same formula as for the t-test applied to the exponential distribution

case. It follows N (0, 1) under the joint hypothesis that θ∗ = c and that the distributional condition is correct.

Also, Un
A∼ N (0, 1) under the same conditions.

Third, we conduct simulations by assuming the null DGP for testing the hypotheses involved in the U -

and t-tests. For this purpose, we let θ∗ = 1, so that xt ∼ Pa(1, 1). We compute the empirical rejection rates

of the U - and t-tests for significance levels of 1%, 5%, and 10% with 10,000 independent repetitions. The

empirical rejection rates under the null hypothesis for each test are reported in Table A.3.

Fourth, we compare the U - and t-tests with the corresponding tests based on Tikhonov regularization,

viz., the τ - and t′-tests. The formula of the τn test is the same as that in Section 3, and that of the t′-test is

the same as that for the exponential distribution case. This result is obtained by noting that
√
n(θ̇n − θ∗)

A∼

N
(
0,
∫ 1
0 (H

′(u))2du
)

and that
∫ 1
0 (H

′(u))2du = θ2∗. The null simulation results are summarized as follows.

(a) As the sample size n increases, the distribution of the U -test converges to the standard normal. Table

A.3 demonstrates that the empirical rejection rates are close to 1%, 5%, and 10% when n = 1, 000.

This observation confirms that the U -test follows the null limit distribution given in Theorem 2 (ii).

The empirical distributions of the U -test given in the left column of Figure A.2 displays these distri-

butions. The empirical distribution approaches the CDF of the standard normal as n increases.

(b) As the sample size n increases the distribution of the t-test converges to the standard normal. Table
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Distribution of the U -test Distribution of the MCMD estimator

Figure A.2: EMPIRICAL DISTRIBUTIONS OF THE U -TEST UNDER THE NULL AND THE MCMD ESTI-
MATOR. For n = 100, 300, 500, and 1, 000, each figure shows the null distributions of the U -test or the
empirical distributions of the MCMD estimator under the Pareto distribution condition. The distributions
are obtained by repeating 10,000 independent experiments.

A.4 shows that the empirical rejection rates are close to 1%, 5%, and 10% when n = 200, 300,

400, 500, and 1, 000. These results corroborate the limit theory of the t-test under the null given in

Theorem 1 (ii). Furthermore, the standard normal provides a better approximation of the distribution

of the t-test compared to the U -test.

(c) The right column of Figure A.2 displays the empirical distributions of the infinite dimensional MCMD

estimator and these evidently closely approach the N (0, 2) CDF as n increases. This matches the

evidence observed in the exponential and normal distribution cases.

(d) When comparing the U -test with the τ -test reported in Table A.3, it is apparent that the empirical

rejection rates of the U -test converge to the nominal levels faster than the τ -test. When n is small,

the level distortions of the τ -test are large. Even for n = 1, 000, the empirical rejection rates of the

τ -test are still far from nominal levels. This outcome is again the same as those for the exponential

and normal distribution cases.

(e) Much the same findings as above are obtained in the comparison of the t-test and t′-test. Although

the finite sample distortions are not as severe as the U -test, the empirical rejection rates of the t-test

are closer to nominal levels than those the t′-test. □

Finally, simulations were conducted to examine the local power properties of the U - and t-tests. For

this purpose, we suppose the following DGP condition: xt,n := yt +
1
2

√
zt/n, with yt ∼ Pa(1, 1) and

zt ∼ U [0.5, 1.5]. Note that this is a local alternative DGP condition similar to the exponential distribution

case. As before, we examine local powers of the U - and t-tests together with those of the τ - and t′-tests, and

the empirical rejection rates of the tests are reported in Tables A.5 and A.6. The performance of the tests
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

U -test Pareto
1% 0.61 1.53 4.38 8.04 11.45 15.58 40.30
5% 2.01 4.33 10.47 17.34 24.28 31.34 60.64
10% 3.76 7.47 15.99 25.39 34.41 41.38 70.77

τ -test Pareto
1% 0.80 2.35 4.30 5.52 6.95 8.30 13.90
5% 2.02 4.93 8.48 10.22 13.58 15.43 24.10
10% 3.19 7.29 12.56 14.69 18.65 21.24 32.01

Table A.5: EMPIRICAL REJECTION RATES OF THE U -TEST AND τ -TESTS UNDER THE LOCAL ALTER-
NATIVE (IN PERCENT). This table shows the empirical rejection rates of the U - and τ -tests under local
alternatives. For the Pareto case, xt,n := yt +

1
2

√
zt/n, where yt ∼ Pa(1, 1) and zt ∼ U [0.5, 1.5].

Test Distribution Level \ n 50 100 200 300 400 500 1, 000

t-test Pareto
1% 3.20 3.71 5.20 6.98 9.28 11.72 22.57
5% 9.83 11.82 15.67 19.52 24.78 27.84 44.11

10% 16.28 19.00 25.06 30.01 35.82 39.11 56.60

t′-test Pareto
1% 3.60 3.26 2.91 2.61 2.60 2.58 2.48
5% 10.02 9.07 9.28 8.75 8.81 8.77 9.00

10% 16.35 14.75 15.98 14.78 15.24 15.74 15.15

Table A.6: EMPIRICAL REJECTION RATES OF THE t- AND t′-TESTS UNDER THE LOCAL ALTERNATIVE

(IN PERCENT). This table shows the empirical rejection rates of the t- and τ ′-tests under local alternatives
for the Pareto distribution case, xt,n := yt +

1
2

√
zt/n, where yt ∼ Pa(1, 1) and zt ∼ U [0.5, 1.5].

under the local departure are summarized as follows.

(a) The U -test demonstrates non-negligible local power. As n increases, the empirical rejection rates of

the U -test exceed the nominal significance levels, indicating that the U -test exhibits local power. This

suggests that the U -test performs well in detecting local departures, and this is the same observation

as for the exponential distribution case.

(b) The t-test also exhibits non-negligible local power. As n increases, the empirical rejection rates of the

t-test tend to exceed the nominal significance levels.

(c) As for the exponential and normal distribution cases, the empirical rejection rates of the U - and t-tests

are higher than those of the τ - and t′-tests, respectively. □

These simulation results align with those obtained from exponential and normal distributions, confirming

applicablility to the Pareto distribution case.

A.4.3 Comparison with Amengual et al.’s (2020) Test

This section now compares the U -test with the distributional specification test proposed by Amengual et al.

(2020) and reports its local power in Table A.7. Amengual et al. (2020) define the test using the GMM dis-

tance constructed by moment conditions based on the difference between the estimated characteristic func-
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tion and the characteristic function hypothesized by the distributional assumption. Since the characteristic

function completely defines the distribution, testing the hypothesized characteristic function is equivalent to

testing the hypothesized distribution. We denote this test as the ACS-test.

We test the distributional hypothesis for the exponential and normal distributions under the same DGP

conditions as given in the section for MCMD simulation. Several remarks are warranted on the testing

procedure. First, in computing the ACS-test, the domains of the empirical and hypothetical characteristic

functions are set to the interval [−1, 1], which is an arbitrarily selected interval covering the origin. We

also apply the parametric bootstrap for the test by following Amengual et al. (2020). The null limit dis-

tribution of the ACS-test is nonstandard and the empirical rejection rates are computed by the parametric

bootstrap. The empirical rejection rates of the ACS-test are obtained by 10,000 independent experiments.

Second, we suppose the same local alternative DGP conditions as those given in Section 3 for the exponen-

tial and normal distributions. That is, for the exponential case, xt,n := yt +
1
2

√
zt/n, with yt ∼ Exp(1)

and zt ∼ U [0.5, 1.5]; and for the normal case, xt,n := yt +
1
4y

4
t /
√
n, with yt ∼ N (0, 1). Since the para-

metric bootstrap is employed, the empirical rejection rate under the null is almost identical to the nominal

level of significance. So we do not examine the empirical rejection rates under the null. Third, for the

Pareto distribution, the hypothesized characteristic function involves an incomplete gamma function with

imaginary argument, making computation of ACS-test inconvenient. Transformation by a log transform

leads to an exponential distribution under the null. Then, testing the exponential distribution hypothesis for

log-transformed data becomes equivalent to testing the Pareto distribution hypothesis for the original data.

Hence, we report the empirical rejection rates of the U - and ACS-tests only for the exponential and normal

distribution cases under the local alternatives. The empirical rejection rates are given in Table A.7. Here, the

empirical rejection rates of the U -test in Table A.7 are those of Table 2 because the local alternative DGP

conditions for the exponential and normal distribution cases are the same as those assumed for Table 2.

The simulation results in Table A.7 are summarized as follows. In comparisions, the U -test is more

powerful than the ACS-test for both the exponential and normal distribution cases. The empirical rejection

rates of the ACS-test are generally lower than those of the U -test, which has respectable local power for the

U -test particularly for n ≥ 100. We observe, in addition, that applying the U -test is more convenient than

the ACS-test because the parametric bootstrap computations can time-consuming.

