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1 Introduction

“Science is the Differential Calculus of the mind. Art the Integral Calculus; they may be beau-

tiful when apart, but are greatest only when combined.” — Ronald Ross.

The generalized method of moments (GMM) approach to estimation and inference has been adapted

to several nonstandard environments. A particular extension that has proved to be important theoretically

and empirically useful involves the application of GMM when the number of moment conditions is allowed

to pass to infinity with the sample size. An example of such high dimensional GMM occurs with the

use of minimum Cramér-von Mises distance (MCMD) estimation, which is useful in estimating unknown

parameters in a model’s distribution and can be extended to test distributional specification. Early work by

Pollard (1980) and later Cho, Park, and Phillips (2018) showed how to develop limit theory for MCMD

estimation in GMM form with a particular weight matrix. The latter paper applied MCMD to test the Pareto

distributional form for income data in Korea, an approach that is commonly used in estimating top income

shares (see Piketty, 2003; Piketty and Saez, 2003; Atkinson, Piketty, and Saez, 2011, among others). In

another context, Angrist and Keueger (1991) estimated the monetary return to education in the labor market

using two-stage least squares on U.S. census data with a large number of instruments, leading to another

high dimensional GMM problem.

The large sample properties of high dimensional GMM with many moment conditions rely on the

asymptotic behavior of the GMM components and these are case-dependent. So, unless the GMM envi-

ronment is fully characterized, the asymptotic properties of GMM can be difficult to derive and remain

elusive. For example, when persistently correlated moment conditions are employed in GMM estimation,

large sample analysis differs from that when the moment conditions are weakly correlated. As discussed

below, the moment conditions for MCMD converge to a Brownian bridge (BB) process, and GMM using

these moment conditions is very different from cases of GMM estimation with weakly correlated moment

conditions that are employed in instrumental variable or two-stage least squares estimation, as investigated

by Carrasco (2012)

Different weight matrices in GMM may also produce different limit properties. But when the matrix di-

mension grows, inversion inevitably becomes imprecise as the smallest eigenvalue of the matrix approaches

zero. Indeed, the limiting inverse may not exist and computation becomes case-dependent and difficult

even when the limit exists. For example, the BB process for MCMD estimation allows GMM to be com-

puted using the inverse of the BB covariance matrix for asymptotic optimality, but it is unknown how the

inverse matrix affects GMM asymptotically, irrespective of the existence of the limit inverse. Likewise,
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if the moment conditions form a unit-root process (another persistently correlated process) that converges

to Brownian motion (BM) upon standarization, the size of the moment conditions grows and an asymp-

totically optimal GMM is obtained by inverting the BM covariance matrix. Nonetheless, its influence on

GMM limit behavior is presently unknown in the literature. The reason is that the limit of the inverse of

the BM covariance matrix does not exist in any standard form of the type that assumes a finite number of

moment conditions. These restrictions effectively diminish the scope of GMM applications in the literature

to reliance on stationary moment conditions. Challenges of the type just described associated with high

dimensional matrix inversions relate to the so-called ill-posedness problem associated with the inversion of

operators in functional analysis, a problem that is typically resolved by various forms of regularization.

A primary goal of the present paper is to tackle directly and without regularization the challenges of

high dimensional GMM that are associated with BM and BB covariance matrices, which are in turn induced

by persistently correlated moment conditions. Direct inversion of BM and BB covariance matrices and the

manner of doing so is quite new and opens up a wide range of potential applications. To mention a few of

them here: (i) For empirical processes that converge to a BB process, as for the Kolmogorov-Smirnov (KS)

test, it is necessary to invert the BB covariance matrix when testing a distributional hypothesis within the

GMM framework; (ii) BM and BB processes are widely assumed in finance for series such as stock prices,

interest rates, and option prices among others (e.g., Andersen and Piterbarg, 2010; Hirsa and Neftci, 2014).

If the sample paths of these processes are employed as a series of moment conditions for GMM estimation

it becomes necessary to invert BM or BB covariance matrices; (iii) More generally, the use of covariance

matrices based on BM and BB processes and kernels is common because of convenience of form and ease

of analysis, yet they are rarely applied in empirical work because of the difficulties induced by ill-posedness

problems in inversion.

To meet these needs the main aim of the present study is to provide a unified framework for delivering the

asymptotic properties of GMM when BM or BB covariance matrix inversions are involved that is applicable

in a wide range of different models and circumstances where moment conditions are persistently correlated

in a manner that yields a continuous sample path and the model is specified to cope with this complexity. In

particular, our approach allows the moment dimension to grow infinitely large and makes explicit the variate

space and inner product framework that provides the mechanism for embodying the GMM limit theory. We

call the GMM procedures associated with these techniques BM-GMM and BB-GMM.

The asymptotic properties of BM-GMM and BB-GMM depend intimately on two key component ele-

ments – the weight matrix and the moment conditions – both of which become infinite dimensional in the

limit. We briefly explain here how our theory is developed using these elements. First, the properties of
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the weight matrix in BM-GMM and BB-GMM inevitably affect the limit properties of the estimation pro-

cedure, just as they do in the finite dimensional case. The BM and BB covariance matrices become infinite

dimensional as the moment size grows, and they are often called the BM-kernel and BB-kernel, in accord

with their use as kernels for integral operators. More specifically, if the moment index is adjusted to fit to

the unit interval, the BM and BB covariance matrices can be positioned on the unit square. Further, as the

moment size increases, the corresponding BM and BB covariance matrices converge to continuous functions

as shown in Figure 1. Hence, when they are both suitably standardized, the product of a BM (or BB) co-

variance matrix and a vector (whose standardized form has a continuous function limit on the unit interval)

converges to a double integral formed with the BM (or BB) kernel and the limiting continuous function of

the standardized vector. As is detailed fully below, we can also represent this limit using an inner product

between two continuous functions such that the first is the integral transform of the limiting continuous

function using the BM (or BB) kernel, and the second is the limiting continuous function. For our GMM

analysis, the GMM distance is constructed using the inverted BM (or BB) covariance matrix as the weight

matrix instead of the BM (or BB) covariance matrix itself and our development shows how this inversion

affects GMM estimation. Specifically, the analysis reveals that under some regularity conditions this in-

version ensures the GMM distance converges to an inner product between the derivatives or differentials

defined by the limit process of the moment conditions. For this development we explicitly derive the inverse

kernel functions from the BM-kernel and BB-kernel for the case of a set of finite moments, and then let the

moment size tend to infinity to obtain the limiting inverse kernel operators. Heuristically, given that the BM

covariance matrix is the covariance matrix of an integrated process, the quadratic form product using the

‘inverted’ BM covariance matrix yields an inner product between the ‘dis-integrated’ processes. Put simply,

this means that inverting integration operators leads to differentiation. This approach delivers directly what

is implied in the prior literature that the inverse BM-kernel operator is a second-order differential kernel

operator (e.g., Carrasco, Florens, and Renault, 2007).

Second, infinite dimensional moment conditions also affect the limit properties of GMM. As mentioned

above, there may be two types of infinite dimensional moment conditions: persistently correlated moment

conditions and weakly correlated moment conditions. We distinguish these by their sample path charac-

teristics. If the sample path is continuous, we say that the moment conditions are persistently correlated.

Otherwise, we call them weakly correlated moment conditions. For the current study, we assume persis-

tently correlated moment conditions and leave the case of weakly correlated moment conditions for future

research. This approach is convenient because the large sample analysis of GMM based on the two types of

moment conditions are distinct and better treated in separate work. Further, continuous BM and BB kernels
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are incompatible with weakly correlated moment conditions, although we do not necessarily require that the

moment conditions themselves converge to BM or BB processes. Instead, our framework requires that the

moment conditions converge to a twice continuously differentiable Gaussian process or an Itô process for

which BM and BB processes are just special cases. Using this wide class of infinite dimensional moment

conditions, we have a unified framework for investigating the large sample properties of GMM formed by

inverted BM or BB covariance matrices leading to asymptotically normal GMM estimation limit theory.

In two studies that relate to the present work, Carrasco and Florens (2000) and Amengual, Carrasco, and

Sentana (2020) considered infinite-dimensional GMM estimation by using Tikhonov regularization meth-

ods. Specifically, these authors obtained the limit of an infinite-dimensional weight matrix by combining its

spectrum with asymptotically negligible bias in a manner analogous to ridge regression so that the methodol-

ogy is applicable even when the weight matrix is not bounded in the limit. Picard (1910) provided necessary

and sufficient conditions for the existence of a bounded inverted kernel function. But many popular kernel

functions for empirical applications do not satisfy those conditions. In consequence, it is generally believed

that it is necessary to apply regularization techniques to enable analysis of inverse kernels in such cases.

Indeed, Carrasco and Florens (2000) used regularized kernel inversion to obtain the limit distribution of the

estimators defined in terms of the inverse kernel, and Amengual et al. (2020) applied that approach in testing

distributional assumptions by GMM (see also Kirsch, 1996; Carrasco et al., 2007). Neither BM-GMM nor

BB-GMM kernels satisfy Picard’s conditions, so the option of using regularized kernel inversion is available

in the present study. But our approach is instead to develop explicit derivations of the inverse BM-kernel

and inverse BB-kernel. These explicit inverse kernels enable us to develop and analyze GMM asymptotics

without having to resort to the use of regularized kernel inversions.

In addition to providing a unifying framework for BM-GMM and BB-GMM asymptotics, the paper

addresses overidentification testing. We provide regularity conditions under which the Sargan J-test statistic

(Sargan, 1958; Hansen, 1982) can be validly used for testing overidentification in the high-dimensional

moment case. In case the regularity conditions for the J-test do not hold, we revisit the T -test approach

taken in Donald, Imbens, and Newey (2003) and provide a new test for the present setting called the U -test,

developing its asymptotic theory and showing how the two different testing methods supplement each other

according to the context.

High dimensional BM-GMM and BB-GMM methods can be applied in many areas where large data sets

are available to test relevant economic hypotheses. We demonstrate their use in labor economics, focusing on

BB-GMM estimation to measure top labor income shares over time. Among others, Piketty (2003), Piketty

and Saez (2003), and Atkinson et al. (2011) have estimated top income shares in many countries over time
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using income data. A key assumption in their approach is that income observations in the right tail of the

distribution closely follow the form of a Pareto tail. If the hypothesis is invalid, the estimated top income

shares are biased. In our approach BB-GMM estimation is conducted under the Pareto tail hypothesis. For

this purpose our empirical application employs the Continuous Work History Sample (CWHS) database,

which collects labor income data from individuals born in the U.S. between 1960 and 1962. In addition, the

Pareto tail distributional condition is tested using the U -test developed in the present study. When the Pareto

tail hypothesis is not rejected, the top income shares are estimated under this condition using the BB-GMM

approach.

A further goal of our empirical study is to examine the evolution of income inequality within the same

cohort. Previous research has examined income inequality over time using country-level data, which may

not adequately capture structural factors involved in the evolution. Instead, we compute income inequality

indices using observations from the same cohort in the CWHS database over time, which enables identifica-

tion of a standard pattern in income inequality evolution. By constructing several cohorts from the database,

we estimate the labor income inequality indices within the same cohort over time and derive policy impli-

cations to reduce income inequality.

The plan of the present study is as follows. Section 2 develops limit theory in our high dimensional

setting for GMM estimation and the tests for overidentification. A particular focus in this discussion is the

large sample behavior of BB-GMM estimation when it is applied to MCMD estimation, which is subse-

quently treated as a running example in the rest of the paper. Section 3 reports the results of a simulation

study that employs this running example and corroborates the large sample behavior established in Section

2. Section 4 examines the CWHS database and measures various labor income inequality indices, focus-

ing on data classified by gender, education, race, and birth year. Conclusions are drawn in Section 5. All

the main results of the paper are proved in the Online Supplement, together with some additional technical

results and empirical evidence.

For ease of reference we introduce some notation. For an arbitrary function f(·) and j = 1, 2, . . ., we

use (dj/djx)f(x̄) for (dj/dxj)f(x)|x=x̄. Integral operators are shown in boldface, and (a(·), b(·)) is the

L2 inner product of a(·) and b(·), so that (a(·), b(·)) :=
∫
a(u)b(u)du. If A(·) ∈ Ra and B(·) ∈ Rb,

then [A(·), B(·)] denotes the Gramian matrix of A(·) and B(·), viz., the matrix of inner products between

the elements of A(·) and B(·), so that [A(·), B(·)] is an a × b matrix with (i, j)-th element (Ai(·), Bj(·)).

Finally, for i and j = 1, 2, . . . , n, we let in := i
n and jn := j

n . Other notation in the paper is standard.
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2 Estimation and Inference for BM-GMM and BB-GMM

This section develops a large sample asymptotic theory for BM-GMM and BB-GMM estimation and infer-

ence. To illustrate the theory we use the MCMD framework as a running example and BB-GMM is applied

in this MCMD setting.

2.1 Environments of BM-GMM and BB-GMM

To fix ideas the standard framework for finite dimensional GMM involves extremum estimation with an

objective function to be minimized that has the form

q̄n(·) := Ḡn(·)′Σ̂−1
n Ḡn(·) with qn(·) := nq̄n(·)

for which there is assumed to be a unique vector θ∗ ∈ Θ satisfying the moment condition E[Ḡn(θ∗)] = 0.

Here Θ is a convex and compact parameter space that is a subset of Rd (d ∈ N) and the sample moment

vector is given by

Ḡn(·) :=
1

n

n∑
t=1

Un(Wt, ·) and Gn(·) := nḠn,

with Un(Wt, ·) : Θ 7→ Rs continuously differentiable on Θ with probability (prob.) 1, Σ̂n ∈ Rs×s is a

symmetric, positive definite matrix for large enough n, and {Wt ∈ Rr : t = 1, 2, . . . , n} is a sequence

of strictly stationary and ergodic random variables defined on a complete probability space. Let θ̂n denote

the GMM estimator obtained as θ̂n := arg minθ∈Θ q̄n(θ). The dimension of the moment conditions is the

dimension, s, of Gn(·).

Typically in GMM limit theory the number of moment conditions s is invariant to the sample size,

although this is not always the case in practical work as in many problems the underlying theory provides

a large number of possible moment conditions. Hansen (1982) and Bates and White (1985) among many

others explored the asymptotic behavior of the GMM estimator in fixed dimensional settings. Specifically,

if the GMM estimator is approximated as

√
n(θ̂n − θ∗) = −

[
∇θḠn(θ∗)Σ̂

−1
n ∇′θḠn(θ∗)

]−1 [
∇θḠn(θ∗)Σ̂

−1
n G̃n(θ∗)

]
+ oP(1) (1)

by way of Taylor expansion, where G̃n(θ∗) :=
√
nḠn(θ∗), the limit distribution of the GMM estimator is

obtained by deriving the limit behavior of the components on the right side of (1). If ∇θḠn(θ∗) and Σ̂n

converge to H∗ := E[∇θUn,t(θ∗)] and Σ with probability converging to 1, and G̃n(θ∗)
A∼ N (0,Σ∗), then

√
n(θ̂n − θ∗)

A∼ N (0, (H∗Σ
−1H ′∗)

−1(H∗Σ
−1Σ∗Σ

−1H ′∗)(H∗Σ
−1H ′∗)

−1),
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under the conditions that Σ∗ is the covariance matrix of Un,t(θ∗) := Un(Wt, ·) and H∗Σ−1H ′∗ and Σ∗ are

positive definite.

The current study differs from the standard GMM frameworkn as the number of moment conditions

s is allowed to increase with n → ∞. For this purpose we let s = sn be the dimension of the moment

conditions with consequent implications for the weight matrices in GMM estimation. Our particular focus

in estimating θ when Σ̂n has the following possible forms

Σ̈n :=



1
n

1
n · · · 1

n

1
n

2
n · · · 2

n
...

...
. . .

...
1
n

2
n · · · 1

 or Σ̃n :=



1
n(1− 1

n) 1
n(1− 2

n) · · · 1
n(1− n−1

n )

1
n(1− 2

n) 2
n(1− 2

n) · · · 2
n(1− 2

n)
...

...
. . .

...
1
n(1− n−1

n ) 2
n(1− n−1

n ) · · · n−1
n (1− n−1

n )

 .

Here the dimension of Σ̈n is n and the (i, j)-th element is min(in, jn), which corresponds to the finite

sample analog of a Brownian motion kernel. We refer to the GMM driven by Σ̈n as Brownian motion GMM

(BM-GMM) and we denote the corresponding estimator as θ̈n. Similarly, Σ̃n is a sample analog of the

Brownian bridge kernel, and the (i, j)-th element is min(in, jn)(1 − max(in, jn)). We call the estimator

based on Σ̃n the Brownian bridge GMM (BB-GMM), and it is denoted θ̃n. A primary goal of the paper is

to derive the limit properties of BM-GMM and BB-GMM.

Estimation in this context is referred to as an infinite-dimensional GMM. A number of earlier studies

examine econometric models under similar divergence conditions. Bontemps and Meddahi (2012) test dis-

tributional assumptions by GMM methods using the moment conditions implied by the assumption. Use

of BM-GMM and BB-GMM is more related to MCMD estimation. In that connection, Pollard (1980) and

Cho et al. (2018) examined estimating an unknown parameter θ∗ in the distribution function, F (·, θ∗), of a

variable xt by minimizing the Cramér-von Mises distance. Specifically, it was assumed that grouped data

{[cj−1, cj),#{xt ∈ [cj−1, cj)} : j = 1, 2, . . . , s; t = 1, . . . , n} are available on xt and θ∗ is estimated by

minimizing the objective function q̄(s)
n (θ) :=

∑s
j=1{p̂n,j − F (cj , θ)}2 with respect to θ, where for each

j = 1, 2, . . . , s, p̂n,j := n−1
∑n

t=1 I(xt ∈ [c0, cj ]), and {xt : t = 1, 2, . . . , n} is a sequence of independent

identically distributed (IID) random variables. In this formulation the quantity p̂n,j , giving the proportion

of the data in interval j, is treated as the dependent variable, and F (cj , ·) serves as a nonlinear model for

p̂n,j . When F (·, θ∗) correctly matches the distribution of xt, the MCMD estimator of θ∗ is consistent,

and its distribution is asymptotically normal. In particular, if the MCMD estimator is used to construct

the Kolmogorov-Smirnov (KS) statistic to test a distributional hypothesis with an unknown parameter, the

null limit distribution is a functional of a linearly transformed Brownian bridge. This property is particu-
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larly appealing for empirical applications because of the difficulty in obtaining the null limit distribution

of the KS test when other consistent estimators, such as the maximum likelihood estimator, are used in the

construction, as pointed out by Durbin (1973).

MCMD estimation of this type can be formulated in GMM format. For each j = 1, 2, . . . , s, the

parameter θ∗ satisfies the moment condition E[p̂n,j − F (cj , θ∗)] = 0. Let θ̂(s)
n be the GMM extremum

estimator satisfying

θ̂(s)
n := arg min

θ∈Θ
(P̂ (s)

n − F (s)(θ))′W (s)(P̂ (s)
n − F (s)(θ)),

where P̂ (s)
n := [p̂n,1, . . . , p̂n,s]

′, F (s)(θ) := [F (c1, θ), . . . , F (cs, θ)]
′, and W (s) is an s× s positive definite

matrix that converges to a positive definite matrix as n tends to infinity. The MCMD estimator is therefore

a GMM estimator with a structure of generalized least squares. The GMM estimator θ̂(s)
n is consistent for

θ∗ and asymptotically normal under the standard framework that applies when the number of groups s is

fixed. The MCMD estimator is then the special case where the weight matrix is W (s) = Is. As another

case, if the data is grouped and the group dimension is sn = n − 1 with W (sn) = Σ̃−1
n , then MCMD

falls within the framework of BB-GMM. Note that
√
n(P̂

(s)
n − F (s)(θ∗)) weakly converges to a Brownian

bridge process B0(·), motivating Σ̃−1
n as the weight matrix for GMM. Accordingly from now on we refer

to MCMD estimation driven by W (sn) = Σ̃−1
n as infinite-dimensional MCMD estimation and use it as a

running example of BB-GMM. In this setup the weight matrix is not parameterized by θ. For such a case,

BB-GMM methodology should be understood as an effective way of deriving the limit behavior of the GMM

estimator with a weight matrix that estimates Brownian kernels consistently.

