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Abstract

We propose a framework for estimation of the conditional mean function in a parametric model with function space covariates.
The approach employs a functional mean squared error objective criterion and allows for possible model misspecification. Under
regularity conditions, consistency and asymptotic normality are established. The analysis extends to situations where the asymp-
totic properties are influenced by estimation errors arising from the presence of nuisance parameters. Wald, Lagrange multiplier,
and quasi-likelihood ratio statistics are studied and asymptotic theory is provided. These procedures enable inference about curve
shapes in the observed functional data. Several model specifications where our results are useful are analyzed, including time
forms implied by panel data, random coefficient models, distributional mixtures, and copula mixture models. Simulations explor-
ing the finite sample properties of our methods are provided. An empirical application conducts lifetime income path comparisons
across different demographic groups according to years of work experience. Gender and education levels are found to produce
differences in mean income paths, which reinforces earlier research results. But functional analysis reveals that the mean income
paths are proportional so that, upon rescaling, the paths match over gender and across education levels.
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1 Introduction

Functional data analysis (FDA) has been attracting increasing attention in the statistical and econometric literatures. Among the

reasons for this growing interest are the growing availability of very large cross section and spatio-temporal datasets, the inherent

interest in studying function space, curve, or surface realizations of data, and the potential that function space methods provide

for economic, financial, and scientific data analysis at this enhanced level of detail. In place of individual point observations,

functional data lead naturally to the analysis of continuous phenomenon such as time series curves that record trend or growth

trajectories and do so under assumptions that can allow great generality. Ramsay and Dalzell (1991), Rice and Silverman (1991),

Ramsay and Silverman (1997), Bosq (2000), and Horvath and Kokoszka (2012) are now classical references on FDA. We also

refer to Ramsay and Silverman (2002), Cai and Hall (2006), Ferraty and Vieu (2006), Cardot et al. (2007), Hall and Horowitz

(2007), Zhang and Chen (2007), Müller et al. (2011), Cao et al. (2012), and Müller (2012) for further background and recent

research.

Theoretical developments in FDA often focus on nonparametric model analyses such as functional regression models, so that

the objects of interest in estimation and inference are typically nonparametric functions or operators acting on a function space

in which the data are defined. Such analyses provide a useful foundation for a general approach to FDA. But the final objects in

fully nonparametric studies may sometimes be difficult to interpret in practice. Rather than pursue a nonparametric approach, the

present study works with a parametric formulation that aims to be amenable to implementation and interpretation in application.

For this goal, we propose a novel and efficient framework for the estimation and inference of the (conditional) mean function

of functional data. Our approach is different from many other recent FDA studies in that we assume a parametric model for

the mean function, one that may possibly be misspecified, whereas the observations remain nonparametric random elements in

a measurable function space. We study the influence of potential misspecification of the mean function on our estimator by

examining it in parallel to the analysis of a quasi-maximum likelihood estimator, much as in White’s (1982, 1994) investigations

with finite dimensional data.

Our approach has some advantages that are useful in practical research. First, it allows us to construct simple statistical

tests for the (conditional) mean functions with the estimated parameters using the asymptotic machinery. In the nonparametric

context, inference about the slope function in functional regression often involves technically challenging issues arising from

well-known ill-posed functional inversion problems. In our framework on the other hand, the relevant null hypothesis can be

easily tested by estimating vector valued parameters, enabling straightforward inference on the mean function. Our approach

also provides a convenient way to study the derivatives of population mean functions. Derivative functions such as growth rates

of income, wealth, or employment are often of significant interest in economic applications. With nonparametric approaches

numerical differentiation methods are typically employed, whereas parametric model estimation enables estimation and testing

for exact analytic derivatives. For example, statistical analysis of functional data such as shift registration alignment requires the

estimation of the mean function and its exact derivatives, for which we can conveniently apply the methods developed herein.

Some well-known statistical methods that are now used in econometrics provide further motivation for the present parametric

functional data framework. For instance, there is a large literature in meta analysis on the combination of independent test

statistics, some methods using weighting techniques, in which p-curve analysis may be used. These methods originated in the

work of Fisher (1932) (see also Pearson, 1950; Lancaster, 1961; van Zwet and Oosterhoff, 1967; Westberg, 1985, among others)

and are now employed to assess selective reporting in empirical work in terms of publication bias and p-hacking - e.g., see

Simonsohn et al. (2014). Such methods can be viewed in terms of functional data analysis with a particular form of weight
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function. Other relevant literatures are the unidentified model analysis of Davies (1977, 1987) and the minimum distance tests

in Pollard (1980). Both provide motivation for the present approach in which the tests are interpreted as statistics obtained

from functional observations – see Section 5 of this study for an example. There is now a substantial literature extending the

inferential methods of Davies (1977, 1987) and Pollard (1980) and our approach can be applied to similar problems with various

identification features or empirical distributions (e.g., Hansen, 1996; Andrews, 2001; Baek et al., 2015; Bierens, 1990; Cho et al.,

2018; Cho and White, 2007, 2010; Cho and Phillips, 2018b; Stinchcombe and White, 1998, and the references therein). Each

observation that underlies the statistics in these studies is a functional observation, making the present approach applicable.

The literature on FDA is growing and the direction of the present research contributes to that expanding literature. To men-

tion a few recent developments, we draw attention to the following studies. Grenander (1981) and Kutoyants (1984) study the

estimation of a parametric model for a single functional observation. Crambes et al. (2013) examine the estimation of a quan-

tile regression function with a functional covariate by means of a support vector machine (SVM) learning method. Here the

dependent variable is a real random variable and the explanatory variable is a functional observation. The authors first apply

a linear integral operator to the functional data, converting the functional observation to a random variable, thereby enabling

estimation of the conditional quantile functional (i.e., the quantile function between the dependent variable and the transformed

observations) using SVM methodology. Zhang and Chen (2007) examine the so-called “smoothing first, then estimation” princi-

ple which substitutes functional observations obtained by applying local polynomial kernel estimation to discrete data to estimate

the unobserved underlying functional observations. Under some mild regularity conditions, they show that the influence of this

substitution on inference can be ignored as the sample size increases. Li et al. (2020) study time series of function space curves

under long range dependence, establishing limit theory for sample averages, estimating the covariance kernel function of the

functional data via functional principal component analysis, and using orthonormal functions to span the dominant subspace of

the curves. Chang et al. (2019) consider estimation of a functional autoregressive model with serially correlated functional data

and establish consistency and asymptotic normality of the autoregressive operator estimator. Phillips and Jiang (2019) study

parametric autoregression with function valued time series in stationary and nonstationary cases, establish asymptotic theory

of estimation and inference, and apply the methods to analyze household Engel curves among ageing seniors in a wide panel

dataset. These papers all relate to the current study in terms of the use of functional data but differ from its focus on estimation

and inference of a parametric nonlinear conditional mean function involving functional observations and given vector valued

explanatory variables, allowing for possible misspecification.

The paper is organized as follows. Section 2 describes the data, defines the model, and sets up the estimation criterion in

terms of a functional mean squared error (FMSE). Section 3 proposes a functional least squares (FLS) estimator for the paramet-

ric conditional mean function. Consistency and asymptotic normality of the FLS estimator is established allowing for possible

nuisance effects. Asymptotic covariance matrix estimation is also discussed. Section 4 provides a general framework for hypoth-

esis testing, with extensions of Wald, Lagrange multiplier (LM), and quasi-likelihood ratio (QLR) test statistics and asymptotics

to the functional data environment. In Section 5, several model specifications where our results are useful are analyzed, including

panel data inference, random coefficient models, distributional mixtures, and copula mixture models. Finite sample simulations

are also provided. Section 6 reports an empirical application of the methods to lifetime income path comparisons across different

demographic groups. Conclusions are given in Section 7 and proofs are collected in the Appendix.
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2 Setup

We are interested in studying data that comprise a set of observable random functions gi( · ) and observable random vectors xi,

which are given as

{(gi(·), x′i)′ : gi : Γ 7→ R and xi ∈ Rk}ni=1, (1)

where n is the sample size and k ∈ N+.

There are many examples fitting this data structure. We provide below a list of some of the data sets with this structure to

help fix the main ideas of the present paper:

• In our empirical work the function gi is used to represent an observable curve that shows an individual’s income profile

over their lifetime working years or some relevant subset of those years, such as those that follow 10 or more years work

experience, signifying maturity in the labor force. The vector xi embodies relevant individual characteristics such as

gender and educational level attained which influence the earnings function gi. The curve gi(γ) with γ ∈ Γ = [10, 40]

then represents the earnings profile of individual i with those particular characteristics over a lifetime of 30 years with

at least 10 years work experience. The primary object of interest is then the conditional mean function of the income

profile curve given the observable characteristics x. This function might then be modeled using a specific parametric

functional form in terms of work experience for those given characteristics, a quadratic function being EP[gi(γ)|xi = x] =

m1(θ, x)+m2(θ, x)γ+m3(θ, x)γ2 =: µ(γ; θ, x) for pre-specified functionsmj(θ, x) (j = 1, 2, 3), where θ is a parameter

vector to be estimated from the functional data gi(·) and the relevant characteristics xi. The notation EP[gi(γ)|xi = x]

indicates that expectation is taken with respect to the probability measure P, defined in Assumption 1, conditional on the

given characteristics x, as explained in (2) below. There are many mean functions in the literature similar to the income

profile. For example, the S-shaped curves or sigmoid functions are popularly employed as mean functions of business

growth, crop yield, and learning outcome data, among others, and sigmoid functions such as the logistic, arctangent, and

error functions are often used in empirical work. As another example, trigonometric functions are commonly used in the

literature to capture various cyclical patterns.

• An observed measurable functional transformation of a random element can be treated as a functional observation. Specifi-

cally, we may consider a random variable (yi, xi) and its parametric transformation via a measurable function: g(γ, yi, xi),

where γ ∈ Γ ⊂ Rd as in our paper. For simplicity, we let gi(·) := g(·, yi, xi) be a functional observation defined on Γ and

analyze its (conditional) mean function E[gi(·)|xi], defined according to the researcher’s interest. For example, an empir-

ical researcher may wish to test a particular form of the conditional mean function that may be implied by an hypothesis

of interest. The examples in Sections 5 handle cases in which the mean function is identically zero (e.g., from Davies’s

(1977, 1987) identification problem) and the hypotheses of interest are imposed on the score function, which is now the

parametric transformation. For testing purposes, the paper develops methodologies to test the hypothesized mean function

form by extending traditional Wald, Lagrange multiplier and likelihood ratio test principles to functional data.

• The analysis of p-curves can be interpreted in terms of functional data. If we let gi(γ) := Kh(γ − xi), where Kh(·)

is a kernel function with bandwidth h, the sample average of the gi(·) becomes a standard kernel density function using

functional observations. The mean function of gi(·) conveys informative characteristics of the data and p-curve analysis

examines the density function shape of the p-value. Under the null hypothesis the p-value of a test statistic follows a

uniform distribution. So if the mean function of gi(·) is estimated by the kernel density function over the region around

a test level such as 0.05, the shape should be flat under the null or a decreasing function under the alternative, which is a
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prime object of investigation under p-curve analysis.

• Functional data are often obtained by interpolation methods. Individual observations obtained at discrete locations and/or

times typically display different random patterns and unobservable observations between discrete locations and/or times

may be predicted by local polynomial kernel, sieve, kriging, and polynomial spline estimation, among other methods,

thereby converting discrete observations into functional data (e.g., Zhang and Chen, 2007; Chen, 2007; Chilès and Delfiner,

1999; Wang, 2011). The (conditional) mean function estimated from the resulting functional data can be exploited to infer

properties of the (conditional) mean function of the missing data between the discrete observations. For panel data sets

with discretely collected observations functional data delivered by such interpolations can be exploited to infer (conditional)

mean equations, although inference may not be straightforward if unbalanced panel data are used.

Many more functional data examples fit the modeling structure employed in the present study. We focus on the first two examples

above to demonstrate the proposed methodology and employ these as our running examples.

The following conditions provide a formal probabilistic framework in which data of this type may be analyzed.

Assumption 1. (Data): (i) (Ω,F ,P) is a complete probability space and (Γ, τ) is a compact metric space with τ being a metric

defined on Γ;

(ii) {(gi( · , · ), x′i)′ : gi : Ω × Γ 7→ R and xi : Ω 7→ Rk}ni=1 is a set of identically and independently distributed (IID)

observations such that for each γ ∈ Γ, {(gi( · , γ), x′i)
′} is F−measurable, and gi(ω, · ) ∈ C(0)(Γ) for all ω ∈ F ∈ F with

P(F ) = 1, where C(`)( · ) denotes the space of `-times continuously differentiable functions;

(iii) (Γ,G,Q) and (Ω× Γ,F
⊗
G,P×Q) are complete probability spaces, and gi( · , · ) is F

⊗
G− measurable. �

The argument space Γ is the space where the functional observations are defined for a fixed ω ∈ Ω. For convenience, we define

the functional observations gi on the product space of Ω × Γ rather than interpreting them as elements in some Hilbert space.

A straightforward example is when g(ω, ·) is a function defined on a subset of s-dimensional Euclidean space (s ∈ N+). For

such a case, Γ and τ are the subset and the Euclidean distance, respectively. In Assumption 1(iii), the original probability space

(Ω,F ,P) is combined with (Γ,G,Q) to form the product probability space (Ω× Γ,F × G,P×Q). We call (Γ,G,Q) and Q the

adjunct probability space and adjunct probability measure, respectively. We suppose that these spaces are judiciously chosen by

the researcher to match the specific modeling interests and goals.

To avoid confusion this formulation does not mean that γ is an unobserved variable with a known distribution, for which

we may apply a minimum distance estimation technique to infer the data structure. Our model and approach are therefore

fundamentally different from earlier general work on conditional moment estimation, such as the work of Ai and Chen (2003).

On the contrary, the adjunct probability space and adjunct probability measure are devices that are carefully selected by the

researcher for the empirical purpose in hand and these may therefore differ according to the study. This important feature of

our approach means that the analysis of functional data is conducted quite differently from formulations in which γ is assumed

to be a random variable, such as in the context of models with conditional moment restrictions containing observed functions

but unobserved random variables. Furthermore, the carefully selected devices may in turn be influenced directly by properties

associated with estimators of the conditional mean function and test statistics used for inference. As we detail at the end of

Section 3.2, the powers of test statistics devised for inference on the conditional mean function can be affected by the selection

of the adjunct probability measure. This fact may be used by investigators to guide the choice of Q judiciously so that tests

employed may be conveniently computed and have power against what are viewed as more realistic alternatives.

The adjunct probability space and adjunct probability measure are not directly part of the stochastic aspects of the data, as
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mentioned above. But the measurability conditions employed in Assumption 1 are useful in defining some of the integrals that

are introduced below. If gi(·) is continuous in γ almost surely (a.s.) with respect to P, the joint measurability condition in

Assumption 1(iii) trivially holds by lemma 2.15 of Stinchcombe and White (1992).1 Otherwise, the measurability condition has

to be verified by explicitly considering the properties of the function. It will be convenient to proceed in this development by

requiring the continuity condition to hold, along with other conditions for the investigator to consider when choosing the adjunct

probability measure for a regularly behaving FLS estimator. Also, in the notation (1) and elsewhere, the argument ω is often

suppressed for convenience.

We further suppose that the primary subject of interest is the conditional mean function of gi, which is defined by the integral2

µ(γ;x) :=

∫
g(γ)dP(g(γ)|x), (2)

where P( · |x) is the conditional probability measure of gi(γ) given xi = x. For each γ ∈ Γ, we treat the function g(γ) as a

random variable and compute its conditional mean µ. Therefore, if we let EP denote the expectation operator associated with the

probability measure P, µ(γ, x) can be expressed as EP[gi(γ)|xi = x]. If the function gi( · ) is constant a.s., we can view it as a

simple random variable, so that EP[gi(γ)|xi = x] becomes the conventional conditional mean of gi( · ).

For a parametric specification of the conditional mean with parameter vector θ we may write µ(γ;x) = µ(γ; θ, x), as earlier.

That is, µ(γ;x) is a special case of µ(γ; ·, x) that can be obtained by plugging θ into the empty argument space. More generally,

we wish to allow for misspecification in our analysis. To do so, we defineM to be a collection of parametric models specified

by a function ρ. Specifically, for each x,

M := {ρ( · , θ, x) : Γ 7→ R|θ ∈ Θ ⊂ Rd}.

The following conditions are assumed forM and ρ:3

Assumption 2. (Model): (i) For each θ ∈ Θ, ρ( · , θ, · ) : Γ× Ω 7→ R is F
⊗
G− measurable, where the parameter space Θ is

a compact and convex set in Rd for d ∈ N+;

(ii) for each γ ∈ Γ, ρ(γ, · , ω) : Θ 7→ R ∈ C(2)(Θ) for all ω ∈ F ∈ F with P(F ) = 1;

(iii) for each θ ∈ Θ, ρ( · , θ, ω) ∈ C(0)(Γ) for all ω ∈ F ∈ F with P(F ) = 1; and

(iv) the optimizer θ∗ is unique and lies in the interior of the parameter space Θ, where θ∗ := arg minθ∈Θq(θ) and q(θ) :=∫ ∫
{g(γ)− ρ(γ, θ, x)}2dP(g(γ), x) dQ(γ). �

Based on the specification of the mean function µ, the functional mean squared error (FMSE) criterion for estimation of the

parametric mean function is defined by the functional q( · ) in analogy to the usual mean squared error (MSE) in least squares

estimation. As in standard analysis (iv) requires a unique optimizer θ∗ in the interior of Θ, thereby avoiding possible non-

identified model issues from consideration in this development. The identification condition is imposed as a bottomline condition

to assist the primary goal of this study to develop functional data analysis in parallel to standard regression analysis with possibly

1Even if gi(·) is discontinuous, as it is for the score function derived from testing for a structural break without knowing the break point, an analysis similar to
that of the current study can be employed with some modifications to allow for broken functional data, either by using a smudge function in place of the indicator
break which can be approximated by a local polynomial kernel, or by extending the methodology directly to allow directly for indicator function breaks. Analysis
of this topic is left for future research.

2Here and throughout the rest of the paper, unless otherwise noted, we use notations such as (2) to denote integrals over the whole probability space, so that
here

∫
g(γ)dP(g(γ)|x) =

∫
Ω g(ω, γ)dP(g(γ)|x).

3Note that this framework is significantly different from Bugni et al. (2009) which is concerned with parametric specifications of functional observations. In
particular, our formulation means that we can let gi be a random function with no further specification, although its mean function is parametrically specified.
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misspecified models (e.g., White, 1982, 1994; Newey and McFadden, 1994). The model identification condition plays a central

role in regression analysis with misspecified models when proving convergence and deriving limit theory, letting the estimated

model be a close approximate to the conditional mean, even if the model is misspecified. As our model exercises and empirical

analysis demonstrate in Sections 5 and 6, the empirical researcher has freedom to specify ρ(·, x) and Q to ensure they satisfy

Assumption 2(iv) and do not suffer from unidentified model issues.

Several additional technical conditions on gi and ρ(·, ·, xi) are given in the following assumption to assist in subsequent

derivations. In what follows, for a probability measure P on Ω, let L`(P) := {f :
∫

Ω
|f(ω)|`dP(ω) <∞}, for ` = 1 and 2.

Assumption 3. (Moments): For some mi ∈ L2(P),

(i) supγ∈Γ |gi(γ)| ≤ mi a.s. −P;

(ii) sup(γ,θ)∈Γ×Θ |ρ(γ, θ, xi)| ≤ mi a.s. −P;

(iii) for each j = 1, 2, . . . , d, sup(γ,θ)∈Γ×Θ |(∂/∂θj)ρ(γ, θ, xi)| ≤ mi a.s. −P;

(iv) for each j and j′ = 1, 2, . . . , d, supθ∈Θ

∣∣(∂2/∂θj∂θj′)ρ( · , θ, xi)
∣∣ ≤ mi a.s. −P. �

Assumption 3 is imposed to ensure by domination the existence of q(·) and a global minimum of this functional in conjunc-

tion with Assumption 2(iv). The moment conditions (iii) and (iv) also ensure that first and second order conditions apply for

minimization of q(·).

In practice, the functional form of µ is typically unknown and the given model classM may not contain a parameter value

θ such that ρ( · , θ, x) = µ( · , x) for all x. We say M is correctly specified if there exists a parameter value θ0 ∈ Θ such

that µ( · , xi) = ρ( · , θ0, xi) a.s.−P · Q. Otherwise, we say that M is misspecified, in which case θ0 is undefined. Theorem

1 below provides a useful decomposition of the functional q(θ) that characterizes the implications of correct specification and

misspecification on the minimizer of q( · ).

Theorem 1. Given Assumptions 1, 2, and 3, we have

q(θ) =

∫ ∫
varP[gi(γ)|x]dP(x)dQ(γ) +

∫ ∫
{µ(γ, x)− ρ(γ, θ, x)}2dP(x)dQ(γ),

where for each γ, varP[gi(γ)|x] :=
∫
{g(γ)− µ(γ, x)}2dP(g(γ)|x). �

WhenM is correctly specified, we have q(θ0) =
∫ ∫

varP[gi(γ)|x]dP(x)dQ(γ) with θ∗ = θ0, so that the mean function µ

is uniquely identified. In this case, the FMSE cannot be smaller than
∫ ∫

varP[gi(γ)|x]dP(x)dQ(γ). On the other hand, when

M is not correctly specified, θ0 cannot be identified by minimizing q( · ). This is because the FMSE is affected by an additional

term that reflects the error impact of model misspecification. In this case, θ∗ should be understood as a parameter value of θ

which minimizes the sum of two squared errors, one being the mean squared error obtained if the model had been correctly

specified, the other being the squared error component arising from model misspecification. In general, we may not presume

that the modelM is correctly specified unless additional information on the parametric form of the mean function is provided.

This presumption stems from the fact that empirical models are easily misspecified. In spite of considerable effort and diagnostic

testing empirical models are typically only approximations and the same is true for models with functional data. Our treatment

allows forM to be a possibly misspecified model class and asymptotic properties are developed in this setting. The framework

for the asymptotic theory then provides a wider understanding of the estimation procedures, thereby enabling a study of the

impact of misspecification and opening up the possibility to detect model misspecification using devices such as the information

matrix test. This research direction is only mentioned and is not pursued in detail in the present paper.

6



In what follows, it is convenient to employ a slight abuse of notation and use µi( · ) and ρi(γ, θ) to denote µ( · , xi) and

ρ(γ, θ, xi), respectively. We also abbreviate
∫
g(x)dF (x) and

∫ ∫
k(x, y)dF (x, y) as

∫
g(x)dF and

∫ ∫
k(x, y)dF , respectively.

Example 1: Distributional Specification

We introduce a mixture model illustration that is continued as a running example in the paper to illustrate our methods. A second

example is provided below by accommodating a nuisance parameter estimation error effect in the FDA. These examples are

employed in the simulations in Section 5 along with other models.

Finite mixture models are popular for constructing more flexible distribution functions and for modeling clustered data. They

can also be used for certain types of distribution specification tests. To fix ideas, let fi( · ; θi†) be a component density function

for i = 1, ...,K. The component densities can be chosen from the same family or from different families of distributions.

Accordingly, the parameter vector θ† = (θ1†, θ2†, ..., θK†)
′ is defined on the product of each parameter space, Θ1×Θ2×...×ΘK .

For weights πi ∈ [0, 1] with
K∑
i=1

πi = 1, the corresponding finite mixture model (Everitt and Hand, 1981; McLachlan and Peel,

2004; Schlattmann, 2009) is defined as the weighted sum

f( · ;π1, ..., πK , θ) =

K∑
i=1

πifi( · ; θi).

Various types of parametric distributions have been explored in making such constructions in the literature. For example, mixtures

of normals, binomials, gammas and von Mises distributions are popular in applications. Amongst many references in the literature

to the use of mixtures we mention Chernoff and Lander (1995), Liang and Rathouz (1999), Chen et al. (2001), Cho and White

(2007, 2010), Fu et al. (2008), Chen and Li (2009), Ning et al. (2009), Niu et al. (2011), and Wong and Li (2014).