A.4.4 Monte Carlo Simulation Using Example 2: Regression Using Integrated Series

This section provides simulation evidence for BM-GMM using the second example and the simulations

parallel those in Section 4. The following simple DGP is employed: yt = xtβ∗ + ut with β∗ = 1 such

that (∆xt,∆ut)
′ IID∼ N (0, I2) and (x0, u0) = 0 without loss of generality. We estimate the unknown
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Distribution Test Level \ n 50 100 200 300 400 500 1000

Exponential

Un

1% 0.59 1.86 4.44 7.53 12.30 16.42 39.23
5% 1.61 4.65 10.93 17.62 24.90 31.88 59.70

10% 3.33 7.71 16.82 25.33 33.88 41.61 70.51

ACS
1% 0.04 0.09 0.13 0.20 0.23 0.19 0.30
5% 0.83 1.07 1.34 1.34 1.62 1.64 1.84

10% 2.01 2.41 3.20 3.27 3.48 3.80 4.12

Normal

Un

1% 1.63 2.96 4.90 5.81 5.50 6.05 4.11
5% 4.15 7.83 12.06 13.41 13.84 14.53 11.91

10% 6.96 12.23 18.25 20.17 21.02 22.02 18.69

ACS
1% 2.83 2.52 1.99 1.97 1.99 1.79 1.79
5% 9.74 9.01 8.29 7.97 8.05 7.44 6.92

10% 15.39 15.04 13.81 14.08 13.72 12.93 12.18

Table A.7: EMPIRICAL REJECTION RATES OF THE U - AND ACS-TESTS UNDER THE LOCAL ALTER-
NATIVE (IN PERCENT). This table shows the empirical rejection rates of the U - and ACS-tests for the
exponential case, xt,n := yt +

1
2

√
zt/n, with yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; and for the normal case,

xt,n := yt +
1
4y

4
t /
√
n, with yt ∼ N (0, 1). The empirical rejection rates were obtained by 10,000 indepen-

dent experiments.

Statistics Percentile \ n 50 100 200 300 400 500 1, 000

√
n(β̂n − β∗)

1% 1.31 0.92 1.03 1.09 0.93 1.00 0.93
5% 5.57 4.97 4.82 5.01 5.03 4.98 5.00

95% 94.76 94.90 95.44 94.97 94.82 94.83 94.70
99% 98.91 98.93 98.92 99.03 98.82 99.01 98.74

Un

1% 1.55 1.32 1.27 1.06 1.03 1.42 1.13
5% 4.96 4.50 4.99 5.08 4.94 5.39 4.73

10% 9.03 8.54 9.27 9.58 9.29 9.65 9.53

Table A.8: EMPIRICAL DISTRIBUTIONS OF THE BM-GMM ESTIMATOR AND EMPIRICAL REJECTION

RATES OF THE U -TEST UNDER THE NULL (IN PERCENT). This table shows the empirical distributions of
the BM-GMM estimator β̂n and the empirical rejection rates of the U -test under the null hypothesis. The
empirical percentiles are obtained by conducting 10,000 independent experiments.

parameter β∗ consistently by BM-GMM. The current DGP condition implies that Ωx = 1 and Ãn → 1.

Further, from the IID condition, Γ1(·) ≡ 1 and Γ2(·, ·) ≡ 0, so that Dn
A∼ N (0, 1). Combining these results,

it follows that
√
n(β̂n−β∗)

A∼ N (0, 1). We further note that the DGP implies that qu = 1 and v2 = 2 using

the fact that Ψ1(·) ≡ 2 and Ψ2(·, ·) ≡ 0. Therefore, Un
A∼ N (0, 1) under H0 : E[yt − β∗xt] = 0 for all

t = 1, 2, . . . , n.

For n ∈ {50, 100, 200, 300, 400, 500, 1, 000}, 10,000 replications were conducted and the simulation

results are in Table A.8. The first panel reports the empirical distribution of
√
n(β̂n − β∗). For a given per-

centile, we select the quantile level from the standard normal distribution and report the empirical percentage

for the quantities to be less than the quantile. Evidently, the standard normal distribution approximates the

empirical distributions well. Even when the sample size is as small as 50, the results are close to the stan-
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Figure A.3: EMPIRICAL DISTRIBUTIONS OF U -TEST UNDER THE NULL AND BM-GMM ESTIMATOR.
The figures show the empirical distributions of the BM-GMM estimator and U -test for n = 50, 300, 1,000,
and the standard normal distribution. The same legend applies to all sub-figures.

dard normal distribution. The right panel in Figure A.3 shows the empirical distributions of the BM-GMM

estimator for n =50, 300, and 1,000 in addition to the standard normal distribution. From the same figure

the empirical distributions are evidently close to the standard normal, corroborating the theory in Section 3.

The second panel in Table A.8 reports empirical rejection rates of the U -tests under the null. Compared

to the first panel in Table A.8, larger sample sizes are required to approximate the null limit distribution, but

the empirical rejection rates are well approximated by the null limit distribution at small significance levels.

The left panel in Figure A.3 further shows the empirical null distributions of the U -tests for n = 50, 300,

and 1,000, which again corroborate the limit theory of the U -statistic test.

A.5 Proofs of the Main Claims

In this section we prove the main claims in the paper. To begin we give the functional forms of ξ̃n(·, ◦) and

ξ̈n(·, ◦). First, if n is finite, it is not difficult to find Σ̃−1
n and obtain the following inverse kernel function

ξ̃n(·, ◦) = n3
{
2̃In(·, ◦)− J̃n(·, ◦)− J̃n(◦, ·)

}
,

where

Ĩn(·, ◦) := I

[
(·, ◦) ∈

sn⋃
i=1

[
i− 1

n
, in

)
×
[
i− 1

n
, in

)]
and

J̃n(·, ◦) := I

[
(·, ◦) ∈

sn⋃
i=1

[
in,

i+ 1

n

)
×
[
i− 1

n
, in

)]
.
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Note that ξ̃n(·, ◦) is not uniformly bounded with respect to n. Next, it follows from Σ̈−1
n that

ξ̈n(·, ◦) = n3
{
Ïn(·, ◦)− J̈n(·, ◦)− J̈n(◦, ·)

}
,

where

Ïn(·, ◦) := 2I

[
(·, ◦) ∈

sn−1⋃
i=1

[
i− 1

n
, in

)
×
[
i− 1

n
, in

)]
+ I
[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 1

n
, 1

]]
and

J̈n(·, ◦) := I

[
(·, ◦) ∈

sn−2⋃
i=1

[
in,

i+ 1

n

)
×
[
i− 1

n
, in

)]
+ I
[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 2

n
,
n− 1

n

)]
.

The structure of ξ̈(·, ◦) is similar to ξ̂n(·, ◦) and it too is not bounded, although Ï(·, ◦) is not exactly the same

as Ĩ(·, ◦). Mainly, the coefficient of the final diagonal block
[
n−1
n , 1

]
×
[
n−1
n , 1

]
differs from 1, and the

functional values of ξ̈n(1, ◦) and ξ̈n(·, 1) are defined by noting that sn = n. So it follows that

ξ̈n(·, ◦) = ξ̃n(·, ◦) + n3I
[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 1

n
, 1

]]
− n3I

[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 2

n
,
n− 1

n

)]
− n3I

[
(◦, ·) ∈

[
n− 1

n
, 1

]
×
[
n− 2

n
,
n− 1

n

)]
.

Next, it is convenient in these proofs to use some basic properties of generalized functions, particularly

the Dirac delta function δ(x) and its derivatives that play certain critical roles in the proofs. Note in particular

the following useful properties for functionals involving the delta function.1

For a function f : [0, 1] 7→ R in C(2)([0, 1]),∫ 1

0

δ(x− · − n−1)− δ(x− ·)
n−1

f(x)dx →
∫ 1

0
−δ′(x− ·)f(x)dx = f ′(·) (A.17)

uniformly on [0, 1]. Defining δn(u − v) := nĨn(u, v), it follows that δn(x) = nIn[x ∈ [0, 1
n)], whose

limit is δ(x) as n tends to infinity. Further note that δn(u − 1
n − v) = nĨn(u − 1

n , v) = nJ̃n(u, v) since

Ĩn(· − 1
n , ◦) = J̃n(·, ◦), so the first-order derivative of the Dirac delta generalized function is obtained as

δ′n(u− v) :=
δn
(
u− v − 1

n

)
− δn(u− v)

−n−1
= n2{̃In(u, v)− J̃n(u, v)} → δ′(u− v), (A.18)

and if fn(·) uniformly converges to f(·), it follows that∫ 1

0
−δ′n(x− ·)fn(x)dx →

∫ 1

0
−δ′(x− ·)f(x)dx = f ′(·).

1Readers are referred to Lighthill (1959) and Phillips (1991) for further details.
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Also, the first derivative of the Dirac delta generalized function satisfies the property

−δ′(u) = δ′(−u). (A.19)

The second derivative of the Dirac delta generalized function is obtained similar to the first derivative, viz.,

δ′′n(u− v) :=
δ′n
(
u− v + 1

n

)
− δ′n(u− v)

n−1

=
n2{[J̃n(u, v)− Ĩn(u, v)]− [̃In(v, u)− J̃n(v, u)]}

n−1
→ δ′′(u− v). (A.20)

Proof of Lemma 1: (i) We prove each statement in turn.