In addition to infinite dimension MCMD estimation there are other examples where the moment di-

mension is determined by the sample size n. Grenander (1981) developed a theory of abstract inference in

function space that deals with parameters in models involving various stochastic processes and studied best

linear unbiased estimation in that context. The abstract space setting relates to the approach taken in the cur-

rent study where our focus involves inverse BM and BB kernels. Carrasco and Florens (2000) also worked

with a model that falls into the infinite-dimensional GMM framework. They noted the important limitation

that the limiting form of the usual weight matrix (in this setting Σ̈−1
n and Σ̃−1

n ) does not necessarily exist

as a bounded linear operator, because the associated covariance operator does not satisfy Picard’s (1910)

conditions for the existence of a linear inverse operator in the limit. Their approach instead uses Tikhonov’s

regularization, as in ridge regression, so that the inverse operator can be represented in terms of an approx-

imate spectral decomposition of the covariance operator, which involves bias that vanishes asymptotically

(see also Kirsch, 1996). Amengual et al. (2020) applied this method to test distributional assumptions by
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GMM. Our approach, in contrast to these methods, focuses on BM and BB kernels and explicitly obtains

their limiting inverse kernels, which enables the limit behavior of BM-GMM and BB-GMM to be obtained

without applying Tikhonov regularization.

Several other high-dimensional studies relate to the present work. Shi (2016) examines estimating a

nonlinear structural model similar to that of the present paper but with an approach that maximizes a con-

strained empirical likelihood and selects only informative moment conditions. Donald and Newey (2001),

Bai and Ng (2010) and Belloni, Chen, Chernozhukov, and Hansen (2012) also examine estimating linear

structural parameters using high-dimensional moment conditions in environments that differ from the cur-

rent study, supposing different dimension sizes for the moments compared to the current study. Donald and

Newey (2001) assume s2
n = o(n) and select the set of instruments to produce an asymptotically efficient

GMM estimator based on mean squared error. Bai and Ng (2010) let sn = o(n) and estimate the parameter

by exploiting a factor structure in the data. Belloni et al. (2012) select informative instrumental variables by

means of Lasso and Post-Lasso regressions to estimate the unknown parameter by two-stage least squares

estimation for log(sn) = o(n1/2).

2.2 Limit Properties of BM-GMM and BB-GMM

The limit distribution of the BM-GMM and BB-GMM estimators are obtained by deriving the limit be-

haviors of the components on the right side of (1), viz., (Ḡn(θ∗),∇θḠn(θ∗), Σ̂n). For this purpose, it is

convenient to translate them using functional representation. We first transform Ḡn(θ∗) into a càdlàg func-

tion defined on [0, 1]. For each θ, we let Ḡn,j(θ) be the j-th row element of Ḡn(θ) ∈ Rsn and define

gn(u, θ) :=

 Ḡn,j(θ), if u ∈ [(j − 1)/n, j/n), j = 1, 2, . . . , sn; and

0, if u ∈ [sn/n, 1].

Note that Ḡn(θ) has sn rows, and the above function gn(·, θ) is defined by translating Ḡn(θ) into a function

defined on the unit interval, which represents the space of the standardized index.

This standardization makes the weak limit analysis of Ḡn(θ∗) straightforward. As sn grows to infinity,

it is appropriate to apply the functional central limit theorem (FCLT). Many applications of FCLT methods

have appeared in the econometric literature since, in one context, the work of Phillips (1987) on limit

theory in unit root time series regression using partial sums, and in another, Cho and White (2011) on

limit theory for generalized runs tests. Here we suppose that g̃n(·, θ∗) :=
√
ngn(·, θ∗) weakly converges

to a Gaussian stochastic process G(·) say, such that for a continuous function ω(·, ·) defined on [0, 1]2,

E[G(u1)G(u2)] = ω(u1, u2). Note that G(·) is also continuous with probability one if ω(·, ·) is a continuous
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function. From this weak convergence, the uniform law of large numbers (ULLN) follows for gn(·, θ∗) so

that supu∈[0,1] |gn(u, θ∗)| → 0 with probability converging to 1.

We focus on two types of Gaussian processes in this work. We suppose that G(·) is either a Gaussian

process in C(2)([0, 1]) with probability 1, or an Itô process satisfying a stochastic differential equation so that

for some µ : [0, 1] × Ω 7→ R and σ : [0, 1] × Ω 7→ R, dG(u) = µ(u,G(u))du + σ(u,G(u))dW(u), where

W(·) is a standard Wiener process. As discussed below, BM-GMM and BB-GMM estimators have different

asymptotic behavior depending on the path properties of G(·). If G(·) is differentiable with probability 1,

ω(·, ·) is also differentiable on [0, 1]2, and G′(·) becomes another Gaussian process. This further implies that

G′′(·) is also a Gaussian process. On the other hand, if G(·) is an Itô process, ω(·, ·) is not differentiable.

There are many such Gaussian examples, including Brownian motion and Brownian bridge processes. To

simplify notation from now on, we suppress θ∗ in g̃n(·, θ∗), writing g̃n(·) ≡ g̃n(·, θ∗); and we let µ(u) and

σ(u) denote µ(u,G(u)) and σ(u,G(u)), respectively.

We next rewrite ∇θḠn(θ∗) as a set of functions defined on the unit interval that uniformly converges to

a continuous function on the same interval. For j = 1, 2, . . . , sn and j = 1, 2, . . . , d, first let H(j,i)
n be the

j-th row and i-th column element of∇′θḠn(θ∗) ∈ Rsn×d, and then for each i = 1, 2, . . . , d further let

Hn,i(u) :=

 H
(j,i)
n , if u ∈ [(j − 1)/n, j/n), j = 1, 2, . . . , sn; and

0, if u ∈ [sn/n, 1],

and Hn(·) := [Hn,1(·), Hn,2(·), . . . ,Hn,d(·)]′. As for gn(·), Hn,i(·) has a jump at each increment of j/n,

where j = 1, 2, . . . , sn. Here, we suppose that the ULLN holds for this stochastic function, so that as n

tends to infinity for each j and for a continuous function Hj(·), supu∈[0,1] |Hn,j(u) − Hj(u)| → 0 with

probability converging to 1. We also let H(·) := [H1(·), H2(·), . . . ,Hd(·)]′. This condition typically holds

for many regular cases.

As a final functional reformulation, we translate Σ̂n as a two-dimensional càdlàg function defined on

[0, 1]2 by defining

σ̂n(u1, u2) :=

 Σ̂
(j,i)
n , if u1 ∈ [(j − 1)/n, j/n), u2 ∈ [(i− 1)/n, i/n), and j, i = 1, 2, . . . , sn; and

0, if u1 ∈ [sn/n, 1] and u2 ∈ [sn/n, 1],

where Σ̂
(j,i)
n is the j-th row and i-th column element of Σ̂n. Note that σ̂n(·, ◦) is a càdlàg function on [0, 1]2

such that σ̂n(·, ◦) has a jump at each increment of (·, j/sn) or (i/sn, ◦), where i, j = 1, 2, . . . , sn. For the

case of Σ̈n, Σ̂
(j,i)
n = min[jn, in], and we let σ̈n(·, ◦) denote σ̂n(·, ◦), which converges to σ̈(·, ◦) := min[·, ◦]

uniformly on [0, 1] × [0, 1]. Figure 1 (a) shows the functional shape of Σ̈n for n = 25, and Figure 1 (b)
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shows it for n = 100. Although it is not continuous for finite n, the limit kernel σ̈(·, ◦) is a continuous

function. For the case of Σ̃n, Σ̂
(j,i)
n = min[jn, in](1 − max[jn, in]), and we let σ̃n(·, ◦) denote σ̂n(·, ◦),

which converges to σ̃(·, ◦) := min[·, ◦](1 − max[·, ◦]) uniformly on [0, 1] × [0, 1]. Figures 1 (c) and (d)

show the functional shapes of Σ̃n for n = 25 and n = 100, respectively. Although it is not continuous for

finite n, the limit kernel σ̈(·, ◦) is a continuous function.

The functional representations discussed above make it convenient to represent the associated statistics

by an integral transform. For example, if we letBn := [bn( 1
n), . . . , bn( snn )]′ andCn := [cn( 1

n), . . . , cn( snn )]′,

where bn(·) := b(bn(·)c/n) and cn(·) := c(bn(·)c/n) with b(·) and c(·) being continuous on [0, 1],

B′nΣ̂nCn =

sn∑
j=1

sn∑
i=1

bn (jn) cn (in) Σ̂(j,i)
n = n2

∫ 1

0

∫ 1

0
bn(u1)σ̂n(u1, u2)cn(u2)du1du2.

Here, b·c denotes the smallest integer greater than the given argument. If we further let Σ̂n be an integral

operator with kernel n2σ̂n(·, ◦), viz., Σ̂nbn(·) = n2
∫ 1

0 bn(u1)σ̂n(u1, ◦)du1, we also have B′nΣ̂nCb =

(Σ̂nbn(·), cn(·)). Likewise, the inner product representation for the integral transform of the quadratic

product can apply to a quadratic product with the weight matrix Σ̂−1
n . For an integral operator Ξ̂n with a

kernel ξ̂n(·, ◦), we suppose that

q̄n(θ∗) = Ḡn(θ∗)
′Σ̂−1
n Ḡn(θ∗) =

∫ 1

0

∫ 1

0
gn(u1)ξ̂n(u1, u2)gn(u2)du1du2 = (Ξ̂ngn(·), gn(·)).

Note that ξ̂n(·, ◦) corresponds to the kernel of Σ̂n, viz., n2σ̂n(·, ◦). Likewise, it follows that

∇θḠn(θ∗)Σ̂
−1
n ∇′θḠn(θ∗) = [Ξ̂nHn(·), Hn(·)] and ∇θḠn(θ∗)Σ̂

−1
n G̃n(θ∗) = [Ξ̂nHn(·), g̃n(·)]

by analogy. Here, [Ξ̂nHn(·), Hn(·)] denotes the Gramian matrix constructed by Ξ̂nHn(·) and Hn(·),

viz., its j-th row and i-column element is (Ξ̂nHn,j(·), Hn,i(·)). The same interpretation also applies to

[Ξ̂nHn(·), g̃n(·)]. Note that these inner products involving the integral transforms are employed to handle

the large size of the moment conditions tending to infinity. From now, we specifically let Ξ̃n and Ξ̈n be the

integral operators associated with Σ̂−1
n and Σ̈−1

n , respectively, and their limit operators are also denoted as

Ξ̃ and Ξ̈, respectively.

The inverse kernel ξ̂n(·, ◦) exhibits various asymptotic properties, and the asymptotic behavior of Ξ̂n

critically depends on them. Before examining the asymptotic properties of BM-GMM and BB-GMM, we

first examine the asymptotic behaviors of ξ̃n(·, ·) and ξ̈n(·, ◦). The inverse kernel property is substantially

different from being continuous. We first focus on Σ̃−1
n by letting ξ̃n(·, ◦) denote the kernel function of Ξ̃n.
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If n is finite, it is not difficult to obtain Σ̃−1
n and we can obtain the following inverse kernel function:

ξ̃n(·, ◦) = n3
{

2̃In(·, ◦)− J̃n(·, ◦)− J̃n(◦, ·)
}
,

where

Ĩn(·, ◦) := I

[
(·, ◦) ∈

sn⋃
i=1

[
i− 1

n
, in

)
×
[
i− 1

n
, in

)]
and

J̃n(·, ◦) := I

[
(·, ◦) ∈

sn⋃
i=1

[
in,

i+ 1

n

)
×
[
i− 1

n
, in

)]
.

Note that ξ̃n(·, ◦) is not uniformly bounded with respect to n. The following lemma delivers the limit

behavior of (Ξ̃nbn(·), cn(·)):

Lemma 1. Given that b(·) and c(·) are such that b(0) = c(0) = b(1) = c(1) = 0,
(i) (i.a) if b(·) ∈ C(2)([0, 1]), Ξ̃nbn(·) = −b′′(·) + o(1);

(i.b) if it further holds that c(·) ∈ C(1)([0, 1]), (Ξ̃nbn(·), cn(·)) = (b′(·), c′(·)) + o(1);
(ii) if b(·) and c(·) are continuous functions with finite second variations, n−1(Ξ̃nbn(·), cn(·)) = (db(·),

dc(·)) + o(1), where db(·) and dc(·) denote the differentials of b(·) and c(·), respectively. �

Remarks 1. (i) Lemma 1 shows that the limit properties and convergence rate of (Ξ̂nbn(·), cn(·)) de-
pend on the functions attached to the operator.

(ii) Lemma 1 (i.a) shows that the kernel function of Ξ̃ is given by −δ′′(· − ◦), viz., the negative second-
order derivative of the Dirac delta generalized function. Under the condition of Lemma 1 (i.a), we
show that nΣ̃−1

n Bn → −b′′(·) which can be written as −
∫ 1

0 δ
′′(u− ·)b(u)du.

(iii) Lemma 1 (i.b) follows by the integration by parts. That is, c(1)b′(1)−c(0)b′(0) =
∫ 1

0 d{c(u)b′(u)} =∫ 1
0 c
′(u)b′(u)du+

∫ 1
0 c(u)b′′(u)du. Note that (b′(·), c′(·)) = −(c(·), b′′(·)) as c(0) = c(1) = 0 implies

that.
(iv) By the bounded second variation condition,

∫ 1
0 (db(u))2 < ∞ and

∫ 1
0 (dc(u))2 < ∞. The sample

path generated by the Brownian bridge process satisfies the conditions in Lemma 1 (ii). For example,
if we let B0(·) be the Brownian bridge process and b(·) = c(·) = B0(·), Lemma 1 (ii) implies
that n−1(Ξ̂nbn(·), cn(·)) ⇒

∫ 1
0 (dB0(u))2, which is identical to 1 by noting that dB0(u) = −(1 −

u)−1B0(u)du + dW(u), so that (dB0(u))2 = du. If b(·) and c(·) are continuously differentiable, it
simply follows that (db(·), dc(·)) = 0.

(v) The boundary conditions at zero and one are needed for the desired results. For example, if b(0) 6= 0

and b(1) 6= 0 such that for some b0 6= 0 and b1 6= 0, n2bn(0) = b0 + o(1) and n2bn(1) = b1 + o(1),
then it follows that Ξ̈nbn(·) = g(·) + o(1) such that g(0) = b0 − b′′(0), g(1) = b1 − b′′(1), and for
x ∈ (0, 1), g(x) = −b′′(x) under the conditions in Lemma 1 (i.a). Note that the non-zero boundary
conditions modify the limit. �

We next examine Σ̈−1
n by letting ξ̈n(·, ◦) denote the kernel function of Ξ̈n. When n is finite, it follows

from Σ̈−1
n that

ξ̈n(·, ◦) = n3
{
Ïn(·, ◦)− J̈n(·, ◦)− J̈n(◦, ·)

}
,
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where

Ïn(·, ◦) := 2I

[
(·, ◦) ∈

sn−1⋃
i=1

[
i− 1

n
, in

)
×
[
i− 1

n
, in

)]
+ I
[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 1

n
, 1

]]
and

J̈n(·, ◦) := I

[
(·, ◦) ∈

sn−2⋃
i=1

[
in,

i+ 1

n

)
×
[
i− 1

n
, in

)]
+ I
[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 2

n
,
n− 1

n

)]
.

Note that the structure of ξ̈(·, ◦) is similarly defined to ξ̂n(·, ◦) and it is not bounded, although Ï(·, ◦) is not

exactly the same as Ĩ(·, ◦). Mainly, the coefficient of the final diagonal block
[
n−1
n , 1

]
×
[
n−1
n , 1

]
differs

from 1, and the functional values of ξ̈n(1, ◦) and ξ̈n(·, 1) are defined by noting that sn = n, so that it follows

that

ξ̈n(·, ◦) = ξ̃n(·, ◦) + n3I
[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 1

n
, 1

]]
− n3I

[
(·, ◦) ∈

[
n− 1

n
, 1

]
×
[
n− 2

n
,
n− 1

n

)]
− n3I

[
(◦, ·) ∈

[
n− 1

n
, 1

]
×
[
n− 2

n
,
n− 1

n

)]
.

The following lemma reveals the asymptotic properties of (Ξ̈nbn(·), cn(·)):

Lemma 2. Given that b(·) and c(·) are such that b(0) = c(0) = 0,
(i) (i.a) if b(·) ∈ C(2)([0, 1]) and b′(1) = 0, Ξ̈nbn(·) = −b′′(·) + o(1);

(i.b) if it further holds that c(·) ∈ C(1)([0, 1]), (Ξ̈nbn(·), cn(·)) = (b′(·), c′(·)) + o(1);
(ii) if b(·) and c(·) are continuous functions with finite second variations, n−1(Ξ̈nbn(·), cn(·)) = (db(·),

dc(·)) + o(1). �

Remarks 2. (i) Lemma 2 derives the results of Lemma 1 under different conditions for cn(·) and bn(·).
(ii) The result in Lemma 2 (i.a) is consistent with the standard result on the inverse of the Brownian

motion kernel. That is, the inverse of the BM-kernel is a kernel for second-order differentiation (e.g.,
Carrasco et al., 2007). Lemma 2 (i.b) elaborates Lemma 2 (i.a) and obtains the inner product between
the derivatives using the inverse BM-kernel.

(iii) The sample path generated by the Brownian motion satisfies the conditions in Lemma 2 (ii). If we
let B(·) be the Brownian motion and b(·) = c(·) = B(·), we obtain that n−1(Ξ̈nbn(·), cn(·)) ⇒∫ 1

0 (dB(u))2 =
∫ 1

0 du = 1.
(iv) Lemma 2 (ii) provides an intuitive interpretation of the BM-kernel and BB-kernel. For example, the

BM-kernel is the covariance kernel of an integrated process, so that if we use the integral transform
operator using its inverse kernel, it should deliver anti-integrated processes, viz., differentials. There-
fore, the quadratic transform using Σ̈−1

n should converge to the inner product between the differentials
of b(·) and c(·), viz., (db(·), dc(·)). This interpretation also applies to the BB-kernel, and Lemmas 1
(ii) and 2 (ii) provide conditions for the desired result. Furthermore, if bn(·) and cn(·) converge to dif-
ferentiable functions, the quadratic transform converges to the inner product between the derivatives
of b(·) and c(·), viz., (b′(·), c′(·)). Lemma 2 (i.b) provides conditions for this result, and Lemma 1
(i.b) provides other conditions for the inverse BB-kernel.

(v) As for Lemma 1, the boundary condition at zero is needed for the desired results. For example, if
b(0) 6= 0 such that for some b0 6= 0, n2bn(0) = b0 + o(1), then it follows that Ξ̈nbn(·) = f(·) + o(1)
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such that f(0) = b0 − b′′(0) and for x ∈ (0, 1], f(x) = −b′′(x) under the conditions in Lemma 2
(i.a). Hence, a non-zero boundary condition modifies the limit. �

Lemmas 1 and 2 are key vehicles for delivering the limit properties of BM-GMM and BB-GMM. Note

that the two lemmas derive the same results by imposing different conditions on b(·) and c(·). The limits

are inner product of derivatives or differentials. In addition, ξ̂n(·, ◦) does not converge to a continuous

and uniformly bounded function, even if σ̂n(·, ◦) converges to a uniformly bounded continuous function.

For this reason, it becomes difficult to apply the dominated convergence theorem to (Ξ̂nan(·), bn(·)). Put

another way, the BM-kernel and BB-kernel do not satisfy Picard’s (1910) conditions requiring a bounded

inverse kernel (e.g., Kirsch, 1996; Carrasco et al., 2007).

The properties of Σ̃−1
n and Σ̈−1

n established in Lemmas 1 and 2 facilitate the derivation of the limit

behavior of the BM-GMM and BB-GMM estimators for which the following assumptions are employed.