We focus here on inference concerning sample homogeneity as an application of distribution specification tests. For a specific

example consider the following mixture of exponential distributions

f(x;π†, γ†) = (1− π†) exp(−x) + π†γ† exp(−γ†x),

where γ† ∈ Γ := [γ, γ̄]. For simplicity, assume γ > 1 and γ̄ < ∞.4 A primary concern in this mixture distribution is to test

whether π† = 0 for if this hypothesis holds the observations are believed to come from a homogeneous population that follows

a standard exponential distribution. Davies (1977) applied Neyman’s (1959) C(α) test principle and derived a maximal test

statistic defined as

sup
γ∈Γ

n−1/2
n∑
i=1

gi(γ), where gi(γ) :=
(2γ − 1)1/2

γ − 1
{γ exp[(1− γ)xi]− 1} ,

and {xi} is a set of IID observations. Note that in this formulation gi(·) is a random function defined on Γ obtained by standard-

izing the score with respect to π and evaluating it at π = 0, so that we may treat it as a functional observation and apply the

theory of the present study.

If the assumed mixture model is correct, the population mean function of gi(·) can be accordingly derived. Note that under

the DGP described above, for each γ, µ(γ) is obtained as

E[gi(γ)] := µ(γ) = π†
(γ† − 1)(2γ − 1)1/2

(γ + γ† − 1)
,

4The definition of gi(·) implies that gi(·) is not defined for γ < 1/2, and gi(1) is not defined, although limγ→1 gi(γ) can be obtained by L’hôpital’s rule,
giving limγ→1 gi(γ) = −(xi − 1). Our model exercise avoids this feature by setting γ > 1.
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implying that µ(·) ≡ 0 if π† = 0, whereas µ(·) is a non-zero function of γ with unknown parameter γ†, motivating C(α) test

statistic by finding γ such that µ(γ) > 0, from which the power of the test is acquired. That is, γ† is identified only when π† 6= 0.

Nonetheless, the null limit distribution of C(α) test depends on the covariance kernel of a Gaussian process obtained in Section

5, and this makes its application inconvenient. Furthermore, if the mixture assumption is wrong, the application of C(α) test is

not statistically precise as its null limit distribution is obtained by the misspecified model.

Motivated by this feature, we desire to provide straightforwardly applicable diagnostic statistics for testing the functional

form of µ(·). For this goal we first specify a model for µ(·). The functional form of µ(·) indicates a particular direction for model

specification. If γ is close to γ†, µ(γ) is approximable by (γ − 1)/(2γ − 1)1/2, enabling us to specify a simple model for µ(·)

by

ρ(γ, θ1, θ2) := θ1ρ1(γ) + θ2ρ2(γ) := θ1 + θ2
(γ − 1)

(2γ − 1)1/2

in the sense that it is linear with respect to (θ1, θ2) with two functional regressors ρ1(·) := 1 and ρ2(·) := ((·)−1)/(2(·)−1)1/2.

Note that the modelM equipped with ρ(·) is misspecified for µ(·) even if the mixture assumption is correct for xi, but (θ1∗, θ2∗)

has to equal (0, 0) for π† 6= 0 as shown in the following paragraph. In contrast, (θ1∗, θ2∗) = (0, 0), if µ(·) ≡ 0 for whatever

reason. This simple fact motivates estimation of (θ1∗, θ2∗) and testing whether it is zero.

Before moving to the estimation of (θ1∗, θ2∗), we verify the regularity conditions. First, the conditions in Assumption 1 are

trivially satisfied from the condition that Γ is a compact set in the Euclidean real line; each observation is IID; and gi(·) is a

continuous function with probability 1. Next, ρ(·) is continuous on Γ for each (θ1, θ2) and linear with respect to (θ1, θ2) for each

γ, satisfying Assumption 2 by further supposing that (θ1∗, θ2∗) is an interior element of a compact and convex parameter space

Θ in R2, where (θ1∗, θ2∗) is obtained by minimizing q(·) in Theorem 1:

 θ1∗

θ2∗

 =

 ∫
ρ2

1(γ)dQ(γ)
∫
ρ1(γ)ρ2(γ)dQ(γ)∫

ρ1(γ)ρ2(γ)dQ(γ)
∫
ρ2

2(γ)dQ(γ)

−1  ∫ ρ1(γ)µ(γ)dQ(γ)∫
ρ2(γ)µ(γ)dQ(γ)

 .
Here, the integrals are computed over Γ, and the inverse matrix exists by Cauchy-Schwarz, implying that (θ1∗, θ2∗) is well defined

and unique. Here, if µ(·) ≡ 0, it follows (θ1∗, θ2∗) = (0, 0). If the mixture assumption is further assumed to be correct without

assuming that π† = 0, (θ1∗, θ2∗) is computed by imposing the functional form of µ(·) implied by the mixture assumption. That

is, if we let Γ := [1.5, 2.5] and γ† = 2 as for the simulations in Section 5, it follows that (θ1∗, θ2∗) = π†(0.5687, 0.0101)

by applying Gauss-Legendre’s numerical quadrature, so that if π† = 0, then (θ1∗, θ2∗) = (0, 0). Finally, note that |gi(·)| <

γ̄(2γ − 1)1/2/(γ − 1), which implies that it is trivial to find mi satisfying Assumption 3(i). Furthermore, Assumptions 3(ii-iii)

also trivially hold by the linearity of ρ(·) with respect to (θ1, θ2) and the compact space condition for Θ and Γ. �

3 Functional Least Squares (FLS)

3.1 FLS Estimation without Nuisance Effects

We consider estimation of θ based on the FMSE criterion. The functional least squares (FLS) parametric estimator is defined as

the extremum estimator

θ̂n := arg min
θ∈Θ

qn(θ), where qn(θ) :=
1

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ)}2dQ.
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The quantity qn( · ) in this criterion is the sample analogue of q( · ) and is called the functional sample mean squared error

(FSMSE). Under the regularity conditions given above, we can show that the FSMSE converges uniformly to q( · ). It then

follows that the FLS estimator is consistent for θ∗ and is asymptotically normally distributed around θ∗. The following theorem

establishes consistency.

Theorem 2. Given Assumptions 1, 2, and 3, as n→∞,

(i) supθ∈Θ |qn(θ)− q(θ)| → 0 a.s.−P;

(ii) θ̂n → θ∗ a.s. −P. �

The uniform consistency of the FSMSE is verified by applying a suitable strong uniform law of large numbers (SULLN). For

example, we can apply the SULLN of Andrews (1992) or Newey (1991) under Assumptions 2 and 3. In establishing the SULLN

required here we repeatedly invoke the dominated convergence theorem (DCT) to interchange the order of discrete summation

and integral operators as n → ∞, for which the moment conditions of Assumption 3 are sufficient. The consistency of the FLS

estimator follows directly from the fact that the FSMSE converges to FMSE uniformly on Θ a.s.−P whenever, as in Assumption

2(iv), the optimizer θ∗ := arg minθ∈Θq(θ) of the limiting functional q(θ) is unique.

Asymptotic normality of the FLS estimator is obtained for this function space setting in parallel to standard derivations for

least squares estimation. We begin by observing that by standard Taylor expansion and for some θ̄n between θ̂n and θ∗,

√
n(θ̂n − θ∗) = A−1

n

1√
n

n∑
i=1

∫
[gi(γ)− ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ), (3)

where

An :=
1

n

n∑
i=1

∫ {
∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n)− [gi(γ)− ρi(γ, θ̄n)]∇2

θρi(γ, θ̄n)
}
dQ(γ).

Regular asymptotic behavior in An and n−1/2
∑n
i=1

∫
[gi(γ)−ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ) is central to establishing asymptotic

normality. The following conditions are sufficient for this purpose.

Assumption 4. (Hessian Matrix): A is positive definite, where A :=
∫ ∫
∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dP(x)dQ(γ)−

∫ ∫
{µ(γ,

x)− ρ(γ, θ∗, x)}∇2
θρ(γ, θ∗, x)dP(x)dQ(γ). �

Assumption 5. (CLT Conditions): (i) For each j and j′ = 1, 2, . . . , d,
∫ ∫ ∫

(∂/∂θj)ρ(γ, θ∗, x)·κ(γ, γ̃|x)·(∂/∂θj′)ρ(γ̃, θ∗, x)d

P(x)dQ(γ)dQ(γ̃) <∞, where κ(γ, γ̃|x) :=
∫
{g(γ)− ρ(γ, θ∗, x)}{g(γ̃)− ρ(γ̃, θ∗, x)}dP(g(γ), g(γ̃)|x); and

(ii) B is positive definite, where B :=
∫ ∫ ∫

∇θρ(γ, θ∗, x)κ(γ, γ̃|x)∇′θρ(γ̃, θ∗, x)dP(x)dQ(γ)dQ(γ̃). �

The matrix A is the probability limit of An, and B serves as the limiting covariance matrix of the score function in the limit

distribution of the FLS estimator. Note that the maximum eigenvalues of A and B are both finite by Assumptions 3 and 5(ii),

and the conditional covariance kernel κ( · , · |x) in Assumption 5(i) contributes to the asymptotic covariance matrix of the FLS

estimator by way of the matrix B. Importantly, the presence of the covariance kernel κ( · , · |x) in B imparts the role of the true

probability measure P in the limit distribution of the FLS estimator. For a different P, a different functional form is obtained for

κ( · , · |x), leading to a different variance matrix B. In addition, B also depends on the parametric specification ρi(·, θ), implying

that different limit distributions are to be expected for different models.

The following theorem establishes asymptotic normality of the FLS estimator, as implied by the regularity conditions imposed

so far:
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Theorem 3. Given Assumptions 1 – 5,
√
n(θ̂n − θ∗)

A∼ N
(
0, A−1BA−1

)
. �

The result follows in a straightforward manner by applying a strong law and a Lindeberg CLT in conjunction with the Cramér-

Wold device to the components of (3), proceeding in parallel to usual derivations for nonlinear least squares estimation as in

Newey and McFadden (1994), but executed here within this function space data setting.

The asymptotic covariance matrix exhibits a sandwich form, as is usual. On the other hand, ifM is correctly specified and if

the covariance kernel κ( · , · |x) can be written in functional diagonal form by involving the Dirac delta function, the information

matrix equality holds. In particular, note that ifM is correctly specified,

A =

∫ ∫
∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dP(x)dQ(γ).

Further, if we let δ(·) be the Dirac delta function and suppose that for some σ2 > 0, κ(γ, γ′|x) = σ2δ(γ − γ′) with dQ(·) = δ(·)

around 0, it now follows that

∫ ∫
∇θρ(γ, θ∗, x)κ(γ, γ̃|x)∇′θρ(γ̃, θ∗, x)dQ(γ)dQ(γ̃) = σ2

∫ ∫
∇θρ(γ, θ∗, x)δ(γ − γ̃)∇′θρ(γ̃, θ∗, x)dQ(γ)dQ(γ̃)

= σ2

∫
∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dQ(γ),

so that B = σ2A, implying that the asymptotic covariance matrix reduces to σ2A−1. These additional conditions deliver the

information equality, thereby motivating model specification testing via the information matrix equality test (e.g., White, 1982;

Cho and White, 2014; Cho and Phillips, 2018a).

In general, the information matrix equality holds for the finite dimensional random variable case if the model is correctly

specified and the error is conditionally homoskedastic. But these conditions are not sufficient for the information matrix equality

in the functional data case. Even ifM is correct for µi(·) and εi(·) := gi(·)− µi(·) is independent of xi, the information matrix

equality does not hold. For the information matrix equality, a further condition has to hold for the kernel κ(γ, γ̃|x), whose role is

played by Dirac delta function. Note that Dirac delta function is approximable by many popular kernel functions. For example,

δ(γ − γ̃) = lims→0 r(γ, γ̃; s), where

r(γ, γ̃; s) :=
1

2
√
sπ

exp

(
−‖γ − γ̃‖

2

4s

)
, (4)

and there are many other kernel functions producing similar results. If s is sufficiently small, B can be expected to be approxi-

mately proportional to A.

Example 1: Distributional Specification – Continued

Given the objective function qn(·), the FLS estimator is now given as follows:

 θ̂1,n

θ̂2,n

 =

 ∫
ρ2

1(γ)dQ(γ)
∫
ρ1(γ)ρ2(γ)dQ(γ)∫

ρ1(γ)ρ2(γ)dQ(γ)
∫
ρ2

2(γ)dQ(γ)

−1  n−1
∑n
i=1

∫
ρ1(γ)gi(γ)dQ(γ)

n−1
∑n
i=1

∫
ρ2(γ)gi(γ)dQ(γ)

 .
The conditions to apply the DCT are applicable to this running example mainly because of the moment conditions in Assumption

3 verified above. These conditions enable application of the SULLN, so that µ̂n(·) := n−1
∑n
i=1 gi(·) uniformly converges to
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µ(·) with probability 1, and the FLS estimator can be computed using µ̂n(·), viz.,

 θ̂1,n

θ̂2,n

 =

 ∫
ρ2

1(γ)dQ(γ)
∫
ρ1(γ)ρ2(γ)dQ(γ)∫

ρ1(γ)ρ2(γ)dQ(γ)
∫
ρ2

2(γ)dQ(γ)

−1  ∫ ρ1(γ)µ̂n(γ)dQ(γ)∫
ρ2(γ)µ̂ndQ(γ)

 ,
which now converges to θ∗ as stated in Theorem 2.

We verify the regularity conditions in Assumptions 4 and 5. The linearity condition of ρ(·) with respect to (θ1, θ2) implies

that

A =

 ∫
ρ2

1(γ)dQ(γ)
∫
ρ1(γ)ρ2(γ)dQ(γ)∫

ρ1(γ)ρ2(γ)dQ(γ)
∫
ρ2

2(γ)dQ(γ)


from the fact that the second-order derivative terms are all zero. As pointed out above, A is positive definite by Cauchy-Schwarz.

Next,

B =

 ∫ ∫ ρ1(γ)κ(γ, γ̃)ρ1(γ̃)dQ(γ)dQ(γ̃)
∫ ∫

ρ1(γ)κ(γ, γ̃)ρ2(γ̃)dQ(γ)dQ(γ̃)∫ ∫
ρ2(γ)κ(γ, γ̃)ρ1(γ̃)dQ(γ)dQ(γ̃)

∫ ∫
ρ2(γ)κ(γ, γ̃)ρ2(γ̃)dQ(γ)dQ(γ̃)

 ,
where κ(γ, γ̃) := E[(gi(γ)− ρ(γ, θ1∗, θ2∗))(gi(γ̃)− ρ(γ̃, θ1∗, θ2∗))], which is required to be positive definite by Assumption 5.

In general, it is not straightforward to verify this condition, but it can be confirmed by estimating B consistently as discussed in

Section 3.3. If the mixture assumption is correct with π† = 0, B can be numerically computed by noting that

κ(γ, γ̃) = E[gi(γ)gi(γ̃)] =
(2γ − 1)1/2(2γ̃ − 1)1/2

γ + γ̃ − 1
. �

3.2 FLS Estimation with Nuisance Effects

Functional data analysis often involves nuisance effects by the very nature of the data. In particular, when data are constructed

using aligned discrete observations, such a construction naturally introduces nuisance effects. To examine this extension, we

characterize the functional data in the form of the transform

g̃i : Γ× Ξ 7→ R,

where Γ is the same as before, and Ξ is a compact parameter space for a nuisance parameter ξ∗, so that the functional observations

are defined on the product space Γ × Ξ. We assume that the nuisance parameter ξ∗ is identifiable and can be consistently

estimated by ξ̂n obtained in a preliminary stage before estimating θ∗, from which our functional observations are constructed

as ĝi( · ) ≡ g̃i( · , ξ̂n). This assumption on the data structure generalizes that assumed in Section 3.1 because for some known

ξ∗, we can let gi( · ) be identical to g̃i( · , ξ∗). So the data analysis given in this section is also applicable to {gi( · ), xi}ni=1.

Notwithstanding this specialization, the asymptotic influence of the nuisance effects on the FLS estimator is not negligible in

general and typically modifies the limit behavior of the FLS estimator. The results of Section 3.1 are therefore extended here to

accommodate the effects conveyed by nuisance parameter estimation.

Functional data are often influenced by nuisance effects, as described in the Introduction. First, when a model is unidentified

under the null (e.g., Davies, 1977, 1987), a functional data set with nuisance effects can be collected by letting each individual

observation be the score function defined on the set of unidentified parameters with the other parameters being evaluated at the

parameter estimates obtained using the null model. In such cases the null parameter estimates play the role of ξ̂n, and γ can be
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treated as generic notation for the unidentified parameters with g̃i(·, ·) being the score function. Second, functional observations

are often constructed by local polynomial kernel, sieve, kriging, and polynomial spline estimation using discrete observations

(e.g., Zhang and Chen, 2007; Chen, 2007; Chilès and Delfiner, 1999; Wang, 2011). In these cases functional observations are

influenced by the kernel or sieve estimation error that is captured by ξ̂n here, thereby potentially modifying the large sample

properties of the FLS estimator. Specifically, using an optimal bandwidth choice, Zhang and Chen (2007) show that estimated

functional observations obtained by local polynomial kernel estimation uniformly converge to continuous functional observations

at the rate n(p+1)δ/(2p+3), where p is the degree of polynomial function and δ is a positive number such that nt ≥ Cnδ uniformly

in t for some positive number C, and nt is the number of discrete observations underlying the t-th functional observation. If a

sufficiently large p is selected such that (p+1)δ/(2p+3) > 1/2, the functional approximation obtained by local polynomial kernel

estimation is super-consistent for the latent functional observation, so that the nuisance effect in the approximated functional

observation can be ignored in the limit theory when applying FLS estimation because the convergence rate of the FLS estimator

is
√
n, as given in Theorem 3. As discussed in Section 5.1 using income processes, if p is sufficiently large, the key condition for

the use of the optimal bandwidth can be satisfied even if δ is not so different from unity, implying that the estimated functional

observations (with nt proportional to n) can be approximated by those estimated with the optimal bandwidth. On the other hand,

if the key condition does not hold because δ < 1, we cannot use the Zhang and Chen (2007) optimal bandwidth. Nevertheless,

the functional observations can still be consistently estimated from discrete observations by letting the bandwidth converge to

zero at a rate slower than δ.

To fix ideas let the data set be given as {(ĝi( · ), x′i)′}ni=1. After replacing gi with ĝi, we obtain the FLS estimator by mini-

mizing the functional mean squared error as before, viz.,

θ̃n := arg min
θ∈Θ

q̂n(θ), where q̂n(θ) :=
1

n

n∑
i=1

∫
{ĝi(γ)− ρi(γ, θ)}2dQ.

Henceforth, we refer to θ̃n as the two-stage FLS (TSFLS) estimator for parametric estimation in the mean function.

We now proceed to examine how the estimation error imbedded in ξ̂n changes the asymptotic behavior of the FLS estimator.

To tackle this issue we start by extending the previous regularity conditions for Theorems 2 and 3 to cope with the presence of

nuisance effects. We modify Assumptions 1 and 3 in the following:

Assumption 6. (Data): (i) Let (Ω,F ,P) and (Γ, τ) be a complete probability space and a compact metric space respectively.

Γ ⊂ Rd (d ∈ N) and Ξ ⊂ Rs (s ∈ N) are compact;

(ii) {(g̃i( · ), x′i)′ : g̃i : Ω× Γ× Ξ 7→ R and xi : Ω 7→ Rk}ni=1 (k ∈ N) is a set of IID observations such that

(ii.a) for each (γ, ξ) ∈ Γ× Ξ, (g̃i( · , γ, ξ), x′i)′ is measurable −F;

(ii.b) for each ξ ∈ Ξ, g̃i(ω, · , ξ) ∈ C(0)(Γ) for all ω ∈ F ∈ F with P(F ) = 1;

(ii.c) for each (ω, γ) ∈ Ω× Γ, g̃i(ω, γ, · ) is in C(1)(Ξ) for all ω ∈ F ∈ F with P(F ) = 1;

(iii) (Γ,G,Q) and (Ω × Γ,F
⊗
G,P × Q) are complete probability spaces and for i = 1, 2, . . . and ξ ∈ Ξ, g̃i( · , · , ξ) is

measurable −F
⊗
G. �

Assumption 7. (E-Moments): For some mi ∈ L2(P),

(i) sup(γ,ξ)∈Γ×Ξ |g̃i(γ, ξ)| ≤ mi a.s. −P;

(ii) sup(γ,θ)∈Γ×Θ |ρi(γ, θ)| ≤ mi a.s. −P;

(iii) supj sup(γ,ξ)∈Γ×Ξ |(∂/∂ξj)g̃i(γ, ξ)| ≤ mi a.s. −P;
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(iv) for each j = 1, 2, . . . , d, sup(γ,θ,ξ)∈Γ×Θ×Ξ |(∂/∂θj)ρi(γ, θ, ξ)| ≤ mi a.s. −P;

(v) for each j and j′ = 1, 2, . . . , d, sup(γ,θ,ξ)∈Γ×Θ×Ξ |(∂2/∂θj∂θj′)ρi(γ, θ, ξ)| ≤ mi a.s. −P. �

Consistency of the TSFLS estimator can be verified by investigating the limit behavior of the first-order conditions for the

TSFLS estimator. For this purpose, note that for some ξ̄n,γ between ξ̂n and ξ∗, we have

1

n

∫ n∑
i=1

{ĝi(γ)− ρi(γ, θ∗)}∇θρi(γ, θ∗)dQ(γ)

=
1

n

∫ n∑
i=1

{g̃i(γ, ξ∗)− ρi(γ, θ∗)}∇θρi(γ, θ∗)dQ(γ) +
1

n

n∑
i=1

∫
∇θρi(γ, θ∗)[∇′ξ g̃i(γ, ξ̄n,γ)]dQ · (ξ̂n − ξ∗). (5)

The left side of (5) is the first-order derivative of q̂n( · ) with respect to θ evaluated at θ∗, whereas the right side is the Taylor

expansion with respect to ξ around ξ∗. Assumption 7(iii) enables use of the mean-value theorem. Proving consistency of θ̃n for

θ∗ then involves showing that the quantities on the right side of (5) vanish as n → ∞. Since the first component in (5) trivially

vanishes by applying the proof of Theorem 3, the result involves showing that the second term converges to zero in probability.

Note that the second component is OP(ξ̂n − ξ∗) because the sample average of the integrals in the second term is OP(1) by

Assumption 7, so that if the deviation (ξ̂n − ξ∗) is asymptotically negligible, the first-order condition asymptotically holds at θ∗,

leading to consistency of the TSFLS estimator. For this purpose we impose the following high level condition concerning ξ̂n.

Assumption 8. (E-Estimator-1): There exists a sequence of measurable functions {ξ̂n : Ω 7→ Ξ} such that

(i) ξ̂n → ξ∗ a.s.−P, where ξ∗ is an interior element in Ξ. �

Almost sure convergence of ξ̂n is more restrictive here than convergence in probability and could be relaxed, but is used because

the condition assists in simplifying subsequent derivations. Consistency of the TSFLS estimator is then immediate under these

conditions.

Theorem 4. Given Assumptions 2, 6, 7, and 8(i), as n tends to infinity,

(i) supθ∈Θ |q̂n(θ)− q(θ)| → 0 a.s.−P; and

(ii) θ̃n → θ∗ a.s.−P. �

The assumptions for Theorem 3 are insufficient to deliver the limit distribution of the TSFLS estimator as they do not address

the asymptotic properties of ξ̂n. To establish asymptotic normality we impose the following additional conditions.

Assumption 8. (E-Estimator-2): (ii) there exists a finite nonstochastic s×s positive definite matrixH and a sequence of random

vectors {s∗n} measurable −F for which
√
n(ξ̂n − ξ∗) = −H−1

√
ns∗n + oP(1);

(iii) for i = 1, 2, . . ., there exists si : Ω× Ξ 7→ Rs such that:

(iii.a) for each ξ ∈ Ξ, si( · , ξ) is measurable −F and IID over i;

(iii.b) si(ω, · ) is continuous for all ω ∈ F ⊂ F , P(F ) = 1;

(iii.c) for some mi ∈ L2(P), |si(ω, · )| ≤ mi(ω); and

(iii.d)
√
ns∗n = n−1/2

∑n
i=1 si( · , ξ∗) + oP(1) such that for each j = 1, 2, . . . , s, EP[sji( · , ξ∗)2] <∞, where sji( · , ξ∗)

is the j-th row element of si( · , ξ∗). �

Assumptions 8(ii and iii) assume that ξ̂n−ξ∗ is asymptotically equivalent to the product of the nonstochastic matrixH and the

score s∗n. Many estimators satisfy this characteristic asymptotically, including least squares, generalized method of moments,
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and (quasi-)maximum likelihood estimators. In order to retain generality in the analysis, we do not specify here how H and s∗n

are obtained from primitive model formulations. Treating s∗n as being formally defined in Assumption 8, we now use si(ξ) to

denote si(ω, ξ), suppressing the argument ω for notational ease.