(i.a) First note that for any n > 2,

Σ̃−1
n = n



2 −1 · · · 0 0

−1 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2 −1

0 0 · · · −1 2


,

so that if Ωn := −Ω1n +Ω2n with

Ω1n =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , and Ω2n =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0

 ,

it follows that Σ̃−1
n = −nΩn − nΩ′

n. Now let Bn := [bn(
1
n), bn(

2
n), . . . , bn(

n−1
n )]′, so that the first-row

and final-row elements of Bn converge to zero since b(0) = b(1) = 0 by assumption. Recall that bn(·) :=

b(⌊n(·)⌋/n) with b(·) being continuous on [0, 1]. Therefore, for j = 0, 1, . . . , (n − 1), bn( jn) = bn(
j+s
n )

as long as s ∈ [0, 1
n), so that if we let bn(·) be a càdlàg function defined on [0, 1], then Bn ∪ {bn(1) = 0}

becomes the range of bn(·). In parallel, using the fact that bn(1) = 0,

nΩnBn =
(Ω2n − Ω1n)

n−1
Bn =

1

n−1


bn(

2
n)− bn(

1
n)

...

bn(1)− bn(
n−1
n )


becomes the range of the mapping 1

n−1 (bn((·) + 1
n)− bn(·)) defined on [0, 1). We further note that for each
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r ∈ [0, 1),

1

n−1

{
bn

(
r +

1

n

)
− bn(r)

}
=

1

n−1

{
b

(
⌊nr + 1⌋

n

)
− b

(
⌊nr⌋
n

)}
→ b′(r).

Therefore, the range of b′(·) becomes the limit of nΩnBn:

nΩnBn → [b′(r) : r ∈ [0, 1)]. (A.21)

Note that this result can be associated with the Dirac delta function as follows

Ω2nBn =


bn(

2
n)

...

bn(1)

 =


∑n−1

i=1 bn(in)J̃n(in, 1
n)

...∑n−1
i=1 bn(in)J̃n(in, n−1

n )

 =


n
∫ 1
0 bn(u)J̃n(u, 1

n)du
...

n
∫ 1
0 bn(u)J̃n(u, n−1

n )du


and

Ω1nBn =


bn(

1
n)

...

bn(
n−1
n )

 =


∑n−1

i=1 bn(in)̃In(in, 1
n)

...∑n−1
i=1 bn(in)̃In(in, n−1

n )

 =


n
∫ 1
0 bn(u)̃In(u, 1

n)du
...

n
∫ 1
0 bn(u)̃In(u, n−1

n )du

 .

Therefore, if we let δ′n(u− v) := n2{̃In(u, v)− J̃n(u, v)}, it follows that

nΩnBn = n(Ω2n − Ω1n)Bn =


n2
∫ 1
0 bn(u){J̃n(u, 1

n)− Ĩn(u, 1
n)}du

...

n2
∫ 1
0 bn(u){J̃n(u, n−1

n )− Ĩn(u, n−1
n )}du



=


−
∫ 1
0 bn(u)δ

′
n(u− 1

n)du
...

−
∫ 1
0 bn(u)δ

′
n(u− n−1

n )du

 .

by applying (A.17) and (A.18). Here, we done that for j = 0, 1, . . . , (n− 1), δ′n(u−
j
n) = δ′n(u−

⌊j+s⌋
n ) as

long as s ∈ [0, 1
n). Therefore, the right side becomes the range of the mapping −

∫ 1
0 bn(u)δ

′
n(u− ⌊n(·)⌋

n )du

defined on [0, 1). Furthermore, for each r ∈ [0, 1),

−
∫ 1

0
bn(u)δ

′
n

(
u− ⌊nr⌋

n

)
du = −

∫ 1

0
b

(
⌊un⌋
n

)
δ′n

(
u− ⌊nr⌋

n

)
du → −

∫ 1

0
b(u)δ′(u−r)du = b′(r),

where the limit convergence is achieved by (A.18) and the fact that bn(·) converges to b(·) uniformly on

[0, 1]. Further, the last equality holds by (A.17). Therefore, the limit of nΩnBn becomes the range of b′(·),

implying (A.21).
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In a similar manner, we obtain

nΩ′
nBn =

(Ω′
2n − Ω1n)

n−1
Bn =

1

n−1


bn(0)− bn(

1
n)

...

bn(
n−2
n )− bn(

n−1
n )

→ [−b′(r) : r ∈ [0, 1)]. (A.22)

We here use the fact that bn(0) = 0.

As before, (A.22) can be associated with the Dirac delta generalized function, viz.,

Ω′
2nBn =


0
...

bn(
n−2
n )

 =


∑n−1

i=1 bn(in)J̃n( 1n , in)
...∑n−1

i=1 bn(in)J̃n(n−1
n , in)

 =


n
∫ 1
0 bn(u)J̃n( 1n , u)du

...

n
∫ 1
0 bn(u)J̃n(n−1

n , u)du

 ,

Ω1nBn =


bn(

1
n)

...

bn(
n−1
n )

 =


∑n−1

i=1 bn(in)̃In( 1n , in)
...∑n−1

i=1 bn(in)̃In(n−1
n , in)

 =


n
∫ 1
0 bn(u)̃In( 1n , u)du

...

n
∫ 1
0 bn(u)̃In(n−1

n , u)du

 ,

and

nΩ′
nBn = n(Ω′

2n − Ω1n)Bn =


n2
∫ 1
0 bn(u){J̃n( 1n , u)− Ĩn( 1n , u)}du

...

n2
∫ 1
0 bn(u){J̃n(n−1

n , u)− Ĩn(n−1
n , u)}du



=


−
∫ 1
0 bn(u)δ

′
n(

1
n − u)du

...

−
∫ 1
0 bn(u)δ

′
n(

n−1
n − u)du

 .

Therefore, the right side becomes the range of the mapping −
∫ 1
0 bn(u)δ

′
n(

⌊n(·)⌋
n − u)du defined on [0, 1).

Furthermore, for each r ∈ [0, 1),

−
∫ 1

0
bn(u)δ

′
n

(
⌊nr⌋
n

− u

)
du = −

∫ 1

0
b

(
⌊un⌋
n

)
δ′n

(
⌊nr⌋
n

− u

)
du → −

∫ 1

0
b(u)δ′(r − u)du

by applying (A.18) and the fact that bn(·) converges to b(·) uniformly on [0, 1]. Furthermore, (A.19) implies

that −
∫ 1
0 b(u)δ′(r − u)du =

∫ 1
0 b(u)δ′(u − r)du = −b′(r), where the last equality follows from (A.17).

Therefore, the limit of nΩ′
nBn becomes the range of −b′(·), implying (A.22).
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Before stating the limit of nΣ̃−1
n Bn, we note that

δ′n (jn − u) = n2
{
Ĩn (jn, u)− J̃n (jn, u)

}
= −n2

{
J̃n
(
u,

j − 1

n

)
− Ĩn

(
u,

j − 1

n

)}
= −δ′n

(
u− j − 1

n

)
(A.23)

using the definition of Ĩn(·, ◦) and J̃n(·, ◦).

We now combine the two results in (A.21) and (A.22) to obtain the the limit of nΣ̃−1
n Bn, leading to

nΣ̃−1
n Bn = −n2(Ωn +Ω′

n)Bn = − 1

n−2


...

bn(
j+1
n )− 2bn(jn) + bn(

j−1
n )

...

 ,

and the right side is the range of the mapping bn((·) + 1
n) − 2bn(·) + bn((·) − 1

n) defined on [0, 1). We

further note that for each r ∈ [0, 1),

1

n−2

[
bn

(
r +

1

n

)
− 2bn(r) + bn

(
r − 1

n

)]
=

1

n−1

[
1

n−1

{
bn

(
r +

1

n

)
− bn(r)

}
− 1

n−1
{bn(r)− bn (r − 1n)}

]
→ b′′(r).

Therefore, the limit of nΣ̃−1
n Bn is the range of −b′′(·). That is, nΣ̃−1

n Bn → [−b′′(r) : r ∈ [0, 1)].

This result can also be related to the Dirac delta generalized function as follows:

−n2(Ωn +Ω′
n)Bn = − 1

n−1


...

n2
∫ 1
0 bn(u){[J̃n(u, jn)− Ĩn(u, jn)]− [̃In(jn, u)− J̃n(jn, u)]}du

...



= − 1

n−1


...∫ 1

0 bn(u){−δ′n(u− jn) + δ′n(u− j−1
n )}du

...

 = −


...∫ 1

0 bn(u)δ
′′
n(u− jn)du
...

 ,

where the second equality holds by (A.23), and the third equality holds by noting that 1
n−1 [−δ′n(u − jn) +

δ′n(u− j−1
n )] = 1

n−1 [δ
′
n(u− jn + 1

n)− δ′n(u− jn)] = δ′′n(u− jn) using (A.20). From this, we can see that

the right side is the range of the mapping −
∫ 1
0 bn(u)δ

′′
n(u− (·))du defied on [0, 1), and for each r ∈ [0, 1),

−
∫ 1

0
bn(u)δ

′′
n(u− r)du = −

∫ 1

0
b

(
⌊nu⌋
n

)
δ′′n(u− r)du → −

∫ 1

0
b(u)δ′′(u− r)du = −b′′(r),

implying that the limit of nΣ̃−1
n Bn = −n2(Ωn +Ω′

n)Bn is the range of −b′′(·).
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Furthermore we can see that n3{[J̃n(u, jn) − Ĩn(u, jn)] − [̃In(jn, u) − J̃n(jn, u)]} = −ξ̃n(u, jn) by

noting that Ĩn(u, jn) = Ĩn(jn, u), so it also follows that

ξ̃n (u, jn) = −δ′′n (u− jn) , (A.24)

implying that

nΣ̃−1
n Bn = Ξ̃nbn(·) = [−b′′(r) : r ∈ [0, 1)] + o(1). (A.25)

(i.b) Next note that if we let Cn := [cn(
1
n), cn(

2
n), . . . , cn(

n−1
n )]′,

C ′
nΣ̃

−1
n Bn =

1

n
C ′
nnΣ̃

−1
n Bn =

1

n

n−1∑
j=1

cn (jn)

∫ 1

0
ξ̃n (jn, u) bn(u)du =

∫ 1

0

∫ 1

0
ξ̃n (v, u) bn(u)cn(v)dudv

= −
∫ 1

0

∫ 1

0
δ′′n (v, u) bn(u)cn(v)dudv → −

∫ 1

0
c(u)b′′(u)du =

∫ 1

0
c′(u)b′(u)du, (A.26)

where the second and fourth equalities follow from (A.24) and (A.25), and the last equality holds since

c(1)b′(1)− c(0)b′(0) =
∫ 1
0 d{c(u)b′(u)} =

∫ 1
0 c′(u)b′(u)du+

∫ 1
0 c(u)b′′(u)du. Note that c(0) = c(1) = 0,

so that the left side is zero, leading to (A.26). Therefore, it follows that

(Ξ̃nbn(·), cn(·)) =
∫ 1

0

∫ 1

0
ξ̃n(v, u)bn(u)cn(v)dudv =

∫ 1

0
c′(u)b′(u)du+ o(1) = (b′(·), c′(·)) + o(1).