Assumption 1. (i) (Ω,F ,P) is a complete probability space on which the strictly stationary and ergodic
sequence {Wt ∈ Rp : t = 1, 2, . . . , n} is defined;

(ii) for each n ∈ N, Un : Rp × Θ 7→ Rsn (sn = n or n − 1) defines the component elements of
the moment conditions such that for each n and θ ∈ Θ, Un(·, θ) is a measurable function, and for each
ω ∈ Ω0 ∈ F , Un(Wt(ω), ·) ∈ C(2)(Θ) and P(ω ∈ Ω0) = 1;

(iii) for each n, there is a unique θ∗ ∈ Θ such that θ∗ is invariant to n, E[Un(θ∗)] = 0, where Θ ⊂ Rd

(d ∈ N) is compact and convex, and Un,t(·) := Un(Wt, ·);
(iv) for each n, Hn,∗Σ̂

−1
n H ′n,∗ is positive definite, where Hn,∗ := E[∇θUn(Wt, θ∗)] and Σ̂n = Σ̈n or

Σ̃n. �

Assumption 2. g̃n(·)⇒ G(·), where G(·) is a Gaussian stochastic process defined on [0, 1] with a continu-
ous covariance kernel ω(·, ◦) : [0, 1]2 7→ R such that G(0) = 0 with probability 1 and

(i) G(·) ∈ C(2)([0, 1]) with prob. 1; or
(ii) G(·) is an Itô process satisfying the following stochastic differential equation: for some µ : [0, 1] ×

Ω 7→ R and σ : [0, 1]× Ω 7→ R, dG(u) = µ(u)du+ σ(u)dW(u) such that
(ii.a) µ(·, ω) and σ(·, ω) are continuous for each ω ∈ Ω;
(ii.b) for each i = 1, 2, . . . , n, σ(in) is stationary, ergodic, adapted mixingale of size−1 such that for

a continuous function γ1 : [0, 1] 7→ R+ and a continuous and symmetric function γ2 : [0, 1]2 7→
R,

cov
[
(∆g̃n (in))2 , (∆g̃n (jn))2

]
=

{
n−2γ1(in) + o(n−2), if i = j;
n−3γ2(in, jn) + o(n−3), if i 6= j

uniformly in n, where for each i = 1, 2, . . . , n, ∆g̃n (in) := g̃n (in)− g̃n ((i− 1)/n);
(ii.c) E[σ2(·)] is finite uniformly on [0, 1]. �

Assumption 3. For j = 1, 2, . . . , d, there is Hj(·) ∈ L2([0, 1]) such that Hn(·) → H(·) uniformly on
[0, 1] with probability converging to 1 with H(0) = 0, where H(·) ∈ C(2)([0, 1]) and for continuous
Cj(·) : [0, 1] 7→ Rd (j = 1, 2, 3, 4),

√
n∆Hn(·) = n−1/2C1(·) +C2(·)∆g̃n(·) + n−1/2C3(·)g̃n(·)∆g̃n(·) +

n−1C4(·)g̃n(·) +OP(n−3/2). �
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Remarks 3. (i) The conditions stated in Assumption 2 (i and ii) imply different convergence rates for
the variation of g̃n(·), viz., ∆g̃n(·). Assumption 2 (i) supposes that ∆g̃n(·) = OP(n−1), whereas
Assumption 2 (ii) supposes that ∆g̃n(·) = OP(n−1/2). Specifically, we can derive that n∆g̃n(·) =

G′(·) + oP(1) and n(∆g̃n(·))2 = σ2(·) + oP(1) under Assumptions 2 (i and ii), respectively.
(ii) As detailed below, the asymptotic distribution of the BM-GMM or BB-GMM estimator is determined

by applying central limit theory (CLT) to the sequence {(∆g̃n(in))2}. Infinite-dimensional MCMD
estimation belongs to this case and Assumption 2 (ii.b) is imposed to handle this case. More specifi-
cally it provides the condition required to deliver the asymptotic variance of

∑sn
i=1(∆g̃n(in))2.

(iii) Assumption 3 imposes continuity conditions on µ(·), σ(·), H(·), C1(·), C2(·), C3(·), and C4(·) to
ensure finite integrals of these functions, continuous functions being integrable on a compact set.

(iv) The approximation of ∆Hn(·) in Assumption 3 is obtained by generalizing the infinite-dimensional
MCMD estimation environment. For such a case, it follows that Hn(·) = H(p̂n(·)), where p̂n(·) is
the empirical process estimating the cumulative distribution function (CDF) of the data, and it can be
treated as a special case of Assumption 3 (ii). Appendix A.1 verifies this assumption for the infinite-
dimensional MCMD estimator.

(v) The approximation
√
n∆Hn(·) given in Assumption 3 produces different asymptotic behavior under

Assumptions 2 (i and ii). Under Assumption 2 (i), C2(·)∆g̃n(·) = OP(n−1), n−1/2C3(·)g̃n(·)∆g̃n(·)
= OP(n−3/2), and n−1C4(·)g̃n(·) = OP(n−1). Therefore, n∆Hn(·) = C1(·) + oP(1). We also
note that n∆Hn(·) = H ′(·) + oP(1) by differentiation, which implies that H ′(·) = C1(·). Further,
Assumption 2 (ii) implies that C2(·)∆g̃n(·) = OP(n−1/2), n−1/2C3(·)g̃n(·)∆g̃n(·) = OP(n−1), and
n−1C4(·)g̃n(·) = OP(n−1). Therefore, n∆Hn(·) = C1(·)+C2(·)

√
n∆g̃n(·)+oP(1). These different

asymptotic behaviors affect the limit distributions of the BM-GMM and BM-GMM estimators in
different ways.

(vi) Assumption 3 implies that n∆Hn(·) = C1(·) + oP(1). We also note that n∆Hn(·) = H ′(·) + oP(1)

by differentiation, implying that H ′(·) = C1(·). �

We now examine the limit properties of BM-GMM and BB-GMM. For notational simplicity, we first let

Ān := [Ξ̂nHn(·), Hn(·)] and Dn := [Ξ̂nHn(·), g̃n(·)] and give their limit behavior in the following lemma:

Lemma 3. Given that Assumption 1 holds for Σ̂n = Σ̈n or for Σ̂n = Σ̃n with G(1) = 0 and H(1) = 0,
(i) if Assumptions 2 (i) and 3 hold such that H ′(1) = 0 or G′(1) = 0 for the BM-GMM estimator,

(i.a) qn(θ∗)⇒ Qd := (G′(·),G′(·));
(i.b) Ān → Ad := [C1(·), C1(·)] with probability converging to 1;
(i.c) Dn ⇒ Dd := [C1(·),G′(·)];

(ii) if Assumptions 2 (ii) and 3 hold,
(ii.a) n−1qn(θ∗)→ qu := (σ(·), σ(·)) with probability converging to 1;
(ii.b) Ān → Au := [C1(·), C1(·)] + [σ(·)C2(·), σ(·)C2(·)] with probability converging to 1;
(ii.c) Dn − n1/2

∑sn
i=1C2(in)(∆g̃n(in))2 ⇒ Du := [C1(·), dG(·)] + [σ(·)C3(·), σ(·) G(·)];

(ii.d) if it further holds that [σ2(·), C2(·)] = 0 with probability 1 and Γ is positive definite, Dn ⇒
Dw := Z +Du, where Z ∼ N (0,Γ), Γ := [γ

1/2
1 (·)C2(·), γ1/2

1 (·)C2(·)] + [Γ2C2(·), C2(·)], and
Γ2 is the integral operator with kernel function γ2(·, ◦). �

Remarks 4. (i) Lemma 3 (i) corresponds to the results in Lemmas 1 (ii) and 2 (ii). Therefore, it also
follows that Qd = −(G′′(·),G(·)), Ad = −[H ′′(·), H(·)], and Dd = −[H ′′(·),G(·)] by Lemma 1 (i)
and 2 (i).
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(ii) The process G′(·) in Lemma 3 (i) is a continuous Gaussian process because the derivative of a Gaus-
sian process is Gaussian, here with covariance kernel ω̇(u1, u2) := (∂2/∂u1∂u2)ω(u1, u2).

(iii) The variable Dd is normally distributed. That is, Dd ∼ N (0, Bd), where Bd := [Ω̇C1(·), C1(·)] =∫ 1
0

∫ 1
0 C1(u1)ω̇(u1, u2)C1(u2)′du1du2 by letting Ω̇ be the integral transform operator with the kernel

function ω̇(·, ◦).
(iv) By virtue of Lemma 3 (ii.c) the BM-GMM and BB-GMM estimators are asymptotically biased unless∑sn

i=1(∆g̃n(in))2C2(in)→ 0 with probability converging to 1. Note that
∑sn

i=1(∆g̃n(in))2C2(in)→∫ 1
0 σ

2(u)C2(u)du with probability converging to 1, so that if the final entity is zero, we can apply
the CLT to obtain the limit distribution of n1/2

∑sn
i=1(∆g̃n(in))2C2(in), giving the normal random

variable Z in Lemma 3 (ii.d). Assumption 2 (ii.b) provides regularity conditions to apply the CLT.
(v) The limit distribution of the infinite-dimensional MCMD estimator is obtained by applying Lemma 3

(ii.d). For this application, the functions corresponding to C1(·), C2(·), and C3(·) are found from the
model assumption. Further, in the environment of infinite-dimensional MCMD estimation, σ(·) ≡ 1,
C ′1(·) = C3(·), so that it holds that Du = 0 by integration by parts. Hence, if

∫ 1
0 C2(u)du = 0,

γ1(·) = c1, and γ2(·, ◦) = c2 for some constants c1 and c2, then Γ = c1[C2(·), C2(·)] because∫ 1
0

∫ 1
0 γ2(u, v)C2(u)C2(v)′dudv = c2

∫ 1
0 C2(u)du

∫ 1
0 C2(v)′dv = 0. We demonstrate these proper-

ties in Section 2.4. �

In the next step we derive the limit distribution of the BM-GMM and BB-GMM estimators using Lemma

3. Note that standard GMM is typically characterized asymptotically by a Gaussian probability law that is

a consequence of applying a CLT to the first-order condition. The limit distributions are obtained by noting

that
√
n(θ̂n − θ∗) = −Ā−1

n Dn + oP(1). We provide the asymptotics in the following result.

Theorem 1. Let Assumption 1 hold for Σ̂n = Σ̈n or for Σ̂n = Σ̃n with G(1) = 0 and H(1) = 0,
(i) if Assumptions 2 (i) and 3 hold and Ad is positive definite such that H ′(1) = 0 or G′(1) = 0 for the

BM-GMM estimator,
√
n(θ̂n − θ∗)⇒ −A−1

d Dd;
(ii) if Assumptions 2 (ii) and 3 hold andAu is positive definite such that

∫ 1
0 σ

2(u)C2(u)du = 0 with prob.
1,
√
n(θ̂n − θ∗)⇒ −A−1

u Dw. �

Before moving to the next section we consider the effect of permuting moment conditions in the appli-

cation of BM-GMM and BB-GMM. To fix ideas we focus on BM-GMM estimation by considering g̃n(·, θ)

as the partial sum of {∆g̃n(·, θ)}, and the BM-GMM estimator θ̂n which minimizes the GMM distance

1

n
Ḡn(·)′Σ̈−1

n Ḡn(·) = ∆Ḡn(·)′∆Ḡn(·),

which holds by (A.36) in the Supplement, where ∆Ḡn(·) := [∆gn( 1
n , ·), . . . ,∆gn(1, ·)]′. Consider another

partial sum process denoted g̃pn(·, θ) constructed from the variations {∆g̃pn(in, θ) : i = 1, 2, . . . , sn} by

permuting the sequence of the variations, obtaining θ̂pn by minimizing

1

n
Ḡpn(θ)′Σ̈−1

n Ḡpn(θ) = ∆Ḡpn(·)′∆Ḡpn(·).
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By definition, for any permutation, there is a permutation matrix Q such that every row and column con-

tains a single 1 with 0’s elsewhere, so that ∆Ḡpn(·) = Q∆Ḡn(·) and Q′Q = I . This implies that

∆Ḡn(·)′∆Ḡn(·) = ∆Ḡpn(·)′∆Ḡpn(·), so that θ̂n = θ̂pn, showing that BM-GMM estimation is independent

of permutations of the moments. A similar argument applies for BB-GMM. In infinite-dimensional MCMD

estimation, moment conditions are sorted from the smallest to the largest, so that no issue of permutation

arises in that case.

2.3 Testing Overidentification Using BM-GMM and BB-GMM

For testing overidentification using BM-GMM and BB-GMM we consider the following hypotheses: for

every t,

H0 : for some θ∗ ∈ Θ, E[Un,t(θ∗)] = 0 versus H1 : for each θ ∈ Θ,E[Un,t(θ)] 6= 0.

Note thatH0 is one of the regularity conditions given in Assumption 1. We consider two types of tests.

First, we follow Sargan (1958) and Hansen (1982) with their motivation for an overidentification test

defined as Jn := qn(θ̂n). In standard cases, the J-test follows a chi-squared null distribution asymptotically

under H0 and is unbounded under H1. But this null limit distribution is modified if the number of moment

conditions tends to infinity. Second, we examine the following standardized J-test:

Un :=
Jn − n · qu√

v2
nn

,

where v2
n is a consistent estimator for v2 :=

∫ 1
0 γ1(u)du +

∫ 1
0

∫ 1
0 γ2(u, v)dudv. Here, qu and vn can be

determined by the model assumptions. For example, in infinite-dimensional MCMD estimation, qu = 1 and

v2 = 4 as we show in Section 2.4. The U -test is motivated from Donald et al. (2003) by noting that the

J-test may not be bounded under the null hypothesis. Specifically, they examined

Tn :=
Jn − (sn − d)√

2(sn − d)
,

and showed that its null limit distribution is a standard normal under their model setup. Note that Tn is

defined by supposing that qu = 1 and v2 = 2, but the U -test supposes that qu and v2 do not necessarily

satisfy this condition. The following result gives the null limit behavior of the tests.

Theorem 2. Given Assumptions 1,
(i) if Assumptions 2 (i) and 3 hold and Ad is positive definite, Jn ⇒ Jd := (ΠdG(·),G(·)) under H0,

where Πd := Ξ − Λd, Λd is an integral transform operator with kernel λ(·)′A−1
d λ(◦), λ(◦) :=

ΞH(·), and Ξ is an integral operator such that for b(·) ∈ C(2)([0, 1]), Ξb(·) = −b′′(·); and
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(ii) if Assumptions 2 (ii) and 3 hold for Σ̂n = Σ̈n or Σ̂n = Σ̃n with G(1) = 0 and H(1) = 0, and Au is
positive definite such that

∫ 1
0 σ

2(u)C2(u)du = 0 with probability 1 and for some vn, v2
n → v2 < ∞

with probability converging to 1, then Un
A∼ N (0, 1) underH0. �

Remarks 5. (i) Carrasco and Florens (2000) also provide an overidentification test having a structure
similar to Un under their GMM estimation framework.

(ii) The null limit distribution of the J-test in Theorem 2 (i) is provided under the same structure as in
Theorem 1 (i). The only difference lies in the fact that the limiting inverse kernel operator is fixed to
Πd in Theorem 2 (i). Note that Jd = (G′(·),G′(·))− [H ′(·)′,G′(·)]A−1

d [H ′(·),G′(·)] by the definition
of Πd.

(iii) We cannot apply the J-test when the conditions in Theorem 2 (ii) hold as it converges to a constant
qu as stated in Lemma 3 (ii.a). For this reason we need to apply the U -test for overidentification.

(iv) Finally, the J-test acquires asymptotic power when the weak limit of g̃(·) is unbounded in probability.
Under H1, there is no θ such that E[Un,t(θ)] 6= 0, and it is reasonable to suppose that for some
ν(·) ∈ L2([0, 1]) and θo ∈ Θ,

√
n(gn(·, θo)− ν(·)) = OP(1), where θo is the probability limit of the

BM-GMM or BB-GMM estimator. This supposition lets Jn = OP(n) underH1 so that the J-test has
nontrivial asymptotic power. The power of U -test is acquired in a similar way to the J-test. �

2.4 Infinite-Dimensional MCMD Estimation

This section uses infinite-dimensional MCMD estimation to illustrate BB-GMM estimation and its limit

theory. The large sample properties of the MCMD estimator are modified if observations are from a contin-

uous distribution and GMM estimation is applied. We let xt be a continuous random variable as before, and

pt(θ) := F (x(t), θ), where x(t) is the t-th smallest realization of an IID data set: {xt : t = 1, . . . , n}.

We first focus on
√
n{p̂n,t − F (x(t), θ)}. Note that p̂n,t = p̂n(pt) := n−1

∑n
j=1 I(F (xj , θ∗) ≤ pt),

where pt := pt(θ∗). Now let c(·, θ) := F (F−1(·, θ∗), θ), and then F (x(t), θ) = c(pt, θ), so that we

have
√
n{p̂n,t − F (x(t), θ)} =

√
n{p̂n(pt) − c(pt, θ)}. Further, suppose that c(·, θ) = (·), if and only if

θ 6= θ∗. Therefore, if we let
√
n{p̂n(·) − c(·, θ)} =

√
n{p̂n(·) − (·)} −

√
n{c(·, θ) − (·)}, then we have

g̃n(·) :=
√
n(p̂n(·)− (·))⇒ Bo(·), and

√
n{c(·, θ)− (·)} is not bounded for θ 6= θ∗.

Next estimate the unknown parameter θ∗ by BB-GMM. For this, we let P̂n := [p̂n,1, . . . , p̂n,n−1]′ and

Fn(θ) := [F (x(1), θ), . . . , F (x(n−1), θ)]
′, and further let

θ̃n := arg min
θ∈Θ

q̄n(θ), where q̄n(·) := Ḡn(·)′Σ̃−1
n Ḡn(·) and Ḡn(·) := P̂n − Fn(·).

Therefore, letting gn(·, θ) := p̂n(·)− cn(·, θ), where

cn(u, θ) :=

 c(jn, θ), if u ∈ [(j − 1)/n, jn) for j = 1, 2, . . . , n− 1;

1, if u ∈ [(n− 1)/n, 1],

it follows that
√
ngn(·, θ∗) = g̃n(·) and q̄n(θ) =

∫ 1
0

∫ 1
0 gn(u1, θ)ξ̃n,h(u1, u2)gn(u2, θ)du1du2. We further
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note that cn(·, ◦)→ c(·, ◦) uniformly on [0, 1]×Θ by the definition of cn(·, ◦), so that gn(·, ◦)→ g(·, ◦) :=

(·)− c(·, ◦) uniformly on [0, 1]×Θ such that gn(0, ·) ≡ 0 and gn(1, ·) ≡ 0 uniformly in n, and g(0, ·) ≡ 0

and g(1, ·) ≡ 0.

These properties are useful in characterizing the limit properties of infinite-dimensional MCMD estima-

tion. Note that Lemma 1 (i) implies that

q(·) = −
∫ 1

0

∫ 1

0
δ′′(u1 − u2)g(u1, ·)g(u2, ·)du1du2 =

∫ 1

0
{(∂/∂u)g(u, ·)}2du

=

∫ 1

0
{1− (∂/∂u)c(u, ·)}2du =

∫ 1

0
{(∂/∂u)c(u, ·)}2du− 1, (2)

where the last equality holds because
∫ 1

0 (∂/∂u)c(u, ·)du = c(1, ·)−c(0, ·) ≡ 1. Here,
∫ 1

0 {(∂/∂u)c(u, θ)}2

du− 1 =
∫ 1

0 {(∂/∂u)u}2du− 1 = 0 if and only if θ = θ∗. Furthermore,
∫ 1

0 {1− (∂/∂u)c(u, ·)}2du cannot

be less than zero, so that q(·) is minimized at θ∗. From this fact, the GMM estimator must converge to θ∗

with probability converging to 1, which implies that∫ 1

0

∫ 1

0
δ′′(u1 − u2)g(u1, θ∗)g(u2, θ∗)du1du2 = 0. (3)

Second, the derivation in (2) can be applied to q̄n(θ∗). Note that Lemma 1 (i) implies that

q̄n(θ∗) = n−1qn(θ∗) = Ḡn(θ∗)
′Σ̂−1
n Ḡn(θ∗)→

∫ 1

0
{dB0(u)}2 = 1 (4)

with probability converging to 1, because
√
nḠn(θ∗) can be translated to g̃n(·) which converges weakly to

Bo(·) so that B0(0) = B0(1) = 0 with probability 1, where the last equality of (4) follows from the fact

that dB0(u) = −(1 − u)−1B0(u)du + dW(u), implying that µ(·) = −B0(·)(1 − (·))−1 and σ(·) ≡ 1.

Therefore, n−1qn(θ∗) → 1 with probability converging to 1, that is the same result as Lemma 3 (ii.a)

delivers by noting that (σ(·), σ(·)) = 1. Also, note that qn(θ∗) = OP(n) instead of being OP(1), due to the

non-differentiability of Gn(θ∗). Furthermore, this limit differs from (3), which is obtained from the limit of

Ξ̂ngn(·, θ∗) first, whereas (4) is obtained by letting n→∞ after the inner product is first computed.