Assumption 9. (E-CLT): Let J := E[si(ξ∗)si(ξ∗)
′], K :=

∫
EP[si(ξ∗){g̃i(γ, ξ∗)− ρi(γ, θ∗)}∇′θρi(γ, θ∗)]dQ(γ), and B be as

defined earlier in Assumption 5. Let

C :=

 J K

K ′ B

 ,

and assume the following:

(i) C is positive definite;

(ii) B∗ is positive definite, where B∗ := B − MH−1K − K ′H−1′M ′ + MH−1JH−1′M ′ and M :=
∫
EP[∇θρi(γ,

θ∗)∇′ξ g̃i(γ, ξ∗)]dQ(γ). �

Assumption 9 characterizes the key components needed for the limiting covariance matrix of the TSFLS estimator in the

presence of nuisance effects. It generalizes Assumption 5 to accommodate the additional estimator ξ̂n. The matrix C is employed

to capture the asymptotic covariance matrix between the score vectors of the estimates ξ̂n and θ̃n, thereby providing a channel

for the nuisance effects to be conveyed to the limit distribution of the TSFLS estimator. With this framework for the nuisance

effects in hand, asymptotic normality of the TSFLS estimator is established in the following theorem.

Theorem 5. Given Assumptions 2, 4, 6, 7, 8, and 9,
√
n(θ̃n − θ∗)

A∼ N (0, A−1B∗A
−1). �

Just as for Theorem 3 without nuisance parameters, the asymptotic distribution of the TSFLS estimator is obtained in a

standard fashion (Newey and McFadden, 1994). If ξ∗ were known and we can let si(ξ∗) ≡ 0, then B∗ reduces to B by definition

as K and J are a zero vector and matrix, respectively. But as the result makes clear, if the nuisance effect is not asymptotically

negligible, the asymptotic variance matrix of θ̃n changes from A−1BA−1 to A−1B∗A
−1, thereby modifying the limit variability

of θ̃n. So the covariance matrix is typically adjusted when the parameter of interest is estimated via use of another parameter

estimate. Among others, for example, Amemiya (1979) and Lee et al. (1980) examine estimating a structural parameter by a

two-stage method in a limited dependent variable context, and the resulting variance matrix of their estimator is affected by the

first-stage estimator, in a similar way as B∗. The presence of nuisance effects introduces further changes in the construction of

appropriate test statistic formulae, as shown below.

Before proceeding two further remarks are in order. First, estimating the unconditional mean function of functional data can

be conducted in parallel to the estimation of the conditional mean function. In view of this similarity we leave that discussion to

the Appendix. Second, the asymptotic efficiency of the FLS estimator depends on the adjunct probability measure Q. Theorem 1

implies that the argument minimizing q(·) is affected by Q ifM is misspecified. In addition, the asymptotic covariance matrices

in Theorem 3 and 5 have different values depending on Q. This property implies that an asymptotically more efficient FLS

estimator may be obtained by parameterizing the adjunct probability measure to nest the probability measure of interest as a

special case of the parameterized adjunct probability measure. For example, if Γ ⊂ R, a beta distribution could be assumed for

Q, nesting a uniform distribution by setting the shape parameters to unity. With this extension the FLS estimator can be obtained

by minimizing the FMSE incorporating the beta distribution with respect to both the model parameters and the shape parameters,

thereby optimizing the adjunct probability measure in addition to the FMSE. The asymptotic efficiency of this extended FLS

estimator can be compared with the FLS estimator obtained by when Q is uniform. In the event that the optimized adjunct
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probability measure substantially differs from the uniform distribution, an asymptotic efficiency gain might be expected from the

extended FLS estimator.

3.3 Estimation of the Covariance Matrix of FLS

The role of the covariance matrices in Theorems 3 and 5 is important as these matrices are used to construct test statistics. This

section examines how these covariance matrices may be estimated consistently.

First, we discuss the case with no nuisance effects where the covariance matrix is A−1BA−1 in Theorem 3. The domination

conditions in Assumption 3 enable application of the SULLN to the estimators given by Ân and B̂n in Theorem 6 below, so that

Â−1
n B̂nÂ

−1
n provides a consistent estimator of the covariance matrix.

Theorem 6. Given Assumptions 1, 2, 3, and 5, Ân → A a.s.−P and B̂n → B a.s.−P, where

Ân :=
1

n

n∑
i=1

∫
∇θρi(γ, θ̂n)∇′θρi(γ, θ̂n)dQ(γ)− 1

n

n∑
i=1

∫
εi(γ, θ̂n)∇2

θρi(γ, θ̂n)dQ(γ),

B̂n :=
1

n

n∑
i=1

∫ ∫
∇θρi(γ, θ̂n)εi(γ, θ̂n)εi(γ̃, θ̂n)∇′θρi(γ̃, θ̂n)dQ(γ)dQ(γ̃),

and for each γ and θ, εi(γ, θ) := gi(γ)− ρi(γ, θ). �

Next consider models with nuisance effects. Since B∗ involves component matrices in its definition, further conditions are

needed to ensure consistent estimation. The following conditions are used for this purpose.

Assumption 10. (E-Covariance): (i) For a sequence of measurable functions {Ĵn : Ω 7→ Rs×s}, Ĵn → J a.s.−P; and

(ii) for a sequence of measurable functions {Ĥn : Ω 7→ Rs×s}, Ĥn → H a.s. −P. �

Assumption 11. (SULLN): Let εi(γ, θ, ξ) := gi(γ, ξ)− ρi(γ, θ). For some mi ∈ L2(P),

(i) sup(γ,θ,ξ)∈Γ×Θ×Ξ |εi(γ, θ, ξ)| ≤ mi a.s. −P;

(ii) for j = 1, 2, . . . , d, sup(γ,θ)∈Γ×Θ |(∂/∂θj)ρi(γ, θ)| ≤ mi a.s. −P;

(iii) for each j and j′ = 1, 2, . . . , d, sup(γ,θ,ξ)∈Γ×Θ×Ξ |(∂2/∂θj∂θj′)ρi(γ, θ)| ≤ mi a.s. −P;

(iv) for each j = 1, 2, . . . , s, sup(γ,ξ)∈Γ×Ξ |(∂/∂ξj)g̃i(γ, ξ)| ≤ mi a.s. −P; and

(v) for each j = 1, 2, . . . , s, supξ∈Ξ |sji(ξ)| ≤ mi a.s. −P, where sji(ξ) is the j-th row element of si(ξ). �

Under Assumption 10, the two submatrices H and J appearing in B∗ can be consistently estimated by using Ĥn and Ĵn.

In general, these estimators are obtained by preliminary estimation of ξ̂n and can be easily computed using standard methods.

For example, if ξ̂n is a (quasi-) maximum likelihood estimator, Ĥn and Ĵn may be identified as the Hessian matrix of the quasi-

likelihood function and the sample average of the products of the first-order derivatives evaluated at ξ̂n in the usual fashion. Note

that Assumptions 11(ii and iii) are stronger than Assumption 3 because the SULLN is required to hold not only for the parameter

space Γ × Θ but for Ξ as well. Furthermore, Assumptions 11(iii and iv) require the SULLN to hold for other random elements

used to provide consistent estimation of the component matrices K and M of B∗ that appear in Assumption 9.

The following Theorem provides consistent estimators for A and B∗ under these regularity conditions.

Theorem 7. Let ε̃in(γ, θ) := ε(γ, θ, ξ̂n). Given Assumptions 2, 6, 8, 9, 10, and 11, Ãn → A a.s.−P and B̃n → B∗ a.s.−P,

where

Ãn :=
1

n

n∑
i=1

∫
∇θρi(γ, θ̃n)∇′θρi(γ, θ̃n)dQ(γ)− 1

n

n∑
i=1

∫
ε̃in(γ, θ̃n)∇2

θρi(γ, θ̃n)dQ(γ);
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B̃n := B̄n − M̂nĤ
−1
n K̂n − K̂ ′nĤ−1′

n M̂ ′n + M̂nĤ
−1
n ĴnĤ

−1′

n M̂ ′n;

B̄n :=
1

n

n∑
i=1

∫ ∫
∇θρ(γ, θ̃n)ε̃in(γ, θ̃n)ε̃in(γ̃, θ̃n)∇′θρ(γ̃, θ̃n)dQ(γ)dQ(γ̃);

M̂n :=
1

n

n∑
i=1

∫
∇θρi(γ, θ̃n)∇′ξ g̃i(γ, ξ̂n)dQ(γ); and K̂n :=

1

n

n∑
i=1

∫
si(θ̃n)ε̃in(γ, θ̃n)∇′θρi(γ, θ̃n)dQ(γ). �

From these results it follows that the covariance matrix in Theorem 5 can be consistently estimated by Ã−1
n B̄nÃ

−1
n . If

M = 0, the limit distribution of the TSFLS estimator is identical to that of FLS estimator. Hence, both estimators Ã−1
n B̃nÃ

−1

and Ã−1
n B̄nÃ

−1 are consistent.

Example 2: Inference on Random Coefficients

Standard regression models typically assume the coefficients of explanatory variables are fixed parameters. When such assump-

tions are violated, statistical inference can be misleading due to biases in estimating the standard errors. Inference using the

random coefficient model is an alternative approach that is particularly useful in modeling conditional heteroskedasticity or time

varying coefficients in time series models. Many studies in the literature consider testing for random coefficients in regression

models (e.g., see Hsiao, 1974; Breusch and Pagan, 1979; Ramanathan and Rajarshi, 1992; Swamy and Tavlas, 1995; Akharif

et al., 2020).

Consider the simple linear regression model

yi = x′iβi + δ
1/2
† εi, (6)

with xi := (1, zi)
′ and zi ∈ R an explanatory variable. The regression coefficient βi is formulated to embody a potential random

element so that

βi := (ψ1†, ψ2†)
′ + π

1/2
† Ω1/2(γ†)νi. (7)

where (ψ1†, ψ2†)
′ is a constant vector and νi ∈ R2 is a random vector with variance I2. The matrix coefficient function Ω(γ) is

assumed to be positive definite uniformly on the space Γ to which the true parameter γ† belongs, and π† ≥ 0. The coefficient βi

in (7) is constant if and only if π† = 0.

This type of random coefficient model is commonly studied and used in the applied literature. For example, Andrews (2001)

developed limit theory for models similar to the random coefficient model where parameters may lie on the boundary of the

parameter space, such as π† = 0 in (7). Rosenberg (1973) and Engle and Watson (1985) extended the random coefficient model

to include conditional heteroskedastic processes in time series settings; and many empirical studies exploited features of the

random coefficient model relevant to investigating conditional heterogeneity in time series data (e.g., Swamy and Tinsley, 1980;

Stock and Watson, 1998).

In what follows we relate the random coefficient model to FDA model analysis. We first note that substituting the expression

of βi into (6) yields the following conditional heteroskedasticity model yi = x′iψ† + ui, where ψ† := (ψ1†, ψ2†)
′ and ui :=

π
1/2
† x′iΩ

1/2(γ†)νi + δ
1/2
† εi, which leads to the explicit conditional variance function

var(ui|xi) = δ† + π†x
′
iΩ(γ†)xi = δ† + π†[1 + exp(γ†)z

2
i ] (8)
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when the variance matrix function Ω(γ†) has the form

Ω(γ†) :=

 1 0

0 exp(γ†)

 .
Let Γ = {γ : γ ∈ [0, 1]} and suppose that the researcher estimates the unknown parameter values by maximum likelihood under

Gaussian assumptions, so that the data are generated according to (εi, ν
′
i)
′|zi ∼ IID N (0, I3) and zi ∼ IID U [0, 1], implying

that the random coefficient βi is assumed to follow a normal distribution. This assumption is a standard one, as assumed by

Rosenberg in a Bayesian perspective (1973).

In spite of this detailed specification for maximum likelihood estimation of the unknown parameters, it is not straightforward

to test π† = 0. If π† = 0 then γ† in (8) is not identified, as in the earlier example, so that the likelihood ratio test statistic (say)

does not have a chi-squared limit distribution under the null in view of the Davies (1977, 1987) identification problem unless γ†

is fixed at a particular value. This difficulty means that additional effort is needed to obtain critical values for a test such as the

C(α) test statistic detailed in Section 5.2.

We propose to test the random coefficient property within the FDA model setting. For this purpose, we reformulate the given

DGP in the FLS framework in parallel to the earlier example. Then, the score with respect to π at π† = 0 (i.e., non-random

coefficient) is obtained as
1

2δ2
†

n∑
i=1

[1 + exp(γ†)z
2
i ]{(yi − x′iψ†)2 − δ†}, (9)

and E[(yi − x′iψ†)2|zi] = δ†, so that the conditional mean of (9) is zero irrespective of γ ∈ Γ = [0, 1]. On the other hand, if

the coefficient is random, the population mean of (9) is obtained as nπ†
2δ2†

E{[1 + exp(γ†)z
2
i ][1 + exp(γ†)z

2
i ]} using (8), thereby

motivating the following random function as a candidate function for g̃i:

g̃i(γ, ψ, δ) := {1 + exp(γ)z2
i }{(yi − x′iψ)2 − δ},

where we can estimate the unknown parameters ψ† and δ† by the quasi-maximum likelihood estimator assuming a normal

distribution for the error term, viz., ψ̂n := (
∑n
i=1 xix

′
i)
−1 ∑n

i=1 xiyi and δ̂n := 1
n

∑n
i=1(yi − x′iψ̂n)2, respectively, which are

consistent for ξ∗ := (ψ′∗, δ∗)
′ := (ψ′†, δ† + π†[1 + exp(γ†)E[z2

i ]])′ and E[z2
i ] = 1

3 for this particular example. That is, the quasi-

maximum likelihood estimators are able to estimate the coefficient in the conditional mean and the unconditional variance of the

error. Note that if π† = 0, then δ∗ = δ†. Accordingly, our functional observations can be constructed as ĝi(γ) := g̃i(γ, δ̂n, ψ̂n),

and for this, we may specify a model for the mean function as follows:

ρi(γ, θ) := θ1ρ1i(γ) + θ2ρ2i(γ) := θ1(1 + exp(γ)z2
i ) + θ2(z2

i + exp(γ)z4
i )

by noting that for each γ, µi(γ) = E[g̃i(γ, ψ∗, δ∗)|zi] = −π† exp(γ†)(1 + exp(γ)z2
i ) + π† exp(γ†)(z

2
i + exp(γ)z4

i ), implying

that θ∗ = (θ1∗, θ2∗)
′ = (−π† exp(γ†), π† exp(γ†))

′. That is, this model is correctly specified by letting ρ1i(·) and ρ2i(·) be

(1 + exp(·)z2
i ) and (z2

i + exp(·)z4
i ), respectively. Note that (θ1∗, θ2∗) is also obtained by minimizing q(·), viz.,

θ∗ =

 ∫ ∫
ρ2

1i(γ)dP(z)dQ(γ)
∫ ∫

ρ1i(γ)ρ2i(γ)dP(z)dQ(γ)∫ ∫
ρ1i(γ)ρ2i(γ)dP(z)dQ(γ)

∫ ∫
ρ2

2i(γ)dP(z)dQ(γ)

−1  ∫ ∫ ρ1i(γ)µi(γ)dP(z)dQ(γ)∫ ∫
ρ2i(γ)µi(γ)dP(z)dQ(γ)

 ,
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where the integrals are taken over Γ = [0, 1]. The TSFLS estimator is now obtained as a sample analog to θ∗, viz.,

θ̂n =

 ∑n
i=1

∫
ρ2

1i(γ)dQ(γ)
∑n
i=1

∫
ρ1i(γ)ρ2i(γ)dQ(γ)∑n

i=1

∫
ρ1i(γ)ρ2i(γ)dQ(γ)

∑n
i=1

∫
ρ2

2i(γ)dQ(γ)

−1  ∑n
i=1

∫
ρ1i(γ)ĝi(γ)dQ(γ)∑n

i=1

∫
ρ2i(γ)ĝi(γ)dQ(γ)

 .
We next verify the regularity conditions for the TSFLS estimator. First, note that both ρ1i(·) and ρ2i(·) are continuous on

Γ = [0, 1] and ρi(·) is linear with respect to (θ1, θ2). Furthermore, if we suppose that Θ is a compact and convex subset of R2

containing θ∗ = (π†, π† exp(γ†)), Assumption 2 holds trivially. Here, the uniqueness condition applies by virtue of the fact that

θ† is solely characterized by π† and γ†. Furthermore, A is given by

A =

 1 + 2aµ2 + bµ4 µ2 + 2aµ4 + bµ6

µ2 + 2aµ4 + bµ6 µ4 + 2aµ6 + bµ8

 ,
where µn := E[zni ], and a and b are

∫
exp(γ)dQ(γ) and

∫
exp(2γ)dQ(γ), respectively. Then A is positive definite by Cauchy-

Schwarz and Assumption 4 holds. Second, with an IID data structure for (zi, εi, ν
′
i)
′, the functional data set {(g̃i(·), zi)} is IID

also, and the measurability conditions in Assumption 6 hold by the continuity condition of g̃i(·) with respect to zi, yi, xi, γ, ψ,

and δ. In particular, for each γ, g̃i(γ, ·) is differentiable with respect to ψ and δ. Further, Γ = [0, 1] is a compact and convex set

in the Euclidean real line, and we also suppose that the parameter spaces of ψ and δ are compact and convex subsets of R2 and

R containing ψ† and δ†, respectively, so that Assumption 6 is satisfied. Third, we note that the upper bounds on the left sides of

Assumptions 7(i–v) and 11(i–v) can be given in the form of (ζ0 + ζ1z
2
i )(κ0 +κ1y

2
i +κ2z

2
i ). For example, |(∂ρi(γ, θ))/(∂θ1)| ≤

(1 + exp(1)z2
i ), and we can let (ζ0, ζ1, κ0, κ1, κ2) be (1, exp(1), 1, 0, 0) for this case. Thus, if mi is the maximum of the upper

bounds, the L2 condition holds for mi from the distributional condition for zi, εi, and νi, thereby verifying Assumptions 7 and

11. Fourth, note that the quasi-maximum likelihood estimator ξ̂n := (ψ̂′n, δ̂n)′ is obtained by assuming a normal distribution for

the error term, so that we can let si(ξ∗) = (x′iui/δ∗, u
2
i /(2δ

2
∗) − 1/(2δ∗))

′, and H = −diag[E[xix
′
i]/δ∗, 1/(2δ

2
∗)], from which

Assumption 8 holds, as White (1982) demonstrates. Furthermore, it is not difficult to provide estimators consistent for J and

H . We can let Ĵn and Ĥn be their sample analogs, viz., Ĵn := n−1
∑n
i=1 ŝiŝ

′
i and Ĥn := −diag[n−1

∑n
i=1 xix

′
i/δ̂n, 1/(2δ̂

2
n)],

where ŝi := (x′iûi/δ̂n, û
2
i /(2δ̂

4
n) − 1/(2δ̂2

n))′ and ûi := yi − x′iψ̂n. Then, Ĵn and Ĥn are consistent for J and H by the law

of large numbers and the consistency of ξ̂n follows, verifying Assumption 10. Finally, we verify Assumption 9. As our main

interest is in obtaining the null limit distribution of the tests defined below using the asymptotic distribution, we impose π† = 0

and verify Assumption 9 to avoid the associated algebraic complexity. Some algebraic calculations show that

J =


1
δ∗

µ1

δ∗
0

µ1

δ∗

µ2

δ∗
0

0 0 1
2δ2∗

 , K =


0 0

0 0

1 + 2aµ2 + bµ4 µ2 + 2aµ4 + bµ6

 , and

B = 2δ2
∗

 1 + 4aµ2 + 2(b+ 2a2)µ4 + 4abµ6 + b2µ8 µ2 + 4aµ4 + 2(b+ 2a2)µ6 + 4abµ8 + b2µ10

µ2 + 4aµ4 + 2(b+ 2a2)µ6 + 4abµ8 + b2µ10 µ4 + 4aµ6 + 2(b+ 2a2)µ8 + 4abµ10 + b2µ12

 .
In Section 5, we conduct simulations by assuming δ† = 1 and a standard uniform distribution for Q, from which it follows that

a =
∫ 1

0
exp(γ)dγ, b =

∫ 1

0
exp(2γ)dγ, and δ∗ = 1 as π† = 0. Furthermore, from the DGP condition that zi ∼ IID U [0, 1],

µn = 1/(1 + n). From these calculations the matrix C is positive definite. Finally, if π† = 0, M = −K ′ and J = −H from
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the DGP condition, so that B∗ = B −K ′J−1K, which is positive definite as C is positive definite. This verifies the regularity

conditions for the TSFLS estimator. �

4 Inference on the Mean Function

Parametric specification of the conditional mean of functional data is particularly useful in inference. Instead of conducting

inference over Γ, we can test a relevant hypothesis by estimating the unknown parameter θ∗ directly. In what follows we extend

the standard analysis of Wald, Lagrange multiplier (LM), and quasi likelihood-ratio (QLR) test statistics to perform inference on

the functional mean. Specifically, suppose the following hypotheses on the mean function are to be tested:

Ho : h(θ∗) = 0 versus Ha : h(θ∗) 6= 0.

We assume that the function h( · ) is given and satisfies Assumption 12:

Assumption 12. (Hypothesis): (i) h : Θ 7→ Rr is in C(1)(Θ) with r ∈ N and r ≤ d; and

(ii) D(θ∗) := ∇′θh(θ∗) has full rank r. �

Define the constrained FLS (CFLS) and constrained two-stage FLS (CTSFLS) estimators as

θ̈[n := arg min
θ∈Θ; h(θ)=0

qn(θ) and θ̈]n := arg min
θ∈Θ; h(θ)=0

q̂n(θ).

These restricted estimates are used in developing the test statistics. In view of the constrained optimization, the criteria qn(θ̈[n)

and qn(θ̈]n) cannot be smaller than qn(θ̂n) and q̂n(θ̃n). In a similar way, we define θ† to be the minimizer of q(θ) under the

same restriction, i.e., θ† := arg minθ∈Θ; h(θ)=0 q(θ). The following Lemma establishes consistency of the CFLS and CTSFLS

estimators and is repeatedly used in the limit theory of the test statistics.

Lemma 1. (i) Given Assumptions 1, 2, 3, and 12, θ̈[n → θ† a.s.−P, and θ† = θ∗ under Ho; and

(ii) Given Assumptions 2, 6, 7, 8, 11, and 12, θ̈]n → θ† a.s.−P, and θ† = θ∗ under Ho. �

4.1 Wald Test

We construct the usual Wald (1943) statistics as follows

W[
n := nh(θ̂n)′{D̂nÂ

−1
n B̂nÂ

−1
n D̂′n}−1h(θ̂n); and W]

n := nh(θ̃n)′{D̃nÃ
−1
n B̃nÃ

−1
n D̃′n}−1h(θ̃n)

where D̂n := D(θ̂n), D̃n := D(θ̃n) and all other notation is the same as in Section 3. The statistic W[
n is used for models

without nuisance effects, whereasW]
n is used for models with nuisance effects. The next result provides limit theory for these

Wald tests.

Theorem 8. (i) Given Assumptions 1, 2, 3, 4, 5, and 12,

(i.a)W[
n

A∼ X 2(r, 0) under Ho, where X 2(a, b) denotes a noncentral chi-square variable with degrees of freedom a and

noncentrality parameter b;

(i.b) for any sequence cn →∞ such that cn = o(n), limn→∞ P[W[
n ≥ cn] = 1 under Ha; and
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(ii) Given Assumptions 2, 4, 6, 8, 9, 10, 11, and 12,

(ii.a)W]
n

A∼ X 2(r, 0) under Ho; and

(ii.b) for any sequence cn →∞ such that cn = o(n), limn→∞ P(W]
n ≥ cn) = 1 under Ha. �

The null limit distribution of the Wald test statistic is chi-squared with degrees of freedom r, where r is the rank of D∗ as given

in Assumption 12. The result follows easily from the fact that h(θ̂n) and h(θ̃n) are asymptotically normal. On the other hand,

when the null hypothesis is false, the Wald statistics diverge with probability one, giving consistency of the tests.