In addition, note that

(b′(·), c′(·)) =
∫ 1

0

∫ 1

0
δ(u− v)c′(u)b′(v)dudv, (A.27)

where the last equality follows from the fact that
∫ 1
0 δ(u1 − u2)f

′(u1)du1 = f ′(u2).

(ii) Using the fact that Σ̃−1
n = −nΩn − nΩ′

n, we obtain

1

n
C ′
nΣ̃

−1
n Bn =−

n−1∑
i=2

cn

(
i− 1

n

){
bn (in)− bn

(
i− 1

n

)}

−
n−1∑
i=2

bn

(
i− 1

n

){
cn (in) + cn

(
i− 1

n

)}
+ 2bn

(
n− 1

n

)
cn

(
n− 1

n

)
. (A.28)

Also note that

bn

(
i− 1

n

)
=

1

2

({
bn (in) + bn

(
i− 1

n

)}
−
{
bn (in)− bn

(
i− 1

n

)})
, (A.29)

cn

(
i− 1

n

)
=

1

2

({
cn (in) + cn

(
i− 1

n

)}
−
{
cn (in)− cn

(
i− 1

n

)})
, (A.30)

so that if we plug these two equations into (A.28), it follows that 1
nC

′
nΣ̃

−1
n Bn = bn(

1
n)cn(

1
n)+

∑n−1
i=2 {bn(in)
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−bn(
i−1
n )}{cn(in)− cn(

i−1
n )}+ bn(

n−1
n )cn(

n−1
n ). We here note that bn(0) = cn(0) = bn(1) = cn(1) = 0,

so that bn( 1n)cn(
1
n) = (bn(

1
n)−bn(0))(cn(

1
n)−cn(0)) and bn(

n−1
n )cn(

n−1
n ) = (bn(1)−bn(

n−1
n ))(cn(1)−

cn(
n−1
n )). This fact implies

1

n
C ′
nΣ̃

−1
n Bn =

n∑
i=1

{
bn (in)− bn

(
i− 1

n

)}{
cn (in)− cn

(
i− 1

n

)}
→
∫ 1

0
db(u)dc(u), (A.31)

which is (db(·), dc(·)). Furthermore, (A.26) implies that n−1C ′
nΣ̃

−1
n Bn = n−1(Ξ̃nbn(·), cn(·)). Therefore,

n−1(Ξ̃nbn(·), cn(·)) → (db(·), dc(·)). ■

Proof of Lemma 2: (i) First note that for n ≥ 2,

Σ̈−1
n =


Σ̃−1
n

0
...

0

−n

0 · · · 0 −n n


,

so that Σ̈−1
n is almost identical to Σ̃−1

n except that the n-th row and n-th column element of Σ̈−1
n is n,

whereas the (n− 1)-th row and (n− 1)-th column element of Σ̃−1
n is 2n. Therefore, the limit kernel of Σ̈−1

n

can be similarly obtained to that of Σ̃−1
n . We again prove the statements in turn.

(i.a) Let B̈n := [Bn, bn(1)]
′ and b̈n := [0′n−2, bn(1)]

′ and note that

nΣ̈−1
n B̈n =

 nΣ̃−1
n Bn − n2b̈n

− 1
n−2 [bn(

n−1
n )− bn(1)]

 =



...

−
∫ 1
0 bn(u)δ

′′
n(u− jn)du
...

− 1
n−2 [bn(

n−1
n )− bn(1)]

 .

Here, Lemma 1 (i) shows that −
∫ 1
0 bn(u)δ

′′
n(u−jn)du → −b′′(·), and we further note that − 1

n−2 {bn(n−1
n )−

bn(1)} → −b′′(1) because bn(1 − 1
n) = bn(1) − b′n(1)

1
n + b′′n(1)

1
n2 + o(1) such that b′(1) = 0 and

b(·) ∈ C(2)([0, 1]). Therefore, even the last row element converges to the negative second-order derivative

of b(·), and this implies that

nΣ̈−1
n B̈n → [−b′′(r) : r ∈ [0, 1)]. (A.32)

Note further that −1
n−2 [bn(1− 1

n)− bn(1)] =
−1
n−3

∫ 1
0 bn(u){J̈n(1, u)+ J̈(u, 1)− Ïn(1, u)}du =

∫ 1
0 bn(u)
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ξ̈n(u, 1)du using the definition of ξ̈n(·, ◦). Therefore, it follows that

...

−
∫ 1
0 bn(u)δ

′′
n(u− jn)du
...

− 1
n−2 [bn(

n−1
n )− bn(1)]

 =



...∫ 1
0 bn(u)ξ̃n(u, jn)du

...∫ 1
0 bn(u)ξ̈n(u, 1)du

 =


...∫ 1

0 bn(u)ξ̈n(u, jn)du
...

 = Ξ̈nbn(·),

(A.33)

where the first equality holds by (A.24), and the second equality holds by the fact that for j = 1, 2, . . . , n−1,

ξ̃n(·, jn) = ξ̈n(·, jn). Combining (A.32) and (A.33), it follows that nΣ̈−1
n B̈n = Ξ̈nbn(·) → −b′′(·).

(i.b) Let C̈n := [Cn, cn(1)]
′ and obtain

C̈ ′
nΣ̈

−1
n B̈n =

1

n
C̈ ′
nnΣ̈

−1
n B̈n =

1

n

n∑
j=1

cn (jn)

∫ 1

0
ξ̈n (jn, u) bn(u)du

=

∫ 1

0

∫ 1

0
ξ̈n (v, u) bn(u)cn(v)dudv = −

∫ 1

0

∫ 2

0
δ′′n (v, u) bn(u)cn(v)dudv

→ −
∫ 1

0
c(u)b′′(u)du =

∫ 1

0
c′(u)b′(u)du, (A.34)

where the last equality holds by noting that c(1)b′(1)− c(0)b′(0) =
∫ 1
0 d{c(u)b′(u)} =

∫ 1
0 c′(u)b′(u)du+∫ 1

0 c(u)b′′(u)du. Note that c(0) = b′(1) = 0, so that the left side is zero, leading to (A.34). Therefore, it

follows that (Ξ̈nbn(·), cn(·)) =
∫ 1
0

∫ 1
0 ξ̈n(v, u)bn(u)cn(v)dudv =

∫ 1
0 c′(u)b′(u)du+ o(1) = (b′(·), c′(·))+

o(1).

(ii) Note that

1

n
C̈ ′
nΣ̈

−1
n B̈n =−

n∑
i=2

cn

(
i− 1

n

){
bn (in)− bn

(
i− 1

n

)}

−
n∑

i=2

bn

(
i− 1

n

){
cn (in) + cn

(
i− 1

n

)}
+ bn (1) cn (1) . (A.35)

Here, we plug (A.29) and (A.30) in (A.35) to obtain 1
n C̈

′
nΣ̈

−1
n B̈n = bn(

1
n)cn(

1
n)+

∑n
i=2{bn(in)−bn(

i−1
n )}

{cn(in) − cn(
i−1
n )} =

∑n
i=1{bn(in) − bn(

i−1
n )}{cn(in) − cn(

i−1
n )} by noting that bn(0) = cn(0) = 0.

This fact implies that as n tends to infinity,

1

n
C̈ ′
nΣ̈

−1
n B̈n =

n∑
i=1

{
bn (in)− bn

(
i− 1

n

)}{
cn (in)− cn

(
i− 1

n

)}
→
∫ 1

0
(db(u)dc(u)) (A.36)

that is identical to (db(·), dc(·)). Furthermore, (A.34) implies that n−1C̈ ′
nΣ̈

−1
n B̈n = n−1(Ξ̈nbn(·), cn(·)).

Therefore, n−1(Ξ̈nbn(·), cn(·)) → (db(·), dc(·)). This completes the proof. ■
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Proof of Lemma 3: (i) Given the conditions, we use Lemmas 1 and 2 to prove the statements in turn.

(i.a) Using the definition of qn(θ∗), note that qn(θ∗) = G̃n(θ∗)
′Σ̂−1

n G̃n(θ∗) = (Ξ̂ng̃n(·), g̃n(·)) ⇒

(ΞG(·),G(·)) by Assumption 2 (i). Further, Lemmas 1 (i and ii) or 2 (i and ii) imply that (ΞG(·),G(·)) =

−(G′′(·),G(·)) = (G′(·),G′(·)) =: Qd. Therefore, qn(θ∗) ⇒ Qd.