Third, we examine the asymptotic distribution of the infinite-dimensional MCMD estimator. For finite

n,
√
n(θ̂n − θ∗) = −Ā−1

n Dn + oP(1), and Ān := ∇′θFn(θ∗)Σ̃
−1
n ∇θFn(θ∗) = [Ξ̃nHn(·), Hn(·)] such

that the j′-th row and j-th column element of [Ξ̃nHn(·), Hn(·)] is obtained as (Ξ̃nHn,j′(·), Hn,j(·)) =

n
∑n−1

i=1 ∆Hn,j′(in)∆Hn,j(in) by applying Lemma 1 (ii), where Hn,j(·) denotes the j-th row function of

Hn(·) := ∇θgn(·, θ∗). In Appendix A.1.2, we separately show that n
∑n−1

i=1 ∆Hn,j′(in)∆Hn,j(in) →∫ 1
0 H

′
j(u)H ′j′(u){dc(u,θ∗)du +σ2(u)}du with probability converging to 1, where Hj(·) and Hj′(·) are the j-th

row and j′-th row functions of H(·) := −∇θc(·, θ∗), respectively, and c(·, θ∗) = (·) and σ(·) ≡ 1, so that
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it follows that dc(·,θ∗)
du + σ(·) ≡ 2, implying that n

∑n−1
i=1 ∆Hn,j′(in)∆Hn,j(in) → 2

∫ 1
0 H

′
j(u)H ′j′(u)du

with probability converging to 1. Here, the coefficient 2 exists particularly because g̃(·) weakly converges

to B0(·). If another Gaussian process is associated with the weak limit of g̃n(·), we could have a different

limit. It therefore follows that

Ān = [Ξ̂nHn(·), Hn(·)]→ A := 2[H ′(·), H ′(·)] (5)

with probability converging to 1. This limit result can also be related to Lemma 3 (ii.b). In Appendix A.1.3,

we derive the expansion

√
n∆Hn(·) = n−1/2H ′(·) +H ′(·)∆g̃n(·) + n−1/2H ′′(·)g̃n(·)∆g̃n(·) + oP(1), (6)

so that Assumption 3 (ii) holds by letting C1(·) = C2(·) = H ′(·) and C3(·) = H ′′(·). Lemma 3 (ii.b) now

leads to Ān → [C1(·), C1(·)] + [σ(·)C2(·), σ(·)C2(·)] = [H ′(·), H ′(·)] + [H ′(·), H ′(·)] = 2[H ′(·), H ′(·)]

by noting that σ(·) ≡ 1.

Fourth, the asymptotic distribution of the infinite-dimensional MCMD estimator is obtained from the

limit distribution of the GMM score. Note thatDn := ∇′θFn(θ∗)Σ̂
−1
n

√
n(P̂n−Fn(θ∗)) = [Ξ̂nHn(·), g̃n(·)],

and the j-th row element of [Ξ̂nHn(·), g̃n(·)] is obtained as

(Ξ̂nHn,j(·), g̃n(·)) = n

n−1∑
i=1

∆Hn,j (in) ∆g̃n (in)

=
n−1∑
i=1

H ′j (in) ∆g̃n (in) +
n−1∑
i=1

H ′′j (in) g̃n (in) (∆g̃n (in))2 +
√
n
n−1∑
i=1

H ′j (in) (∆g̃n (in))2 + oP(1) (7)

by applying (A.6) and (A.8) in Appendix A.1.3 and the fact that p̂n(·) converges to (·) uniformly on [0, 1].

Here, we note that

n−1∑
i=1

H ′j (in) ∆g̃n (in)⇒ Z(1)
j :=

∫ 1

0
H ′j(u)dB0(u) ∼ N (0, (Hj(·), Hj(·))), (8)

and
n−1∑
i=1

H ′′j (in) g̃n (in) (∆g̃n (in))2 ⇒ Z(2)
j :=

∫ 1

0
H ′′j (u)B0(u)du, (9)

using the fact that g̃n(·)⇒ B0(·) and
∑n−1

i=1 H
′′
j (in)g̃n(in)(∆g̃n(in))2 = n−1

∑n−1
i=1 H

′′
j (in)g̃n(in)+oP(1).

We also note that
∫ 1

0 H
′′
j (u)B0(u)du +

∫ 1
0 H

′′
j (u)B0(u)du = 0 by integration by parts, so that Z(1)

j =

−Z(2)
j , from which it follows that Z(2)

j ∼ N (0, (Hj(·), Hj(·))) and the sum of the first two terms on the

right side of (7) is negligible in probability. In addition, if we can apply the dominated convergence theorem
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to obtain

∇θ
∫ 1

0

f(F−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)
du =

∫ 1

0

∇θf(F−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)
du,

uniformly in θ, then

H ′(u) = −∇θ(∂/∂u)F (F−1(u, θ∗), θ)|θ=θ∗ = − ∇θf(F−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)

∣∣∣∣
θ=θ∗

,

so that applying the dominated convergence theorem implies that∫ 1

0
H ′(u)du = −

∫ 1

0

∇θf(F−1(u, θ∗), θ)

f(F−1(u, θ∗), θ∗)

∣∣∣∣
θ=θ∗

du = −∇θ
∫ 1

0

f(F−1(u, θ∗), θ∗)

f(F−1(u, θ∗), θ∗)
du = 0, (10)

viz.,
∫ 1

0 H
′(u)du = 0. By this fact, n−1

∑n−1
i=1 H

′(in) →
∫ 1

0 H
′(u)du = 0 with probability converging

to 1, so that
∑n−1

i=1 H
′(in) = o(n−1) by theorem 1 (c) of Chui (1971) under the given conditions for the

infinite-dimensional MCMD estimator. Further note that (∆g̃n(·))2 = n (∆p̂n(·))2 − 2∆p̂n(·) + n−1 and

that each ∆p̂n(in) is an increment of the order statistics constructed by IID uniform random variables (e.g.,

David and Nagaraja, 2003, section 6.4) which is referred to as the elementary coverage or the spacing (e.g.,

Wilks, 1948; Rao and Kuo, 1984). In addition, (∆p̂n( 1
n), . . . ,∆p̂n(1))′ follows a Dirichlet distribution with

parameter ιn. Using this condition, Appendix A.3.2 shows that for each i, E[(∆g̃n(in)2] = n−1
n(n+1) . Hence,

we can rewrite the second term of (7) as

√
n
n−1∑
i=1

H ′j (in) (∆g̃n (in))2 =
√
n
n−1∑
i=1

H ′j (in)

{
(∆g̃n (in))2 − n− 1

n(n+ 1)

}
+ oP(1)

=
√
n

n−1∑
i=1

H ′j (in)

[(√
n∆p̂n (in)

)2 − 2n

n(n+ 1)

]
− 2
√
n

n−1∑
i=1

H ′j (in)

(
∆p̂n (in)− 1

n

)
+ oP(1).

Here, (8) implies that
∑n−1

i=1 H
′
j (in)

√
n
(
∆p̂n (in)− 1

n

)
=
∑n−1

i=1 H
′
j (in) ∆g̃n (in) ⇒ Z(1)

j :=
∫ 1

0 H
′
j(u)

dBo(u), and we show that var[
√
n
∑n−1

i=1 H
′
j(in){(

√
n∆p̂n(in))2 − 2n

n(n+1)}] → 20(H ′j(·), H ′j(·)) in Ap-

pendix A.3.1. Therefore, if we apply the CLT, it follows that

√
n

n−1∑
i=1

H ′j (in) (∆g̃n (in))2 ⇒ Z(3)
j − 2Z(1)

j , (11)

where Z(3)
j ∼ N (0, υ2

j ), and υ2
j := 20(H ′j(·), H ′j(·)). We now plug (8), (9), (11) into (7) to deduce that

(Ξ̂nHn,j(·), g̃n(·))⇒ Z(3)
j −2Z(1)

j ∼ N (0, 8(H ′j(·), H ′j(·))) by noting that E[Z(1)
j ,Z(3)

j ] = 4(H ′j(·), H ′j(·))

as verified in Appendix A.3.3.
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We now extend this result to [Ξ̂nHn(·), g̃n(·)]:

[Ξ̂nHn(·), g̃n(·)]⇒ D := Z(3) − 2Z(1) ∼ N (0, 8[H ′(·), H ′(·)]), (12)

where Z(1) and Z(3) are the weak limits of
∑
H ′ (in) ∆g̃n (in) and

√
n
∑
H ′ (in) {(

√
n∆p̂n (in))

2 −
2n

n(n+1)}, respectively. The weak limit on the right side can be associated with Lemmas 3 (ii.c and ii.d).

Given that σ2(·) ≡ 1, g̃n(·)⇒ B0(·), and C1(·) = C2(·) = H ′(·) and C3(·) = H ′′(·) from (6), we note that

[σ2(·), C2(·)] = 0 by (10). Therefore, [Ξ̂nHn(·), g̃n(·)]⇒ Z+ [H ′(·), dB0(·)] + [H ′′(·),B0(·)] by Lemmas

3 (ii.c and ii.d). Here, [H ′(·), dB0(·)] + [H ′′(·),B0(·)] = 0 by the integration by parts, and this implies

that Z = D in (12), so that Γ = 8[H ′(·), H ′(·)]. This result can be affirmed by deriving that γ1(·) ≡ 8

and γ2(·, ◦) ≡ 4 through some tedious algebra. Using this,
∫ 1

0

∫ 1
0 γ2(u, v)C2(u)C2(v)′dudv of Lemma 3

(ii.d) is identical to 4
∫ 1

0 H
′(u)du

∫ 1
0 H

′(u)′du = 0 by (10), so that Γ = 8
∫ 1

0 H
′(u)H ′(u)′du, which is

8[H ′(·), H ′(·)].

Fifth, using the third and fourth findings above the limit distribution of the infinite-dimensional MCMD

estimator can be obtained as follows:

√
n(θ̂n − θ∗) = −Ā−1

n Dn + oP(1)⇒ −A−1D ∼ N (0, 2[H ′(·), H ′(·)]−1), (13)

where we combined (5) and (12) to obtain the limit.

Finally, as the number of moment conditions tends to infinity, we cannot use the J-test statistic in this

case. Specifically, we note that Jn = qn(θ̂n) = qn(θ∗) − 1
2D̄
′
nĀ
−1
n D̄n + oP(1) by applying a second-

order Taylor expansion, where D̄n := ∇θḠn(θ∗)Σ̂
−1
n Ḡn(θ∗) = OP(n−1/2) by (12) and Ān = OP(1),

so that Jn = qn(θ∗) + OP(n−1). Furthermore, note that qn(θ∗) − n = n{
∑n−1

i=1 (∆g̃n(in))2 − 1} =

n{n
∑n−1

i=1 (∆p̂n(in))2 − 2}+ oP(n−1), where the first equality follows from (A.31) in Appendix A.1, and

the second equality holds by the fact that g̃n(·) :=
√
n(p̂n(·)− (·)). We here note that n2

∑n−1
i=1 (∆p̂n(in))2

is the goodness-of-fit test proposed by Greenwood (1946) with each ∆p̂n(in) being the elementary coverage

or spacing described above. Using the distributional condition of the elementary coverage, Appendix A.3.2

shows that var(
∑n−1

i=1 (∆g̃n(in))2 − 1) = 4n−1 + o(n−1), implying that
√
n{
∑n−1

i=1 (∆g̃n(in))2 − 1} A∼

N (0, 4), so that (qn(θ∗) − n)/
√
n

A∼ N (0, 4). Therefore, it now follows that (Jn − n)/
√

4n
A∼ N (0, 1)

under H0. Note that this is nothing other than the U -test obtained by letting qu = 1 and v2
n = 4, viz.,

Un = (Jn − n)/
√

4n, whose null limit distribution is N (0, 1) as Theorem 2 (ii) affirms.

Regarding overidentification testing we make two remarks. First, the T -test proposed by Donald et al.

(2003) does not follow the standard normal distribution under the null hypothesis. That is, Tn follows
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N (0, 2) because Tn =
√

2Un + oP(1) under the null. We also note that the T -test could be useful if the

martingale difference array (MDA) CLT could have been applied to Jn − n. Although this is not feasible

under the current data generating process (DGP) condition, if we could let n of (∆g̃n(·))2 tend to infinity

before applying the CLT, we could approximate (∆g̃n(·))2 by (∆W(·))2 + oP(1), and it would follow

that
√
n{
∑n−1

i=1 (∆W(in))2 − 1} = 1√
n

∑n−1
i=1 {n(∆W(in))2 − 1}. Note here that n(∆W(in))2 − 1 is an

MDA, so that the MDA CLT leads to
√
n{
∑n−1

i=1 (∆W(in))2 − 1} A∼ N (0, 2). This property implies that if

Jn − n were an MDA, the T -test would follow a standard normal asymptotically under the null hypothesis.

Nonetheless, the sample size n of (∆g̃n(·))2 has to tend to infinity along with the application of the CLT,

making it impossible to apply the MDA CLT here. It is necessary to take the serial correlation structure of

(∆g̃n(·))2 into account when applying the CLT, ensuring that the U -test is a valid test asymptotically.

Second, the U -test is distribution-free. Note that the same null hypothesis is commonly tested by the

KS-test, and its null limit distribution is affected by parameter estimation error, which makes its application

inconvenient (e.g., Durbin, 1973). It is more difficult to compute the critical values of the test than computing

test value itself as a resampling method has to be applied. In contrast, the null limit distribution of U -test is

standard normal, and so its critical value can be conveniently obtained.

3 Monte Carlo Simulation

Using the infinite-dimensional MCMD estimator simulations were conducted designed to corroborate the

properties of the GMM estimation, addressing specifically Theorems 1 (ii) and 2 (ii). For this purpose,

three different DGP conditions were considered, with xt following exponential, Pareto, or normal distribu-

tions. The corresponding hypotheses were tested using the U -test and the limit distribution of the infinite-

dimensional MCMD estimator was leveraged to test hypotheses on the unknown parameter.

The plan for the simulation follows. First, if xt follows an exponential distribution, then P(xt ≤ x) =

1 − exp(−θ∗x), denoted as xt ∼ Exp(θ∗). Likewise, if xt follows a Pareto distribution bounded from 1,

we have P(xt ≤ x) = 1 − (1/x)θ∗ , denoted as xt ∼ Pa(θ∗, 1). Finally, for xt ∼ N (θ∗, 1), we have

P(xt ≤ x) = Φ(x − θ∗), where Φ(·) is the standard normal CDF. The unknown parameter is estimated by

infinite-dimensional MCMD using

θ̂n := arg min
θ∈Θ

(P̂n − Fn(θ))′Σ̂−1
n (P̂n − Fn(θ)).

For the exponential distribution the j-th row element of Fn(θ) is given be 1 − exp(−θx(j)); for the Pareto

distribution the j-th row element of Fn(θ) is 1 −
(
1/x(j)

)θ; and for the normal distribution the j-th row
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element of Fn(θ) is Φ(x(j)−θ). Here, x(j) denotes the j-th smallest realization of the set of IID observations

{x1, x2, . . . , xn}.

Second, using these distributional hypotheses we obtain

H(p) =

 1
θ∗

(1− p) log(1− p), for exponential and Pareto distributions;

φ(Φ−1(p)), for the normal distribution,

if the models are correctly specified, where φ(·) is the probability density function (PDF) of a standard

normal distribution. In all cases, limp→0H(p) = 0, limp→1H(1) = 0. Furthermore,

∫ 1

0
(H ′(u))2du =

 1
θ2∗
, for exponential and Pareto distributions;

1, for the normal distribution.

Therefore, it follows that

√
n(θ̂n − θ∗)

A∼

 N (0, 2θ2
∗), for exponential and Pareto distributions;

N (0, 2), for the normal distribution

by (13), so that if we let

tn :=


√
n(θ̂n−c)√

2θ̂2n
, for exponential and Pareto distributions;

√
n(θ̂n−c)√

2
, for the normal distribution,

it follows N (0, 1) under the joint hypothesis that θ∗ = c and that the distributional condition is correct. For

all cases, Un
A∼ N (0, 1) under the same conditions. If the t-test rejects the null, it is not evident which

condition is violated out of the jointed hypotheses. To address this issue, we apply both the U -test and the

t-test to test the distributional hypothesis. If the U -test rejects the distributional hypothesis, inference from

the t-test is not informative. But if the t-test rejects the null while the U -test does not, it is evident that

θ∗ 6= c. This combined approach provides a more comprehensive assessment of the hypotheses.

Third, we conduct simulations by supposing null DGPs for testing the hypotheses of the U - and t-tests.

For this purpose, we let θ∗ = 1, 1, and 0, so that xt ∼ Exp(1), xt ∼ Pa(1, 1), and xt ∼ N (0, 1) for the ex-

ponential, Pareto, and normal cases. These parameter values are selected arbitrarily for the simulation study.

In each DGP environment, we compute the empirical rejection rates of the U - and t-tests for significance

levels of 1%, 5%, and 10% with 10,000 independent repetitions. The empirical rejection rates under the null

hypothesis for each test are reported in Tables 1 and 2.

Fourth, we compare the U - and t-tests with corresponding tests defined by Tikhonov’s methodology. In
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particular, applying theorem 10 in Carrasco and Florens (2000), we have the following τ -test as the one that

corresponds to the U -test:

τn :=
J̇n − ṗn√

q̇n
,

where J̇n := nq̇n(θ̇n;αn), θ̇n := arg minθ∈Θ q̇n(θ;αn),

q̇n(θ;αn) := (P̂n − Fn(θ))′Σ̂1/2
n (Σ̂n + αnI)−1Σ̂1/2

n (P̂n − Fn(θ)), ṗn :=

n−1∑
j=1

âj , q̇n := 2

n−1∑
j=1

â2
j ,

and âj := λ̂2
j/(λ̂

2
j + αn) such that λ̂j is the j-th largest eigenvalue of Σ̂n. Note that this test is identical to

Tn if αn = 0 for every n. Following theorem 10 in Carrasco and Florens (2000), we let αn = n−1/4 for

asymptotic optimality of the test and it is then asymptotically standard normal under the null. In addition,

we define the following test as the one corresponding to the t-test:

t′n :=


√
n(θ̇n−c)√

θ̂2n
, for exponential and Pareto distributions;

√
n(θ̇n − c), for the normal distribution,

This test is defined by noting that theorem 8 in Carrasco and Florens (2000) implies that
√
n(θ̇n − θ∗)

A∼

N (0,
∫ 1

0 (H ′(u))2du). Our earlier derivations show that
∫ 1

0 (H ′(u))2du = θ2
∗ for exponential and Pareto

distributions, and
∫ 1

0 (H ′(u))2du = 1 for the normal distribution. The asymptotic variances are straight-

forwardly obtained by applying Lemma 1 (i.b) to theorem 8 of Carrasco and Florens (2000), and letting

αn = n−1/4 satisfies the condition in theorem 8. Under the null, t′n is then asymptotically standard normal.

The null simulation results are summarized as follows.

(a) For each case, as the sample size n increases, the distribution of the U -test converges to the standard

normal. Table 1 demonstrates that the empirical rejection rates are close to 1%, 5%, and 10% for the

exponential, Pareto, and normal distribution cases when n = 1, 000. This observation confirms that

the U -test follows the null limit distribution predicted in Theorem 2 (ii). The empirical distributions

of the U -test provide further support: the left column of Figure 2 displays these distributions and in

each case the empirical distribution approaches the CDF of the standard normal as n increases.

(b) As the sample size n increases the distribution of the t-test converges to the standard normal. Table

2 shows that the empirical rejection rates are close to 1%, 5%, and 10% for the exponential, Pareto,

and normal distribution cases when n = 200, 300, 400, 500, and 1, 000. These results corroborate

the limit theory of the t-test under the null given in Theorem 1 (ii). Furthermore, the standard normal

provides a better approximation of the distribution of the t-test compared to the U -test.

(c) The empirical distribution of the infinite-dimensional MCMD estimator provides further support. The
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right column of Figure 2 displays the empirical distributions of the infinite-dimensional MCMD es-

timators and these evidently closely approach the N (0, 2) CDF as n increases. It is worth noting

that in the normal distribution case, even when n is as small as 100 the empirical distribution of the

infinite-dimensional MCMD estimator is well approximated by the distribution of N (0, 2).

(d) When comparing the U -test with the τ -test, it is apparent that the empirical rejection rates of the

U -test converge to the nominal levels faster than the τ -test. When n is small, the level distortions

of the τ -test are large. Even for n = 1, 000, the empirical rejection rates of τ -test are still far from

nominal levels, although they appear to be converging to nominal levels. These findings indicate that

the U -test controls type-I errors better than the τ -test.