4.2 Lagrange Multiplier (LM) Test

The LM test statistics are defined as follows

LM[
n :=

n

4
∇′θqn(θ̈[n)Â−1

n D̈[′

n {D̈[
nÂ
−1
n B̂nÂ

−1
n D̈[′

n }−1D̈[
nÂ
−1
n ∇θqn(θ̈[n) and

LM]
n :=

n

4
∇′θ q̂n(θ̈]n)Ã−1

n D̈]′

n {D̈]
nÃ
−1
n B̃nÃ

−1
n D̈]′

n }−1D̈]
nÃ
−1
n ∇θ q̂n(θ̈]n),

where D̈[
n := D(θ̈[n) and D̈]

n := D(θ̈]n). Here, B̂n and B̃n can be replaced by other consistent estimators for B and B∗. For

example, if we let

B̈[n :=
1

n

n∑
i=1

∫ ∫
∇θρi(γ, θ̈[n){gi(γ)− ρi(γ, θ̈[n)}{gi(γ̃)− ρi(γ̃, θ̈[n)}∇′θρi(γ, θ̈[n)dQ(γ)dQ(γ̃) and

B̈]n :=
1

n

n∑
i=1

∫ ∫
∇θρi(γ, θ̈]n){gi(γ, ξ̂n)− ρi(γ, θ̈]n)}{gi(γ̃, ξ̂n)− ρi(γ̃, θ̈]n)}∇′θρi(γ, θ̈]n)dQ(γ)dQ(γ̃),

it is clear that B̈[n and B̈]n are both consistent for B under Ho.

Asymptotic theory relies on the first-order derivatives of qn and q̂n evaluated at the constrained estimates θ̈[n and θ̈]n. Under

regularity conditions we have

∇θqn(θ̈[n) = − 2

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ̈[n)}∇θρi(γ, θ̈[n)dQ(γ) a.s. − P and

∇θ q̂n(θ̈]n) = − 2

n

n∑
i=1

∫
{gi(γ, ξ̂n)− ρi(γ, θ̈]n)}∇θρi(γ, θ̈]n)dQ(γ) a.s. − P

as shown in Lemma 3(iii) in the Appendix. The following theorem then holds.

Theorem 9. (i) Given Assumptions 1, 2, 3, 4, 5, and 12, we have:

(i.a) LM[
n

A∼ X 2(r, 0) under Ho; and

(i.b) for any sequence cn →∞ such that cn = o(n), limn→∞ P(LM[
n ≥ cn) = 1 under Ha;

(ii) Given Assumptions 2, 4, 6, 8, 9, 10, 11, and 12,

(ii.a) LM]
n

A∼ X 2(r, 0) under Ho; and

(ii.b) for any sequence cn →∞ such that cn = o(n), limn→∞ P(LM]
n ≥ cn) = 1 under Ha. �

Theorem 9 delivers the limit behavior of the LM statistics under the null and alternative hypotheses. The same null limit

distributions apply as for the Wald statistic, because under Ho, both ∇θqn(θ̈[n) and ∇θqn(θ̈]n) are asymptotically normal with
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mean zero and covariance matrices that are consistently estimated by the weight matrices employed in construction of the LM

statistics.

4.3 Quasi Likelihood Ratio (QLR) Test

The QLR statistics are defined for the models without and with nuisance effects as

QLR[n := n{qn(θ̈[n)− qn(θ̂n)} and QLR]n := n{q̂n(θ̈]n)− q̂n(θ̃n)}.

Approximating qn( · ) (resp. q̂n( · )) via a second-order Taylor expansion yields the asymptotic distribution of
√
n(θ̈[n− θ̂n) (resp.

√
n(θ̈]n− θ̂n)), which is normal under Ho. When Ho is not true, this quantity is not bounded in probability, thereby distinguishing

the null and alternative. But the QLR statistics do not have limiting chi-square distributions. Instead, their limit behavior under

Ho and Ha is given in the following result.

Theorem 10. (i) Given Assumptions 1, 2, 3, 4, 5, and 12,

(i.a) QLR[n
A∼W ′{D∗A−1D′∗}−1W under Ho, where D∗ := D(θ∗), and W ∼ N (0, D∗A

−1BA−1D′∗); and

(i.b) for any sequence cn →∞ such that cn = o(n), limn→∞ P( QLR[n ≥ cn) = 1 under Ha; and

(ii) Given Assumptions 2, 4, 6, 8, 9, 10, 11, and 12; and

(ii.a) QLR]n
A∼W ′∗{D∗A−1D′∗}−1W∗ under Ho, where W∗ ∼ N (0, D∗A

−1B∗A
−1D′∗); and

(ii.b) for any sequence cn →∞ such that cn = o(n), limn→∞ P(QLR]n ≥ cn) = 1 under Ha. �

The null limit distributions of the QLR test statistics differ from standard chi-squared theory because the asymptotic covari-

ance matrices of the FLS and TSFLS estimators differ from the limits of the Hessian matrices of FSMSE and the information

matrix equality fails.

The different null limit distributions of the QLR test statistics can be linked to the previous literature. Note that Vuong

(1989) and White (1994) examine the null limit distribution of the likelihood-ratio test statistic by supposing that the maximum

likelihood estimator has a sandwich-form asymptotic covariance matrix that typically follows from model misspecification and/or

conditionally heteroskedastic errors, producing a noncentral chi-squared null limit distribution for their respective likelihood ratio

test statistics. If the information matrix equality holds, so that if B = σ2A, the QLR test statistics can be converted to follow a

chi-squared distribution under the null by dividing the QLR test statistics with a consistent estimator for σ2 under the null. This

feature implies that the information matrix equality is necessary when constructing a likelihood ratio test for the limit theory

to follow a chi-squared distribution under the null. Importantly, B̂n and B̃n still play a critical role in applying the QLR test

statistics. For even though computation of the QLR statistics does not rely on these matrices, they are needed to obtain critical

values of the QLR tests.

5 Model Applications and Simulations

This section explains how the theory in Sections 3 and 4 for functional data relate to standard econometric analysis commonly

used in applications. Four examples are given showing how the limit theory is applied in such settings. In the first application, we

study model estimation conducted by the “smoothing first, then estimation” principle and compare parameter estimation obtained

by FLS and random effect model estimation. In the second and third applications, we study Examples 1 and 2 in Monte Carlo
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experiments. The fourth application extends Example 1 to copula mixtures representing dependence structures between two

variables. These applications are all developed within the functional data framework. Experiments are conducted to assess the

adequacy of the limit theory in finite samples.

5.1 FLS and Random Effect Model Estimation

When a panel data set is available, the so-called “smoothing first, then estimation” principle can be applied to estimate the

parameters associated with the population mean function. Specifically, if individual i’s state variable in period t is wit, a panel

dataset of the observations is the collection {wit : i = 1, 2, . . . , n; and t = 1, 2, . . . , T}. Such panel observations are discrete over

time t for each i. It is often appealing to assume that the underlying individual i’s state path forms a set of discrete observations of

a continuous curve over a certain time domain such as [0, T ]. The corresponding interpretation of the discrete panel observations

is that wit = wi(t) for the discrete time periods t = 1, 2, . . . , T , where the random function wi(·) denotes individual i’s full

time path of states over the continuous time interval [0, T ]. The full state path is unobserved. While a generating mechanism

for the continuous process wi(·) might be constructed, it is often convenient to provide a direct empirical approximation by a

sieve or local polynomial kernel method. For example, Zhang and Chen (2007) examined a smooth sample path approximated

from {wit : t = 1, 2, . . . , T} by local polynomial kernel estimation, and gave mild regularity conditions under which inference

on the implied functional data {gi(·) : i = 1, 2, . . . , n} is asymptotically equivalent to that obtained from the discrete path

{wit : i = 1, 2, . . . , n; t = 1, ..., T}.

Our model and econometric approach are motivated by the mean log income path application in Section 6. We therefore

designed and conducted a simulation experiment to ascertain how the FLS approach can help to improve panel estimation. For

this experiment we first generated the ‘unobserved’ functional data wi(·) according to the model

wi(t) = θ1∗ + θ2∗t+ θ3∗t
2 + θ4∗t

3 + θ5∗t
4 + εi(t), (10)

where t ∈ [0, T ] with T = 40, and εi(·) is an Ornstein-Uhlenbeck (OU) error process generated by the stochastic differential

equation

dεi(t) = −κ†εi(t)dt+ σ†dWi(t),

whereWi(·) is a collection of standard Wiener process that are identically and independently distributed across individuals. For

the simulation, we set κ† = σ† = 1. The panel observations are obtained as {wit} by evaluating wi(t) at the discrete time

periods t = 1, 2, . . . , 40 for each individual i = 1, 2, . . . , n, and the functional observations {gi(·) : i = 1, 2, . . . , n} for the FLS

approach are obtained by smoothing the data {wit} using a local polynomial kernel. After generating the data, the random effects

model is estimated according to Wooldridge (2010) by using the intercept and polynomial time trends as regressors, while the FLS

estimator is estimated by letting the adjunct probability measure Q be a uniform distribution on [0, 40]. The assumption of the

uniform distribution is made to correspond to the supposition that the researcher has no particular prior information concerning

how the null hypothesis of interest is violated when the FLS estimator is used to test a hypothesis.

Some further remarks on this experiment are warranted. First, our empirical application is concerned with income processes,

which may be well suited to local polynomial estimation. According to Zhang and Chen (2007), local polynomial estimation

provides better estimates of functional observations from discrete observations if the hidden functional observations are smooth.

Such latent functions are amenable to the use of their optimal bandwidth if T and n are large and the latent function is smooth
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then a polynomial approximation can be expected to work especially well, as polynomials are dense in the space of continuous

functions on a compact set and typically provide good smooth approximants to underlying smooth functions. In addition, the

literature on income processes provides ample evidence that income processes are smooth series. Lillard and Weiss (1979)

hypothesize that individual labor income processes exhibit deterministically growing individual-specific income growth with a

stationary component. Guvenen (2007) calls this property the heterogeneous income profile (HIP) hypothesis contrasting it to

the so-called restricted income profile (RIP) that supposes labor income profiles are homogeneous among individuals but subject

to persistent aggregate income shocks. Guvenen (2007) conducts tests to validate each hypothesis and concludes that several

notable features of consumption are more compatible with HIP than RIP; and Guvenen (2009) provides further evidence for HIP.

As another example, Lintner (1956) conducted interviews with managers from twenty-eight companies that revealed a potential

smoothing characteristic in the behavior of dividend income. From these interviews Lintner found that firms are reluctant to

announce dividend changes which they might be obliged to reverse in the future, leading him to argue that dividends are adjusted

in response to non-transitory earnings changes with the goal of achieving a long-run target payout ratio. Other empirical work

supports this view (e.g. Fama and Babiak, 1968; Marsh and Merton, 1987; Garrett and Priestley, 2000; Brav et al., 2005; Andres

et al., 2009). All these studies provide some support for the use local polynomial estimation as a suitable methodology to estimate

income processes.

Second, the OU process with κ∗ > 0 is asymptotically stationary with zero mean and nondifferentiable everywhere almost

surely so that the function wi(·) is the composition of a smooth polynomial trend and a nondifferentiable stochastic process.

Therefore, smooth local polynomial kernel estimation is inevitably biased for wi(·). Nonetheless, the procedure produces func-

tional data observations that capture the polynomial drift and enable estimation of the unknown parameters by FLS. The numerical

performance of this procedure can be compared with that of standard random effect model estimation. The experiment will help

to demonstrate how the FLS estimation methodology has the capacity dominate random effect model estimation even when the

functional data are constructed without retrieving the exact continuous path features of the underlying data generating process.

Third, the simulation experiment was designed to follow the empirical analysis in Section 6 in which the conditional population

mean of the continuous income path is estimated from 40 year annual incomes of white male and female workers in the U.S. The

simulated panel data is therefore structured in a similar way to the actual panel data used in Section 6 and the model estimated in

the simulation exercise matches that of the empirical section, which is specified to examine the income path hypothesis posited

in the early research by Mincer (1958, 1974). A further motivation for (10) stems from the fact that polynomials are dense in the

space of continuous functions on a compact interval and the Stone-Weierstrass theorem demonstrates that any such continuous

function can be uniformly approximated by a polynomial function of high enough degree. Past empirical research suggests that

the fourth degree polynomial function in (10) is sufficient for capturing the main characteristic behavior of labor income processes

(e.g., Murphy and Welch, 1990; Cho and Phillips, 2018b).

<<<<<< Insert Table 5.1. >>>>>

Table 5.1 reports the bias, root mean square error (RMSE), and mean absolute percentage error (MAPE) of the estimators in

the random effects model and the FLS approach, computed from R = 5, 000 replications. For each j = 1, 2, 3, these summary

statitstics are computed by

bias(θ̂jn) =
1

R

R∑
i=1

(θ̂
(i)
jn − θj∗), RMSE(θ̂jn) =

√√√√ 1

R

R∑
i=1

(θ̂
(i)
jn − θj∗)2, and MAPE(θ̂jn) =

1

R

R∑
i=1

∣∣∣∣∣1− θ̂
(i)
jn

θj∗

∣∣∣∣∣× 100,
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where θ̂(i)
jn is the estimate in the i-th replication. The parameter values θj∗ in (10) are chosen as the empirical parameter estimates

obtained in Section 6 by FLS for the male sample group with a Bachelor degree. For the mean function, we explore several

different specifications, covering the quadratic, cubic, quartic, and restricted quartic models employed in Section 6. Accordingly,

the data are generated by imposing some restrictions on the parameter vector θ∗ depending on the specification. For example,

the data for the quadratic model are generated by setting θ4∗ and θ5∗ to zero, and the parameters are estimated based on the

quadratic specification of the mean function. For simplicity, the parameter α is set to be 1/60 in the restricted quartic model as in

Murphy and Welch (1990). We do not report the bias, RMSE, and MAPE of θ̂4n and (θ̂4n, θ̂5n) for the cubic and quartic models,

respectively in Table 5.1 as they all have values close to zero.

As shown in Table 5.1, the FLS approach generally provides better performance than random effect model estimation. The

bias, RMSE and MAPE of the parameter estimates are all smaller in the FLS approach in the simulation models examined. The

improvement is more marked in the parameter estimates of the coefficients for lower degree polynomial terms and when the sam-

ple size is small. In addition, we have found in experiments not reported here that these simulation results are robust to different

simulation environments. In particular, when the OU process is replaced by the Gaussian processes obtained while testing for

Hermitian, exponential, Weibull mixtures (e.g., Cho and White, 2007, 2010) or Cox-Ingersoll-Ross process, we continue to find

that the FLS estimator outperforms the random effects estimation. These findings indicate the gains that can be achieved in use

of the FLS estimation over random effect model estimation.

In addition to these simulations, some robustness exercises were conducted. All the models in this section were also fitted

using a general beta distribution for the adjunct probability measure under the same model assumptions as those given in Table

5.1. These simulations produced broadly similar findings that did not modify any of the qualitative results obtained with a uniform

measure. The performance of the FLS estimator with a fitted beta distribution for the adjunct measure did not therefore show any

noticeable gains over FLS, at least for the models considered.

5.2 Example 1: Distribution Specification Tests – Continued

We next considered the performance of our Wald, LM, and QLR test statistics. Some of their key features are now summarized

in relation to the test on the supremum over γ statistic, C(α). Critical values of the C(α) test are obtained by explicitly exploiting

the functional form of gi(·) in the construction of that statistic, making its application less convenient in practice. Making the

correct model assumption assumes correct knowledge of the functional form of gi(·), which raises specificity and reduces the

range of applicability of the maximal test statistic. The null limit distribution of C(α) test statistic is typically obtained by

simulation or bootstrapping that exploits the covariance kernel structure of a Gaussian stochastic process derived by assuming

that the mixture assumption is correct. By contrast, our test statistics do not exploit this feature and our test statistics allow for

model misspecification for µ. In consequence, our statistics lead to tests whose power may not be as great as that of the C(α)

statistic under the correct mixture model assumption; but otherwise there is no clear power ordering and our test statistics may

provide more powerful diagnostics as well as computational ease in various circumstances such as misspecification.

For the simulation exercise, we specify the same ρ(·) as before and generate xi according to the mixture assumption, so

that we can fix the experimental framework and compare the C(α) test with the three other tests. We proceed according to the

following plan. First, we test

Ho : (θ1∗, θ2∗) = (0, 0) versus Ha : (θ1∗, θ2∗) 6= (0, 0)

using the three test statistics Q[n, LM[
n, and QLR[n. For this hypothesis, Assumption 12 is trivially satisfied. Note that these
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applications do not require that the mixture assumption is correct for xi. That is, B̂n is estimated irrespective of whetherM is

correct for µ(·) or not. In addition, we also test θ1∗ along with θ2∗ as it provides useful information for the DGP. If θ1∗ 6= 0, it is

a strong signal for that the given mixture assumption is not valid for xi. Second, we test π† = 0 by the C(α) test statistic. Note

that under this DGP condition, if π† = 0,
1√
n

n∑
i=1

gi(·)⇒ G(·)

such that for each γ and γ̃, E[G(γ)G(γ̃)] = E[gi(γ)gi(γ̃)]. Therefore, the asymptotic critical values of the C(α) test are given by

the distribution of supγ∈Γ G(γ), and Cho and White (2010) show that the distribution of G(·) is identical to G̃(·), where for each

γ,

G̃(γ) :=

∞∑
k=2

[
(γ − 1)4

γ2(2γ − 1)

]−1/2(
γ − 1

γ

)k
Zk,

and Zk ∼ IID N(0, 1), so that the asymptotic critical values can be delivered by repeatedly simulating supγ∈Γ G̃(γ).

Table 5.2 displays the size and power of the Wald, LM and QLR test statistics studied in Section 4 along with the C(α)

test. Throughout the experiment, the FLS estimator is estimated by Gauss-Legendre numerical quadrature. Γ is chosen to be the

interval [1.5, 2.5], and as long as γ > 1, this interval is arbitrarily selected to accommodate the fact that the researcher may not

have information on the underlying DGP. We also let the adjunct probability measure be the uniform probability measure on Γ

and consider sample sizes n = 25, 50, 100, 300, and 500. The nominal levels are fixed at 1%, 5%, and 10%. In the level panel of

Table 5.2, we observe that the rejection rates of the three test statistics all approach nominal levels as the sample size increases.

Under the alternative with γ† = 2, power is computed through 5,000 replications with the same sample sizes, but with the nominal

level fixed at 0.05. In particular, we examine power of the tests by letting π† vary over the range {0.1, 0.2, 0.3, 0.4, 0.5}. The

rejection rates tend to be larger as we move π† further from zero; and when the sample size increases, rejection rates approach

unity for fixed π†. In addition, the power of the C(α) test is overall greater than that of each of the three test statistics, as expected

from the correct mixture assumption. Despite the greater power of the C(α) test under these conditions, we emphasize that its

implementation requires considerably more effort, a correct model assumption, and simulated asymptotic critical values, which

rely on simulating the correct covariance kernel structure, or use of a bootstrap approach. Tests based on the FLS estimator are

by comparison quite straightforward to implement.

<<<<<< Insert Table 5.2. >>>>>

5.3 Example 2: Inference on Random Coefficients – Continued

We next conduct simulations using the functional data affected by the nuisance parameter estimation error: ĝi(γ) := g̃i(γ, δ̂n, ψ̂n),

and we test the following hypotheses:

Ho : θ∗ := (θ0∗, θ1∗)
′ = 0 versus Ha : θ∗ 6= 0.

Here, we note that

θ0∗ = −π† exp(γ†)E[z2
i ] and θ1∗ := π† exp(γ†),

so that if π† = 0, Ho holds, whereas π† 6= 0 under Ha.

In this FDA framework, we conduct simulations by applying the theorems for the models with nuisance effects in Section
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3. We let (ψ1†, ψ2†, γ†, δ†) = (1, 1, 0.5, 1) under both the null and alternative hypotheses, and set π† = 0 under the null. For

the alternative DGP, we consider various values for π†, viz., 0.01, 0.02, 0.03, 0.04, and 0.05. Next, let zi ∼ IID U [0, 1] and

(ν′i, εi)
′ ∼ IID N (0, I3), so that the model for µ(·) is correctly specified. In addition, we let the adjunct probability measure be

uniformly distributed over [0, 1] with Γ = [0, 1]. For the Wald and QLR test statistics, we use Ãn and B̃n when computing the

test statistics, whereas Ãn and B̈]n are used in calculating the LM test statistic.

<<<<<< Insert Table 5.3. >>>>>

Table 5.3 displays the empirical rejection ratios obtained for the Wald, LM and QLR statistics in testing the reformulated

model and hypotheses. The results show that the null rejection rates are close to nominal levels for all three test statistics when

the sample size is large. The Wald and LM test statistics tend to be slightly oversized when the sample sizes are small, whereas

the QLR test statistic perform better in size control. For power analysis, we consider models with π† = 0.01, 0.02, 0.03, 0.04,

and 0.05, fixing the nominal significance level at 5%. Evidently, the rejection rates turn out to be dependent on sample size for

each value of π† in all three test statistics. As expected, the empirical rejection rates increase as π† or n increase. Overall, the

QLR test shows better performance than the Wald and LM tests.

For comparison we display test results from Breusch and Pagan’s (1979) conditional heteroskedasticity test statistic, denoted

BPn in Table 5.3. If the sample size is small, BPn controls size better than the Wald and LM test statistics, but the QLR test

statistic outperforms BPn. Under the alternative, the powers of the Wald, LM, and QLR tests are all superior to BPn.

5.4 Inference on the Homogeneity of Dependence Structure

As a further application we develop tests for heterogeneity in dependence structures by applying the mixture model assumption.

For this purpose, suppose a researcher observes IID observations of multiple variables. Empirical interest often lies in determining

whether the dependence structure among these variables is homogeneous. Even though the univariate marginals for each variate

may remain constant over the whole population, observations can still be heterogeneous due to different dependence structures.

In what follows we provide test statistics to detect violations of homogeneity using finite copula mixtures. The Sklar theorem

(1959) is useful for this purpose as it conveniently separates information on the univariate marginals from the joint distribution by

means of the copula function. There is now a vast literature demonstrating the use of copulas for studying dependence structures

(e.g., Nelsen, 2007; Joe, 2014, and the references therein) and many studies applying mixture copula models (e.g., Dias and

Embrechts, 2004; Chen and Fan, 2006; Hu, 2006; Lai et al., 2009; Diks et al., 2010; Zimmer, 2012; Kosmidis and Karlis, 2016;

Loaiza-Maya et al., 2018). But methods of inference concerning homogeneity in dependence structures based on finite mixture

copula models has, to the best of our knowledge, so far not been addressed.

We proceed by considering a mixture of two distinct bivariate copula component densities c1 and c2 with parameter vectors

γ1† and γ2†, respectively. That is, for (u, v) ∈ [0, 1]2,

c(u, v;π†, γ1†, γ2†) = (1− π†)c1(u, v; γ1†) + π†c2(u, v; γ2†)

with π† ∈ [0, 1]. More generally, each component density can be of any dimension, and a mixture with more component densities

can be considered. For brevity we focus on the simple protypical model above. We suppose that IID pairs {(xi, yi)}ni=1 have

marginal distributions given as FX and FY , respectively. Inference concerning the homogeneity of the dependence structure can
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naturally be conducted by examining the null hypothesis that π† = 0 (or π† = 1) with function gi given by

gi(Ui, Vi; γ1, γ2) :=
c2(Ui, Vi; γ2)− c1(Ui, Vi; γ1)

c1(Ui, Vi; γ1)
√
c∗(Ui, Vi; γ1, γ2)− 1

,

where Ui := FX(xi), Vi := FY (yi), and

c∗(u, v; γ1, γ2) :=

∫ 1

0

∫ 1

0

c22(u, v; γ2)

c1(u, v; γ1)
dudv.

Here, gi is derived by applying the C(α) test principle for testing π† = 0. The derivation of gi is reported in the Appendix.

A practical challenge arises from the fact that the univariate marginals FX and FY are typically unknown to researchers. In

the first stage estimation, we, therefore, approximate Ui and Vi by Ûi = F̂X(xi) and V̂i = F̂Y (yi), respectively, using estimates

of the marginal distributions in a fashion similar to the inference function for marginals (IFM) approach (Joe and Xu, 1996; Joe,

2001). To apply the results in Section 4.2, we construct the functional data as follows

ĝi(γ1, γ2) :=
c2(Ûi, V̂i; γ2)− c1(Ûi, V̂i; γ1)

c1(Ûi, V̂i; γ1)

√
c∗(Ûi, V̂i; γ1, γ2)− 1

.

A leading example is the case when c1(·) is the density implied by the independence copula. If so, the functional form of

gi(·) is further simplified as

ĝi(γ2) :=
c2(Ûi, V̂i; γ2)− 1√
c∗(Ûi, V̂i; γ2)− 1

, where c∗(u, v; γ2) =

∫ 1

0

∫ 1

0

c22(u, v; γ2)dudv.