(i.b) Using the definition of Ān, note that Ān = ∇θḠn(θ∗)Σ̂
−1
n ∇′

θḠn(θ∗) = [Ξ̂nHn(·), Hn(·)] →

[ΞH(·), H(·)] with prob. converging to 1 by Assumption 3 (i). Further, Lemmas 1 (i and ii) or 2 (i and ii)

imply that [ΞH(·), H(·)] = −[H ′′(·), H(·)] = [H ′(·), H ′(·)]; and Assumption 3 (i) implies that n∆Hn(·) =

C1(·) + oP(1) and n∆Hn(·) = H ′(·) + oP(1). Therefore, [H ′(·), H ′(·)] = [C1(·), C1(·)] =: Ad. Hence,

Ān → Ad.

(i.c) By definition Dn = ∇θḠn(θ∗)Σ̂
−1
n G̃n(θ∗) = [Hn(·), Ξ̂ng̃n(·)] ⇒ [H(·),ΞG(·)] by Assumptions

2 (i) and 3 (i). Note that Lemmas 1 (i and ii) or 2 (i and ii) imply that [H(·),ΞG(·)] = −[H(·),G′′(·)] =

[H ′(·),G′(·)]; and further H ′(·) = C1(·) by Assumption 3 (i). Therefore, [H ′(·),G′(·)] = [C1(·),G′(·)] =:

Dd and so Dn ⇒ Dd.

(ii) We prove each statement in turn.

(ii.a) Given the conditions, we apply the proof of Lemma 1 (ii) or 2 (ii). For this, we note that 1
nqn(θ∗) =

1
nG̃n(θ∗)

′Σ̂−1
n G̃n(θ∗) = 1

n(Ξ̂ng̃n(·), g̃n(·)) =
∑sn

i=1(∆g̃n(in))
2 ⇒

∫ 1
0 (dG(u))

2, where the third equality

holds by (A.27) or (A.36), and the weak convergence follows from Assumption 2 (ii). Furthermore, the

same condition implies that
∫ 1
0 (dG(u))

2 =
∫ 1
0 σ2(u)(dB̄(u))2 = (ϕ2

11 + ϕ12ϕ
′
12)
∫ 1
0 σ2(u)du = (ϕ2

11 +

ϕ12ϕ
′
12)(σ(·), σ(·)), where the second last equality holds by noting that G(·) is an Itô process such that

dB̄(·) = ϕ11dW̄(·) + ϕ12dW̃(·).

(ii.b) Given the conditions, it follows from (A.27) or (A.36) that 1
nĀn = 1

n∇θḠn(θ∗)Σ̂
−1
n ∇′

θḠn(θ∗) =∑sn
i=1∆Hn(in)∆Hn(in)

′. Therefore, if we combine this equation with Assumption 3 (ii), it further follows

that Ān = 1
n

∑sn
i=1C1(in)C1(in)

′+
∑sn

i=1C2(in)∆h̃n(in)∆h̃n(in)
′C2(in)

′+ 1√
n
[
∑sn

i=1C1(in)∆h̃n(in)
′C2

(in)
′ +
∑sn

i=1C2(in)∆h̃n(in)C1(in)
′] + oP(1). Next examine the asymptotic behavior of each element on

the right side. First, note that 1
n

∑sn
i=1C1(in)C1(in)

′ →
∫ 1
0 C1(u)C1(u)

′du = [C1(·), C1(·)].

Second, (dH(u))(dH(u))′ = τ(u)dB̃(u)dB̃(u)′τ(u)′ = τ(u)Φ2Φ
′
2τ(u)

′du, so that
∑sn

i=1C2(in)∆h̃n

(in)∆h̃n(in)
′C2(in)

′ = n−1
∑sn

i=1C2(in)τ(in)Φ2Φ
′
2τ(in)

′C2(in)+ oP(1) →
∫ 1
0 C2(u)τ(u)Φ2Φ

′
2τ(u)

′C2

(u)′du = [C2(·)τ(·)Φ2, C2(·)τ(·)Φ2].

Finally, we examine the asymptotic behavior of n−1/2
∑sn

i=1C2(in)∆h̃n(in)
′C1(in)

′. Note that ∆h̃n(·)

can be approximated by dH(·) if n is sufficiently large, so that it follows that 1√
n

∑sn
i=1C1(in)∆h̃n(in)

′C2

(in)
′ = 1√

n

∫ 1
0 C1(u)ν(u)

′C2(u)
′du + 1√

n

∫ 1
0 C1(u)(τ(u)dB̃(u))′C2(u)

′ + oP(1). Note that the first two

terms on the right side are oP(1), implying that Ān = 1
n

∑sn
i=1C1(in)C1(in)

′ +
∑sn

i=1C2(in)∆h̃n(in)∆h̃n
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(in)
′C2(in)

′ + oP(1) → [C1(·), C1(·)] + [C2(·)τ(·)Φ2, C2(·)τ(·)Φ2] with prob. converging to 1.

(ii.c) Given the conditions, (A.27) or (A.36) implies that Dn = n
∑sn

i=1∆Hn(in)∆g̃n(in), and Assump-

tion 3 implies that ∆Hn(·) = n−1C1(·)+n−1/2C2(·)∆h̃n(·)+n−1C3(·)(h̃n(·)⊙∆h̃n(·))+oP(n
−1), so that

Dn−
√
n
∑sn

i=1C2(in)∆h̃n(in)∆g̃n(in) =
∑sn

i=1C1(in)∆g̃n(in)+
∑sn

i=1C3(in){h̃n(in)⊙ (∆h̃n(in)∆g̃n

(in))} + oP(1) ⇒
∫ 1
0 C1(u)dG(u) +

∫ 1
0 C3(u)(H(u) ⊙ τ(u)Φ2ϕ

′
1)σ(u)du =: Du by noting that h̃n(·) ⇒

H(·) and ∆h̃n(·)∆g̃n(·) = n−1τ(·)Φ2ϕ
′
1σ(·)+oP(1). We further note that

∫ 1
0 C1(u)dG(u) = [C1(·), dG(·)]

and
∫ 1
0 C3(u)(H(u)⊙ τ(u)Φ2ϕ

′
1)σ(u)du = [C3(·)(H(·)⊙ τ(·)Φ2ϕ

′
1), σ(·)].

(iii.d) Given Assumption 2 (ii), it follows that (dG(u)dH(u)) = σ(u)τ(u)duΦ2ϕ
′
1. Approximate

∆g̃n(·) by dG(·) and then
∑sn

i=1C2(in)∆g̃n(in)∆h̃n(in) =
∫ 1
0 σ(u)C2(u)τ(u)duΦ2ϕ

′
1 + oP(1) = oP(1)

from the condition that
∫ 1
0 C2(u)σ(u)τ(u)duΦ2ϕ

′
1 = [C2(·)τ(·)Φ2ϕ

′
1, σ(·)] = 0 with prob. 1, implying

that n−1/2
∑sn

i=1C2(in)σ(in)τ(in)Φ2ϕ
′
1 = oP(1) by applying theorem 1 (c) of Chui (1971). This also im-

plies that n−1/2
∑sn

i=1C2(in)E[σ(in)τ(in)]Φ2ϕ
′
1 = o(1). Therefore,

√
n
∑sn

i=1C2(in)∆g̃n(in)∆h̃n(in) =

1√
n

∑sn
i=1C2(in){n∆g̃n(in)∆h̃n(in) − E[σ(in)τ(in)]Φ2ϕ

′
1} + oP(1). We here note that {n∆g̃n(in)∆h̃n

(in)} is a mixingale process of size −1 by Assumption 3 (ii.c) such that var[ 1√
n

∑sn
i=1C2(in){n∆g̃n(in)∆h̃n

(in)−E[σ(in)τ(in)]Φ2ϕ
′
1}] = 1

n

∑sn
i=1 Γ1(in)C2(in)C2(in)

′+ 1
n2

∑sn
i=1

∑sn
j=1i ̸=j

Γ2(in, jn)C2(in)C2(jn)
′

+o(1) →
∫ 1
0 Γ1(u)C2(u)C2(u)

′du+
∫ 1
0

∫ 1
0 Γ2(u, v)C2(u)C2(v)

′dudv =: Γ, which is finite by Assumption

3 (ii.c). Therefore, var[ 1√
n

∑sn
i=1C2(in){n∆g̃n(in)∆h̃n(in) − E[σ(in)τ(in)]Φ2ϕ

′
1}] → Γ, and it follows

from the mixingale CLT (e.g., White, 2001, theorem 5.16) that 1√
n

∑sn
i=1C2(in){(n∆g̃n(in))∆h̃n(in)) −

σ(in)τ(in)Φ2ϕ
′
1} ⇒ Z ∼ N (0,Γ) by noting that Γ is positive definite. This implies

√
n
∑sn

i=1C2(in)∆h̃n

(in)∆g̃n(in) ⇒ Z . Combining this result with (ii.c) gives Dn =
√
n
∑sn

i=1C2(in)∆h̃n(in)∆g̃n(in) +∑sn
i=1C1(in)∆h̃n(in) +

∑sn
i=1C3(in)(h̃n(in) ⊙ ∆h̃n(in))∆g̃n(in) + oP(1) ⇒ Z + Du =: Dw. This

completes the proof. ■

Proof of Theorem 1: (i) Given Lemma 3 (i) and the fact that
√
n(θ̂n − θ∗) = −Ā−1

n Dn + oP(1),
√
n(θ̂n −

θ∗) ⇒ −A−1
d Dd.