(e) Comparison of the t-test and t′-test results shows that the empirical rejection rates of the t-test also

converge to the nominal levels faster than the t′-test. Although the finite sample distortions are not as

severe as the U -test, the t-test controls type-I errors better than the t′-test. �

Finally, simulations were conducted to examine the local power properties of the U - and t-tests. For this

purpose, the DGP conditions were modified as follows: (i) for the exponential case, xt,n := yt + 1
2

√
zt/n,

with yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; (ii) for the Pareto case, xt,n := yt+
1
2

√
zt/n, with yt ∼ Pa(1, 1) and

zt ∼ U [0.5, 1.5]; and (iii) for the normal case, xt,n := yt + 1
4y

4
t /
√
n, with yt ∼ N (0, 1). Importantly, as n

increases the empirical distribution of xt,n gets closer to that of yt but the finite sample distribution of xt,n is

not the same as that of yt in each case. Local powers of the U - and t-tests are examined together with those

of the τ - and t′-tests. Similar to the null simulations, 10,000 independent experiments were conducted under

the local alternatives and empirical rejection rates of the tests are reported in Tables 3 and 4. These results

provide insights into the performance of the tests under local departures from the null and are summarized

as follows.

(a) The U -test demonstrates non-negligible local power in each case. As the sample size n increases, the

empirical rejection rates of the U -test exceed the nominal significance levels, indicating that the U -

test exhibits local power. Notably, the empirical local power of the U -test remains relatively stable as

n increases for the normal case compared to the exponential and Pareto cases. This suggests that the

U -test performs well in detecting local departures from the null hypothesis, especially for the normal

distribution case.

(b) The t-test also exhibits non-negligible local power in each case. As the sample size n increases, the

empirical rejection rates of the t-test tend to exceed the nominal significance levels, again indicating

that the t-test exhibits local power. Similar to the U -test, the empirical local power of the t-test

remains relatively stable for the normal distribution case across different sample sizes, suggesting that
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the t-test performs well in detecting local departures from the null hypothesis, particularly for the

normal distribution case.

(c) When comparing powers of the U - and τ -tests, the empirical rejection rates of the U -test are higher

than those of the τ -test. The same outcome is observed in the comparison between the t- and t′-tests.

Notably, the empirical local powers of the t-test are higher than t′-test for all three distributions. �

This simulation exercise comparing our approach with tests based on Tikhonov regularization shows that

use of the exact inverse operator for the BB-kernel reduces finite sample size distortion and increases local

power.

4 Empirical Application

This section reports the findings of an empirical implementation of infinite-dimensional MCMD estimation

to examine distributional hypotheses concerning labor income data in the U.S. The Pareto distribution has

been popular in research on income distributions throughout a large body literature. Since Kuznets (1953,

1955) first examined top income shares in U.S. income data, this statistic has commonly been used for an in-

come inequality index supplementing the Gini coefficient, as the latter does not focus on income inequality

associated with the tail of the distribution. In particular, Piketty (2003), Piketty and Saez (2003), Atkin-

son (2005, 2007), Atkinson and Leigh (2007, 2008), and Moriguchi and Saez (2008), among others, use

the Pareto distribution in measuring the top x-percent income shares of many countries such as Australia,

France, Japan, New Zealand, U.K., and the U.S. over long periods to reveal how the estimated top income

shares have evolved over time. The findings indicate that the top income shares have increased since the

1970s, signaling a general deterioration in income equality. The results are based on the Pareto distribu-

tion assumption and top income share estimates obtained from the methodologies in these studies could be

biased unless the Pareto distribution condition holds for the data.

Our empirical application is motivated by much ongoing research on income distributions and inequality

where there is a need to test underlying distributional assumptions on which empirical findings are often

based. In particular, we utilize this paper’s infinite-dimensional MCMD methodology to test the Pareto

distribution hypothesis and investigate the evolution of income inequality in the U.S over time. Previous

studies, such as Piketty and Saez (2003), have pointed out that the recent increase in top income shares is

primarily driven by the rise of the capital income share. This means that a small segment of the population

has a significant proportion of total income, mainly by way of capital income. Apart from capital income

share, Piketty and Saez (2003) highlight a persistent rise of labor income inequality in the U.S. since the

1970s. This aspect of labor income inequality has also been studied by Katz and Murphy (1995); Katz
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and Autor (1999); Ciccone and Peri (2005); Eisenbarth and Chen (2022) and others, who examine labor

market inequality by analyzing the distribution of wage structures. Their findings consistently show that

wage inequality has continuously increased in the U.S. labor market. For instance, Katz and Autor (1999)

report that earnings inequality has risen for both males and females, and wage disparities based on education,

occupation, and age have also widened. Moreover, wage dispersion has expanded within demographic and

skill groups. These studies provide valuable insights into the dynamics of labor income inequality in the

U.S.

Our main focus is to investigate how labor income inequality has evolved within the same cohort over

time. The overall distribution of the wage structure is influenced not only by the inherent demand charac-

teristics of the labor market but also by various heterogeneous factors, such as race, gender, education, and

other determinants. This observation leads us to examine labor market inequality by isolating and removing

the effects of heterogeneity from the data. By doing so, we aim to gain a better understanding of the con-

tributions of these heterogeneous effects to overall income inequality. This involves comparing inequality

indices obtained from different cohorts to discern the changes in labor income inequality over time while ac-

counting for the impact of various demographic and socioeconomic factors. By controlling for these factors

and focusing on the evolution of labor income inequality within specific cohorts, we can uncover important

insights into the dynamics of income inequality in the U.S. labor market.

Our empirics utilize the Continuous Work History Sample (CWHS) database, which contains annual

labor income data before tax for 15,000 individuals in the U.S. from 1980 to 2018. The individuals in

the CWHS database were born between 1960 and 1962, and their gender, education, and race information

is also provided. Leveraging this information, we classify the observations into cohorts based on gender,

education, and race to ensure that individuals within the same cohort share certain degrees of homogeneity

without losing a significant number of observations.

Table 5 presents the distribution of the cohorts categorized by gender, education, and race. A similar

data analysis was conducted by d’Albis and Badji (2022) using French data, albeit with a different research

objective. Their study used aggregate data pertaining to the same generation to estimate the functional shape

of Gini coefficients over time and evaluate income inequality within that generation. Our empirical research

goal differs in that we utilize the cohort data sets to focus on labor income inequality dynamics within

specific cohorts in the U.S. labor market.

To do so the infinite-dimensional MCMD methodology of Section 2.4 is used to examine the labor

income data sets. Our focus is top income shares as in Piketty and Saez (2003) and Atkinson et al. (2011).

But prior to computing the top income shares we test the hypothesis that the labor income data sets follow
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a Pareto law. The test is applied for each annual labor income data set that belongs to the same cohort and

the Pareto parameter is fitted using the infinite-dimensional MCMD estimator. If the U -test does not reject

the Pareto distribution condition, then we proceed to compute the top 5% income share of each data set and

apply the methodology developed by Piketty and Saez (2003) and Atkinson et al. (2011). This approach

ensures that we apply the top income shares methodology only when the data satisfy the Pareto distribution

condition as revealed by the U -test.

We conduct specific procedures for each cohort in the CWHS data, classified by the following character-

istics: gender (female and male); education (high school or below, which also includes some college but no

degree cases, Bachelor (BA) or equivalent degrees which includes associate degrees, Master (MA) or equiv-

alent degrees, and Doctorate or equivalent degrees, which includes professional degrees); and race (white or

Caucasian, black or African American, Asian, and others including American Indian, Native Hawaiian or

other Pacific Islander, and two or more race individuals).

For each cohort data, we test the Pareto distribution hypothesis using the U -test. The null hypothesisH0

is formulated as follows:

H0 : P(yt ≤ y) = 1−
(
bx
y

)θ
,

where yt denotes the t-th individual’s labor income, and bx represents the minimum value of the income

variable, ensuring that yt is distributed on [bx,∞). The Pareto distribution hypothesis is intended to capture

the right tail distribution of the income data. Naturally, if all observations were used in hypothesis testing,

it is likely that most income data would reject the Pareto distribution due to the differences in the left tail

distribution that are not directly material to the top income shares. Hence, our focus is on the top 10% of

income observations and the top 5% income shares are estimated from each cohort data.

Application of the U -test for each cohort using the data sets from 1980 to 2018 leads to the findings

reported in Table 6. The table provides information for each cohort, including the sample size of the top

10% labor income data sets and the number of data sets that do not reject the Pareto distribution hypothesis.

For instance, for the female cohort born in 1960, there are 260 top 10% labor income observations, and out

of the 39 data sets between 1980 and 2018, 27 of them do not reject the Pareto distribution hypothesis at the

1% significance level. We summarize the inferential findings as follows.

(a) The analysis shows that gender, education, and race all have an impact on inference. When individuals

are categorized based on their gender, education, and race, the number of data sets not rejecting the

Pareto distribution hypothesis tends to increase. This trend is evident in the bottom panel of Table 6,

where observations are not classified. The numbers in the upper panels are overall consistently higher
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than the corresponding numbers in the bottom panel for each cohort born in 1960, 1961, and 1962.

This finding indicates that the Pareto distribution hypothesis becomes more appropriate when labor

income data are collected from more homogeneous sectors of individuals.

(b) Although detailed results are not reported here, the Pareto distributional hypothesis was found to

becomes even more appropriate at higher income levels. If we increase bx to represent the top 5%

labor income for each cohort, the number of data sets not rejecting the Pareto distributional hypothesis

increases. This suggests that the Pareto distribution is more suitable for capturing the right tail of the

income distribution as we move to higher income levels. However, it is essential to note that increasing

bx reduces sample size and therefore precision. For our analysis, we have selected bx to be the top

10% labor income level of each cohort data, allowing us to obtain moderate sample sizes from all

cohorts. �

The next sep in the analysis involved estimating the Pareto parameter θ∗ using infinite-dimensional

MCMD. When the Pareto hypothesis is supported for characterizing the upper labor income distribution,

the estimated Pareto parameter provides a measure of heavy-tailedness and thereby income inequality. The

upper panel of Figure 3 displays the functional shapes of the Pareto PDFs and CDFs for θ∗ = 1, 2, and

3 for bx = 1. Evidently the density levels of higher incomes decrease as θ∗ increases, and heavy-tailed

distributions (with fewer finite moments) occur for lower values of θ∗. Additionally, CDFs with higher θ∗

uniformly dominate CDFs with lower θ∗, so that income distributions with a lower θ∗ are more unequally

distributed than those with higher θ∗. This relationship can be linked to traditional income inequality indices.

In fact, under the Pareto distribution, the top x-percent income share S(θ∗, x) and the Gini coefficientG(θ∗)

can be represented directly by functions of θ∗ as follows:

S(θ∗, x) :=
( x

100

) θ∗−1
θ∗ and G(θ∗) :=

1

2θ∗ − 1
,

The lower panel of Figure 3 shows the functional shapes of S(·, x) andG(·) for x = 5 and 10. The functions

have a negative slope, indicating that income equality indices improve as θ∗ increases. We leverage this

characteristic by estimating the Pareto parameter from the top 10% labor income observations. Specifically,

using the results in Table 6, we compute the top 5% income shares and Gini coefficients by S(θ̂n, 5) and

G(θ̂n), where θ̂n denotes the infinite-dimensional MCMD estimates for the data of each cohort that do not

reject the Pareto distribution condition.

Some caution is needed in using this approach as the Gini coefficient obtained in this manner should

be considered an approximate value based on the upper end of the distribution. It may not be accurate to
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assume that the entire labor income distribution follows a Pareto distribution, as only the top 10% incomes

are tested for the right tail distribution. On the contrary, the top 5% income shares can be reliably estimated

through this method since they are computed from the right tail income distributions. Therefore, we focus

attention on the top 5% labor income shares.

Estimation results are presented in Figures 4, 5, 6, and 7. Figure 4 displays the estimated top 5%

income shares as functions of time between 1980 and 2018 for female and male cohorts. Each series is

classified based on individual birth years. Missing points in the figures indicate that the U -test rejects the

Pareto hypothesis for the data of that year. The level of significance is set to 1% for the U -test. Most

missing values occur in the early 1980s, which is the time before the majority of individuals entered the job

market. Similarly, Figures 5 and 6 show the estimated top 5% labor income shares for data sets classified by

education and race. Additionally, Figure 7 illustrates the estimated top 5% income share when the data sets

are not classified. We summarize the findings and implications as follows.

(a) In general, the top 5% income share functions depicted in Figures 4 to 7 exhibit a hump-shaped

pattern. For each cohort, the top income share index reaches its lowest values around 1980 and then

sharply rises until around 1992. However, since then, it gradually decreases. This trend is consistently

observed across all cohorts, and the peak level of top 5% labor income inequality is typically reached

when most workers are in the early stages of their careers and are actively seeking jobs. During this

transitional period, it is expected that labor income inequality would increase, which can be termed as

“frictional inequality.” Notably, labor income inequality tends to reach its highest level before workers

reach the age of 60, reflecting the eventual passage to retirement during the latter period of a working

life.

(b) The hump-shaped top 5% income share trends observed in Figures 4 to 7 have important implications

for reducing labor income inequality. In addition to the policy implications derived from the labor

market inequality literature (e.g., Katz and Murphy, 1995; Katz and Autor, 1999; Ciccone and Peri,

2005; Eisenbarth and Chen, 2022), the hump-shaped indices suggest that labor income inequality

can be significantly reduced by targeting the frictional inequality observed during early career years.

To achieve this, economic policies aimed at reducing unemployment, setting a minimum wage, or

increasing welfare benefits could be more effective for workers in the early stages of their careers, as

frictional income inequality is commonly observed across all cohorts. By implementing such targeted

policies during this transitional period overall labor income inequality could be mitigated.

(c) When analyzing the gender effect, we observe from Figure 4 that males generally exhibit more volatile

top 5% income shares than females. After reaching the maximum top income share, it decreases
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gradually for females, while it declines more rapidly for males. For instance, focusing on the 1960

cohort, the maximum top 5% income share is around 0.26 for females and 0.24 for males, and it

decreases at a slower rate for females compared to males. This finding suggests that labor income

inequality is more pronounced for females than males within the 1960 cohort. Similar results are

found for the 1962 cohort, with males showing a higher maximum index value than females for the

1961 cohort.

(d) When analyzing the education effect, we observe from Figure 5 that individuals with an MA or equiv-

alent degree show the most volatile top 5% income shares compared to other degree holders. The

maximum top income share values of individuals with an MA or equivalent degree are higher than

those of other degree holders, and they maintain relatively higher top 5% income share values for

some time. In contrast, the top 5% income share values of individuals with a doctorate or equivalent

degree are generally less volatile and smaller than those of other degree holders. The top income share

values obtained using all observations, as shown in Figure 7, are roughly between those of individuals

with an MA and doctorate or equivalent degree. This finding implies that labor income for individ-

uals with an MA or equivalent degree is more unequally distributed than that of individuals with a

doctorate or equivalent degree.

(e) Another notable feature of the education effect is observed from Figure 5, where we see that it takes

more years for individuals with a high school diploma or lower education levels to reach the maximum

top income share compared to individuals with higher education levels. Additionally, the maximum

values are not reached rapidly for the former group. For instance, the 1960 cohort reaches its maxi-

mum in 2002, and there are other years before 2002 with slightly smaller index values. This aspect

implies that unequal labor income is persistently distributed over a long period for individuals with a

high school diploma or lower education levels. A similar feature is observed for individuals with a

BA or equivalent degree, although it is not as strong as for those with a high school diploma or lower

education levels.

(f) When examining the race effect, we observe from Figure 7 that different races exhibit different pat-

terns in their top 5% labor income shares. White and Caucasian cohorts generally show lower top

income shares compared to the other races, and their coefficients remain more or less stable across

different birth years, indicating a relatively stable pattern. On the other hand, black and African Amer-

ican cohorts show varying patterns depending on the birth year. Specifically, the cohort born in 1960

maintains lower and stable top income shares, whereas the cohort born in 1962 shows more volatile

top income shares. For the Asian case, the cohort born in 1960 exhibits a distinct pattern from the
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others, with its index sharply increasing between 1999 and 2000, and again in 2008, during the Asian

and the subprime financial crises. The other Asian cohorts are less sensitive to the financial crises and

show more stable top income shares.

(g) When examining the birth year effect, we observe that the top income share values of the 1960 cohort

are generally lower than those of the other cohorts. For each cohort, the index of the 1960 cohort re-

mains persistently lower than the other cohorts, while the 1961 cohort shows consistently but slightly

higher values than the 1960 cohort. This finding suggests that the income inequality is influenced by

the birth year, and there are differences in income distribution patterns across different cohorts. �

From this empirical analysis we infer that labor income inequality is influenced by various heteroge-

neous factors such as gender, education, race, and year of birth. The influence of these factors suggest

different policy implications for reducing labor income inequality. In Appendix A.5, we also provide es-

timated Gini coefficients in parallel with Figures 4 to 7. These results demonstrate the usefulness of the

infinite-dimensional MCMD estimation in identifying how labor income inequality has evolved over time.

Specifically, we can effectively test the Pareto distribution hypothesis using the U -test, and the estimated

Pareto parameter allows us to measure the income inequality index.

5 Concluding Summary

If the moment dimension in GMM estimation expands to infinity proportional to the sample size, the limit

properties of GMM differ from standard case where the number of moment conditions is fixed. Specifically,

the limit properties are influenced by the stochastic properties of the moment conditions and the weight

matrix that is employed in GMM estimation. This study has derived the asymptotic properties of GMM

when inverse Brownian motion or Brownian bridge kernels are used for the weight matrix. These kernels

arise in a natural way in econometric work such as minimum Cramér-von Mises distance estimation, which

arises in testing distributional specification. We consider different scenarios where the moment conditions

converge to either a smooth Gaussian or a non-differentiable Gaussian process. By leveraging the individual

properties of the Brownian motion and Brownian bridge kernels, we show how asymptotic behavior can be

fully characterized using the inner products of functionals derived from these Gaussian processes.

The paper also explores conditions under which the standard J-test can serve as an appropriate statistic

for testing overidentification. In cases where the standard conditions do not hold, we propose an alternative

test called the U -test, inspired by the T -test introduced by Donald et al. (2003). Throughout the discussions

on GMM estimation, we use the infinite-dimensional MCMD estimation as the running example, extending
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the application of the MCMD estimation method introduced in Pollard (1980) and Cho et al. (2018). We

illustrate the usefulness of this approach through Monte Carlo simulations and apply it in an empirical study.

Our empirical application utilizes the infinite-dimensional MCMD methodology to analyze labor income

based on the CWHS database. We estimate the top 5% income shares of labor income as a function of time,

covering the period from 1980 to 2018. These cohort data sets are classified based on gender, education,

race, and birth year. These data are analyzed using the new U -test to test the Pareto distribution hypothesis

and estimate the Pareto parameter using infinite-dimensional MCMD estimation. The results show that

labor income inequality within the same cohort tends to be maximized during early career years for most

of the cohort data. This observation suggests that economic policies aimed at reducing income inequality

will likely be more effective if they specifically target workers in their early career years. Such policies can

play a crucial role in reducing frictional inequality and contribute to a more equitable distribution of labor

income.
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

U -test

Exponential
1% 0.50 0.58 0.87 1.06 1.02 0.76 1.04
5% 1.70 2.43 3.70 3.73 4.00 4.09 4.62

10% 4.19 6.28 7.75 8.26 8.65 8.50 9.44

Pareto
1% 0.47 0.74 0.85 0.89 0.84 0.92 0.97
5% 1.38 2.71 3.48 4.33 3.87 4.10 4.42

10% 4.14 6.74 7.69 8.73 8.20 9.16 9.48

Normal
1% 0.34 0.79 0.76 0.88 0.95 0.93 1.02
5% 1.27 2.85 3.24 3.72 3.91 4.00 4.72

10% 3.92 6.26 7.51 8.23 8.30 8.97 9.54

τ -test

Exponential
1% 0.31 0.60 0.79 0.82 0.92 1.04 0.93
5% 0.84 1.46 2.06 2.31 2.56 2.74 3.60

10% 1.42 2.34 4.42 5.54 6.24 6.94 8.00

Pareto
1% 0.35 0.51 0.83 0.94 0.89 0.94 0.91
5% 0.84 1.58 2.25 2.20 2.68 2.81 3.42

10% 1.34 2.46 4.52 5.29 6.84 7.29 7.85

Normal
1% 0.29 0.64 0.88 0.84 0.87 0.84 0.94
5% 0.67 1.45 2.16 2.49 2.64 2.74 3.46

10% 1.18 2.35 4.58 5.83 6.37 6.39 8.17

Table 1: EMPIRICAL REJECTION RATES OF THE U - AND τ -TESTS UNDER THE NULL (IN PERCENT).
This table shows the empirical rejection rates of the U - and τ -tests under the distributional hypothesis.