For our simulation experiments we use the Farlie-Gumbel-Morgenstern (FGM) copula for c2(·), which enables a closed form

solution for the relevant integrals. The population mean function is then straightforwardly derived as µ(π†, γ2†) := 1
3π†γ2†,

leading to a simple linear model for the mean function, viz.,

ρ(γ, θ1, θ2) := θ1 + θ2γ,

where γ ∈ Γ := [0, 1]. Note that if π† = 0, µ(π†, · ) ≡ 0, and ρ( · , θ1∗, θ2∗) ≡ 0 if and only if (θ1∗, θ2∗)
′ = (0, 0)′. We,

therefore, specify the null and alternative hypotheses as follows:

Ho : (θ1∗, θ2∗) = (0, 0) vs. Ha : (θ1∗, θ2∗) 6= (0, 0).

Although the intercept term is known to be zero, it is estimated and simulations are conducted based upon the multiple parameter

estimators, enabling us to define test statistics with multiple parameters in the simulations.

The following computational algorithm is used in the simulations. First, we generate random samples using the FGM copula

with marginals N (0, 1) and N (0, 5) for xi and yi, respectively, and we estimate the means and variances of xi and yi by

maximum likelihood to obtain Ûi := Φ(xi, µ̂x,n, σ̂
2
x,n) and V̂i := Φ(yi, µ̂y,n, σ̂

2
y,n), where Φ( · , µ, σ2) signifies the normal

distribution function with mean µ and variance σ2, and (µ̂x,n, σ̂
2
x,n) and (µ̂y,n, σ̂

2
y,n) are the corresponding maximum likelihood

estimates obtained from x and y samples. Second, we fix the copula parameter γ2† at 0.9, and the adjunct probability measure

is assumed to be uniformly distributed on Γ := [0, 1]. With this framework, we conduct independent experiments with 5,000
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replications using data samples with n = 25, 50, 100, 300, 500, and 1, 000.

<<<<<< Insert Table 5.4. >>>>>

Table 5.4 reports the empirical rejection rates, giving size and power of our tests for dependence. As before, the rejection

rates given in the size panel are computed with fixed nominal levels of 1%, 5%, and 10%. Table 5.4 suggests that when the null

hypothesis is true, the rejection rates approach nominal levels as the sample size increases. More specifically, the rejection rates

of the Wald and LM test statistics are close to the nominal levels even with sample sizes as small as n = 50 or 100, whereas those

of the QLR test are somewhat oversized at these nominal levels and sample sizes. For power analysis we let π† be 0.1, 0.2, 0.3,

0.4, and 0.5 and fix the nominal level of significance to 5%. A clear tendency for the rejection rates to rise with π† is apparent;

and when π† is constant, the rejection rates of the three test statistics all approach unity as the sample size increases.

For comparison we also display the test results obtained from the Cramér–von Mises test and the Kolmogorov–Smirnov test

for an independence copula, in which the statistics are computed using the l2 and l∞ distances between the independence copula

c0 and the empirical copula cn, viz.,
√
n ‖cn − c0‖p with p = 2 and∞. In the table, these statistics are denoted CMn and KSn.

As the null limit distributions of these test statistics are model dependent, the critical values are obtained by the bootstrap based

on sampling with replacement (e.g., Efron, 1979; Fermanian et al., 2004). Table 5.4 shows that the Wald, LM and QLR tests

generally perform better than the Cramér-von Mises and Kolmogorov–Smirnov tests.

6 Empirical Analysis on the Income Path

Lifetime earning trajectories have attracted great interest among labor economists, leading to the early earnings function pioneered

by Mincer (1958, 1974), which revealed that earnings typically rise at a diminishing rate over a lifetime, justifying the use a

quadratic form over work experience years in regression specifications. Since then, quadratic specifications with respect to years

of work experience have been a popular component of empirical wage equations in the literature (e.g., Bhuller et al., 2017; Barth

et al., 2018; Magnac et al., 2018, for recent studies). On the other hand, Murphy and Welch (1990) explored cubic and quartic

specifications for wage equations, showing that a restricted quartic specification provided smaller MSE compared to quadratic

specifications. Later, Katz and Murphy (1992), Autor et al. (1998), and Lemieux (2006) adopted quartic specifications in their

empirical work. Cho and Phillips (2018b) examined functional form specifications of the wage equation with respect to work

experience years using sequential testing and found that functional form can be sensitive to the presence of other explanatory

variables in the regression. In another study, Heckman et al. (2006) showed that the quadratic model is empirically misspecified

for recent wage data, but that relaxation of the quadratic model to a quartic specification does not dramatically change the

empirical economic implications of the quadratic model.

This section applies the techniques of the current work to study the mean log income path (MLIP) as a function of work

experience. Using several different formulations for the MLIP, we examine whether the overall shape of the MLIP differs in

significant ways between genders and amongst education levels. In cases where the difference is significant, we further study

how gender and education affect the MLIP, providing some empirical insights to enhance understanding of how different income

profiles arise according to gender and education.

Our analysis differs from existing work based upon the estimation of Mincer (1958, 1974) wage equations in two ways.

Primarily, our approach uses functional observations that have never before, to our knowledge, been considered in this literature.

Next, although we estimate the MLIP to identify gender and education effects in parallel to methodological developments in the
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wage equation literature, our empirical results here are obtained by recasting the methodology into a form suited to functional

data to single out how gender and education influence the overall shape of the MLIP. This functional approach has several

advantages over the existing methodology. First, as shown in the simulation in Sections 5.1, the FLS using functional observations

outperforms the usual panel approach. Second, the FDA transforms what would be the analysis of panel data with complicated

temporal dependence structures into temporal curve analysis using IID observations. Accordingly, simple limit theories for an iid

framework can be adopted. A final advantage is that the functional data approach can be applied even when the data are observed

at random rather than at equispaced discrete times in the continuous domain. In contrast, econometric analysis using unbalanced

panel observations is complicated and can be conducted by imposing assumptions on the generating mechanism that may not be

justified for the particular data set in hand.

As it turns out in our empirical application, curve shape is not affected by gender and educational differences if each individ-

ual’s income path is properly scaled by the individual’s integrated log income path (LIP) over the work experience years, implying

that different gender and education levels lead to different income paths for individuals, but individual LIPs are proportional to

each other between genders and education levels. In short, appropriately scaled LIPs are shown to be unaffected by different

gender and education levels.

For the empirical analysis we analyze income data obtained from the Continuous Work History Sample (CWHS) database

that provides the income variable as annual labor income before taxes. The data include 39 years of income records of full time

white male and female workers in the U.S. who were born between 1960 and 1962 and had tax records for at least 39 years. Based

on these observations we construct each individual’s LIP using the local polynomial kernel (Zhang and Chen, 2007) defined over

work experience years from 0 to 40 years and then subdivide the entire sample into different groups based on individual gender

and education level. For the latter the subdivisions are no college education, Bachelor’s degree, Master’s degree, and Doctoral

degree. For the education level groups (in the order given above), we have 673, 2,828, 539, and 323 income path samples for

males and 837, 1,624, 469, and 418 income path samples for females.

We conduct our empirical analysis by controlling for worker job mobility. Earlier literature has noted that Mincer’s (1958,

1974) quadratic equation gives a good local approximation of the wage equation with respect to the work experience years.

For example, Light and Ureta (1995) observe that the empirical wage profiles are more heterogenous in early career experience

than those of workers reaching ages in the forties and fifties, in addition to their more rapidly increasing wage levels during this

period of the life cycle. This phenomenon in the data is explained through more frequent job interruptions over the early career

experience years, particularly for female workers. The finding is used to link gender wage gaps to the work experience variable.

In addition to the work of Light and Ureta (1995), many other studies point out that wage profiles during early career years differ

considerably from those of generations with longer work experience. Geographic changes and job mobility dominate among

the young generation and young workers may have different perspectives on lifetime wage profiles from older workers when

firms bargain over wage-employment packages with labor unions (e.g., Mincer and Jovanovic, 1981; Huizinga, 1990). These

characteristics of the labor market motivate the treatment of individual income profiles as a composite of many different income

profiles.

We, therefore, separately examine the income profiles defined over the entire working lifetime to profiles based on more

mature work experience years. Specifically, we proceed by first focusing on the income paths over the full 0 – 40 work experience

years and examine how different gender and education levels affect the income paths. Next, we consider income paths over the

10 – 40 years work experience years and examine gender and education effects on these paths. In doing so, the first 10 years

of the income paths are removed from the original paths to accommodate the arguments made by Mincer and Jovanovic (1981).
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These authors found empirical evidence from the NLS and MID panel data that differences in job mobility during the first 10

years of work experience do not predict long-run differences in earnings, implying that income paths during the first 10 years

are likely generated by a mechanism that differs from that determining income paths in mature career experience years. As will

become clear, we use this empirical separation as a platform to highlight different gender and education effects on income paths.

6.1 Inference on the Mean of Log Income Path on the Whole Work Experience Years

This section reports estimates of the MLIP over the entire working lifetime based on quadratic, cubic, and quartic models. We

also estimate the restricted model posited by Murphy and Welch (1990), compare the results, and discuss inferences on the MLIP

that are implied by these estimates.

<<<<<< Insert Figure 1. >>>>>

Figure 1 shows the estimated shapes of the MLIPs with respect to work experience over 0 – 40 years for groups classified

according to gender and education levels, which are implied by the quadratic, cubic, and quartic models. The red lines in the

Figure denote pointwise MLIPs and the dashed lines present the 80% bootstrap confidence bands of the pointwise MLIPs that

were obtained by resampling the functional observations with replacement. Along with the pointwise MLIPs are shown the MLIP

curves corresponding to the quadratic, cubic, and quartic models. The quartic model, for example, is specified for each group as

ρ(γ, θ1, θ2, θ3, θ4, θ5) = θ1 + θ2γ + θ3γ
2 + θ4γ

3 + θ5γ
4.

After estimating the unknown parameters by FLS the fitted curves ρ(·, θ̂1n, θ̂2n, θ̂3n, θ̂4n, θ̂5n) are shown for the entire working

lifetime in the Figure. Here, the unknown parameters are estimated by letting the adjunct probability measure Q be the uniform

distribution on Γ, implying that

(θ̂1n, θ̂2n, θ̂3n, θ̂4n, θ̂5n)′ =

[∫
Γ

γγ′dγ

]−1
[
n−1

n∑
i=1

∫
Γ

γgi(γ)dγ

]
,

where γ := (1, γ, γ2, γ3, γ4)′. Note that the FLS estimator is well defined from the fact that the inverse matrix is nonsingular,

implying that the model is identified. This representation is justified on the basis that there is no particular prior information

regarding which γ violates the null hypotheses as given below, and the earlier simulation evidence in Section 5.1 does not lead to

a substantially more efficient FLS estimator by generalizing the adjunct probability to the best distribution. We thus assume an

equal chance for the null to be violated for each γ so that alternative behavior of the tests is reflected by the uniform distribution.

Although all estimated MLIPs in Figure 1 lie inside the 80% confidence bands of the pointwise MLIPs, the fitted MLIP

curves are evidently different from the pointwise MLIPs, implying that it is difficult to estimate the MLIPs by quadratic, cubic,

and quartic model specification uniformly over the full range of years of work experience. In particular, the pointwise MLIPs

over the first 10 work experience years are clearly different from those implied by the model estimates. This may indicate, for

example, that high job mobility during the first decade of a working lifetime produces income profiles different from those over

the remaining years of work experience, corroborating the argument of Mincer and Jovanovic (1981). In addition to the MLIPs

implied by the model estimates, we also estimate the mean function implied by the restricted quartic model given by equation
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(18) in Murphy and Welch (1990):

ρ(γ, θ1, θ2, θ3, α) = θ1 + θ2γ + (θ3 + θ2α)γ2 + 2αθ3γ
3 + α2θ3γ

4 (11)

that is commonly estimated in the empirical literature. Note that (11) is motivated as a more parsimonious model than the quartic

model, and this formulation benefits from lessons in the empirical literature. If the model in (11) is misspecified, Theorem 1

indicates its estimated FMSE will be greater than that of a correctly specified model. Henceforth we denote this model as the

quartic(r) model.

<<<<<< Insert Table 6.5. >>>>>

The top panel of Table 6.5 reports the estimated FMSEs obtained by the quadratic, cubic, quartic, and restricted quartic

models in parallel to Tables 2, 6, and 8 in Murphy and Welch (1990). As expected, the quartic specification provides the smallest

FMSE and the quadratic specification yields the largest FMSE among the three specifications. We further observe that the FMSE

substantially drops as the degree of the polynomial model increases, matching the improved fit of the MLIPs. The mean paths

implied by the cubic and quartic functions are found to be statistically distinct. In particular, the FMSEs of both quartic and

quartic(r) are almost identical for the workers without degree, implying that the quartic(r) is a very likely form for the workers’

income path, although it is not effective for the other workers as the FMSEs from the quartic and quartic(r) models are distinctively

different.

The lower panel of Table 6.5 reports the FMSEs using the data obtained by scaling the original income paths. That is, these

functional observations are obtained by dividing each individual original LIP with by integral of the corresponding LIP over the

entire working lifetime. The MLIPs are obtained using the same methodology as before for each group, and the corresponding

FMSEs are shown in the lower panel of the Table. This normalization helps to exclude possible absolute effects of the level of

lifetime income on inference concerning the MLIPs. Nonetheless, as the results in Table 6.5 show, the outcomes are qualitatively

the same as for the top panel, so that the higher the degree of the polynomial model, the better the approximation. Scaling does

not affect this outcome.

Although unreported here, we tested model adequacy by comparing the quadratic versus cubic models and the cubic versus

quartic models. This procedure is motivated by the sequential testing procedure in Cho and Phillips (2018b) so that an adequate

model can be found in a parsimonious manner. The QLR test statistic was employed in these comparisons using the FMSEs in

Table 6.5 and the null limit distributions obtained in Section 4.3. The test trivially rejected the null hypothesis for every group

classified by gender and education levels. Given the statistically substantial drops of the FMSEs as the degree of polynomial

model increases, this rejection of the null hypothesis is expected and again reveals that higher-degree polynomial functions better

approximate the MLIPs than lower-degree functions.

We next examine the gender and education effects on the MLIP. For this purpose, we extend the previous model structures

using a dummy variable for the gender of each individual. Thus, for each education level, the model for the curves becomes

ρi(γ, θ
F
1 , θ

F
2 , θ

F
3 , θ

M
1 , θM2 , θM3 ) = (θF1 + θF2 γ + θF3 γ

2)di + (θM1 + θM2 γ + θM3 γ2)(1− di) (12)

extending the previous quadratic model using di = 1 for female gender and di = 0 otherwise. We estimate the unknown

parameters by FLS and test whether the corresponding parameters are equal across genders using the Wald, LM and QLR test

31



statistics. So the hypotheses of interest are

Ho : θF1∗ = θM1∗ , θ
F
2∗ = θM2∗ , and θF3∗ = θF3∗, versus Ha : θF1∗ 6= θM1∗ , θ

F
2∗ 6= θM2∗ , or θF3∗ 6= θF3∗

and failure to reject Ho provides evidence that the MLIPs do not differ between genders. Similar extensions were made and tests

conducted for the cubic, quartic, and quartic(r) models.

<<<<<< Insert Table 6.6. >>>>>

The results are shown in Table 6.6, which provides empirical evidence for gender effects on the MLIPs. The top panel of

Table 6.6 reports test results using the original LIP samples. For the groups with college education (Bachelor, Master, Ph.D),

the null hypothesis of mean equivalence is rejected at both 1% and 5% levels, indicating that the average income paths are very

different across different genders. This finding is consistent with empirical results in the literature. For example, Wiswall and

Zafar (2017) find evidence of a gender effect on income paths and associate this difference with differing job demands between

different genders. More specifically, they suggest that job flexibility and job stability may be more important factors for women

in job choice, whereas men place a relatively higher preference on earnings, thereby producing a gender effect. These findings

are nuanced for the group without college education. There the difference in the mean functions is significant for the LM test

statistic, but the QLR test does not reject the null hypothesis of mean equality at the 1% and 5% levels. At the same levels, the

Wald test rejects the null for the cubic and quartic specifications but not for the quadratic specification. Notwithstanding this

outcome, overall it is evident that the gender effect is dominant for each education level and model specification.

In the lower panel of Table 6.6, we report results for the scaled LIP samples. The overall results from the top panel of Table

6.6 are evident also in the scaled samples. Thus, the gender effect is evident for the MLIPs, although it is less significant with the

QLR statistic in the no-college education group and the differences in the MLIPs are less significant in Master and Ph.D groups,

suggesting that the MLIPs become less differentiated across gender as educational qualifications rise to these levels.

Next, we examine the education effect on the MLIP across different education levels within the same gender. A pairwise

comparison is made between the groups without college education and with a Bachelor degree and similar pairwise comparisons

are made for those between the Bachelor and Masters level education, and Masters and Doctoral degrees.

<<<<<< Insert Table 6.7. >>>>>

Table 6.7 reports the associated test outcomes. In the top panel of Table 6.7 we report all the results from the original LIP

samples. At the 1% and 5% significance levels, the differences in the MLIPs turn out to be highly significant across different

education levels for both male and female workers, implying that education levels have a big impact on the MLIPs, just as

Mincer’s (1958, 1974) wage equation implies. Since education levels are captured by dummy variables, we cannot be assured of

linearity in the income path with respect to education years as Mincer’s (1958, 1974) wage equation implies. Nevertheless, our

finding is consistent with that wage equation.

The lower panel of Table 6.7 reports results using the scaled LIP samples. The overall education effect is evident for the scaled

LIP samples just as before. But some qualitatively different results from the original samples are also apparent. In particular, in

the male group, the mean difference is significant in the comparison between groups with no-college education and a Bachelor

degree, but this difference diminishes for comparisons between groups with higher education at Masters and Doctoral levels.

Thus, as the education level rises, the effects of education on the MLIP diminish for male workers. On the other hand, the female
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group comparisons always yield p-values close to zero in all cases, implying that the female worker LIP is strictly affected by

education at all levels and undiminished at the higher levels compared with male workers.

In sum, gender and education effects on the MLIP are evident in the LIP samples over the entire working lifetime. Different

genders and education levels yield different MLIPs irrespective of whether each individual’s LIP sample is scaled by aggregating

over the full working cycle. Although there are some nuanced differences for different genders and education levels, the overall

gender and education effects are evident in both cases.

6.2 Inference on the Mean of Log Income Path on the Post Work Experience Years

In this section we estimate the MLIP curves over the mature work experience years using the quadratic, cubic, quartic, and

quartic(r) models as in Section 6.1. When the LIP samples are collected from income profiles with low job mobility, different

gender and education effects are to be expected for the MLIP, as Mincer and Jovanovic (1981) point out.

<<<<<< Insert Figure 2. >>>>>

Using the same samples and the same methodology as before, we estimate the shapes of the MLIPs on the work experience

years from 10 to 40 years. For the same groups classified by gender and education levels, Figure 2 displays the estimated MLIPs

implied by the quadratic, cubic, and quartic models along the pointwise estimated MLIP. As seen in Figure 2, the MLIPs implied

by the cubic and quartic models are close to the overall pointwise MLIP. On the other hand, the quadratic model yields almost

a linear MLIP over the mature work experience years and relatively large differences exist between the pointwise MLIP and the

MLIP implied by the quadratic model.

<<<<<< Insert Table 6.8. >>>>>

As before we proceed in parallel to Section 6.1 by first reporting in Table 6.8 the FMSEs obtained from the quadratic, cubic,

quartic, and quartic(r) models. The format of Table 6.8 is the same as that of Table 6.5, but the estimated FMSE results exhibit

different patterns from those in Table 6.5. For example, the top panel of Table 6.8 shows that the FMSE drops substantially as

polynomial degree increases from quadratic to cubic for both genders and for all levels of education; but the FMSEs are more or

less similar among the cubic, quartic, and quartic(r) models. So, extending model specification from cubic to quartic has little

effect on model fit compared with increasing polynomial degree from quadratic to cubic. This outcome is concordant with Figure

2, in which the MLIP implied by the quadratic model differs from the pointwise MLIP and the MLIPs implied by the cubic and

quartic models.

A similar pattern is observed in the bottom panel of Table 6.8, where FMSEs obtained from the scaled LIP samples are

obtained. The scaled LIP paths are constructed differently from those in Section 6.1. Instead of dividing each individual’s LIP

with integrated LIP over lifetime work experience years, individual LIP is scaled by integrated LIP over mature work experience

years. But irrespective of whether or not the LIPs are scaled, the same pattern is observed for the FMEs as in the top panel of

Table 6.8.

Notwithstanding these results, it does not follow that higher than quadratic polynomial degrees are unhelpful in reducing the

FMSEs. Although we do not report the results here, QLR tests of the quadratic specification versus the cubic specification and

cubic versus quartic were conducted and these tests all rejected the null as before, implying that higher degree specifications

deliver statistically more satisfactory approximations for the MLIPs.

<<<<<< Insert Table 6.9. >>>>>
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We next examine gender effects on the MLIPs over mature work experience years. As before, we apply Wald, LM, and QLR

test statistics and report test outcomes in the top panel of Table 6.9 in parallel with Table 6.6. As seen in the top panel of Table

6.9, gender effects on the MLIP are evident in the groups with college educations. In particular, with each of the four model

specifications, the hypothesis of constant MLIP between gender is rejected for groups with college education. In contrast, for the

no-college education group it is difficult to reject constancy of the MLIP curves between gender, implying that female and male

workers with low education levels face almost the same income profiles.

In the lower panel of Table 6.9, we report results using the scaled LIP samples. The figures in the table are obtained by

conducting the same inferential procedures as those for the top panel. As is apparent in the table, no strong statistical evidence

emerges indicating gender effects on the scaled MLIPs. Thus, if the LIP is associated with low job mobility, individual LIPs differ

proportionately between gender so that gender influences are eliminated if proportionality is properly accounted for. This finding

differs from that obtained from the LIPs over lifetime work experience years. If each individual’s LIP is scaled by integrated LIP

over the lifetime work years, the scaled LIP is affected by income profiles with high job mobility, leading to different MLIPs

between different genders even when the LIPs are restricted to the mature work experience years.

<<<<<< Insert Table 6.10. >>>>>

We close these empirics with an exploration of the effects of education within the same gender. Pairwise comparison results

are reported in Table 6.10 in the same manner as before. The top panel gives test outcomes in parallel to those of Table 6.7.

Using the original LIP samples, all test statistics produce qualitatively the same conclusions as those the top panel of Table 6.7,

so that education effects on the MLIP are found to be present even after income profiles are constructed from workers with low

job mobility.

However, when individual LIPs are scaled by integrated mature work experience levels, different results are obtained. The

test outcomes are shown in the lower panel of Table 6.10. Just as in Table 6.9, no strong statistical evidence is found supporting

different MLIPs among different education levels, giving the same conclusion as for the gender effect so that for the scaled LIPs

education effects disappear within the same gender. Thus, if income profiles are generated from workers with low job mobility,

individual LIPs differ proportionally among different education levels. So when these proportional differences are properly

accounted for in the LIP samples, the MLIPs match across education levels.

In summary, if the LIP samples are constructed from workers with low job mobility, the empirical analysis produces different

conclustions depending on whether the LIP is scaled or not. If the LIP samples are unscaled, results are overall similar to those

obtained from the LIPs over the entire lifetime work experience years, so that the MLIPs obtained from these LIP samples do

differ between gender and across education levels. But when the LIPs are scaled by respective integrated mature work experience

years, the estimated MLIPs match, thereby implying that different gender and education levels affect the LIPs proportionally

without changing the overall shape of the MLIP.

Before concluding, we provide some additional comments on the empirical analysis. First, all empirical models were also

estimated using a beta distribution for the adjunct probability measure and estimating the shape parameters. This extension led to

very similar estimation results and did not qualitatively change any of the findings. Use of the simpler uniform measure therefore

seems adequate for this empirical application and, together with the simulations earlier discussed, implies that potential efficiency

gains from this extension of FLS estimation may not be substantial. Second, the current empirical example assumes that xi is

discrete, but this is not needed for empirical analysis. Even when xi is continuous, we can apply our methodology by forming

M appropriately and estimating the unknown parameter by FLS. For example, different education years can lead to different
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LIPs, so that the coefficients in the quartic model can be modified to be a function affected by education years and relevant

parameters to estimate. Finally, although the results are not reported here, all the empirical models were also estimated by first

obtaining functional observations via the moving window method. This additional empirical analysis was conducted to remove

any temporary shocks from the income profiles, but led to the same general conclusions reported above.