(ii) Given Lemma 3 (ii.d), the desired results follow from the fact that
√
n(θ̂n − θ∗) = −Ā−1

n Dn +

oP(1) ⇒ −A−1
u Dw. ■

Proof of Theorem 2: (i) We first apply a second-order Taylor expansion to qn(·) around θ∗ and obtain that

Jn := qn(θ̂n) = qn(θ∗)−
√
n(θ̂n − θ∗)

′(∇θḠn(θ∗)Σ̂
−1
n ∇′

θḠn(θ∗))
√
n(θ̂n − θ∗) + oP(1). (A.37)

It now follows from (1) that Jn = qn(θ∗)− G̃n(θ∗)
′Σ̂−1

n ∇′
θḠn(θ∗)(∇θḠn(θ∗)Σ̂

−1
n ∇′

θḠn(θ∗))
−1∇θḠn(θ∗)

Σ̂−1
n G̃n(θ∗)+oP(1) = qn(θ∗)−D′

nĀ
−1
n Dn+oP(1) ⇒ Qd−D′

dA
−1
d Dd by Lemma 3 (i). We further note that
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Qd−D′
dA

−1
d Dd = (ΞG(·),G(·))−[λd(·)′,G(·)]A−1

d [λd(·),G(·)] = (ΞG(·),G(·))−[λd(·)′A−1
d [λd(◦),G(◦)],

G(·)] = (ΞG(·),G(·)) − ((λd(·)′A−1
d λd(◦),G(◦)),G(·)) = (ΠdG(·),G(·)) =: Jd, where the last equal-

ity holds from the fact that (λd(·)′A−1
d λd(◦),G(◦)) = λd(·)′A−1

d

∫ 1
0 λd(u)G(u)du = ΛdG(·), so that

(ΞG(·),G(·))− ((λd(·)′A−1
d λd(◦),G(◦)),G(·)) = (ΞG(·),G(·))− (ΛdG(·),G(·)) = ((Ξ−Λd)G(·),G(·))

= (ΠdG(·),G(·)).

(ii) Given (A.37), it follows that n−1Jn = n−1qn(θ∗)+oP(1). Furthermore, Lemma 3 (ii.a) implies that

n−1qn(θ∗) → qu := φq

∫ 1
0 σ2(u)du with prob. converging to 1, which is identical to φq

∫ 1
0 E[σ2(u)]du.

Now n−1qn(θ∗) = n−1
∑sn

i=1(
√
n∆g̃n(in))

2. It follows that
√
n( 1nJn−qu) =

1√
n

∑sn
i=1 [(

√
n∆g̃n(in))

2−

φqE[σ2(in)]] + oP(1) by noting that
∣∣ 1
n

∑sn
i=1 φqσ

2(in)− qu
∣∣ = oP(n

−1/2), which is implied by theo-

rem 1 (c) of Chui (1971). Now {(
√
n∆g̃n(in))

2 − φqE[σ2(in)]} is a mixingale of size −1, as assumed

by Assumption 2 (ii). Therefore, var[ 1√
n

∑sn
i=1{(

√
n∆g̃n(in))

2 − φqE[σ2(in)]}] = 1
n

∑sn
i=1 γ1(in) +

1
n2

∑sn
i=1

∑sn
j=1i ̸=j

γ2(in, jn) + oP(1) →
∫ 1
0 γ1(u)du +

∫ 1
0

∫ 1
0 γ2(u, v)dudv =: v2, which is finite by As-

sumptions 2 (ii). Therefore, it follows from the mixingale CLT that 1√
n

∑sn
i=1{(

√
n∆g̃n(in))

2−φqE[σ2(in)]

} A∼ N (0, v2), which also implies that
√
n( 1nJn − qu) + oP(1) =

(Jn−nqu)√
n

+ oP(1)
A∼ N (0, v2). From this,

we obtain that Un
A∼ N (0, 1) under H0, as required. ■

Proof of Theorem 3: (i) We first note that q̄n(θ) =
∫ 1
0

∫ 1
0 gn(u1, θ)ξ̃n(u1, u2)gn(u2, θ)du1du2. We further

note that d̂n(·, ◦) → d(·, ◦) uniformly on [0, 1]×Θ by the definition of d̂n(·, ◦), so that gn(·, ◦) → g(·, ◦) :=

(·)− d(·, ◦) uniformly on [0, 1]×Θ such that gn(0, ·) ≡ 0 and gn(1, ·) ≡ 0 uniformly in n, and g(0, ·) ≡ 0

and g(1, ·) ≡ 0. These properties are useful in characterizing the limit properties of infinite dimensional

MCMD estimation. Note that Lemma 1 (i) implies that

q(·) = −
∫ 1

0

∫ 1

0
δ′′(u1 − u2)g(u1, ·)g(u2, ·)du1du2 =

∫ 1

0
{(∂/∂u)g(u, ·)}2du

=

∫ 1

0
{1− (∂/∂u)d(u, ·)}2du =

∫ 1

0
{(∂/∂u)d(u, ·)}2du− 1,

where the last equality holds because
∫ 1
0 (∂/∂u)d(u, ·)du = d(1, ·)−d(0, ·) ≡ 1. Here,

∫ 1
0 {(∂/∂u)d(u, θ)}

2

du− 1 =
∫ 1
0 {(∂/∂u)u}

2du− 1 = 0 if and only if θ = θ∗. Furthermore,
∫ 1
0 {1− (∂/∂u)d(u, ·)}2du cannot

be less than zero, so that q(·) is minimized at θ∗. From this fact, the GMM estimator must converge to θ∗

with prob. converging to 1.

(ii) Lemma 1 (i) implies that

q̄n(θ∗) = n−1qn(θ∗) = Ḡn(θ∗)
′Σ̂−1

n Ḡn(θ∗) →
∫ 1

0
{dB0(u)}2 = 1 (A.38)

with prob. converging to 1, because
√
nḠn(θ∗) can be translated to g̃n(·) which converges weakly to Bo(·)
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so that B0(0) = B0(1) = 0 with prob. 1, where the last equality of (A.38) follows from the fact that

dB0(u) = −(1−u)−1B0(u)du+dW(u), implying that µ(·) = −B0(·)(1−(·))−1 and σ(·) ≡ 1. Therefore,

n−1qn(θ∗) → 1 with prob. converging to 1.

(iii) We examine the asymptotic distribution of the infinite dimensional MCMD estimator. For finite

n,
√
n(θ̃n − θ∗) = −Ā−1

n Dn + oP(1), and Ān := ∇′
θFn(θ∗)Σ̃

−1
n ∇θFn(θ∗) = [Ξ̃nHn(·), Hn(·)] such

that the j′-th row and j-th column element of [Ξ̃nHn(·), Hn(·)] is obtained as (Ξ̃nHn,j′(·), Hn,j(·)) =

n
∑n−1

i=1 ∆Hn,j′(in)∆Hn,j(in) by applying Lemma 1 (ii), where Hn,j(·) denotes the j-th row function

of Hn(·) := ∇θgn(·, θ∗). In Section A.1.2, we separately show that n
∑n−1

i=1 ∆Hn,j′(in)∆Hn,j(in) →∫ 1
0 H ′

j(u)H
′
j′(u){

dd(u,θ∗)
du + σ2(u)}du with prob. converging to 1, where Hj(·) and Hj′(·) are the j-th row

and j′-th row functions of H(·) := −∇θd(·, θ∗), respectively, and d(·, θ∗) = (·) and σ(·) ≡ 1, so that it

follows that dd(·,θ∗)
du +σ(·) ≡ 2, implying that n

∑n−1
i=1 ∆Hn,j′(in)∆Hn,j(in) → 2

∫ 1
0 H ′

j(u)H
′
j′(u)du with

prob. converging to 1. It therefore follows that

Ān = [Ξ̂nHn(·), Hn(·)] → A := 2[H ′(·), H ′(·)] (A.39)

with prob. converging to 1. This limit result can also be related to Lemma 3 (ii.b). In Section A.1.3, we

derive the expansion

√
n∆Hn(·) = n−1/2H ′(·)−H ′(·)∆g̃n(·)− n−1/2H ′′(·)g̃n(·)∆g̃n(·) + oP(1), (A.40)

so that Assumption 3 (ii) holds by letting C1(·) = H ′(·), C2(·) = −H ′(·), C3(·) = −H ′′(·), and h̃n(·) =

g̃n(·). Lemma 3 (ii.b) now leads to Ān → [C1(·), C1(·)] + [σ(·)C2(·), σ(·)C2(·)] = [H ′(·), H ′(·)] +

[H ′(·), H ′(·)] = 2[H ′(·), H ′(·)] by noting that σ(·) = τ(·) ≡ 1 and Φ22 = 1.

Next, we note that Dn := ∇′
θFn(θ∗)Σ̂

−1
n

√
n(P̂n − Fn(θ∗)) = [Ξ̂nHn(·), g̃n(·)], and the j-th row

element of [Ξ̂nHn(·), g̃n(·)] is obtained as

(Ξ̂nHn,j(·), g̃n(·)) = n
n−1∑
i=1

∆Hn,j (in)∆g̃n (in)

=

n−1∑
i=1

H ′
j (in)∆g̃n (in) +

n−1∑
i=1

H ′′
j (in) g̃n (in) (∆g̃n (in))

2 −
√
n

n−1∑
i=1

H ′
j (in) (∆g̃n (in))

2 + oP(1)

(A.41)

by applying (A.6) and (A.8) in Section A.1.3 and the fact that d̂n(·) converges to (·) uniformly on [0, 1].
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Here, we note that

n−1∑
i=1

H ′
j (in)∆g̃n (in) ⇒ Z(1)

j :=

∫ 1

0
H ′

j(u)dB0(u) ∼ N (0, (Hj(·), Hj(·))), (A.42)

and
n−1∑
i=1

H ′′
j (in) g̃n (in) (∆g̃n (in))

2 ⇒ Z(2)
j :=

∫ 1

0
H ′′

j (u)B0(u)du, (A.43)

using the fact that g̃n(·) ⇒ B0(·) and
∑n−1

i=1 H ′′
j (in)g̃n(in)(∆g̃n(in))

2 = n−1
∑n−1

i=1 H ′′
j (in)g̃n(in)+oP(1).