Test Distribution Level \ n 50 100 200 300 400 500 1, 000

t-test

Exponential
1% 2.57 1.72 1.62 1.22 1.32 1.22 1.03
5% 7.87 6.39 5.86 5.50 5.40 5.66 5.14
10% 13.16 11.52 11.01 10.40 9.91 10.40 10.17

Pareto
1% 2.68 1.87 1.34 1.19 1.23 1.13 1.27
5% 7.64 6.75 5.60 5.44 5.42 5.58 5.21
10% 13.24 11.64 10.38 10.58 10.44 10.92 9.66

Normal
1% 0.89 1.02 0.73 1.11 0.91 0.97 1.04
5% 4.35 4.89 4.46 4.51 4.91 4.88 4.89
10% 8.67 9.26 9.07 9.18 9.87 9.48 9.74

t′-test

Exponential
1% 2.93 2.05 1.50 1.47 1.45 1.38 1.31
5% 8.82 7.32 6.48 6.04 6.30 6.12 5.61
10% 14.54 12.66 12.09 11.44 11.61 11.66 11.02

Pareto
1% 2.65 2.09 1.86 1.46 1.51 1.35 1.32
5% 8.76 7.15 6.60 6.11 6.16 6.21 5.85
10% 14.55 12.99 12.23 11.55 11.76 11.53 10.74

Normal
1% 1.43 1.32 1.17 1.25 1.08 1.03 1.13
5% 6.54 6.23 5.97 5.69 5.48 5.08 5.25
10% 11.80 11.48 10.88 10.92 10.83 10.25 10.34

Table 2: EMPIRICAL REJECTION RATES OF THE t- AND t′-TESTS UNDER THE NULL (IN PERCENT). This
table shows the empirical rejection rates of the t- and t′-tests under the joint hypothesis that θ∗ = c and that
the distributional condition is correct. For the exponential, Pareto, and normal cases, we let θ∗ = 1, 1, and
0, respectively.
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Test Distribution Level \ n 50 100 200 300 400 500 1, 000

U -test

Exponential
1% 0.59 1.86 4.44 7.53 12.30 16.42 39.23
5% 1.61 4.65 10.93 17.62 24.90 31.88 59.70

10% 3.33 7.71 16.82 25.33 33.88 41.61 70.51

Pareto
1% 0.61 1.53 4.38 8.04 11.45 15.58 40.30
5% 2.01 4.33 10.47 17.34 24.28 31.34 60.64

10% 3.76 7.47 15.99 25.39 34.41 41.38 70.77

Normal
1% 1.63 2.96 4.90 5.81 5.50 6.05 4.11
5% 4.15 7.83 12.06 13.41 13.84 14.53 11.91

10% 6.96 12.23 18.25 20.17 21.02 22.02 18.69

τ -test

Exponential
1% 1.10 2.85 4.64 5.75 7.61 9.18 14.20
5% 2.53 5.85 9.10 11.24 14.25 16.63 24.95

10% 3.87 7.76 12.92 15.74 19.48 22.68 32.07

Pareto
1% 0.80 2.35 4.30 5.52 6.95 8.30 13.90
5% 2.02 4.93 8.48 10.22 13.58 15.43 24.10

10% 3.19 7.29 12.56 14.69 18.65 21.24 32.01

Normal
1% 0.56 1.28 1.81 2.33 2.46 2.99 3.83
5% 1.26 2.71 4.00 5.02 5.91 6.79 9.13

10% 1.96 3.92 6.37 7.97 9.43 11.01 14.31

Table 3: EMPIRICAL REJECTION RATES OF THE U -TEST AND τ -TESTS UNDER THE LOCAL ALTER-
NATIVE (IN PERCENT). This table shows the empirical rejection rates of the U - and τ -tests under local
alternatives. For the exponential case, xt,n := yt + 1

2

√
zt/n, where yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; for

the Pareto case, xt,n := yt + 1
2

√
zt/n), where yt ∼ Pa(1, 1) and zt ∼ U [0.5, 1.5]; and for the normal case,

xt,n := yt + 1
4y

4
t /
√
n, where yt ∼ N (0, 1).

Test Distribution Level \ n 50 100 200 300 400 500 1, 000

t-test

Exponential
1% 4.53 5.66 7.56 10.61 13.37 15.77 29.30
5% 12.94 15.59 20.37 26.26 30.33 35.19 52.49
10% 20.47 24.35 31.05 37.23 43.03 47.09 64.67

Pareto
1% 3.20 3.71 5.20 6.98 9.28 11.72 22.57
5% 9.83 11.82 15.67 19.52 24.78 27.84 44.11
10% 16.28 19.00 25.06 30.01 35.82 39.11 56.60

Normal
1% 0.64 0.86 2.14 3.62 5.09 5.84 6.49
5% 2.68 5.06 11.68 17.30 20.88 23.26 23.67
10% 5.55 11.31 23.09 31.65 36.58 39.04 39.04

t′-test

Exponential
1% 5.65 5.19 4.67 4.67 4.54 4.61 4.34
5% 14.03 14.05 12.80 13.32 13.62 13.38 13.66
10% 20.99 21.28 20.20 20.73 21.54 20.84 21.81

Pareto
1% 3.60 3.26 2.91 2.61 2.60 2.58 2.48
5% 10.02 9.07 9.28 8.75 8.81 8.77 9.00
10% 16.35 14.75 15.98 14.78 15.24 15.74 15.15

Normal
1% 1.04 1.33 1.27 1.40 1.17 1.58 1.91
5% 5.32 5.41 5.57 6.22 6.23 6.36 7.01
10% 10.19 10.61 10.82 11.10 11.69 12.00 12.81

Table 4: EMPIRICAL REJECTION RATES OF THE t- AND t′-TESTS UNDER THE LOCAL ALTERNATIVE

(IN PERCENT). This table shows the empirical rejection rates of the t- and τ ′-tests under local alternatives.
For the exponential case, xt,n := yt + 1

2

√
zt/n, where yt ∼ Exp(1) and zt ∼ U [0.5, 1.5]; for the Pareto

case, xt,n := yt + 1
2

√
zt/n), where yt ∼ Pa(1, 1) and zt ∼ U [0.5, 1.5]; and for the normal case, xt,n :=

yt + 1
4y

4
t /
√
n, where yt ∼ N (0, 1).
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Classification 1960 1961 1962 Sum
Female 2,591 2,576 2,540 7,707
Male 2,479 2,456 2,358 7,293
Sum 5,070 5,032 4,898 15,000
High School or below 1,108 1,187 1,094 3,389
BA or equivalent 2,659 2,646 2,689 7,994
MA or equivalent 535 515 487 1,537
Doctorate or equivalent 768 684 628 2,080
Sum 5,070 5,032 4,898 15,000
White or Caucasian 4,106 4,085 3,954 12,145
Black or African American 644 627 619 1,890
Asian 258 250 251 759
Etc. 62 70 74 206
Sum 5,070 5,032 4,898 15,000

Table 5: SAMPLE SIZES OF CLASSIFIED DATA SETS. This table shows the sample sizes of the classified
data sets.
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Classification Size \ Obs. 1960 1961 1962

Female

n 260 258 255
1% 27 28 26
5% 25 24 24

10% 22 23 20

Male

n 248 246 236
1% 33 31 32
5% 31 26 28

10% 27 23 27

High School or below

n 111 119 110
1% 28 38 39
5% 32 36 37

10% 31 36 35

BA or equivalent

n 266 265 269
1% 34 34 33
5% 32 33 32

10% 31 33 28

MA or equivalent

n 54 52 49
1% 38 39 39
5% 38 39 38

10% 38 36 36

Doctorate or equivalent

n 77 69 63
1% 34 28 34
5% 32 27 32

10% 29 24 32

White or Caucasian

n 411 409 396
1% 29 33 29
5% 28 31 24

10% 25 28 19

Black or African American

n 65 63 62
1% 38 37 39
5% 37 36 38

10% 35 36 37

Asian

n 26 26 26
1% 36 39 37
5% 36 38 37

10% 36 35 36

Etc.

n 7 8 8
1% 39 39 38
5% 39 39 38

10% 39 38 38

All

n 508 504 490
1% 30 29 29
5% 23 28 26

10% 18 23 21

Table 6: NUMBER OF DATA SETS NOT REJECTING THE PARETO DISTRIBUTION HYPOTHESIS. This
table shows the number of the top 10% CWHS data sets between 1980 and 2018 that do not reject the Pareto
distribution hypothesis by the U -test. As an example, when the females are restricted to top 10% individuals
who are born in 1960 and the level of significance is 1%, 27 data sets between 1980 and 2017 do not reject
the Pareto distribution hypothesis. Here, n denotes the average sample size of the top 10% individuals in
the data sets.
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(a) Brownian motion kernel (n = 25) (b) Brownian motion kernel (n = 100)

(c) Brownian bridge kernel (n = 25) (d) Brownian bridge kernel (n = 100)

Figure 1: FUNCTIONAL SHAPES OF THE BROWNIAN MOTION AND BROWNIAN BRIDGE KERNELS. For
n = 25 and 100, each figure shows the shapes of the Brownian motion and Brownian bridge kernel functions.
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Distribution of the U -test Distribution of the MCMD estimator

(a) Exponential distribution case

(b) Pareto distribution case

(c) Normal distribution case

Figure 2: EMPIRICAL DISTRIBUTIONS OF THE U -TEST UNDER THE NULL AND THE MCMD ESTI-
MATOR. For n = 100, 300, 500, and 1, 000, each figure shows the null distributions of the U -test or the
empirical distributions of the MCMD estimator. The distributions are obtained by repeating 10,000 inde-
pendent experiments, and the limit distributions are drawn together for comparison purpose.
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Figure 3: PDFS, CDFS, TOP INCOME SHARE, AND GINI FUNCTIONS OF THE PARETO RANDOM VARI-
ABLES. The figures in the upper panel show the shapes of the Pareto PDF and CDF for θ∗ = 1 2, and 3. The
top income share function shows the functional shapes of the q% top income share coefficient as a function
of θ∗ for q = 5 and 10, and the Gini function shows the functional shape of the Gini coefficient as a function
of θ∗.
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(a) Female (b) Male

Figure 4: TOP 5% INCOME SHARES OF FEMALE AND MALE COHORTS BETWEEN 1980 AND 2018. The
figures show the top 5% income share coefficients of female and male cohorts estimated by imposing the
Pareto distribution to the top 10% CWHS observations. Missing values signify that the p-value of the U -test
is less than 1%.

(a) High school or below (b) BA or equivalent

(c) MA or equivalent (d) Doctorate or equivalent

Figure 5: TOP 5% INCOME SHARES WITHIN THE SAME EDUCATION COHORTS BETWEEN 1980 AND

2018. The figures show the top 5% income share coefficients within the same education cohorts estimated
by imposing the Pareto distribution to the top 10% CWHS observations. Missing values signify that the
p-value of the U -test is less than 1%.
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(a) White or Caucasian (b) Black or African American

(c) Asian

Figure 6: TOP 5% INCOME SHARES WITHIN THE SAME RACE COHORTS BETWEEN 1980 AND 2018.
The figures show the top 5% income share coefficients within the same race cohorts estimated by imposing
the Pareto distribution to the top 10% CWHS observations. Missing values signify that the p-value of the
U -test is less than 1%.

Figure 7: TOP 5% INCOME SHARES USING AGGREGATED OBSERVATIONS FOR EACH YEAR BETWEEN

1980 AND 2018. The figures show the top 5% income share coefficients of aggregated observations esti-
mated by imposing the Pareto distribution to the top 10% CWHS observations. Missing values signify that
the p-value of the U -test is less than 1%.
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This Online Supplement is an Appendix that provides various technical and empirical supple-
ments to the main text.

A Appendix

The Appendix has five sections. Sections A.1 and A.2 explore the limit behavior of the quantities formed

by transforming an Itô Process and a smooth Gaussian process. Section A.3 presents the moments of the

statistics forming the infinite-dimensional MCMD estimator, and Section A.4 provides proofs of the main

results. Section A.5 offers supplementary empirical studies to those in the paper.

A.1 Limit Difference of Transformed Itô Process

We derive the differential of a transformed Itô process. For this examination, suppose that a limit of a

process is constructed as follows: X̄n(·) :=
√
n(X̂n(·) −X(·)) ⇒ G(·), where X̂n(·) is a sample average

of random processes defined on [0, 1], X(·) is its population mean, and G(·) is an Itô process satisfying

Assumption 2 (ii) in the main paper. Here, we suppose that X(·) is differentiable on [0, 1] and X̂n(·)

converges to X(·) uniformly on [0, 1]. For example, we can consider an empirical process as a specific

example: g̃n(·) :=
√
n{p̂n(·) − (·)} ⇒ B0(·), which determines the limit distribution of the infinite-

dimensional MCMD estimator. For this case, X̂n(·) = p̂n(·), X(·) = (·), and G(·) = B0(·), such that

µ(u,G(u)) = −(1 − u)−1B0(·) and σ(u,G(·)) = 1. As before, we let µ(·) and σ(·) abbreviate µ(·,G(·))

and σ(·,G(·)), respectively.

Given this, for a function f : R 7→ R in C(2)([0, 1]), we let Qn(·) := f(X̂n(·)) and derive the limits

of the quantities associated with ∆Qn(in) for i = 0, 1, 2, . . . , n. Here, for each t = 0, 1, 2, . . . , n and a

function h : [0, 1] 7→ R, we let ∆h(in) := h(in)− h( i−1
n ) for notational simplicity.

1Phillips acknowledges research support from the Kelly Fund at the University of Auckland and a KLC Fellowship at Singapore
Management University.

1



A.1.1 Limit Behavior of
√
n∆Qn(·)

We obtain the limit behavior of
√
n∆Qn(·) by applying Itô’s lemma. Note that

∆Qn(·) = f ′(X̂n(·))∆X̂n(·) + oP(1) (A.1)

by Taylor expansion. Now ∆X̂n(·) = ∆X(·) + n−1/2X̄n(·) and ∆X(·) can be approximated by X ′(·)/n.

Therefore, we obtain that

∆X̂n(·) =
1

n
X ′(·) +

1√
n

∆X̄n(·) + oP(1), (A.2)

implying that
√
n∆Qn(·) = f ′(X̂n(·)){n−1/2X ′(·) + ∆X̄n(·)}+ oP(1) (A.3)

by plugging (A.2) into (A.1). The stochastic differential equation of
√
n∆Qn(·) is obtained from this limit.

Note that X̂n(·) converges to X(·) uniformly on [0, 1], and ∆X̄n(·) is approximated by dG(·). Therefore, if

we let dQ(·) denote the limit of
√
n∆Qn(·), it follows that dQ(·) = f ′(X(·))µ(·)du+f ′(X(·))σ(·)dW(·).

For example, for the infinite-dimensional MCMD estimator we have Hn(·) = H(p̂n(·)). This fact

implies that

√
n∆Hn(·) = H ′(·){n−1/2 + ∆

√
np̂n(·)}+ oP(1) = n−1/2H ′(·) +H ′(·)∆g̃n(·) + oP(1) (A.4)

by noting the definition of g̃n(·) :=
√
n{p̂n(·)−(·)} and that p̂n(·)→ (·) uniformly on [0, 1] with probability

converging to 1. This fact can be related to Assumption 3 (ii) by noting that C1(·) = C2(·) = H ′(·).

A.1.2 Limit Behavior of n
∑n

t=1{∆Qn(in)}2

We examine the limit of n
∑n

t=1{∆Qn(in)}2. From the first equality of (A.3), we note that
∑n

i=1{
√
n∆Qn

(in)}2 =
∑n

i=1{f ′(X̂n(in))}2{ 1
n(X ′(in))2+(∆X̄n(in))2}+oP(1) = 1

n

∑n
i=1{f ′(X(in)) }2{(X ′(in))2+

σ2(in)}+oP(1), where the second equality holds by noting that X̂n(·) converges toX(·) uniformly on [0, 1]

and that
∑n

i=1{f ′(X̂n(in))}2(∆X̄n(in))2 =
∑n

i=1{f ′(X(in))}2(∆G(in))2 +oP(1) = 1
n

∑n
i=1{f ′(X(in))

}2σ2(in)+oP(1). From this we can therefore derive that n
∑n

i=1{∆Qn(in)}2 ⇒
∫ 1

0 {f
′(X(u))}2{(X ′(u))2

+σ2(u,G(u))}du. This result can also be generalized. If we let Q̃n(·) := h(X̂n(·)) for a function h :

R 7→ R in C(2)([0, 1]), then we have n
∑n

i=1{∆Qn(in)}{∆Q̃n(in)} ⇒
∫ 1

0 f
′(X(u))h′(X(u)) {X ′(u) +

σ2(u,G(u))}du.

For example, for the infinite-dimensional MCMD estimator, Hn(·) = H(p̂n(·)) and p̂n(·) → (·) uni-

formly on [0, 1] with probability converging to 1, and X(·) = (·). This implies n
∑n

i=1 ∆Hn(in)∆Hn(in)′

→ 2
∫ 1

0 H
′(u)H ′(u)′du with probability converging to 1 by noting that X ′(·) ≡ 1 and σ(·) ≡ 1 for the

2



Brownian bridge.

A.1.3 Limit Behavior of n
∑n

t=1 ∆Qn(in)∆X̄n(in)

Here we examine the limit behavior of n
∑n

t=1 ∆Qn(in)∆X̄n(in). Note that (A.3) implies that

n∆Qn(·) =f ′(X̂n(·)){X ′(·) +
√
n∆X̄n(·)}

+
1

2
f ′′(X̂n(·))

(
1

n
(X ′(·))2 +

2√
n
X ′(·)∆X̄n(·) + (∆X̄n(·))2

)
+ oP(1) (A.5)

by a second-order Taylor expansion. This expansion is obtained by using the following approximation:

(∆X̂(·))2 = 1
n2 (X ′(·))2 + 2

n
√
n
X ′(·)∆X̄n(·) + 1

n(∆X̄n(·))2 + oP(1) based on (A.2). From this, we now

obtain that

n
n∑
t=1

{
∆Qn (in) ∆X̄n (in)

}
=

n∑
i=1

f ′
(
X̂n (in)

)
X ′ (in) ∆X̄n (in)

+
√
n

n∑
i=1

f ′
(
X̂n (in)

) (
∆X̄n (in)

)2
+ oP(1), (A.6)

using the fact that (∆X̄n(·))2 = n−1σ2(·) + oP(1). Note that the second-order term of (A.5) vanishes to 0

with probability converging to 1. This fact implies that the limit behavior of n
∑n

t=1 ∆Qn(in)∆X̄n(in) by

focusing on the first-order approximation of n∆Qn(·). Therefore, we now obtain that

n
n∑
t=1

{
∆Qn (in) ∆X̄n (in)

}
−
√
n

n∑
i=1

f ′
(
X̂n (in)

) (
∆X̄n (in)

)2 ⇒ ∫ 1

0
f ′(X(u))X ′(u)dG(u). (A.7)

We derive the weak limit of n
∑n

t=1{∆Qn (in) ∆X̄n (in)} by elaborating the second term of the left side

in (A.7). Note that
∑n

i=1 f
′(X̂n(in))(∆X̄n(in))2 = 1

n

∑n
i=1 f

′(X̂n(in))σ2(in) + oP(1)⇒
∫ 1

0 f
′(X(u))σ2

(u)du. Therefore, if we further suppose that
∫ 1

0 f
′(X(u))σ2(u)du = 0 and that n−1/2

∑n
i=1 f

′(X(in))σ2

(in) → 0 with probability converging to 1, we can derive the weak limit of n
∑n

t=1{∆Qn(in)∆X̄n(in)}

more specifically. For this derivation, first note that

√
n

n∑
i=1

f ′
(
X̂n (in)

) (
∆X̄n (in)

)2
=
√
n

n∑
i=1

f ′ (X (in))
(
∆X̄n (in)

)2
+

n∑
i=1

f ′′ (X (in))
√
n
(
X̂n (in)−X (in)

) (
∆X̄n (in)

)2
+ oP(1), (A.8)

using the fact that

f ′(X̂n(·)) = f ′(X(·)) + f ′′(X(·))(X̂n(·)−X(·)) + oP(1). (A.9)
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Next, note that
√
n
∑n

i=1 f
′(X(in))(∆X̄n(in))2 =

√
n
∑n

i=1 f
′(X(in)){(∆X̄n(in))2− 1

nσ
2(in)}+ oP(1)

from the supposition that n−1/2
∑n

i=1 f
′(X(in))σ2(in) = oP(1); and applying a CLT to the right side gives

√
n
∑n

i=1 f
′(X(in))(∆X̄n(in))2 ⇒ Z ∼ N (0,Γ), where Γ := limn→∞ n

∑n
i=1

∑n
j=1 f

′(X(in))f ′(X(jn

))E[{(∆X̄n(in))2− 1
nσ

2(in)}{(∆X̄n(jn))2− 1
nσ

2(jn)}]. Third, note that (∆X̄n(·))2 = n−1σ2(·)+oP(1),

and this implies that
∑n

i=1 f
′′(X(in))

√
n(X̂n(in)−X(in))(∆X̄n (in))2 = 1

n

∑n
i=1 f

′′(X(in))
√
n(X̂n(in)

−X(in))σ2(in) + oP(1) ⇒
∫ 1

0 f
′′(X(u))G(u)σ2(u)du from the supposition that

√
n(X̂n(·) − X(·)) ⇒

G(·). Combining these two weak limits with (A.8) gives
√
n
∑n

i=1 f
′(X̂n(in))(∆X̄n(in))2 ⇒ Z +

∫ 1
0 f
′′(

X(u)) G(u)σ2(u)du, which further implies that n
∑n

t=1{∆Qn(in)∆X̄n(in)} ⇒ Z +
∫ 1

0 f
′′(X(u))G(u)

σ2(u)du+
∫ 1

0 f
′(X(u))X ′(u)dG(u) by (A.7).