7 Conclusion

We develop a methodology of estimation and inference for parametric conditional mean functions that involve functional data.

The approach is based on functional least squares (FLS) regression. Consistency and asymptotic normality are established under

regularity conditions that allow for the possible presence of nuisance parameters and consequential effects on the limit theory.

New Wald, Lagrange multiplier (LM), and quasi-likelihood ratio (QLR) tests are developed for this functional data context that

enable inference about curve shapes in the observed data. Various examples where this methodology is useful include inference

about the time forms in panel data observations, random coefficient model formalations, and distributional specifications in

mixtures and copulas. The empirical functional form of income paths over work experience years is studied using these methods

to examine the mean log income path within the framework of Mincer’s (1958, 1974) wage equation. The findings show that

gender and education levels produce differences in mean income paths but that these mean paths are proportional to each other.

It follows that, upon rescaling the income paths by integrated work experience years associated with low job mobility, the mean

income paths match over gender and across education levels.

The present study suggests potentially fruitful further developments in functional data inference. This paper assumes that

explanatory variables are observed as vector valued whereas the dependent variable is observed in the form of random functions.

Other cases of interest arise where both dependent and explanatory variables may take function space form or where the explana-

tory variable involves functional data and the dependent variable is scalar valued. See the model analyses in James et al. (2009),

Crambes et al. (2013), Petersen and Müller (2016), and Happ and Greven (2018) for some recent examples. Also, when different

estimation methods than FLS are employed, new possibilities for parametric inference become possible. For instance, using

penalized profile likelihood function estimation with functional data makes it possible to identify latent structures in functional

curve data in a similar fashion to the classification Lasso method of Su et al. (2016).

Further extensions of the present methods can be made to dependent data. Recently, functional time series analysis has

attracted much attention in the literature. For instance, functional data such as the distribution of cross-sectional earnings or

near-continuous recording of intraday stock returns potentially lead to autocorrelated dependence structures. Various methods

of using such data can be found in Chang et al. (2016), Kim and Park (2017), Beare et al. (2017), Hörmann et al. (2018), Seo

and Beare (2019), Li et al. (2020), Franchi and Paruolo (2020), and Chang et al. (2019). From the perspective of parametric

conditional mean function estimation, the presence of temporal dependence inevitably leads to limit theory for FLS estimation

and statistical tests that differs from the present study and needs to be accounted for in time series inference. These are some of

the many aspects of conditional mean function inference that can be addressed in future research.
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Appendices
These Appendices are organized as follows. Preliminary lemmas and proofs are given in Appendix A. Proofs of the results in

the main text are given in Appendix B. The final Appendix C provides additional discussion and results on the estimation of the

unconditional mean function.

A Preliminary Lemmas

Before proving the claims in the text we provide some supplementary lemmas to be used later.

Lemma 2. Given a measurable function h( · , θ) : Γ 7→ R on (Γ,G,Q) for each θ ∈ Θ, if for each γ ∈ Γ, h(γ, · ) ∈ C(1)(Θ)

and for each j ∈ {1, 2, . . . , d}, supθ∈Θ |(∂/∂θj)h( · , θ)| ∈ L1(Q), then

∇θ
∫
h(γ, θ)dQ(γ) =

∫
∇θh(γ, θ)dQ(γ), (13)

where Θ is a compact and convex set in Rd and d ∈ N as in the text. �

Lemma 3. Given Assumptions 1, 2, 3, and 4, for each θ ∈ Θ,

(i)∇θq(θ) = −2
∫ ∫
{µ(γ, x)− ρ(γ, θ, x)}∇θρ(γ, θ, x)dP(x)dQ(γ);

(ii) ∇2
θq(θ) = 2

∫ ∫ {
∇θρ(γ, θ, x)∇′θρ(γ, θ, x)− {µ(γ, x)− ρ(γ, θ, x)}∇2

θρ(γ, θ, x)
}
dP(x)dQ(γ);

(iii)∇θqn(θ) = −2n−1
∑n
i=1

∫
{gi(γ)− ρi(γ, θ)}∇θρi(γ, θ)dQ(γ) a.s.−P; and

(iv)∇2
θqn(θ) = 2n−1

∑n
i=1

∫
∇θρi(γ, θ)∇′θρi(γ, θ)− {gi(γ)− ρi(γ, θ)}∇2

θρi(γ, θ)dQ(γ) a.s.−P. �

Lemma 4. Given Assumptions 1, 2, 3, and 5, then B = B̃, where

B̃ :=

∫ ∫ ∫
∇θρ(γ, θ∗, x)ε(γ, θ∗)ε(γ̃, θ∗)∇′θρ(γ, θ∗, x)dP(g(γ), g(γ̃), x)dQ(γ)dQ(γ̃)

and ε(γ, θ) := g(γ)− ρ(γ, θ, x). �

Lemma 5. Given Assumptions 2, 6, 7, and 8, for each θ ∈ Θ,

(i)∇θq(θ) = −2
∫ ∫
{µ(γ, x)− ρ(γ, θ, x)}∇θρ(γ, θ, x)dP(x)dQ(γ);

(ii)∇2
θq(θ) = 2

∫ ∫ {
∇θρ(γ, θ, x)∇′θρ(γ, θ, x)− {µ(γ, x)− ρ(γ, θ, x)}∇2

θρ(γ, θ, x)
}
dP(x)dQ(γ);

(iii)∇θ q̂n(θ) = −2n−1
∑n
i=1

∫
{ĝi(γ)− ρi(γ, θ)}∇θρi(γ, θ)dQ(γ) a.s.−P; and

(iv)∇2
θ q̂n(θ) = 2n−1

∑n
i=1

∫
∇θρi(γ, θ)∇′θρi(γ, θ)− {ĝi(γ)− ρi(γ, θ)}∇2

θρi(γ, θ)dQ(γ) a.s.−P. �

Proof of Lemma 2: From the differentiability condition, the given function is Lipschitz continuous, so that |h(γ, θ)−h(γ, θ′)| ≤

m(γ)‖θ − θ′‖, where for each γ ∈ Γ, we let m(γ) := supj∈{1,2,...,d} supθ∈Θ |(∂/∂θj)h(γ, θ)|. Therefore, the following bound

holds
1

‖θ − θ′‖

∣∣∣∣∫ h(γ, θ′)dQ(γ)−
∫
h(γ, θ)dQ(γ)

∣∣∣∣ ≤ ∫ m(γ)dQ(γ) <∞,

which further implies that

lim
θ′→θ

1

‖θ − θ′‖

[∫
h(γ, θ′)dQ(γ)−

∫
h(γ, θ)dQ(γ)

]
=

∫
lim
θ′→θ

1

‖θ − θ′‖
[h(γ, θ′)− h(γ, θ)] dQ(γ),
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by the dominated convergence theorem (DCT). The left and right sides of this equality are respectively identical to the left and

right sides of (13). This completes the proof. �

Proof of Lemma 3: (i) The left side is expanded as

∇θ
∫ ∫

{g(γ)− ρ(γ, θ, x)}2dP(g(γ), x)dQ(γ) = ∇θ
∫ ∫

{−2µ(γ, x)ρ(γ, θ, x) + ρ2(γ, θ, x)}dP(x)dQ(γ),

using the fact that µ(γ, x) =
∫
g(γ)dP(g(γ)|x). Given this, µi( · ) ∈ L2(Q) a.s.−P and for each j ∈ {1, 2, . . . , d}, supθ |(∂/∂θj)

ρi( · , θ)| ∈ L2(Q) a.s.−P because |gi( · )| ≤ mi and sup(γ,θ) |(∂/∂θj)ρi(γ, θ)| ≤ mi by Assumptions 3, so that supθ∈Θ |µi( · )

(∂/∂θj)ρi( · , θ)| ∈ L1(Q) a.s.−P by the Cauchy-Schwarz’s inequality. Therefore, applying Lemma 2 yields

∇θ
∫ ∫

µ(γ, x)ρ(γ, θ, x)dP(x)dQ(γ) =

∫ ∫
µ(γ, x)∇θρ(γ, θ, x)dP(x)dQ(γ). (14)

Furthermore, sup(γ,θ) |ρi(γ, θ)| ≤ mi by Assumption 3, so that supθ |ρi( · , θ)| ∈ L2(Q) a.s.−P, implying that supθ∈Θ |ρi( · , θ)

(∂/∂θj)ρi( · , θ)| ∈ L1(Q) a.s.−P, again by Cauchy-Schwarz. Applying Lemma 2 entails that

∇θ
∫ ∫

ρ2(γ, θ, x)dP(x)dQ(γ) = 2

∫ ∫
ρ(γ, θ, x)∇θρ(γ, θ, x)dP(x)dQ(γ). (15)

The desired result follows by combining (14) and (15).

(ii) Note that µi( · ) ∈ L2(Q) a.s.−P, supθ∈Θ |ρi( · , θ)| ∈ L2(Q) a.s.−P as shown in (i). Furthermore, for each j, j′ ∈

{1, 2, . . . , d}, supθ∈Θ |(∂/∂θj)ρi( · , θ)| ∈ L2(Q) a.s.−P and supθ∈Θ |(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L2(Q) a.s.−P by Assumption

3. This implies that

sup
θ∈Θ
|(∂/∂θj)ρi( · , θ)(∂/∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.− P,

sup
θ∈Θ
|µ( · )(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.− P, and sup

θ∈Θ
|ρi( · , θ)(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.− P

by Cauchy-Schwarz. Applying Lemma 2 leads to the desired result as for (i).

(iii) The left side is expanded as follows:

∇θ
1

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ)}2dQ(γ) = ∇θ

1

n

n∑
i=1

∫
{−2gi(γ)ρi(γ, θ) + ρ2

i (γ, θ)}dQ(γ).

Furthermore, for each j, the Cauchy-Schwarz inequality leads to supθ∈Θ |gi( · )(∂/∂θj)ρi( · , θ)| ∈ L1(Q) a.s.−P because

supθ |(∂/∂θj)ρi( · , θ)| ∈ L2(Q) and supγ |gi(γ)| ≤ mi ∈ L2(P) as shown in (i and ii) using Assumption 3. Hence, applying

Lemma 2 leads to

∇θ
1

n

n∑
i=1

∫
gi(γ)ρi(γ, θ)dQ(γ) =

1

n

n∑
i=1

∫
gi(γ)∇θρi(γ, θ)dQ(γ) (16)

a.s.−P. Finally, combining (15) and (16) yields the desired result.

(iv) Given the left side, for each j, j′ ∈ {1, 2, . . . , d}, supθ∈Θ |(∂/∂θj)ρi( · , θ)(∂/∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P by

Cauchy-Schwarz and supθ∈Θ |(∂/∂θj)ρi( · , θ)| ∈ L2(Q) as shown in (ii). Further, for each j, j′ ∈ {1, 2, . . . , d}, supθ∈Θ |{gi( · )

−ρi( · , θ)}(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P again by applying Cauchy-Schwarz because gi( · ) ∈ L2(Q) a.s.−P,

sup
θ
|ρi( · , θ)| ∈ L2(Q) a.s. − P, and sup

θ∈Θ
|(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L2(Q) a.s.− P
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as shown in (i, ii, and iii). Therefore,

∇θ
1

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ)}∇θρi(γ, θ)dQ(γ)

=
1

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ)}∇2

θρi(γ, θ)−∇θρi(γ, θ)∇′θρi(γ, θ)dQ(γ) a.s.− P

by applying Lemma 2. This completes the proof. �

Proof of Lemma 4: We first focus to the internal integral with respect to P. Note that

∫
ε(γ, θ∗)ε(γ̃, θ∗)dP(g(γ), g(γ̃)|x) =

∫
{g(γ)− ρ(γ, θ∗, x)}{g(γ̃)− ρ(γ̃, θ∗, x)}dP(g(γ), g(γ̃)|x)

=

∫
{g(γ)− µ(γ, x)}{g(γ̃)− µ(γ̃, x)}dP(g(γ), g(γ̃)|x) + {µ(γ, x)− ρ(γ, θ∗, x)}{µ(γ̃, x)− ρ(γ̃, θ∗, x)}

= κ(γ, γ̃|x) + {µ(γ, x)− ρ(γ, θ∗, x)}{µ(γ̃, x)− ρ(γ̃, θ∗, x)}

using the fact that
∫
{g(γ)− µ(γ, x)}{µ(γ̃, x)− ρ(γ̃, θ∗, x)}dP(g(γ), g(γ̃)|x) = 0. Hence

B̃ =

∫ ∫ ∫
∇θρ(γ, θ∗, x)κ(γ, γ̃|x)∇′θρ(γ̃, θ∗, x)dP(x)dQ(γ)dQ(γ̃)

+

∫
∇θρ(γ, θ∗, x){µ(γ, x)− ρ(γ, θ∗, x)}dQ(γ)

∫
{µ(γ̃, x)− ρ(γ̃, θ∗, x)}∇′θρ(γ̃, θ∗, x)dQ(γ̃).

Now note that by definition in Assumption 5(ii),B :=
∫ ∫ ∫

∇θρ(γ, θ∗, x)κ(γ, γ̃|x)∇θρ(γ̃, θ∗, x)dP(x)dQ(γ)dQ(γ̃) and
∫
∇θρ

(γ, θ∗, x){µ(γ, x)− ρ(γ, θ∗, x)}dQ(γ) = 0 by the definition of θ∗ and Lemma 3(i). This completes the proof. �

Proof of Lemma 5: (i and ii) Assumptions 6 and 7 imply Assumptions 1 and 3. Therefore, the proofs of Lemma 3(i and ii) are

sufficient for the proofs of Lemma 5(i and ii).

(iii) Note that∇θ
∑n
i=1

∫
{ĝi(γ)− ρi(γ, θ)}2dPdQ(γ) = ∇θ

∑n
i=1

∫
{−2ĝi(γ)ρi(γ, θ) + ρ2(γ, θ)}dQ(γ) a.s.−P. Further-

more, for each j, supθ∈Θ |ĝi( · ) · (∂/∂θj)ρi( · , θ)| ∈ L1(Q) a.s.−P by Cauchy-Schwarz,

sup
θ
|(∂/∂θj)ρi( · , θ)| ∈ L2(Q),

as proved in the proof of Lemma 3, and g̃i ∈ L2(Q) a.s.−P by Assumption 7(i). Hence, applying Lemma 2 leads to

∇θ
1

n

n∑
i=1

∫
ĝi(γ)ρi(γ, θ)dQ(γ) =

1

n

n∑
i=1

∫
ĝi(γ)∇θρi(γ, θ)dQ(γ) (17)

a.s.−P. Finally, combining (15) and (17) yields the desired result.

(iv) Given the left side, for each j and j′, supθ∈Θ |(∂/∂θj)ρi( · , θ) · (∂/∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P as proved in the

proof of Lemma 3. Furthermore, for each j and j′, supθ∈Θ |{ĝi( · )− ρi( · , θ)}(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P, because

g̃i ∈ L2(Q) a.s.−P by Assumption 7(i), and supθ∈Θ |ρi( · , θ)| ∈ L2(Q) a.s.−P and supθ∈Θ |(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L2(Q)
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a.s.−P as shown in the proof of Lemma 3. Therefore,

∇θ
1

n

n∑
i=1

∫
{ĝi(γ)− ρi(γ, θ)}∇θρi(γ, θ)dQ(γ) =

1

n

n∑
i=1

∫
{ĝi(γ)− ρi(γ, θ)}∇2

θρi(γ, θ)−∇θρi(γ, θ)∇′θρi(γ, θ)dQ(γ)

a.s.−P by applying Lemma 2, thereby completing the proof. �

B Proofs of the Main Results

Proof of Theorem 1: Note that

∫ ∫
{g(γ)− ρ(γ, θ, x)}2dP(g(γ), x)dQ(γ) =

∫ ∫
{g(γ)− µ(γ, x)}2dP(g(γ), x)dQ(γ)

− 2

∫ ∫
{g(γ)− µ(γ, x)}{ρ(γ, θ, x)− µ(γ, x)}dP(g(γ), x)dQ(γ) +

∫ ∫
{ρ(γ, θ, x)− µ(γ, x)}2dP(x)dQ(γ).

Further,
∫ ∫
{g(γ)−µ(γ, x)}2dPdQ(γ) =

∫
varP[gi(γ)|x]dP(x)dQ, and

∫ ∫
{g(γ)−µ(γ, x)}dP(g(γ)|x){µ(γ, x)−ρ(γ, θ, x)}

dP(x)dQ(γ) = 0 because
∫
{g(γ)− µ(γ, x)}dP(g(γ)|x) = 0. The desired result now follows. �

Proof of Theorem 2: (i) The result is obtained by applying the SULLN and DCT. Specifically, from the definitions of qn( · ) and

q( · ), for each θ,

qn(θ) =
1

n

n∑
i=1

∫
g2
i (γ)dQ(γ)− 2

n

n∑
i=1

∫
(gi(γ)ρi(γ, θ)) dQ +

1

n

n∑
i=1

∫
ρ2
i (γ, θ)dQ and (18)

q(θ) =

∫
EP[g2

i (γ)]dQ(γ)− 2

∫
EP[µi(γ)ρi(γ, θ)]dQ +

∫
EP[ρ2

i (γ, θ)]dQ. (19)

Here, we use the fact that EP[gi(γ)ρi(γ.θ)] = EP[EP[gi(γ)|x]ρi(γ.θ)] = EP[µi(γ)ρi(γ.θ)] in deriving (19), and we can inter-

change the integral and sample average operators in computing (18) by virtue of the DCT, as shown in the proof of Lemma

3.

We now examine the limit of each element in the right sides of (18) and (19). First, Assumption 3(i) implies that

∫ ∣∣∣∣∣ 1n
n∑
i=1

g2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ) ≤ 1

n

n∑
i=1

m2
i + EP[m2

i ] <∞ a.s.− P,

so that we can apply the DCT, giving

∫ ∣∣∣∣∣ 1n
n∑
i=1

g2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ)→ 0 a.s.− P .

Next, Assumptions 3(i and ii) imply that supθ∈Θ |ρi( · , θ)gi( · )| ≤ m2
i ∈ L1(P), so that

sup
θ∈Θ

∫ ∣∣∣∣∣
(

1

n

n∑
i=1

gi(γ)ρi(γ, θ)− E[µi(γ)ρi(γ, θ)]

)∣∣∣∣∣ dQ(γ)

≤
∫

sup
θ∈Θ

∣∣∣∣∣
(

1

n

n∑
i=1

gi(γ)ρi(γ, θ)− E[µi(γ)ρi(γ, θ)]

)∣∣∣∣∣ dQ(γ)→ 0 (20)
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a.s.−P, again by the DCT.

Third, from the fact that supθ∈Θ |ρi( · , θ)| ∈ L2(Q) a.s.−P, as shown in the proof of Lemma 3,

sup
θ∈Θ

∫ ∣∣∣∣∣
(

1

n

n∑
i=1

ρ2
i (γ, θ)− E[ρ2

i (γ, θ)]

)∣∣∣∣∣ dQ(γ) ≤
∫

sup
θ∈Θ

∣∣∣∣∣
(

1

n

n∑
i=1

ρ2
i (γ, θ)− E[ρ2

i (γ, θ)]

)∣∣∣∣∣ dQ(γ)→ 0 (21)

a.s.−P.

Finally, combining the above three facts gives

sup
θ∈Θ
|qn(θ)− q(θ)| ≤

∫ ∣∣∣∣∣ 1n
n∑
i=1

g2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ)

+ 2 sup
θ∈Θ

∣∣∣∣∣
∫

1

n

n∑
i=1

gi(γ)ρi(γ, θ)− EP[µi(γ)ρi(γ, θ)]dQ(γ)

∣∣∣∣∣
+ sup
θ∈Θ

∫ ∣∣∣∣∣
(

1

n

n∑
i=1

ρ2
i (γ, θ)− E[ρ2

i (γ, θ)]

)∣∣∣∣∣ dQ(γ)→ 0 a.s. − P

as desired.

(ii) This result follows from the definition of θ̂n and Theorem 2(i), given the fact that for each γ ∈ Γ, ρi(γ, · ) is in C(2)(Θ)

a.s.−P. �

Proof of Theorem 3: We first note that n−1
∑n
i=1

∫
{gi(γ) − ρi(γ, θ̂n)}∇θρi(γ, θ̂n)dQ(γ) = 0 by Lemma 3(iii) and the

definition of θ̂n. We apply the mean-value theorem to the element in the integral by Lemma 3(iv), so that for some θ̄n between

θ∗ and θ̂n, it follows that

1

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ̂n)}∇θρi(γ, θ̂n)dQ(γ) =

1

n

n∑
i=1

∫
{gi(γ)− ρi(γ, θ∗)}∇θρi(γ, θ∗)dQ(γ)

+
1

n

n∑
i=1

∫
{−∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n) + [gi(γ)− ρi(γ, θ̄n)]∇2

θρi(γ, θ̄n)}dQ(θ̂n − θ∗),

so that

An
√
n(θ̂n − θ∗) =

1√
n

n∑
i=1

∫
[gi(γ)− ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ), (22)

where

An :=

{
1

n

n∑
i=1

∫ {
∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n)− [gi(γ)− ρi(γ, θ̄n)]∇2

θρi(γ, θ̄n)
}
dQ(γ)

}
.

We now examine each element in (22), starting with the matrix An and writing

An =
1

n

n∑
i=1

{∫ {
∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n)

}
dQ(γ)−

∫ {
[gi(γ)− ρi(γ, θ̄n)]∇2

θρi(γ, θ̄n)
}
dQ(γ)

}
.

First, as already seen in the proof of Lemma 3(iv), for each j, j′ ∈ {1, 2, . . . , d}, |(∂/∂θj)ρi( · , θ) · (∂/∂θj′)ρi( · , θ)| ∈ L1(Q)

a.s.−P, so that Theorem 2 and interchanging the integral and sample average operators in the limit by the DCT yield

∫
1

n

n∑
i=1

∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n)dQ(γ)→
∫ ∫

∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P.
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Second, we note that for each i, j ∈ {1, 2, . . . , d}, supθ∈Θ |ρi( · , θ)(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P as shown in the

proof of Lemma 3. Therefore, Theorem 2 and the DCT yield

∫
1

n

n∑
i=1

ρi(γ, θ̄n)∇2
θρi(γ, θ̄n)dQ(γ)→

∫ ∫
ρ(γ, θ∗, x)∇2

θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P.

Third, for each j, j′ ∈ {1, 2, . . . , d}, n−1
∑n
i=1 supθ∈Θ |gi( · ) · (∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P as shown in the proof of

Lemma 3. Therefore, in the same manner

∫
1

n

n∑
i=1

gi(γ)∇2
θρi(γ, θ̄n)dQ(γ)→

∫ ∫
µ(γ, x)∇2

θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P.

From these three facts, we deduce that An → A a.s.−P.

Next consider the right side of (22). By virtue of Assumption 1, we can apply the multivariate Lindeberg CLT giving

1√
n

n∑
i=1

∫
[gi(γ)− ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ)

A∼ N (0, B), (23)

because the common mean of the components is
∫ ∫
{g(γ) − ρ(γ, θ∗, x)}∇θρ(γ, θ∗, x)dP(g(γ), x)dQ(γ) =

∫ ∫
{µ(γ, x) −

ρ(γ, θ∗, x)}∇θρ(γ, θ∗, x)dP(x)dQ (γ) = ∇θq(θ∗) = 0 by Lemma 3(i) and for each j and j′,
∫ ∫ ∫

(∂/∂θj)ρ(γ, θ∗, x)·κ(γ, γ̃|x)·

(∂/∂θj′)ρ(γ̃, θ∗, x)dP (x)dQ(γ)dQ(γ̃) <∞, leading to a common positive definite variance matrix B by Assumption 5. From

these properties and the IID condition of Assumption 1(ii), the right side of (22) is asymptotically distributed as N (0, B).