We also note that
∫ 1
0 H ′

j(u)dB0(u)+
∫ 1
0 H ′′

j (u)B0(u)du = 0 by integration by parts, so that Z(1)
j = −Z(2)

j ,

from which it follows that Z(2)
j ∼ N (0, (Hj(·), Hj(·))) and the sum of the first two terms on the right side

of (A.41) is negligible in prob.

In addition, if we apply the dominated convergence theorem to obtain

∇θ

∫ 1

0

f(F−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)
du =

∫ 1

0

∇θf(F
−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)
du,

uniformly in θ, then

H ′(u) = −∇θ(∂/∂u)F (F−1(u, θ∗), θ)|θ=θ∗ = − ∇θf(F
−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)

∣∣∣∣
θ=θ∗

,

so that applying the dominated convergence theorem implies that∫ 1

0
H ′(u)du = −

∫ 1

0

∇θf(F
−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)

∣∣∣∣
θ=θ∗

du = −∇θ

∫ 1

0

f(F−1(u, θ∗), θ∗)

f(F−1(u, θ∗), θ∗)
du = 0, (A.44)

viz.,
∫ 1
0 H ′(u)du = 0. By this fact, n−1

∑n−1
i=1 H ′(in) →

∫ 1
0 H ′(u)du = 0 with prob. converging to 1,

so that
∑n−1

i=1 H ′(in) = o(n−1) by theorem 1 (c) of Chui (1971) under the given conditions for the infinite

dimensional MCMD estimator. Further note that (∆g̃n(·))2 = n(∆d̂n(·))2 − 2∆d̂n(·) + n−1 and that

each ∆d̂n(in) is an increment of the order statistics constructed by IID uniform random variables, so that

(∆d̂n(
1
n), . . . ,∆d̂n(1))

′ follows a Dirichlet distribution with parameter ιn. Using this condition, Section

A.3.2 shows that for each i, E[(∆g̃n(in)
2] = n−1

n(n+1) . Hence, we can rewrite the third term of (A.41) as

√
n

n−1∑
i=1

H ′
j (in) (∆g̃n (in))

2 =
√
n

n−1∑
i=1

H ′
j (in)

{
(∆g̃n (in))

2 − n− 1

n(n+ 1)

}
+ oP(1)

=
√
n

n−1∑
i=1

H ′
j (in)

[(√
n∆d̂n (in)

)2
− 2n

n(n+ 1)

]
− 2

√
n

n−1∑
i=1

H ′
j (in)

(
∆d̂n (in)−

1

n

)
+ oP(1).

Here, (A.42) implies that
∑n−1

i=1 H ′
j (in)

√
n
(
∆d̂n (in)− 1

n

)
= −

∑n−1
i=1 H ′

j (in)∆g̃n (in) ⇒ Z(1)
j :=

−
∫ 1
0 H ′

j(u)dBo(u), and we already showed that var[
√
n
∑n−1

i=1 H ′
j(in){(

√
n∆d̂n(in))

2 − 2n
n(n+1)}] →
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20(H ′
j(·), H ′

j(·)) in Section A.3.1. Therefore, if we apply CLT, it follows that

√
n

n−1∑
i=1

H ′
j (in) (∆g̃n (in))

2 ⇒ Z(3)
j − 2Z(1)

j , (A.45)

where Z(3)
j ∼ N (0, υ2j ), and υ2j := 20(H ′

j(·), H ′
j(·)). We now plug (A.42), (A.43), (A.45) into (A.41) to

deduce that (Ξ̂nHn,j(·), g̃n(·)) ⇒ Z(3)
j − 2Z(1)

j ∼ N (0, 8(H ′
j(·), H ′

j(·))) by noting that E[Z(1)
j Z(3)

j ] =

4(H ′
j(·), H ′

j(·)) as verified in Section A.3.3.

We now extend this result to [Ξ̂nHn(·), g̃n(·)]:

[Ξ̂nHn(·), g̃n(·)] ⇒ D := −Z(3) + 2Z(1) ∼ N (0, 8[H ′(·), H ′(·)]), (A.46)

where Z(1) and Z(3) are the weak limits of
∑

H ′ (in)∆g̃n (in) and
√
n
∑

H ′ (in) {(
√
n∆d̂n (in))

2 −
2n

n(n+1)}, respectively.

The weak limit on the right side can be associated with Lemmas 3 (ii.c and ii.d). Given that σ2(·) ≡ 1,

g̃n(·) ⇒ B0(·), and C1(·) = H ′(·), C2(·) = −H ′(·), C3(·) = −H ′′(·), and h̃n(·) = g̃n(·) from (A.40), we

note that [σ2(·), C2(·)] = 0 by (A.44). Therefore, [Ξ̂nHn(·), g̃n(·)] ⇒ Z − [H ′(·), dB0(·)]− [H ′′(·),B0(·)]

by Lemmas 3 (ii.c and ii.d). Here, [H ′(·), dB0(·)] + [H ′′(·),B0(·)] = 0 by the integration by parts, and this

implies that Z = D in (A.46), so that Γ = 8[H ′(·), H ′(·)]. This result can be affirmed by deriving that

Γ1(·) ≡ 8 and Γ2(·, ◦) ≡ 4 through some tedious algebra. Using this,
∫ 1
0

∫ 1
0 Γ2(u, v)C2(u)C2(v)

′dudv of

Lemma 3 (ii.d) is identical to 4
∫ 1
0 H ′(u)du

∫ 1
0 H ′(u)′du = 0 by (A.44), so that Γ = 8

∫ 1
0 H ′(u)H ′(u)′du,

which is 8[H ′(·), H ′(·)].

Finally, using the findings above the limit distribution of the infinite dimensional MCMD estimator can

be obtained as follows:

√
n(θ̃n − θ∗) = −Ā−1

n Dn + oP(1) ⇒ −A−1D ∼ N (0, 2[H ′(·), H ′(·)]−1),

where we combined (A.39) and (A.46) to obtain the limit.

(iv) We note that Jn = qn(θ̃n) = qn(θ∗)−1
2D̄

′
nĀ

−1
n D̄n+oP(1) by applying a second-order Taylor expan-

sion, where D̄n := ∇θḠn(θ∗)Σ̂
−1
n Ḡn(θ∗) = OP(n

−1/2) by (A.46) and Ān = OP(1), so that Jn = qn(θ∗)+

OP(n
−1). Furthermore, note that qn(θ∗)−n = n{

∑n−1
i=1 (∆g̃n(in))

2−1} = n{n
∑n−1

i=1 (∆d̂n(in))
2−2}+

oP(n
−1), where the first equality follows from (A.31) in Section A.1, and the second equality holds by the

fact that g̃n(·) :=
√
n((·) − d̂n(·)). Using the distributional condition of the elementary coverage, Section

A.3.2 shows that var(
∑n−1

i=1 (∆g̃n(in))
2−1) = 4n−1+o(n−1), implying that

√
n{
∑n−1

i=1 (∆g̃n(in))
2−1} A∼

N (0, 4), so that (qn(θ∗) − n)/
√
n

A∼ N (0, 4). Therefore, it now follows that (Jn − n)/
√
4n

A∼ N (0, 1)
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under H0. ■

A.6 Empirical Supplements

In this section, we provide supplements related to the empirical application in Section 4.

A.6.1 Functional Shapes of the Brownian Motion and Brownian Bridge Kernels

In this section, we display the functional shapes of the BM- and BB-kernels. Note that when n is finite, the

BM- and BB-kernels are defined as follows:

Σ̈n :=


1
n

1
n · · · 1

n

1
n

2
n · · · 2

n
...

...
. . .

...
1
n

2
n · · · 1

 or Σ̃n :=


1
n(1−

1
n)

1
n(1−

2
n) · · · 1

n(1−
n−1
n )

1
n(1−

2
n)

2
n(1−

2
n) · · · 2

n(1−
2
n)

...
...

. . .
...

1
n(1−

n−1
n ) 2

n(1−
n−1
n ) · · · n−1

n (1− n−1
n )

 .

For the case of Σ̈n, Σ̂
(j,i)
n = min[jn, in], and we let σ̈n(·, ◦) denote σ̂n(·, ◦), which converges to

σ̈(·, ◦) := min[·, ◦] uniformly on [0, 1]× [0, 1]. Figure A.4 (a) shows the functional shape of Σ̈n for n = 25,

and Figure A.4 (b) shows it for n = 100. Although it is not continuous for finite n, the limit kernel σ̈(·, ◦)

is a continuous function.

For the case of Σ̃n, Σ̂(j,i)
n = min[jn, in](1 − max[jn, in]), and we let σ̃n(·, ◦) denote σ̂n(·, ◦), which

converges to σ̃(·, ◦) := min[·, ◦](1 − max[·, ◦]) uniformly on [0, 1] × [0, 1]. Figures A.4 (c) and (d) show

the functional shapes of Σ̃n for n = 25 and n = 100, respectively. Although it is not continuous for finite

n, the limit kernel σ̈(·, ◦) is a continuous function.