For example, if we consider the infinite-dimensional MCMD estimator, Hn(·) = H(p̂n(·)) and p̂n(·)→

(·) uniformly on [0, 1] with probability converging to 1. If we further elaborate on (A.4) expanding it

by using the fact that H ′(p̂n(·)) = H ′(·) + H ′′(·)(p̂n(·) − (·)) + oP(1), it follows that
√
n∆Hn(·) =

n−1/2H ′(·)+H ′(·)∆g̃n(·)+n−1/2H ′′(·)g̃n(·)∆g̃n(·)+oP(n−1). Furthermore, g̃n(·) :=
√
n{p̂n(·)−(·)} ⇒

B0(·), so that σ2(·) ≡ 1, and Section 2.4 shows that
∫ 1

0 H
′(u)du = 0 and n−1/2

∑n
i=1H

′(in) = o(1)

using theorem 1 (c) of Chui (1971). Hence, n
∑n−1

t=1 {∆Hn(in)∆g̃n(in)} ⇒ Z +
∫ 1

0 H
′′(u)B0(u)du +∫ 1

0 H
′(u)dB0(u), where Z A∼ N (0, 8[H ′(·), H ′(·)]), and

∫ 1
0 H

′′(u)B0(u)du +
∫ 1

0 H
′(u)dB0(u) = 0 as

Section 2.4 verifies.

A.2 Limit Differences of Smooth Gaussian Processes

This section derives the limit behavior of the same quantities examined in Section A.1 by supposing that

G(·) satisfies the condition in Assumption 2 (i). That is, G(·) is differentiable with prob. 1 instead of being

an Itô process. Note that the convergence rate of ∆X̄n(·) is different from that of Section A.1. Specifically,

Assumption 2 (i) implies that n∆X̄n(·) = G′(·) + oP(1). This different feature produces different limit

behaviors for the quantities involved.

A.2.1 Limit Behavior of
∑n

i=1 ∆Qn(in)

We first examine the limit behavior of
√
n∆Qn(·). If we combine (A.2), (A.3), and (A.9), we can derive the

following:

√
n∆Qn(·) =

1√
n
f ′(·)X ′(·) + f ′(·)∆X̄n(·) +

1

n
X ′(·)X̄n(·) +

1√
n
f ′′(·)X̄n(·)∆X̄n(·) + oP(1), (A.10)

so that n∆Qn(·) = f ′(·)X ′(·) + oP(1). Therefore, it follows that
∑n

i=1 ∆Qn(·) = 1
n

∑n
i=1 f

′(in)X ′(in) +

oP(1)→
∫ 1

0 f
′(u)X ′(u)du with probability converging to 1.
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A.2.2 Limit Behavior of n
∑n

t=1{∆Qn(in)}2

By (A.10), n
∑n

i=1{∆Qn(in)}2 = 1
n

∑n
i=1{f ′(in)X ′(in)}2 + oP(1) →

∫ 1
0 {f

′(u)X ′(u)}2du with proba-

bility converging to 1. The limit is identical to (f ′(·)X ′(·), f ′(·)X ′(·)).

A.2.3 Limit Behavior of n
∑n

t=1 ∆Qn(in)∆X̄n(in)

By (A.10) and the fact that n∆X̄n(·) = G′(·) +oP(1), it follows that n
∑n

i=1 ∆Qn(in)∆X̄n(in) = 1
n

∑n
i=1

f ′(in)X ′(in)n∆X̄n(in) + oP(1)⇒
∫ 1

0 f
′(u)X ′(u)G′(u)du = (f ′(·)X ′(·),G′(·)).

A.3 Asymptotic Behavior of Quantities involved in Infinite-Dimensional MCMD Estima-
tion

This section explores the asymptotic variances of the quantities constituting the infinite-dimensional MCMD

estimator. For this, we first note that (∆p̂n( 1
n),∆p̂n( 2

n), . . . ,∆p̂n(1))′ follows a Dirichlet distribution with

parameter ιn. Using this condition, the following hold: for each i and j = 1, 2, . . . , n− 1 (i 6= j),

E [∆p̂n (in)] =
1

n
, (A.11)

E
[
(∆p̂n (in))2

]
=

2

n(n+ 1)
, (A.12)

E
[
(∆p̂n (in))3

]
=

6

n(n+ 1)(n+ 2)
, (A.13)

E
[
(∆p̂n (in))4

]
=

24

n(n+ 1)(n+ 2)(n+ 3)
, (A.14)

E
[
(∆p̂n (in))2 ∆p̂n (jn)

]
=

2

n(n+ 1)(n+ 2)
, (A.15)

E
[
(∆p̂n (in))2 (∆p̂n (jn))2

]
=

4

n(n+ 1)(n+ 2)(n+ 3)
. (A.16)

A.3.1 The Variance of
√
n
∑n−1

i=1 H
′
j(in){n(∆p̂n(in))2 − 2n

n(n+1)}

The asymptotic variance of
√
n
∑n−1

i=1 H
′
j(in){n(∆p̂n(in))2 − 2n

n(n+1)} is shown to be 20(H ′j(·), H ′j(·)).

For simplicity let Un,i := n(∆p̂n(in))2 − 2n
n(n+1) , then var[

√
n
∑n−1

i=1 H ′j(in){n(∆p̂n(in))2 − 2n
n(n+1)}] =

n
∑n−1

i=1

∑n−1
`=1 H

′
j(in)H ′j(`n)E[Un,iUn,`], where `n := `

n . Here, note that E[Un,iUn,`] = n2E[(∆p̂n(in))2

(∆p̂n(`n))2]− 4n2

n(n+1)E[(∆p̂n(in))2] + 4n2

n2(n+1)2
. If i 6= `, E[Un,iUn,`] = −16n−3 + o(n−3) by (A.12) and

(A.16); and if i = `, E[Un,iUn,`] = 20n−2 + o(n−2) by (A.12) and (A.14). Combining these two facts, it

follows that var[
√
n
∑n−1

i=1 H
′
j(in){n(∆p̂n(in))2− 2n

n(n+1)}] = 20
n

∑n−1
i=1 (H ′j(in))2− 16

n2 (
∑n−1

i=1 H
′
j(in))2 +

o(1) → 20
∫ 1

0 (H ′j(u))2du = 20(H ′j(·), H ′j(·)) since
∑n−1

i=1 H
′
j(in) = o(n−1) by theorem 1 (c) of Chui
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(1971).

A.3.2 The Variance of
∑n−1

i=1 (∆g̃n(in))2 − 1

The asymptotic variance of
∑n−1

i=1 (∆g̃n(in))2 − 1 is now shown to be 4n−1 + o(n−1). We first note that

∆g̃n(·) =
√
n(∆p̂n(·) − 1

n), so that (∆g̃n(·))2 = n(∆p̂n(·))2 − 2∆p̂n(·) + n−1. This fact implies that∑n−1
i=1 (∆g̃n(in))2 − 1 = n

∑n−1
i=1 (∆p̂n(in))2 − 2 + 2∆p̂n(1) + 1

n by noting that
∑n−1

i=1 ∆p̂n(in) = 1 −

∆p̂n(1). Hence, it follows that E[(∆g̃n(in))2] = n−1
n(n+1) from (A.11) and (8) and that var[

∑n−1
i=1 (∆g̃n(in))2

−1] = n2
∑n−1

i=1

∑n−1
j=1 E[(∆p̂n(in))2(∆p̂n(jn))2]− 4n

∑n−1
i=1 E[(∆p̂n(in))2] + 4 + o(n−1), implying that

var[
∑n−1

i=1 (∆g̃n(in))2 − 1] = 4n3+20n2+72n
n(n+1)(n+2)(n+3) + o(n−1) = 4

n + o(n−1) by (A.12), (A.14), and (A.16).

A.3.3 The Covariance between
∑n−1

i=1 H
′
j(in)∆g̃n(in) and

√
n
∑n−1

i=1 H
′
j(in){n(∆p̂n(in))2 − 2n

n(n+1)}

We show that 4(H ′j(·), H ′j(·)) is the asymptotic covariance between
∑n−1

i=1 H
′
j(in)∆g̃n(in) and

√
n
∑n−1

i=1

H ′j(in)Un,i, where Un,i := n(∆p̂n(in))2− 2n
n(n+1) as in Section A.3.1. We note that cov[

∑n−1
i=1 H

′
j(in)∆g̃n

(in),
√
n
∑n−1

i=1 H
′
j(in)Un,i] =

∑n−1
i=1

∑n−1
`=1 H

′
j(in)H ′j(`n)[n2E[(∆p̂n(in))2∆p̂n( `n)]− 2n

n+1 ] since ∆g̃n(·)

=
√
np̂n(·) − n−1/2 and using (A.11) and (A.12), where `n := `

n . We further use the moment conditions

in (A.13) and (A.15) to obtain that cov[
∑n−1

i=1 H
′
j(in)∆g̃n(in),

√
n
∑n−1

i=1 H
′
j (in)Un,i] = 4n

(n+1)(n+2)

∑n−1
i=1

H ′j(in)2 + 4n2

(n+1)(n+2)( 1
n

∑n−1
i=1 H

′
j(in))2 → 4(H ′j(·), H ′j(·)), because

∑n−1
i=1 H ′j(in) = o(n−1) by theorem

1 (c) of Chui (1971).

A.4 Proofs of the Main Claims

In this section we prove the main claims in the paper. In these proofs it is convenient to use some basic

properties of generalized functions, particularly the Dirac delta function δ(x) and its derivatives that play

critically important roles for the proofs. We note the following useful properties for functionals involving

the delta function.1

Note that for a function f : [0, 1] 7→ R in C(2)([0, 1]),∫ 1

0

δ(x− · − n−1)− δ(x− ·)
n−1

f(x)dx→
∫ 1

0
−δ′(x− ·)f(x)dx = f ′(·) (A.17)

uniformly on [0, 1]. If we further let δn(u− v) := nĨn(u, v), it follows that δn(x) = nIn[x ∈ [0, 1
n)], whose

limit is δ(x) as n tends to infinity. Furthermore, we note that δn(u− 1
n−v) = nĨn(u− 1

n , v) = nJ̃n(u, v) by

noting that Ĩn(· − 1
n , ◦) = J̃n(·, ◦), so that the first-order derivative of the Dirac delta generalized function

1Readers are referred to Lightill (1959) for further details.
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is obtained as follows:

δ′n(u− v) :=
δn
(
u− v − 1

n

)
− δn(u− v)

−n−1
= n2{̃In(u, v)− J̃n(u, v)} → δ′(u− v). (A.18)

We also note that the first-order derivative of the Dirac delta generalized function satisfies the following

property:

− δ′(u) = δ′(−u). (A.19)

The second-order derivative of the Dirac delta generalized function is obtained similarly to the first-order

derivative

δ′′n(u− v) :=
δ′n
(
u− v + 1

n

)
− δ′n(u− v)

n−1

=
n2{[J̃n(u, v)− Ĩn(u, v)]− [̃In(v, u)− J̃n(v, u)]}

n−1
→ δ′′(u− v). (A.20)

Proof of Lemma 1: (i) We prove each statement in turn.

(i.a) First note that for any n > 2,

Σ̃−1
n = n



2 −1 · · · 0 0

−1 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2 −1

0 0 · · · −1 2


,

so that if we let Ωn := −Ω1n + Ω2n,

Ω1n =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , and Ω2n =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0

 ,

it follows that Σ̃−1
n = −nΩn − nΩ′n. We now let Bn := [bn( 1

n), bn( 2
n), . . . , bn(n−1

n )]′, so that the first-row

and final-row elements of Bn converge to zero from the fact that b(0) = b(1) = 0. We further note that

nΩnBn =
(Ω2n − Ω1n)

n−1
Bn =

1

n−1


bn( 2

n)− bn( 1
n)

...

bn(1)− bn(n−1
n )

→ b′(·) (A.21)
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uniformly on [0, 1], that is the same consequence as given in (A.17). We here use the fact that bn(1) = 0.

We further note that this result can be associated with the Dirac delta generalized function as follows:

Ω2nBn =


bn( 2

n)
...

bn(1)

 =


∑n−1

i=1 bn(in)J̃n(in,
1
n)

...∑n−1
i=1 bn(in)J̃n(in,

n−1
n )

 =


n
∫ 1

0 bn(u)J̃n(u, 1
n)du

...

n
∫ 1

0 bn(u)J̃n(u, n−1
n )du


and

Ω1nBn =


bn( 1

n)
...

bn(n−1
n )

 =


∑n−1

i=1 bn(in)̃In(in,
1
n)

...∑n−1
i=1 bn(in)̃In(in,

n−1
n )

 =


n
∫ 1

0 bn(u)̃In(u, 1
n)du

...

n
∫ 1

0 bn(u)̃In(u, n−1
n )du

 .

Therefore, if we let δ′n(u− v) := n2{̃In(u, v)− J̃n(u, v)}, it follows that

nΩnBn = n(Ω2n − Ω1n)Bn =


n2
∫ 1

0 bn(u){J̃n(u, 1
n)− Ĩn(u, 1

n)}du
...

n2
∫ 1

0 bn(u){J̃n(u, n−1
n )− Ĩn(u, n−1

n )}du



=


−
∫ 1

0 bn(u)δ′n(u− 1
n)du

...

−
∫ 1

0 bn(u)δ′n(u− n−1
n )du

→ −
∫ 1

0
b(u)δ′(u− ·)du = b′(·)

by applying (A.17) and (A.18). This result shows that nΩnBn → b′(·).

In a similar manner, we obtain

nΩ′nBn =
(Ω′2n − Ω1n)

n−1
Bn =

1

n−1


bn(0)− bn( 1

n)
...

bn(n−2
n )− bn(n−1

n )

→ −b′(·). (A.22)

We here use the fact that bn(0) = 0. As before, (A.22) can be associated with the Dirac delta generalized

function, viz.,

Ω′2nBn =


0
...

bn(n−2
n )

 =


∑n−1

i=1 bn(in)J̃n( 1
n , in)

...∑n−1
i=1 bn(in)J̃n(n−1

n , in)

 =


n
∫ 1

0 bn(u)J̃n( 1
n , u)du

...

n
∫ 1

0 bn(u)J̃n(n−1
n , u)du

 ,
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Ω1nBn =


bn( 1

n)
...

bn(n−1
n )

 =


∑n−1

i=1 bn(in)̃In( 1
n , in)

...∑n−1
i=1 bn(in)̃In(n−1

n , in)

 =


n
∫ 1

0 bn(u)̃In( 1
n , u)du

...

n
∫ 1

0 bn(u)̃In(n−1
n , u)du

 ,
and

nΩ′nBn = n(Ω′2n − Ω1n)Bn =


n2
∫ 1

0 bn(u){J̃n( 1
n , u)− Ĩn( 1

n , u)}du
...

n2
∫ 1

0 bn(u){J̃n(n−1
n , u)− Ĩn(n−1

n , u)}du



=


−
∫ 1

0 bn(u)δ′n( 1
n − u)du

...

−
∫ 1

0 bn(u)δ′n(n−1
n − u)du

→ −
∫ 1

0
b(u)δ′(· − u)du =

∫ 1

0
b(u)δ′(u− ·)du = −b′(·),

by applying (A.17), (A.18), and (A.19). This result shows that nΩ′nBn → −b′(·). We also note that

δ′n (jn − u) = n2
{
Ĩn (jn, u)− J̃n (jn, u)

}
= −n2

{
J̃n
(
u,
j − 1

n

)
− Ĩn

(
u,
j − 1

n

)}
= −δ′n

(
u− j − 1

n

)
(A.23)

using the definition of Ĩn(·, ◦) and J̃n(·, ◦).

Therefore, combining the two results in (A.21) and (A.22), it follows that

nΣ̃−1
n Bn = −n2(Ωn + Ω′n)Bn = − 1

n−2


...

bn( j+1
n )− 2bn(jn) + bn( j−1

n )
...

→ −b′′(·),

by noting that for j = 1, 2, . . . , n−1, 1
n−2 [bn( j+1

n )−2bn(jn)+ bn( j−1
n )] = 1

n−1 [ 1
n−1 {bn( j+1

n )− bn(jn)}−
1
n−1 {bn(jn)− bn( j−1

n )}]→ b′′(·). This result can also be related to the Dirac delta generalized function as
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follows:

−n2(Ωn + Ω′n)Bn = − 1

n−1


...

n2
∫ 1

0 bn(u){[J̃n(u, jn)− Ĩn(u, jn)]− [̃In(jn, u)− J̃n(jn, u)]}du
...



= − 1

n−1


...∫ 1

0 bn(u){−δ′n(u− jn) + δ′n(u− j−1
n )}du

...

 = −


...∫ 1

0 bn(u)δ′′n(u− jn)du
...


→ −

∫ 1

0
b(u)δ′′(u− ·)du = −b′′(·),

where the second equality holds by (A.23), and the third equality holds by noting that 1
n−1 [−δ′n(u − jn) +

δ′n(u− j−1
n )] = 1

n−1 [δ′n(u− jn+ 1
n)− δ′n(u− jn)] = δ′′n(u− jn) using (A.20). Furthermore we can see that

n3{[J̃n(u, jn)− Ĩn(u, jn)]− [̃In(jn, u)− J̃n(jn, u)]} = −ξ̃n(u, jn) by noting that Ĩn(u, jn) = Ĩn(jn, u), so

it also follows that

ξ̃n (u, jn) = −δ′′n (u− jn) , (A.24)

implying that

nΣ̃−1
n Bn = Ξ̃nbn(·) = −b′′(·) + o(1). (A.25)

(i.b) Next note that if we let Cn := [cn( 1
n), cn( 2

n), . . . , cn(n−1
n )]′,

C ′nΣ̃−1
n Bn =

1

n
C ′nnΣ̃−1

n Bn =
1

n

n−1∑
j=1

cn (jn)

∫ 1

0
ξ̃n (jn, u) bn(u)du =

∫ 1

0

∫ 1

0
ξ̃n (v, u) bn(u)cn(v)dudv

= −
∫ 1

0

∫ 2

0
δ′′n (v, u) bn(u)cn(v)dudv → −

∫ 1

0
c(u)b′′(u)du =

∫ 1

0
c′(u)b′(u)du, (A.26)

where the second and fourth equalities follow from (A.24) and (A.25), and the last equality holds since

c(1)b′(1)− c(0)b′(0) =
∫ 1

0 d{c(u)b′(u)} =
∫ 1

0 c
′(u)b′(u)du+

∫ 1
0 c(u)b′′(u)du. Note that c(0) = c(1) = 0,

so that the left side is zero, leading to (A.26). Therefore, it follows that

(Ξ̃nbn(·), cn(·)) =

∫ 1

0

∫ 1

0
ξ̃n(v, u)bn(u)cn(v)dudv =

∫ 1

0
c′(u)b′(u)du+ o(1) = (b′(·), c′(·)) + o(1).