Therefore,
√
n(θ̂n − θ∗)

A∼ N (0, A−1BA−1). This completes the proof. �

Proof of Theorem 4: (i) The desired result can be obtained by following the proof of Theorem 2. Specifically, we can apply the

SULLN and DCT. From the definitions of q̂n( · ) and q( · ), for each θ,

q̂n(θ) =

∫
1

n

n∑
i=1

ĝ2
i (γ)dQ(γ)− 2

∫
1

n

n∑
i=1

{ĝi(γ)ρi(γ, θ)} dQ +

∫
1

n

n∑
i=1

ρ2
i (γ, θ)dQ, (24)

interchanging the integral and finite sample averaging operators. We compare this expression with each element on the right side

of (19). First, Assumption 7(i) implies that

∫ ∣∣∣∣∣ 1n
n∑
i=1

ĝ2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ) ≤ 1

n

n∑
i=1

m2
i + EP[m2

i ] <∞ a.s.− P,

so that application of the DCT gives

∫ ∣∣∣∣∣ 1n
n∑
i=1

ĝ2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ)→ 0 a.s.− P

because: (a)

∫ ∣∣∣∣∣ 1n
n∑
i=1

ĝ2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ) ≤
∫ ∣∣∣∣∣ 1n

n∑
i=1

ĝ2
i (γ)− 1

n

n∑
i=1

g2
i (γ)

∣∣∣∣∣ dQ(γ) +

∫ ∣∣∣∣∣ 1n
n∑
i=1

g2
i (γ)− EP[g2

i (γ)]

∣∣∣∣∣ dQ(γ);

(b) the proof of Theorem 2(i) implies that
∫ ∣∣ 1

n

∑n
i=1 g

2
i (γ)− EP[g2

i (γ)]
∣∣ dQ(γ)→ 0 a.s.−P; and (c) by applying the mean-value
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theorem for some ξ̄n,γ between ξ∗ and ξ̂n,

∫ ∣∣∣∣∣ 1n
n∑
i=1

ĝ2
i (γ)− 1

n

n∑
i=1

g2
i (γ)

∣∣∣∣∣ dQ(γ) = 2

∫ ∣∣∣∣∣ 1n
n∑
i=1

ĝi(γ)∇′ξ g̃i(γ, ξ̄n,γ)

∣∣∣∣∣ dQ · ∣∣∣ξ̂n − ξ∗∣∣∣ .
Thus, for each j = 1, 2, . . . , s, Assumption 7(iii) implies that

∫ ∣∣ 1
n

∑n
i=1 ĝi(γ) · (∂/∂ξj)gi(γ, ξ̄n,γ)

∣∣ dQ ≤ n−1
∑n
i=1m

2
i , and

ξ̂n → ξ∗ a.s.−P by Assumption 8(i). The desired result follows from properties (a), (b), and (c).

Next, compare the second elements in (24) and (19). First,

sup
θ∈Θ

∣∣∣∣∣
∫

1

n

n∑
i=1

(ĝi(γ)ρi(γ, θ)− EP[µi(γ)ρi(γ, θ)]) dQ

∣∣∣∣∣ =

∫
sup
θ∈Θ

∣∣∣∣∣
(

1

n

n∑
i=1

gi(γ)ρi(γ, θ)− EP[gi(γ)ρi(γ, θ)]

)∣∣∣∣∣ dQ + oP(1),

because applying the mean-value theorem implies that for some ξ̄γ,n between ξ∗ and ξ̂n,

sup
θ∈Θ

∣∣∣∣∣
∫ (

1

n

n∑
i=1

{ĝi(γ)− gi(γ)}

)
ρi(γ, θ)dQ

∣∣∣∣∣ = sup
θ∈Θ

∣∣∣∣∣
∫

1

n

n∑
i=1

∇′ξ g̃i(γ, ξ̄γ,n) · ρi(γ, θ)dQ · (ξ̂n − ξ∗)

∣∣∣∣∣ ,
so that for each j = 1, 2, . . . , s,

sup
θ∈Θ

∣∣∣∣∣
∫

1

n

n∑
i=1

(∂/∂ξj)g̃i(γ, ξγ,n) · ρi(γ, θ)dQ · (ξ̂j,n − ξj∗)

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

m2
i

)1/2

sup
θ∈Θ

∣∣∣∣∣
∫

1

n

n∑
i=1

ρ2
i (γ, θ)dQ

∣∣∣∣∣ · ∣∣∣ξ̂j,n − ξj∗∣∣∣→ 0

a.s.−P by Assumptions 7(ii and iii) and 8(i). Now, (21) implies that

sup
θ∈Θ

∣∣∣∣∣
∫

1

n

n∑
i=1

(ĝi(γ)ρi(γ, θ)− EP[µi(γ)ρi(γ, θ)]) dQ

∣∣∣∣∣→ 0 a.s. − P.

Finally, the third component in the right side of (24) is identical to the third element in the right side of (19). The desired

result follows from these three properties.

(ii) This result follows from the definition of θ̃n and Theorem 4(i), given the fact that for each γ ∈ Γ, ρi(γ, · ) is in C(2)(Θ)

a.s.−P. �

Proof of Theorem 5: We first note that n−1
∑n
i=1

∫
{ĝi(γ) − ρi(γ, θ̃n)}∇θρi(γ, θ̃n)dQ(γ) ≡ 0 by Lemma 5(iii) and the

definition of θ̃n. We apply the mean-value theorem to the element in the integral by Lemma 3(iv), so that for some θ̄n between

θ∗ and θ̃n, it follows that

1

n

n∑
i=1

∫
{ĝi(γ)− ρi(γ, θ̂n)}∇θρi(γ, θ̂n)dQ(γ) =

1

n

n∑
i=1

∫
{ĝi(γ)− ρi(γ, θ∗)}∇θρi(γ, θ∗)dQ(γ)

+
1

n

n∑
i=1

∫
{−∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n) + [gi(γ)− ρi(γ, θ̄n)]∇2

θρi(γ, θ̄n)}dQ(θ̃n − θ∗),

and then

Ân
√
n(θ̃n − θ∗) =

1√
n

n∑
i=1

{∫
[ĝi(γ)− ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ)

}
, (25)
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where

Ân :=

{∫
{∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n)− 1

n

n∑
i=1

[ĝi(γ)− ρi(γ, θ̄n)]∇2
θρi(γ, θ̄n)}dQ(γ)

}
.

We examine each element in (25). First, for each j, j′ ∈ {1, 2, . . . , d}, |(∂/∂θj)ρi( · , θ) · (∂/∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P as

shown in the proof of Lemma 3, implying that

1

n

n∑
i=1

∫
∇θρi(γ, θ̄n)∇′θρi(γ, θ̄n)dQ(γ)→

∫
∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P.

by Theorem 4(ii) and the DCT.

Second, for each i, j ∈ {1, 2, . . . , d}, supθ∈Θ |ρi( · , θ)(∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1(Q) a.s.−P by Cauchy-Schwarz, As-

sumption 7(i) and 4(i). Therefore,

∫
1

n

n∑
i=1

ρi(γ, θ̄n)∇2
θρi(γ, θ̄n)dQ(γ)→

∫ ∫
ρ(γ, θ∗, x)∇2

θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P

by the DCT and Theorem 4(ii).

Third, for each j, j′ ∈ {1, 2, . . . , d}, n−1
∑n
i=1 supξ∈Ξ supθ∈Θ |g̃i( · , · , ξ) · (∂2/∂θj∂θj′)ρi( · , θ)| ∈ L1 (Q) a.s.−P as

shown in the proof of Lemma 3. Thus, Assumption 3 and the DCT imply that

1

n

∫ n∑
i=1

Giy(γ)∇2
θρi(γ, θ̄n)dQ(γ)→

∫ ∫
µ(γ, x)∇2

θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P.

These results give Ân → A a.s.−P.

Next, we examine the right side of (25). Applying the mean-value theorem, we obtain the representation given in (5), viz.,

that for some ξ̄n,γ between ξ̂n and ξ∗,

1√
n

∫ n∑
i=1

{ĝi(γ)− ρi(γ, θ∗)}∇θρi(γ, θ∗)dQ(γ)

=
1√
n

∫ n∑
i=1

{gi(γ, ξ∗)− ρi(γ, θ∗)}∇θρi(γ, θ∗)dQ(γ) +
1

n

n∑
i=1

∫
∇θρi(γ, θ∗) · ∇′ξgi(γ, ξ̄n,γ)dQ ·

√
n(ξ̂n − ξ∗). (26)

From the proof of Theorem 3 we have

1√
n

n∑
i=1

∫
[gi(γ)− ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ)

A∼ N (0, B).

We also note that for j = 1, . . . , d and j′ = 1, . . . , s, Assumptions 3(iii) and 7(iii) imply that sup(θ,ξ) |(∂/∂θj)ρi( · , θ) ·

(∂/∂ξj′)g̃i( · , ξ)| ∈ L1(Q) a.s.−P, so that applying the DCT shows that

1

n

n∑
i=1

∫
∇θρi(γ, θ∗)∇′ξgi(γ, ξ̄n,γ)dQ(γ)→M :=

∫
EP[∇θρ(γ, θ∗, xi)∇′ξgi(γ, ξ∗)]dQ(γ) a.s. − P.

In addition, if we combine Assumptions 8(ii and iii) and 9,

√
n(ξ̂n − ξ∗) = −H−1

√
ns∗n + oP(1)

A∼ N (0, H−1JH−1′).
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Therefore,
1

n

n∑
i=1

∫
∇θρi(γ, θ∗)∇′ξgi(γ, ξ̄n,γ)dQ

√
n(ξ̂n − ξ∗)

A∼ N (0,MH−1JH−1′M−1′).

Furthermore, the asymptotic covariance between n−1/2
∑n
i=1

∫
[gi(γ)−ρi(γ, θ∗)]∇θρi(γ, θ∗)dQ(γ) and n−1/2

∑n
i=1

∫
∇θρi(γ,

θ∗) · ∇′ξgi(γ, ξ̄n,γ)dQ(ξ̂n − ξ∗) is obtained as −MH−1K by Assumption 9, implying that the asymptotic covariance matrix of

n−1/2
∫ ∑n

i=1{ĝi(γ) − µi(γ)}∇θρi(γ, θ∗)dQ(γ) is given by B∗ := B −MH−1K −K ′H−1M ′ + MH−1JH−1′M ′, which

is positive definite by Assumption 9. We therefore obtain

1√
n

∫ n∑
i=1

{ĝi(γ)− µi(γ)}∇θρi(γ, θ∗)dQ(γ)
A∼ N (0, B∗). (27)

Finally, A−1 exists by Assumption 4(ii), so that
√
n(θ̃n − θ∗)

A∼ N (0, A−1B∗A
−1) by (25) and (27). This completes the proof.

�

Proof of Theorem 6: We first consider the consistency of Ân. Note that for each j and j′ = 1, 2, . . . , d, sup(γ,θ)∈Γ×Θ

|(∂/∂θj)ρi(γ, θ)(∂/∂θj′)ρi(γ, θ)| ≤ mi ∈ L2(P) by Assumption 3(iii), so that

sup
(γ,θ)∈Γ×Θ

∣∣∣∣∣ 1n
n∑
i=1

(∇θρi(γ, θ)∇′θρi(γ, θ)− EP[∇θρi(γ, θ)∇′θρi(γ, θ)])

∣∣∣∣∣→ 0 a.s.− P

by the SULLN. Therefore, applying the DCT, it follows that

1

n

n∑
i=1

∫
∇θρi(γ, θ̂n)∇′θρi(γ, θ̂n)dQ(γ)→

∫ ∫
∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P (28)

using the fact that θ̂n → θ∗ a.s.−P. We also note that sup(γ,θ)∈Γ×Θ |εi(γ, θ)(∂2/∂θj∂θj′)ρi(γ, θ)| ≤ m2
i ∈ L1(P) by Assump-

tions 3(i, ii, and iv). Therefore,

sup
(γ,θ)∈Γ×Θ

∣∣∣∣∣ 1n
n∑
i=1

(εi(γ, θ) · ∇2
θρi(γ, θ)− EP[εi(γ, θ) · ∇2

θρi(γ, θ)])

∣∣∣∣∣→ 0 a.s.− P

by the SULLN. Therefore, the DCT and the fact that θ̂n → θ∗ a.s.−P imply that

1

n

n∑
i=1

∫
εi(γ, θ̂n) · ∇2

θρi(γ, θ̂n)dQ(γ)→
∫ ∫

{µ(γ, x)− ρ(γ, θ∗, x)}∇2
θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P. (29)

Here, we used the fact that
∫
g(γ)dP(g(γ)|x) = µ(γ, x). Now, (28) and (29) imply that Ân → A a.s.− P.

We next examine the consistency of B̂n. Note that for each j and j′ = 1, 2, . . . , d, sup(γ,γ̃,θ)∈Γ×ΓΘ |(∂/∂θj)ρi(γ, θ)εi(γ, θ)

εi(γ̃, θ)(∂/∂θj′)ρi(γ̃, θ)| ≤ m2
i ∈ L1(P) by Assumptions 3(i, ii, and iii), so that

sup
(γ,γ̃,θ)∈Γ×Γ×Θ

∣∣∣∣∣ 1n
n∑
i=1

(∇θρi(γ, θ)εi(γ, θ)εi(γ̃, θ)∇′θρi(γ̃, θ)− EP[∇θρi(γ, θ)εi(γ, θ)εi(γ̃, θ)∇′θρi(γ̃, θ)])

∣∣∣∣∣→ 0
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a.s.−P by the SULLN. Therefore, applying the DCT, it follows that

B̂n :=
1

n

n∑
i=1

∫ ∫
∇θρi(γ, θ̂n)εi(γ, θ̂n)εi(γ̃, θ̂n)∇′θρi(γ̃, θ̂n)dQ(γ)dQ(γ̃)

→
∫ ∫

∇θρ(γ, θ∗, x)

∫
ε(γ, θ∗)ε(γ̃, θ∗)dP(g(γ), g(γ̃)|x)∇′θρ(γ̃, θ∗, x)dP(x)dQ(γ)dQ(γ̃) a.s.− P

using the fact that θ̂n → θ∗ a.s.−P. Here,

∫
ε(γ, θ∗)ε(γ̃, θ∗)dP(g(γ), g(γ̃)|x) =

∫
{g(γ)− ρ(γ, θ∗, x)}{g(γ̃)− ρ(γ̃, θ∗, x)}dP(|x) =: κ(γ, γ̃|x).

Therefore, B̂n →
∫ ∫
∇θρ(γ, θ∗, x)κ(γ, γ̃|x)∇′θρ(γ̃, θ∗, x)dP(x)dQ(γ)dQ(γ̃) a.s. − P, corresponding to the definition of B.

This completes the proof. �

Proof of Theorem 7: We start by showing consistency of Ãn. First, (28) implies that

1

n

n∑
i=1

∫
∇θρi(γ, θ̃n)∇′θρi(γ, θ̃n)dQ(γ)→

∫ ∫
∇θρ(γ, θ∗, x)∇′θρ(γ, θ∗, x)dP(x)dQ(γ). (30)

Next, Assumptions 11(i and iii) imply that sup(γ,θ,ξ)∈Γ×Θ×Ξ |εi(γ, θ, ξ) · (∂2/∂θj∂θj′)ρi(γ, θ)| ≤ m2
i ∈ L1(P) for each j and

j′ = 1, 2, . . . , d. Therefore, the SULLN implies that

sup
(γ,θ,ξ)∈Γ×Θ×Ξ

∣∣∣∣∣ 1n
n∑
i=1

εi(γ, θ, ξ) · ∇2
θρi(γ, θ)− EP[εi(γ, θ, ξ) · ∇2

θρi(γ, θ)]

∣∣∣∣∣→ 0 a.s.− P

by the DCT. Therefore,

1

n

n∑
i=1

∫
ε̃i(γ, θ̃n) · ∇2

θρi(γ, θ̃n)→
∫ ∫

{µ(γ, x)− ρ(γ, θ∗, x)}∇2
θρ(γ, θ∗, x)dP(x)dQ(γ) a.s.− P (31)

noting that
∫
g(γ)dP(g(γ)|x) = µ(γ, x). Now, (30) and (31) imply that Ãn → A a.s.−P.

We next show the consistency of B̃n. From the definition of B̃n, if we show that (i) B̄n → B a.s.−P, (ii) M̂n →M a.s.−P,

and (iii) K̂n → K a.s.−P, then the consistency of B̃n follows from Assumption 10.

(i) Proving that B̄n → B a.s.−P is almost identical to proving that of B̂n → B. Note that for each j and j′ = 1, 2, . . . , d,

sup(γ,γ̃,θ,ξ)∈Γ×ΓΘ |(∂/∂θj)ρi(γ, θ)εi(γ, θ, ξ)εi(γ̃, θ, ξ)(∂/∂θj′)ρi(γ̃, θ)| ≤ m2
i ∈ L1(P) by Assumptions 11(i and ii), so that

sup
(γ,γ̃,θ,ξ)

∣∣∣∣∣ 1n
n∑
i=1

(∇θρi(γ, θ)εi(γ, θ, ξ)εi(γ̃, θ, ξ)∇′θρi(γ̃, θ)− EP[∇θρi(γ, θ)εi(γ, θ, ξ)εi(γ̃, θ, ξ)∇′θρi(γ̃, θ)])

∣∣∣∣∣→ 0

a.s.−P by the SULLN. Therefore, applying the DCT, it follows that

B̄n :=
1

n

n∑
i=1

∫ ∫
∇θρi(γ, θ̃n)ε̃in(γ, θ̃n)ε̃in(γ̃, θ̃n)∇′θρi(γ̃, θ̃n)dQ(γ)dQ(γ̃)

→
∫ ∫

∇θρ(γ, θ∗, x)

∫
ε(γ, θ∗, ξ∗)ε(γ̃, θ∗, ξ∗)dP(g(γ), g(γ̃)|x)∇′θρ(γ̃, θ∗, x)dP(x)dQ(γ)dQ(γ̃) a.s.− P

using the fact that (ξ̂n, θ̃n)→ (ξ∗, θ∗) a.s.−P. In the proof of Theorem 6, we have already seen that the right side is identical to
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B. Therefore, B̄n → B a.s.−P.

(ii) Now we show M̂n → M a.s.−P. Note that Assumptions 11(ii and iv) imply that for each j = 1, 2, . . . , d and j′ =

1, 2, . . . , s, sup(γ,θ,ξ)∈Γ×Θ×Ξ |(∂/∂θj)ρi(γ, θ) · (∂/∂ξj′)G̃yi(γ, ξ)| ≤ m2
i ∈ L1(P). Therefore,

sup
(γ,θ,ξ)∈Γ×Θ×Ξ

∣∣∣∣∣ 1n
n∑
i=1

∇θρi(γ, θ)∇′ξ g̃i(γ, ξ)− EP[∇θρi(γ, θ)∇′ξ g̃i(γ, ξ)]

∣∣∣∣∣→ 0 a.s.− P (32)

by the SULLN. Therefore, applying the DCT implies that

M̂n :=
1

n

n∑
i=1

∫
∇θρi(γ, θ̃n)∇′ξ g̃i(γ, ξ̂n)dQ(γ)→

∫
EP[∇θρi(γ, θ∗)∇′ξ g̃i(γ, ξ∗)]dQ(γ) a.s. − P

using the fact that (ξ̂n, θ̃n)→ (ξ∗, θ∗) a.s.−P. Note that the right side is M , implying that M̂n →M a.s.−P.

(iii) Next we show K̂n → K a.s.−P. Note that sup(γ,θ,ξ)∈Γ×Θ×Ξ |si(ξ){g̃i(γ, ξ)− ρi(γ, θ}∇′θρi(γ, θ)| ≤ m2
i ∈ L2(P) by

Assumptions 11(i, ii, and v). Therefore, the SULLN implies that

sup
(γ,θ,ξ)∈Γ×Θ×Ξ

∣∣∣∣∣ 1n
n∑
i=1

si(ξ){g̃i(γ, ξ)− ρi(γ, θ)}∇′θρi(γ, θ)− EP[si(ξ){g̃i(γ, ξ)− ρi(γ, θ)}∇′θρi(γ, θ)]

∣∣∣∣∣→ 0

a.s.−P. Applying the DCT implies that

K̂n :=
1

n

n∑
i=1

∫
si(ξ̂n){g̃i(γ, ξ̂n)− ρi(γ, θ̃n)}∇′θρi(γ, θ̃n)dQ

→
∫
EP[si(ξ∗){g̃i(γ, ξ∗)− ρi(γ, θ∗}∇′θρi(γ, θ∗)]dQ(γ) =: K a.s.− P

using the fact that (ξ̂n, θ̃n)→ (ξ∗, θ∗) a.s.−P.

The consistency of B̃n for B∗ now follows as a consequence of (i, ii, and iii) in this proof. �

Proof of Lemma 1: (i) First, Theorem 2(i) implies that supθ∈Θ |qn(θ)− q(θ) | → 0 a.s−P, so that the CFLS estimator θ̈[n must

converge to θ† a.s.−P, as θ† is constrained by the same constraint h(θ) = 0. Second, θ∗ is the global minimizer of q( · ) and also

satisfies that h(θ∗) = 0 under Ho. Therefore, θ∗ = θ†, as desired.

(ii) Theorem 4(i) implies that supθ∈Θ |q̂n(θ) − q(θ)| → 0 a.s−P, so that the CTSFLS estimator θ̈]n must converge to θ†

a.s.−P, as θ† is constrained by the same constraint h(θ) = 0. The remainder of the proof is identical to the proof of Lemma 1(i).

�

Proof of Theorem 8: (i) By virtue of the mean-value theorem, for some θ̄n between θ̂n and θ∗,
√
n{h(θ̂n) − h(θ∗)} =

D(θ̄n)
√
n(θ̂n − θ∗), so that Theorems 2 and 3 imply that

√
n{h(θ̂n) − h(θ∗)}

A∼ N (0, D∗A
−1BA−1D′∗). Further, B̂n → B

a.s.−P by Theorem 6, so that n{h(θ̂n) − h(θ∗)}′{D∗A−1B̂nA
−1D′∗}−1{h(θ̂n) − h(θ∗)}

A∼ X 2(r, 0). Therefore, under H0,

W[
n

A∼ X 2(r, 0). Meanwhile, nh(θ̂n)′ {D∗A−1B̂nA
−1D′∗}−1h(θ̂n) = OP(n) but not oP(n) because h(θ̂n)→ h(θ∗) 6= 0 under

Ha, so that the desired result follows.

(ii) The proofs are almost identical to Theorem 8(i): under Ho,
√
n{h(θ̃n) − h(θ∗)}

A∼ N (0, D∗A
−1B∗A

−1D′∗) by the

mean-value theorem and Theorems 4 and 5; and B̃n → B∗ a.s.−P by Theorem 7, so that n{h(θ̃n) − h(θ∗)}′{D∗A−1

B̃nA
−1D′∗}−1{h(θ̃n)−h(θ∗)}

A∼ X 2(r, 0) under Ho, implying thatW]
n

A∼ X 2(r, 0) under Ho. Meanwhile, nh(θ̃n)′{D∗A−1B̃n
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A−1D′∗}−1h(θ̃n) = OP(n) but not oP(n) because h(θ̃n)→ h(θ∗) 6= 0 under Ha, as desired. �

Proof of Theorem 9: (i) The CFLS estimator can be obtained by minimizing the Lagrange function: Ln(θ, λ) := qn(θ)−λ′h(θ),

whose first-order conditions can be given as ∇θqn(θ̈[n) − λ̈[′n D̈[
n ≡ 0 and h(θ̈[n) ≡ 0, where (θ̈[

′

n , λ̈
[′

n )′ is the solution for the

first-order conditions. In addition, for some θ̄[n between θ̈[n and θ∗,

∇θqn(θ̈[n) = ∇θqn(θ∗) +∇2
θqn(θ̄[n)(θ̈[n − θ∗) and h(θ̈[n) = h(θ∗) + D̈[

n(θ̈[n − θ∗) + oP(1).

Plugging these into the first-order conditions, we obtain that

√
n(θ̈[n − θ∗) = −{∇2

θqn(θ̄[n)}−1(J − D̈[′

n {Ë[n}−1D̈[
n{∇2

θqn(θ̄[n)}−1)
√
nψn

− {∇2
θqn(θ̄[n)}−1D̈[′

n {Ë[n}−1
√
nh(θ∗) + oP(1) and (33)

√
nλ̈[n = {Ë[n}−1D̈[

n{∇2
θqn(θ̄[n)}−1

√
nψn + {Ë[n}−1

√
nh(θ∗),

where Ë[n := −D̈[
n{∇2

θqn(θ̄[n)}−1D̈[′

n , and ψn := ∇θqn(θ∗).