A.6.2 Supplementary Information for the Empirical Analysis

In this section, we provide supplementary information for the empirical analysis. First, we demonstrate that

if the Pareto hypothesis is supported for characterizing the upper labor income distribution, the estimated

Pareto parameter provides a measure of heavy-tailedness and thereby income inequality. For this demon-

stration, we display the functional shapes of the Pareto PDFs and CDFs for bx = 1 and θ∗ = 1, 2, and 3

in the upper panel of Figure A.5. Evidently the density levels of higher incomes decrease as θ∗ increases,

and heavy-tailed distributions (with fewer finite moments) occur for lower values of θ∗. Additionally, CDFs

with higher θ∗ uniformly dominate CDFs with lower θ∗, so that income distributions with a lower θ∗ are

more unequally distributed than those with higher θ∗. This relationship can be linked to traditional income

inequality indices. In fact, under the Pareto distribution, the top x-percent income share S(θ∗, x) and the
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(a) Brownian motion kernel (n = 25) (b) Brownian motion kernel (n = 100)

(c) Brownian bridge kernel (n = 25) (d) Brownian bridge kernel (n = 100)

Figure A.4: FUNCTIONAL SHAPES OF THE BROWNIAN MOTION AND BROWNIAN BRIDGE KERNELS.
For n = 25 and 100, each figure shows the shapes of the Brownian motion and Brownian bridge kernel
functions.

Gini coefficient G(θ∗) can be represented directly by functions of θ∗ as follows:

S(θ∗, x) :=
( x

100

) θ∗−1
θ∗ and G(θ∗) :=

1

2θ∗ − 1
,

The lower panel of Figure A.5 shows the functional shapes of S(·, x) and G(·) for x = 5 and 10. The func-

tions have a negative slope, indicating that income equality indices improve as θ∗ increases. We leverage this

characteristic by estimating the Pareto parameter from the top 10% labor income observations. Specifically,

using the results in Table A.10, we compute the top 5% income shares and Gini coefficients by S(θ̂n, 5) and

G(θ̂n), where θ̂n denotes the infinite dimensional MCMD estimates for the data of each cohort that do not

reject the Pareto distribution condition.

Some caution is needed in using this approach as the Gini coefficient obtained in this manner should

be considered an approximate value based on the upper end of the distribution. It may not be accurate to

assume that the entire labor income distribution follows a Pareto distribution, as only the top 10% incomes
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(a) Pareto PDFs (b) Pareto CDFs
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Figure A.5: PDFS, CDFS, TOP INCOME SHARE, AND GINI FUNCTIONS OF THE PARETO RANDOM

VARIABLES. The figures in the upper panel show the shapes of the Pareto PDF and CDF for θ∗ = 1 2, and
3. The top income share function shows the functional shapes of the q% top income share coefficient as a
function of θ∗ for q = 5 and 10, and the Gini function shows the functional shape of the Gini coefficient as
a function of θ∗.

are tested for the right tail distribution. On the contrary, the top 5% income shares can be reliably estimated

through this method since they are computed from the right tail income distributions. Therefore, we focused

attention on the top 5% labor income shares for the empirical application in Section 4.

Second, we discuss the inferential results of applying the U -test. Table A.9 presents the distribution

of the cohorts categorized by gender, education, and race, and Table A.10 reports the inferential findings

obtained by applying the U -test for each cohort using the datasets from 1980 to 2018. The table specifically

provides information for each cohort, including the sample size of the top 10% labor income datasets and

the number of datasets that do not reject the Pareto distribution hypothesis. For instance, for the female

cohort born in 1960, there are 260 top 10% labor income observations, and out of the 39 datasets between

1980 and 2018, 27 of them do not reject the Pareto distribution hypothesis at the 1% significance level. We

summarize the inferential findings as follows.

(a) The analysis shows that gender, education, and race all have an impact on inference. When individuals

are categorized based on their gender, education, and race, a substantial number of datasets do not
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Classification 1960 1961 1962 Sum
Female 2,591 2,576 2,540 7,707
Male 2,479 2,456 2,358 7,293
Sum 5,070 5,032 4,898 15,000
High School or below 1,108 1,187 1,094 3,389
BA or equivalent 2,659 2,646 2,689 7,994
MA or equivalent 535 515 487 1,537
Doctorate or equivalent 768 684 628 2,080
Sum 5,070 5,032 4,898 15,000
White or Caucasian 4,106 4,085 3,954 12,145
Black or African American 644 627 619 1,890
Asian 258 250 251 759
Etc. 62 70 74 206
Sum 5,070 5,032 4,898 15,000

Table A.9: SAMPLE SIZES OF CLASSIFIED DATA SETS. This table shows the sample sizes of the classified
datasets.

reject the Pareto hypothesis. This outcome can be compared with the bottom panel of Table A.10,

where observations are not classified. Note that numbers in the upper panels are overall higher than

the corresponding numbers in the bottom panel for each cohort born in 1960, 1961, and 1962. This

finding indicates that it is difficult to reject the Pareto hypothesis from more homogeneous sectors of

individuals.

(b) Although detailed results are not reported here, the Pareto hypothesis is found to be appropriate at

higher income levels. If bx is increased to represent the top 5% of labor income for each cohort,

the hypothesis cannot be rejected in a substantial number of datasets. This suggests that the Pareto

distribution is also well-suited for capturing the right tail of the income distribution.

(c) Importantly, classifying observations into homogeneous groups or increasing bx inevitably reduces

sample size and therefore type II errors may occur in inference. For our analysis, therefore, bx was

selected to give the top 10% labor income level of each cohort data, which provides moderate sample

sizes in the cohorts; and groups with sample sizes less than 25 were removed from analysis. As a

result, individuals not belonging to white or Caucasian, black or African American, or Asian races

were removed from the analysis. □

A.6.3 Measuring Income Inequality by Gini Coefficients

In this section we provide the estimated Gini coefficients using annual data for each year. The evolution

of the Gini coefficients is shown in parallel to those in Figures 2 to 5. For the female and male cohorts,

Figure A.6 shows the estimated Gini coefficients as functions of time between 1980 and 2018. Likewise,

Figures A.7 and A.8 show the estimated Gini coefficients from the datasets classified by education and race,
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respectively. Figure A.9 shows the Gini coefficients when datasets are not classified. The implications of

these figures are broadly the same as those from Figures 2 to 5.

35



Classification Size \ Obs. 1960 1961 1962

Female

n 260 258 255
1% 27 28 26
5% 25 24 24

10% 22 23 20

Male

n 248 246 236
1% 33 31 32
5% 31 26 28

10% 27 23 27

High School or below

n 111 119 110
1% 28 38 39
5% 32 36 37

10% 31 36 35

BA or equivalent

n 266 265 269
1% 34 34 33
5% 32 33 32

10% 31 33 28

MA or equivalent

n 54 52 49
1% 38 39 39
5% 38 39 38

10% 38 36 36

Doctorate or equivalent

n 77 69 63
1% 34 28 34
5% 32 27 32

10% 29 24 32

White or Caucasian

n 411 409 396
1% 29 33 29
5% 28 31 24

10% 25 28 19

Black or African American

n 65 63 62
1% 38 37 39
5% 37 36 38

10% 35 36 37

Asian

n 26 26 26
1% 36 39 37
5% 36 38 37

10% 36 35 36

Etc.

n 7 8 8
1% 39 39 38
5% 39 39 38

10% 39 38 38

All

n 508 504 490
1% 30 29 29
5% 23 28 26

10% 18 23 21

Table A.10: NUMBER OF DATA SETS NOT REJECTING THE PARETO DISTRIBUTION HYPOTHESIS. This
table shows the number of the top 10% CWHS datasets between 1980 and 2018 that do not reject the Pareto
distribution hypothesis by the U -test. As an example, when the females are restricted to top 10% individuals
who are born in 1960 and the level of significance is 1%, 27 datasets between 1980 and 2017 do not reject
the Pareto distribution hypothesis. Here, n denotes the average sample size of the top 10% individuals in
the datasets.
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(a) Female (b) Male
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Figure A.6: GINI COEFFICIENTS OF GENDER COHORTS BETWEEN 1980 AND 2018. The figures show
the Gini coefficients of gender cohorts estimated by imposing the Pareto distribution to the top 10% CWHS
observations. Missing values signify the p-value of the U -test less than 1%. The same legend applies to all
sub-figures.

(a) High school or below (b) BA or equivalent
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(c) MA or equivalent (d) Doctorate or equivalent
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Figure A.7: GINI COEFFICIENTS WITHIN THE SAME EDUCATION COHORTS BETWEEN 1980 AND 2018.
The figures show the Gini coefficients within the same education cohorts estimated by imposing the Pareto
distribution to the top 10% CWHS observations. Missing values signify the p-value of the U -test less than
1%. The same legend applies to all sub-figures.
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(a) White or Caucasian (b) Black or African American
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(c) Asian
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Figure A.8: GINI COEFFICIENTS WITHIN THE SAME RACE COHORTS BETWEEN 1980 AND 2018. The
figures show the Gini coefficients within the same race cohorts estimated by imposing the Pareto distribution
to the top 10% CWHS observations. Missing values signify the p-value of the U -test less than 1%. The same
legend applies to all sub-figures.
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Figure A.9: GINI COEFFICIENTS USING AGGREGATED OBSERVATIONS FOR EACH YEAR BETWEEN

1980 AND 2018. The figures show the Gini coefficients of aggregated observations estimated by imposing
the Pareto distribution to the top 10% CWHS observations. Missing values signify the p-value of the U -test
less than 1%.
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