In addition, note that

(b′(·), c′(·)) =

∫ 1

0

∫ 1

0
δ(u− v)c′(u)b′(v)dudv, (A.27)

where the last equality follows from the fact that
∫ 1

0 δ(u1 − u2)f ′(u1)du1 = f ′(u2).
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(ii) Using the fact that Σ̃−1
n = −nΩn − nΩ′n, we obtain

1

n
C ′nΣ̃−1

n Bn =−
n−1∑
i=2

cn

(
i− 1

n

){
bn (in)− bn

(
i− 1

n

)}

−
n−1∑
i=2

bn

(
i− 1

n

){
cn (in) + cn

(
i− 1

n

)}
+ 2bn

(
n− 1

n

)
cn

(
n− 1

n

)
. (A.28)

Also note that

bn

(
i− 1

n

)
=

1

2

({
bn (in) + bn

(
i− 1

n

)}
−
{
bn (in)− bn

(
i− 1

n

)})
, (A.29)

cn

(
i− 1

n

)
=

1

2

({
cn (in) + cn

(
i− 1

n

)}
−
{
cn (in)− cn

(
i− 1

n

)})
, (A.30)

so that if we plug these two equations into (A.28), it follows that 1
nC
′
nΣ̃−1

n Bn = bn( 1
n)cn( 1

n)+
∑n−1

i=2 {bn(in)

−bn( i−1
n )}{cn(in)− cn( i−1

n )}+ bn(n−1
n )cn(n−1

n ). We here note that bn(0) = cn(0) = bn(1) = cn(1) = 0,

so that bn( 1
n)cn( 1

n) = (bn( 1
n)−bn(0))(cn( 1

n)−cn(0)) and bn(n−1
n )cn(n−1

n ) = (bn(1)−bn(n−1
n ))(cn(1)−

cn(n−1
n )). This fact implies

1

n
C ′nΣ̃−1

n Bn =
n∑
i=1

{
bn (in)− bn

(
i− 1

n

)}{
cn (in)− cn

(
i− 1

n

)}
→
∫ 1

0
db(u)dc(u), (A.31)

which is (db(·), dc(·)). Furthermore, (A.26) implies that n−1C ′nΣ̃−1
n Bn = n−1(Ξ̃nbn(·), cn(·)). Therefore,

n−1(Ξ̃nbn(·), cn(·))→ (db(·), dc(·)). �

Proof of Lemma 2: (i) First note that for n ≥ 2,

Σ̈−1
n =


Σ̃−1
n

0
...

0

−n

0 · · · 0 −n n


,

so that Σ̈−1
n is almost identical to Σ̃−1

n except that the n-th row and n-th column element of Σ̈−1
n is n,

whereas the (n− 1)-th row and (n− 1)-th column element of Σ̃−1
n is 2n. Therefore, the limit kernel of Σ̈−1

n

can be similarly obtained to that of Σ̃−1
n . We again prove the statements in turn.
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(i.a) Let B̈n := [Bn, bn(1)]′ and note that

nΣ̈−1
n B̈n =

 nΣ̃−1
n Bn

− 1
n−2 [bn(n−1

n )− bn(1)]

 =



...

−
∫ 1

0 bn(u)δ′′n(u− jn)du
...

− 1
n−2 [bn(n−1

n )− bn(1)]

 .

Here, Lemma 1 (i) shows that−
∫ 1

0 bn(u)δ′′n(u−jn)du→ −b′′(·), and we further note that− 1
n−2 {bn(n−1

n )−

bn(1)} → −b′′(1) because bn(1 − 1
n) = bn(1) − b′n(1) 1

n + b′′n(1) 1
n2 + o(1) such that b′(1) = 0 and

b(·) ∈ C(2)([0, 1]). Therefore, even the last row element converges to the negative second-order derivative

of b(·), and this implies that

nΣ̈−1
n B̈n → −b′′(·). (A.32)

Note further that −1
n−2 [bn(1− 1

n)− bn(1)] = −1
n−3

∫ 1
0 bn(u){J̈n(1, u) + J̈(u, 1)− Ïn(1, u)}du =

∫ 1
0 bn(u)

ξ̈n(u, 1)du using the definition of ξ̈n(·, ◦). Therefore, it follows that

...

−
∫ 1

0 bn(u)δ′′n(u− jn)du
...

− 1
n−2 [bn(n−1

n )− bn(1)]

 =



...∫ 1
0 bn(u)ξ̃n(u, jn)du

...∫ 1
0 bn(u)ξ̈n(u, 1)du

 =


...∫ 1

0 bn(u)ξ̈n(u, jn)du
...

 = Ξ̈nbn(·),

(A.33)

where the first equality holds by (A.24), and the second equality holds by the fact that for j = 1, 2, . . . , n−1,

ξ̃n(·, jn) = ξ̈n(·, jn). Combining (A.32) and (A.33), it follows that nΣ̈−1
n B̈n = Ξ̈nbn(·)→ −b′′(·).

(i.b) Let C̈n := [Cn, cn(1)]′ and obtain

C̈ ′nΣ̈−1
n B̈n =

1

n
C̈ ′nnΣ̈−1

n B̈n =
1

n

n∑
j=1

cn (jn)

∫ 1

0
ξ̈n (jn, u) bn(u)du

=

∫ 1

0

∫ 1

0
ξ̈n (v, u) bn(u)cn(v)dudv = −

∫ 1

0

∫ 2

0
δ′′n (v, u) bn(u)cn(v)dudv

→ −
∫ 1

0
c(u)b′′(u)du =

∫ 1

0
c′(u)b′(u)du, (A.34)

where the last equality holds by noting that c(1)b′(1)− c(0)b′(0) =
∫ 1

0 d{c(u)b′(u)} =
∫ 1

0 c
′(u)b′(u)du+∫ 1

0 c(u)b′′(u)du. Note that c(0) = b′(1) = 0, so that the left side is zero, leading to (A.34). Therefore, it

follows that (Ξ̈nbn(·), cn(·)) =
∫ 1

0

∫ 1
0 ξ̈n(v, u)bn(u)cn(v)dudv =

∫ 1
0 c
′(u)b′(u)du+ o(1) = (b′(·), c′(·)) +

o(1).
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(ii) Note that

1

n
C̈ ′nΣ̈−1

n B̈n =−
n∑
i=2

cn

(
i− 1

n

){
bn (in)− bn

(
i− 1

n

)}

−
n∑
i=2

bn

(
i− 1

n

){
cn (in) + cn

(
i− 1

n

)}
+ bn (1) cn (1) . (A.35)

Here, we plug (A.29) and (A.30) in (A.35) to obtain 1
n C̈
′
nΣ̈−1

n B̈n = bn( 1
n)cn( 1

n)+
∑n

i=2{bn(in)−bn( i−1
n )}

{cn(in) − cn( i−1
n )} =

∑n
i=1{bn(in) − bn( i−1

n )}{cn(in) − cn( i−1
n )} by noting that bn(0) = cn(0) = 0.

This fact implies that as n tends to infinity,

1

n
C̈ ′nΣ̈−1

n B̈n =
n∑
i=1

{
bn (in)− bn

(
i− 1

n

)}{
cn (in)− cn

(
i− 1

n

)}
→
∫ 1

0
(db(u)dc(u)) (A.36)

that is identical to (db(·), dc(·)). Furthermore, (A.34) implies that n−1C̈ ′nΣ̈−1
n B̈n = n−1(Ξ̈nbn(·), cn(·)).

Therefore, n−1(Ξ̈nbn(·), cn(·))→ (db(·), dc(·)). This completes the proof. �

Proof of Lemma 3: (i) Given the conditions, we use Lemmas 1 and 2 to prove the statements in turn.

(i.a) Using the definition of qn(θ∗), note that qn(θ∗) = G̃n(θ∗)
′Σ̂−1
n G̃n(θ∗) = (Ξ̂ng̃n(·), g̃n(·)) ⇒

(ΞG(·),G(·)) by Assumption 2 (i). Further, Lemmas 1 (i and ii) or 2 (i and ii) imply that (ΞG(·),G(·)) =

−(G′′(·),G(·)) = (G′(·),G′(·)) =: Qd. Therefore, qn(θ∗)⇒ Qd.

(i.b) Using the definition of Ān, note that Ān = ∇θḠn(θ∗)Σ̂
−1
n ∇′θḠn(θ∗) = [Ξ̂nHn(·), Hn(·)] →

[ΞH(·), H(·)] with probability converging to 1 by Assumption 3 (i). Further, Lemmas 1 (i and ii) or 2

(i and ii) imply that [ΞH(·), H(·)] = −[H ′′(·), H(·)] = [H ′(·), H ′(·)]; and Assumption 3 implies that

n∆Hn(·) = C1(·)+oP(1) and n∆Hn(·) = H ′(·)+oP(1). Therefore, [H ′(·), H ′(·)] = [C1(·), C1(·)] =: Ad.

Hence, Ān → Ad.

(i.c) By definition Dn = ∇θḠn(θ∗)Σ̂
−1
n G̃n(θ∗) = [Hn(·), Ξ̂ng̃n(·)] ⇒ [H(·),ΞG(·)] by Assumptions

2 (i) and 3 (i). Note that Lemmas 1 (i and ii) or 2 (i and ii) imply that [H(·),ΞG(·)] = −[H(·),G′′(·)] =

[H ′(·),G′(·)]; and further H ′(·) = C1(·) by Assumption 3. Therefore, [H ′(·),G′(·)] = [C1(·),G′(·)] =: Dd
and so Dn ⇒ Dd.

(ii) We prove each statement in turn.

(ii.a) Given the conditions, we apply the proof of Lemma 1 (ii) or 2 (ii). For this, we note that 1
nqn(θ∗) =

1
nG̃n(θ∗)

′Σ̂−1
n G̃n(θ∗) = 1

n(Ξ̂ng̃n(·), g̃n(·)) =
∑sn

i=1(∆g̃n(in))2 ⇒
∫ 1

0 (dG(u))2, where the third equality

holds by (A.27) or (A.36), and the weak convergence follows from Assumption 2 (ii). Furthermore, the

same condition implies that
∫ 1

0 (dG(u))2 =
∫ 1

0 σ
2(u)(dW(u))2 =

∫ 1
0 σ

2(u)du = (σ(·), σ(·)), where the

second last equality holds by noting that G(·) is an Itô process.
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(ii.b) Given the conditions, it follows from (A.27) or (A.36) that 1
nĀn = 1

n∇θḠn(θ∗)Σ̂
−1
n ∇′θḠn(θ∗) =∑sn

i=1 ∆Hn(in)∆Hn(in)′. Therefore, if we combine this equation with Assumption 3 (ii), it further follows

that Ān = 1
n

∑sn
i=1C1(in)C1(in)′+

∑sn
i=1C2(in)C2(in)′(∆g̃n(in))2 + 1√

n
[
∑sn

i=1C1(in)C2(in)′∆g̃n(in)+∑sn
i=1C2(in)C1(in)′∆g̃n(in)] + oP(1). Next examine the asymptotic behavior of each element on the right

side. First, note that 1
n

∑sn
i=1C1(in)C1(in)′ →

∫ 1
0 C1(u)C1(u)′du = [C1(·), C1(·)].

Second, (dG(u))2 = σ2(u)du, so that
∑sn

i=1C2(in)C2(in)′(∆g̃n(in))2 = 1
n

∑sn
i=1C2(in)C2(in)′σ2(in)

+oP(1)→
∫ 1

0 σ
2(u)C2(u)C2(u)′du = [σ(·)C2(·), σ(·)C2(·)].

Finally, we examine the asymptotic behavior of n−1/2
∑sn

i=1C2(in)C1(in)′∆g̃n(in). Note that ∆g̃n(·)

can be approximated by dG(·) if n is sufficiently large, so that it follows that 1√
n

∑sn
i=1C1(in)C2(in)′∆g̃n

(in) = 1√
n

∫ 1
0 C1(u)C2(u)′µ(u)du+ 1√

n

∫ 1
0 C1(u)C2(u)′σ(u)dW(u)+oP(1). Note that the first two terms

on the right side are oP(1), implying that Ān = 1
n

∑sn
i=1C1(in)C1(in)′+

∑sn
i=1C2(in)C2(in)′(∆g̃n(in))2 +

oP(1)→ [C1(·), C1(·)] + [σ(·)C2(·), σ(·)C2(·)] with probability converging to 1.

(ii.c) Given the conditions, (A.27) or (A.36) implies thatDn = n
∑sn

i=1 ∆Hn(in)∆g̃n(in), and Assump-

tion 3 (ii) implies that ∆Hn(·) = n−1C1(·)+n−1/2C2(·)∆g̃n(·)+n−1C3(·)g̃n(·)∆g̃n(·)+oP(n−1), so that

Dn −
√
n
∑sn

i=1C2(in)(∆g̃n(in))2 =
∑sn

i=1C1(in)∆g̃n(in) +
∑sn

i=1C3(in)g̃n(in)(∆g̃n(in))2 + oP(1)⇒∫ 1
0 C1(u)dG(u) +

∫ 1
0 σ

2(u)C3(u)G(u)du =: Du by noting that (∆g̃n(·))2 = n−1σ2(·) + oP(1) and

g̃n(·)⇒ G(·).

(iii.d) Given Assumption 2 (ii), it follows that (dG)2(u) = σ2(u)du. Approximate ∆g̃n(·) by dG(·) and

then
∑sn

i=1C2(in)(∆g̃n(in))2 =
∫ 1

0 C2(u)σ2(u)du+oP(1) = oP(1) from the condition that
∫ 1

0 C2(u)σ2(u)

du = 0 with probability 1, implying that n−1/2
∑sn

i=1C2(in)σ2(in) = oP(1) by applying theorem 1 (c) of

Chui (1971). This also implies that n−1/2
∑sn

i=1C2(in)E[σ2(in)] = o(1) Therefore,
√
n
∑sn

i=1C2(in)(∆g̃n

(in))2 = 1√
n

∑sn
i=1C2(in){(

√
n∆g̃n(in))2 − E[σ2(in)]} + oP(1). We here note that {(

√
n∆g̃n(in))2}

is a mixingale process of size −1 by Assumption 3 such that var[ 1√
n

∑sn
i=1C2(in){(

√
n ∆g̃n(in))2 −

E[σ2(in)]}] = 1
n

∑sn
i=1 γ1(in)C2(in)C2(in)′ + 1

n2

∑sn
i=1

∑sn
j=1i 6=j γ2(in, jn)C2(in)C2(jn)′ + o(1) →

∫ 1
0

γ1(u)C2(u)C2(u)′du +
∫ 1

0

∫ 1
0 γ2(u, v)C2(u)C2(v)′dudv = Γ, which is finite by Assumptions 2 (ii.c) and

3. Therefore, it follows from the mixingale CLT (e.g., White, 2001, theorem 5.16) that 1√
n

∑sn
i=1C2(in)

{(
√
n∆g̃n(in))2−σ2(in)} ⇒ Z ∼ N (0,Γ) by noting that Γ is positive definite. This implies

√
n
∑sn

i=1C2

(in)(∆g̃n(in))2 ⇒ Z . Combining this result with (ii.c) gives Dn =
√
n
∑sn

i=1C2(in)(∆g̃n(in))2 +∑sn
i=1C1(in)∆g̃n(in) +

∑sn
i=1C3(in)g̃n(in)(∆g̃n(in))2 + oP(1) ⇒ Z + Du =: Dw. This completes

the proof. �

Proof of Theorem 1: (i) Given Lemma 3 (i) and the fact that
√
n(θ̂n − θ∗) = −Ā−1

n Dn + oP(1),
√
n(θ̂n −
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θ∗)⇒ −A−1
d Dd.

(ii) Given Lemma 3 (ii.d), the desired results follow from the fact that
√
n(θ̂n − θ∗) = −Ā−1

n Dn +

oP(1)⇒ −A−1
u Dw. �

Proof of Theorem 2: (i) We first apply a second-order Taylor expansion to qn(·) around θ∗ and obtain that

Jn := qn(θ̂n) = qn(θ∗)−
√
n(θ̂n − θ∗)′(∇θḠn(θ∗)Σ̂

−1
n ∇′θḠn(θ∗))

√
n(θ̂n − θ∗) + oP(1). (A.37)

It now follows from (1) that Jn = qn(θ∗)− G̃n(θ∗)
′Σ̂−1
n ∇′θḠn(θ∗)(∇θḠn(θ∗)Σ̂

−1
n ∇′θḠn(θ∗))

−1∇θḠn(θ∗)

Σ̂−1
n G̃n(θ∗)+oP(1) = qn(θ∗)−D′nĀ−1

n Dn+oP(1)⇒ Qd−D′dA
−1
d Dd by Lemma 3 (i). We further note that

Qd−D′dA
−1
d Dd = (ΞG(·),G(·))−[λd(·)′,G(·)]A−1

d [λd(·),G(·)] = (ΞG(·),G(·))−[λd(·)′A−1
d [λd(◦),G(◦)],

G(·)] = (ΞG(·),G(·)) − ((λd(·)′A−1
d λd(◦),G(◦)),G(·)) = (ΠdG(·),G(·)) =: Jd, where the last equal-

ity holds from the fact that (λd(·)′A−1λd(◦),G(◦)) = λd(·)′A−1
∫ 1

0 λd(u)G(u)du = ΛdG(·), so that

(ΞG(·),G(·))−((λd(·)′A−1λd(◦),G(◦)),G(·)) = (ΞG(·),G(·))−(ΛdG(·),G(·)) = ((Ξ−Λd)G(·),G(·)) =

(ΠdG(·),G(·)).

(ii) Given (A.37), it follows that n−1Jn = n−1qn(θ∗) + oP(1). Furthermore, Lemma 3 (ii.a) implies

that n−1qn(θ∗)→ qu :=
∫ 1

0 σ
2(u)du with probability converging to 1, which is identical to

∫ 1
0 E[σ2(u)]du.

Now n−1qn(θ∗) = n−1
∑sn

i=1(
√
n∆g̃n(in))2. It follows that

√
n( 1

nJn− qu) = 1√
n

∑sn
i=1[(
√
n∆g̃n(in))2−

E[σ2(in)]] + oP(1) by noting that
∣∣ 1
n

∑sn
i=1 σ

2(in)− qu
∣∣ = oP(n−1/2), which is implied by theorem 1 (c) of

Chui (1971). Now {(
√
n∆g̃n(in))2−E[σ2(in)]} is a mixingale of size−1, as assumed by Assumption 2 (ii).

Therefore, var[ 1√
n

∑sn
i=1{(

√
n∆g̃n(in))2−E[σ2(in)]}] = 1

n

∑sn
i=1 γ1(in)+ 1

n2

∑sn
i=1

∑sn
j=1i 6=j γ2(in, jn)+

oP(1) →
∫ 1

0 γ1(u)du +
∫ 1

0

∫ 1
0 γ2(u, v)dudv =: v2, which is finite by Assumptions 2 (ii). Therefore,

it follows from the mixingale CLT that 1√
n

∑sn
i=1{(

√
n∆g̃n(in))2 − E[σ2(in)]} A∼ N (0, v2), which also

implies that
√
n( 1

nJn−qu)+oP(1) = (Jn−nqu)√
n

+oP(1)
A∼ N (0, v2). From this, we obtain thatUn

A∼ N (0, 1)

underH0, as required. �

A.5 Empirical Supplements

In this section we provide the estimated Gini coefficients using annual data of each year. We draw the

evolution of the Gini coefficients in parallel to Figures 4 to 7. For the female and male cohorts, Figure A.1

shows the estimated Gini coefficients as functions of time between 1980 and 2018. Likewise, Figures A.2

and A.3 show the estimated Gini coefficients from the data sets classified by education and race, respectively.

Figure A.4 shows the Gini coefficients when data sets are not classified. As the implications of these figures

are the same as those from Figures 4 to 7, for brevity they are not repeated.
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(a) Female (b) Male

Figure A.1: GINI COEFFICIENTS OF FEMALE AND MALE COHORTS BETWEEN 1980 AND 2018. The
figures show the Gini coefficients of female and male cohorts estimated by imposing the Pareto distribution
to the top 10% CWHS observations. Missing values signify that the p-value of the U -test is less than 1%.

(a) High school or below (b) BA or equivalent

(c) MA or equivalent (d) Doctorate or equivalent

Figure A.2: GINI COEFFICIENTS WITHIN THE SAME EDUCATION COHORTS BETWEEN 1980 AND 2018.
The figures show the Gini coefficients within the same education cohorts estimated by imposing the Pareto
distribution to the top 10% CWHS observations. Missing values signify that the p-value of the U -test is less
than 1%.

16



(a) White or Caucasian (b) Black or African American

(c) Asian

Figure A.3: GINI COEFFICIENTS WITHIN THE SAME RACE COHORTS BETWEEN 1980 AND 2018. The
figures show the Gini coefficients within the same race cohorts estimated by imposing the Pareto distribution
to the top 10% CWHS observations. Missing values signify that the p-value of the U -test is less than 1%.

Figure A.4: GINI COEFFICIENTS USING AGGREGATED OBSERVATIONS FOR EACH YEAR BETWEEN

1980 AND 2018. The figures show the Gini coefficients of aggregated observations estimated by imposing
the Pareto distribution to the top 10% CWHS observations. Missing values signify that the p-value of the
U -test is less than 1%.
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