Given this, applying Theorem 3 implies that
√
nψn

A∼ N (0, 4B). Furthermore, under Ho, θ̈[n → θ∗ a.s.−P, and θ̂n → θ∗

a.s.−P, so that Ë[n → − 1
2D∗A

−1D′∗ a.s.−P. Therefore,
√
nλ̈[n

A∼ N [0, 4(D∗A
−1D′∗)

−1D∗A
−1BA−1D′∗ (D∗A

−1D′∗)
−1],

implying that n4 λ̈
[′

nD∗A
−1D′∗(D∗A

−1BA−1D′∗)
−1D∗A

−1D′∗λ̈
[
n

A∼ X 2(r, 0). Given this result, we also obtain that LM[
n

A∼

X 2(r, 0) from Theorem 6, ∇θqn(θ̈[n) ≡ λ̈[
′

n D̈
[
n, and the fact that θ̈[n → θ∗ a.s.−P under Ho. Meanwhile,

√
nh(θ∗) = OP(

√
n)

though not oP(
√
n) under Ha; D̈[

n → D† := D(θ†) a.s.−P; and∇2
θqn(θ̄[n)→ ∇2

θq(θ§) a.s.−P for some θ§ such that∇θq(θ†) =

∇θq(θ∗) +∇2
θq(θ§)(θ† − θ∗), so that

√
nλ̈[n = OP(

√
n) though not oP(

√
n). Therefore, the desired result follows.

(ii) The proofs are almost identical to those of Theorem 9(i). The TSCFLS estimator can be obtained by minimizing the

Lagrange function: L̂n(θ, λ) := q̂n(θ)−λ′h(θ), whose first-order conditions are given as∇θ q̂n(θ̈]n)−λ̈]′n D̈]
n ≡ 0 and h(θ̈]n) ≡ 0,

where (θ̈]
′

n , λ̈
]′

n )′ is the solution for the first-order conditions. In addition, for some θ̄]n between θ̈]n and θ∗,

∇θ q̂n(θ̈]n) = ∇θ q̂n(θ∗) +∇2
θ q̂n(θ̄]n)(θ̈]n − θ∗) and h(θ̈]n) = h(θ∗) + D̈]

n(θ̈]n − θ∗) + oP(1).

By plugging these into the first-order conditions, we obtain that

√
n(θ̈]n − θ∗) =− {∇2

θ q̂n(θ̄]n)}−1(J − D̈]′

n {Ë]n}−1D̈]
n{∇2

θ q̂n(θ̄]n)}−1)
√
nψ̂n

− {∇2
θ q̂n(θ̄]n)}−1D̈]′

n {Ë]n}−1
√
nh(θ∗) + oP(1) and (34)

√
nλ̈]n = {Ë]n}−1D̈]

n{∇2
θ q̂n(θ̄]n)}−1

√
nψn + {Ë]n}−1

√
nh(θ∗), (35)

where Ë]n := −D̈n{∇2
θ q̂n(θ̄]n)}−1D̈]′

n , and ψ̂n := ∇θ q̂n(θ∗).

Given this,
√
nψn

A∼ N (0, 4B∗) by applying (27). Further, θ̈]n → θ∗ a.s.−P under Ho, and θ̃n → θ∗ a.s.−P, so that Ë]n →

− 1
2D∗A

−1D′∗ a.s.−P and
√
nλ̈]n

A∼ N [0, 4(D∗A
−1D′∗)

−1D∗A
−1B∗A

−1D′∗(D∗A
−1D′∗)

−1], implying that n4 λ̈
]′

nD∗A
−1D′∗(D∗

A−1B∗A
−1D′∗)

−1D∗A
−1D′∗λ̈

]
n

A∼ X 2(r, 0). Therefore, LM]
n

A∼ X 2(r, 0) by Theorem 7,∇θ q̂n(θ̈]n) ≡ λ̈]′n D̈]
n, and the fact that

θ̈]n → θ∗ a.s.−P under Ho. Meanwhile,
√
nh(θ∗) = OP(

√
n) though not oP(

√
n) under Ha; D̈]

n → D† := D(θ†) a.s.−P; and

∇2
θ q̂n(θ̄]n)→ ∇2

θq(θ§) a.s.−P for some θ§ such that∇θq(θ†) = ∇θq(θ∗) +∇2
θq(θ§)(θ†− θ∗), so that

√
nλ̈]n = OP(

√
n) though
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not oP(
√
n). The desired result then follows. �

Proof of Theorem 10: (i) By the mean-value theorem and the first-order condition for θ̂n, note that for some θ̃[n between θ̂n and

θ̈[n,

qn(θ̈[n) = qn(θ̂n) +
1

2
(θ̈[n − θ̂n)′{∇2

θqn(θ̃[n)}(θ̈[n − θ̂n). (36)

Furthermore, it follows that

√
n(θ̈[n − θ̂n) = {∇2

θqn(θ̄[n)}−1D̈[′

n {Ë[n}−1
√
n[D̈[

n{∇2
θqn(θ̄[n)}−1ψn − h(θ∗)] + oP(1) (37)

from (33) and (22). As given in the proof of Theorem 9(i), θ̈[n → θ∗ a.s.−P, θ̃[n → θ∗ a.s.−P under Ho, and θ̂n → θ∗

a.s.−P, so that Ë[n → − 1
2D∗A

−1D′∗ a.s.−P and ∇2
θqn(θ̃[n) → 2A a.s.−P. In addition,

√
nψn

A∼ N (0, 4B) as given in the

proof of Theorem 3. Therefore, if we employ all these results in (36), n{qn(θ̈[n) − qn(θ̂n)} ⇒ W ′(D∗A
−1D′∗)

−1W under Ho.

Meanwhile,
√
n(θ̈[n− θ̂∗) is not bounded in probability under Ha mainly because

√
nh(θ∗) = O(

√
n) though not o(

√
n) in (37);

D̈[
n → D† := D(θ†) a.s.−P; and∇2

θqn(θ̄[n)→ ∇2
θq(θ§) a.s.−P for some θ§ such that∇θq(θ̈[) = ∇θq(θ∗) +∇2

θq(θ§)(θ̈
[− θ∗).

The desired result then follows.

(ii) The proofs follow those of Theorem 10(i). By the mean-value theorem and the first-order condition for θ̃n, for some θ̃]n

between θ̃n and θ̈]n,

qn(θ̈]n) = qn(θ̃n) +
1

2
(θ̈]n − θ̃n)′{∇2

θqn(θ̃]n)}(θ̈]n − θ̃n). (38)

Furthermore, it follows that

√
n(θ̈]n − θ̃n) = {∇2

θqn(θ̄]n)}−1D̈]′

n {Ë]n}−1
√
n[D̈]

n{∇2
θqn(θ̄]n)}−1ψ̂n − h(θ∗)] + oP(1), (39)

by (34) and (25). As given in the proof of Theorem 9(ii), we have θ̈]n → θ∗ a.s.−P, θ̃]n → θ∗ a.s.−P under Ho, and θ̃n → θ∗

a.s.−P, so that Ë]n → − 1
2D∗A

−1D′∗ a.s.−P and ∇2
θqn(θ̃]n) → 2A a.s.−P. Further,

√
nψ̂n

A∼ N (0, 4B∗) as given in the proof

of Theorem 5. Thus, if we use these results in (38), n{qn(θ̈]n) − qn(θ̃n)} ⇒ W ′∗(D∗A
−1D′∗)

−1W∗ under Ho. Meanwhile,
√
n(θ̈]n − θ̃n) is not bounded in probability under Ha mainly because

√
nh(θ∗) = O(

√
n) though not o(

√
n) in (39); D̈]

n →

D† := D(θ†) a.s.−P; and ∇2
θqn(θ̄]n) → ∇2

θq(θ§) a.s.−P for some θ§ such that ∇θq(θ̈]) = ∇θq(θ∗) +∇2
θq(θ§)(θ̈

] − θ∗). The

desired result follows. �

C Estimating the Population Mean Function

This section explores estimation of the population mean function of gi( · ). For each γ the mean quantity

µ(γ) :=

∫
g(γ)dP(g(γ))

is no longer a function of x and for each γ we may denote µ(γ) as E[gi(γ)]. Estimation and inference on µ( · ) cannot be made

byM due to the presence of xi in ρi( · , θ). We, therefore, suppose another model without xi as follows:

M0 := {ρ( · , θ) : Γ 7→ R|θ ∈ Θ ∈ Rd}
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and estimate µ( · ) by FLS estimation, i.e.,

θ̈n := arg min
θ∈Θ

q̈n(θ), where q̈n(θ) :=
1

n

n∑
i=1

∫
{g̃i(γ, ξ̂n)− ρ(γ, θ)}2dQ(γ),

which again is designed to consistently estimate

θ̈ := arg min
θ∈Θ

q̈(θ), where q̈(θ) :=

∫ ∫
{g(γ)− ρ(γ, θ)}2dP(g(γ)dQ(γ).

Asymptotic analysis of this FLS estimator is a special case of the analysis in Section 3, so that consistency and asymptotic

normality of θ̈n can be achieved under milder conditions than those of Section 3. We first collect the conditions together as

follows.

Assumption 13. (i) For each θ ∈ Θ, ρ( · , θ) : Γ 7→ R is measurable −G;

(ii) for each γ ∈ Γ, ρ(γ, · ) : Θ 7→ R is in C(2)(Θ);

(iii) Θ is a compact and convex set in Rd (d ∈ N);

(iv) θ̈∗ is unique and lies in the interior of Θ;

(v) A0 is positive definite, where A0 :=
∫
∇θρ(γ, θ̈∗)∇′θρ(γ, θ̈∗)dQ(γ)−

∫
{µ(γ)− ρ(γ, θ∗)}∇2

θρ(γ, θ̈∗)dQ(γ);

(vi) for some mi ∈ L2(P), sup(γ,ξ)∈Γ×Ξ |g̃i(γ, ξ)| ≤ mi a.s. −P and supj sup(γ,ξ)∈Γ×Ξ |(∂/∂ξj)g̃i(γ, ξ)| ≤ mi a.s. −P;

(vii) supθ∈Θ |ρ( · , θ)| ∈ L2(Q) and for each j and j′ = 1, 2, . . . , d, supθ∈Θ |(∂/∂θj)ρ( · , θ)| ∈ L2(Q) and supθ∈Θ |(∂2/∂θj

∂θj′)ρ( · , θ)| ∈ L2(Q);

(viii) C0 is positive definite, where

C0 :=

 J K ′0

K0 B0

 ,
K0 :=

∫
EP[si(ξ∗){g̃i(γ, ξ∗)−ρ(γ, θ̈∗)}]∇′θρ(γ, θ̈∗)dQ(γ), B0 :=

∫ ∫
∇θρ(γ, θ̈∗)κ(γ, γ̃)∇′θρ(γ̃, θ̈∗)dQ(γ)dQ(γ̃), and κ(γ, γ̃)

:=
∫

(g(γ)− ρ(γ, θ̈∗))(g(γ̃)− ρ(γ̃, θ̈∗))dP(g(γ), g(γ̃)); and

(ix) B† is positive definite, where B† := B0 − M0H
−1K0 − K ′−1

0 M0 + M0H
−1JH−1M ′0 and M0 :=

∫
∇θρ(γ, θ̈∗)

EP[∇′ξ g̃i(γ, ξ∗)]dQ(γ). �

There is a correspondence between Assumption 13 and the earlier conditions. Assumptions 13(i, ii, iii, and iv) correspond to

Assumption 2 and, due to the absence of xi in the model, the conditions in Assumption 2 are appropriately modified. Assumption

13(iv) also corresponds to Assumption 4. Note that the integrands of A0 are non-stochastic, whereas A has stochastic integrands.

This difference again stems from the absence of xi from the modelM0. Assumptions 13(vi and vii) correspond to Assumption

7. Assumption 13(vi) is the same as Assumptions 7(i and iii), but Assumption 13(vii) is milder than Assumption 7(ii, iv, and

v). We do not need the stochastic bound conditions for the model and its derivatives due to the absence of xi. Finally, note that

Assumptions 13(viii and ix) correspond to Assumption 9.

The following corollary gives the limit behavior of q̈n( · ) and θ̈n using Assumption 13 in addition to the conditions for ξ̂n.

Corollary (A). Given Assumptions 6, 8, and 13,

(i) supθ∈Θ |q̈n(θ)− q̈(θ)| → 0 a.s.−P;

(ii) θ̈n → θ̈∗ a.s.−P;

(iii)
√
n(θ̈n − θ̈∗)

A∼ N (A−1
0 B†A

−1
0 ); and
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(iv) if ξ∗ is known,
√
n(θ̈n − θ̈∗)

A∼ N (A−1
0 B0A

−1
0 ). �

In view of the parallel structure of θ̈n to θ̃n, Corollary (C) can be established by repeating the arguments given in earlier sections.

The proof is omitted.

D Derivation of Test Statistic Basis in Section 5.4

The form of gi is derived by following Davies (1977). Specifically, it is obtained by imposing the hypothesis π∗ = 0 to the

standardized score obtained with respect to π. That is,

1√
n

n∑
i=1

gi (Ui, Vi) =
1√
n

n∑
i=1

∂

∂π
log {(1− π)c1(Ui, Vi; γ1) + πc2(Ui, Vi; γ2)} /W (γ1, γ2, π)

∣∣∣∣
π=0

,

where

W (γ1, γ2, π) := var

[
∂

∂π
log {(1− π)c1(Ui, Vi; γ1) + πc2(Ui, Vi; γ2)}

]1/2

.

In our setup note that

∂

∂π
log {(1− π)c1(Ui, Vi; γ1) + πc2(Ui, Vi; γ2)}

∣∣∣∣
π=0

=
c2(Ui, Vi; γ2)− c1(Ui, Vi; γ1)

c1(Ui, Vi; γ1)

and

W (γ1, γ2, 1) =

√∫ 1

0

∫ 1

0

c22(u, v; γ2)

c1(u, v; γ1)
dudv − 1,

leading to the desired expression for gi in Section 5.4.
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Random Effect Model Estimates FLS Estimates
θ̂1n θ̂2n θ̂3n θ̂1n θ̂2n θ̂3n

Quadratic

n = 100
bias -0.1559 0.0100 0.0001 -0.0020 0.0003 0.0001

RMSE 0.1616 0.0113 0.0001 0.0354 0.0046 0.0001
MAPE 1.7855 14.8004 34.3178 0.3234 5.3394 32.3014

n = 300
bias -0.0979 0.0037 0.0001 -0.0012 0.0001 0.0001

RMSE 0.1010 0.0048 0.0001 0.0210 0.0027 0.0001
MAPE 1.1210 5.8866 19.9489 0.1915 3.1593 19.0344

n = 500
bias -0.0862 0.0024 0.0001 -0.0011 0.0001 0.0001

RMSE 0.0883 0.0034 0.0001 0.0163 0.0021 0.0001
MAPE 0.9866 4.0821 15.4756 0.1491 2.4345 14.7696

Cubic

n = 100
bias -0.2368 0.0212 -0.0002 -0.0038 -0.0009 0.0001

RMSE 0.2426 0.0247 0.0008 0.0389 0.0104 0.0007
MAPE 2.7866 14.8579 10.3461 0.3663 5.6874 8.9748

n = 300
bias -0.1807 0.0156 -0.0003 -0.0025 -0.0012 0.0001

RMSE 0.1832 0.0172 0.0005 0.0228 0.0062 0.0004
MAPE 2.1261 10.7005 6.7877 0.2139 3.3585 5.3161

n = 500
bias -0.1694 0.0144 -0.0003 -0.0033 -0.0011 0.0001

RMSE 0.1711 0.0155 0.0005 0.0188 0.0049 0.0003
MAPE 1.9935 9.8807 5.9050 0.1779 2.7076 4.2286

Quartic

n = 100
bias -0.4919 0.0732 -0.0031 -0.4159 0.0566 -0.0021

RMSE 0.4957 0.0774 0.0041 0.4195 0.0612 0.0032
MAPE 6.1361 18.9974 10.4001 5.1872 14.6840 8.0462

n = 300
bias -0.4401 0.0691 -0.0033 -0.4146 0.0562 -0.0020

RMSE 0.4416 0.0706 0.0036 0.4159 0.0058 0.0025
MAPE 5.5147 18.0797 10.2448 5.1951 14.7054 6.6191

n = 500
bias -0.4299 0.0684 -0.0033 -0.4145 0.0562 -0.0020

RMSE 0.4308 0.0693 0.0035 0.4152 0.0572 0.0023
MAPE 5.3926 17.9323 10.4133 5.1982 14.7399 6.4429

Quartic (r)

n = 100
bias -0.1166 0.0070 -0.0001 -0.0024 0.0003 0.0001

RMSE 0.1231 0.0076 0.0001 0.0357 0.0030 0.0001
MAPE 1.2665 20.7027 47.2998 0.3064 7.3860 39.6026

n = 300
bias -0.0604 0.0157 0.0001 -0.0018 0.0001 0.0001

RMSE 0.0646 0.0024 0.0001 0.0213 0.0018 0.0001
MAPE 0.6640 5.8626 24.0223 0.1812 4.3530 23.8094

n = 500
bias -0.0491 0.0047 0.0001 -0.0019 0.0001 0.0001

RMSE 0.0521 0.0014 0.0001 0.0169 0.0014 0.0001
MAPE 0.5373 3.5254 17.8046 0.1461 3.3860 18.3335

Table 5.1: ACCURACY ASSESSMENT FOR MODEL ESTIMATES UNDER QUADRATIC, CUBIC, QUARTIC AND RESTRICTED
QUARTIC MODEL SPECIFICATIONS. This table shows the accuracy assessments using the finite sample bias, root mean square er-
ror (RMSE) and mean absolute percentage error (MAPE) of the random effect and FLS estimations. The estimation errors of θ̂4n

and θ̂5n in the cubic and quartic specifications are very small in both panel estimates and FLS estimates, and they are omitted for
brevity. DGP:wi(t) = θ1∗+θ2∗t+θ3∗t

2+θ4∗t
3+θ5∗t

4+εi(t) and dεi(t) = −κ†εi(t)dt+σ†dWi(t). Data for the random effect
model estimation: {wit : i = 1, 2, . . . , n and t = 1, 2, . . . T}. Data for FLS estimation: {gi(·) : [0, 40] 7→ R : i = 1, 2, . . . , n},
with gi(·) being constructed by the local polynomial kernel method. Number of Experiments: 5,000.
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Size of the Test Statistics

Statistics Levels\n 25 50 100 300 500
1% 6.36 3.29 2.10 1.38 1.15

W[
n 5% 12.26 8.30 7.01 5.25 5.45

10% 17.50 13.71 12.12 10.48 10.51
1% 6.36 3.29 2.10 1.38 1.15

LM[
n 5% 12.26 8.30 7.01 5.25 5.45

10% 17.50 13.71 12.12 10.48 10.51
1% 3.84 2.27 1.82 1.01 1.27

QLR[
n 5% 9.38 7.13 6.66 5.21 5.48

10% 14.60 12.55 12.13 9.76 10.91
1% 0.86 1.00 1.12 1.02 1.14

C(α) 5% 4.78 5.30 5.10 5.34 5.12
10% 10.10 10.24 10.52 10.50 10.72

Power of the Test Statistics (Level of Significance: 5%)

Statistics π†\n 25 50 100 300 500
0.10 13.76 9.56 10.16 13.46 20.20
0.20 16.20 17.02 19.86 43.28 65.94

W[
n 0.30 20.42 24.78 37.38 79.32 96.04

0.40 29.08 38.96 61.68 97.38 99.86
0.50 37.08 54.30 80.58 99.94 100.0
0.10 13.76 9.56 10.16 13.46 20.20
0.20 16.20 17.02 19.86 43.28 65.94

LM[
n 0.30 20.42 24.78 37.38 79.32 96.04

0.40 29.08 38.96 61.68 97.38 99.86
0.50 37.08 54.30 80.58 99.94 100.0
0.10 9.34 8.84 10.40 16.84 25.42
0.20 12.94 16.52 22.76 53.38 75.22

QLR[
n 0.30 17.88 26.76 44.34 86.88 98.38

0.40 27.06 44.34 71.06 99.10 100.0
0.50 37.34 61.82 87.70 99.96 100.0
0.10 8.10 10.10 13.46 26.22 36.32
0.20 13.32 20.04 31.44 63.80 82.60

C(α) 0.30 21.40 31.78 54.12 90.74 98.72
0.40 29.76 49.82 76.24 99.16 100.0
0.50 40.10 64.92 90.20 99.94 100.0

Table 5.2: SIZE AND POWER OF THE TEST STATISTICS FOR HOMOGENEITY (IN PERCENT). This table shows the empirical
rejection rates of the Wald, LM, QLR, and C(α) test statistics. Null DGP: xi ∼ IID Exp(1). Alternative DGP: xi ∼ IID
π†Exp(1) + (1−π†)Exp(2). Model: ρ(γ, θ1, θ2) = θ1 + θ2(γ− 1)/(2γ− 1)1/2, γ ∈ [1.5, 2.5]. Number of Experiments: 5,000.
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Size of the Test Statistics

Statistics Levels\n 25 50 100 300 500
1% 3.42 3.26 2.86 2.75 1.52

W]
n 5% 10.20 9.92 8.42 6.15 5.93

10% 19.88 17.85 15.53 14.35 11.10
1% 1.18 1.98 2.38 2.65 1.61

LM]
n 5% 8.58 8.52 8.27 6.22 5.71

10% 17.24 17.54 15.24 14.20 10.79
1% 1.72 1.70 1.14 1.10 1.01

QLR]
n 5% 4.58 4.98 4.96 5.15 4.82

10% 8.96 10.40 10.26 11.20 9.45
1% 0.68 0.80 0.88 1.02 1.12

BPn 5% 3.02 4.22 4.50 4.90 4.94
10% 6.78 8.52 9.66 10.04 9.12

Power of the Test Statistics (Level of Significance: 5%)

Statistics π∗\n 25 50 100 300 500
0.01 12.00 10.22 8.40 6.18 6.40
0.02 12.18 10.29 8.58 7.90 11.36

W]
n 0.03 12.46 10.62 9.14 12.26 20.80

0.04 12.82 11.62 10.72 18.46 32.20
0.05 13.14 12.52 12.48 26.42 43.78
0.01 8.68 9.06 8.00 6.02 6.30
0.02 8.72 9.15 8.44 7.68 11.12

LM]
n 0.03 9.16 9.30 8.46 11.76 20.52

0.04 9.74 10.08 9.82 18.10 31.82
0.05 9.90 10.86 11.64 26.00 43.36
0.01 6.12 6.04 6.64 7.16 8.42
0.02 7.12 7.62 9.56 12.80 17.92

QLR]
n 0.03 8.30 10.04 12.76 20.52 31.38

0.04 9.42 12.12 16.00 29.88 44.86
0.05 10.68 14.46 19.70 39.74 57.50
0.01 3.60 5.10 5.58 5.89 6.30
0.02 4.16 5.76 6.70 7.10 7.12

BPn 0.03 4.72 6.52 8.06 9.18 9.38
0.04 5.28 7.48 8.96 10.44 10.64
0.05 5.76 8.24 9.78 11.54 11.92

Table 5.3: SIZE AND POWER OF THE RANDOM COEFFICIENT TESTS (IN PERCENT). This table shows the empirical rejection
rates of the Wald, LM, QLR, and Breusch-Pagan (BPn) test statistics. Null DGP: yi = x′iψ† + ui such that xi := (1, zi)

′ and
zi ∼ IID U [0, 1] and ui ∼ IIDN (0, 1), where ψ† = (1, 1)′. Alternative DGP: yi = x′iψ†+ui such that ui = π

1/2
† x′iΩ

1/2(γ†)νi+

δ
1/2
† εi such that xi := (1, zi)

′, zi ∼ IID U [0, 1], and (ν′i, εi)
′ ∼ IID N (0, I3), where ψ† = (1, 1)′, γ† = 0.5, and δ† = 1. Model:

ρ(γ, θ1, θ2) = θ1 + θ2 exp(γ), γ ∈ [0, 1]. Number of Experiments: 5,000.
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Size of the Test Statistics

Statistics Levels\n 25 50 100 300 500
1% 2.45 1.64 1.40 0.97 0.99

W]
n 5% 8.28 6.02 5.96 4.87 4.77

10% 14.03 11.30 10.92 9.73 9.77
1% 0.66 0.84 1.00 0.82 0.88

LM]
n 5% 5.14 4.62 5.18 4.48 4.45

10% 10.62 9.60 9.83 9.20 9.23
1% 4.43 2.76 2.14 1.55 1.25

QLR]
n 5% 11.50 7.86 7.35 6.19 5.79

10% 17.15 13.38 12.82 11.43 11.31
1% 0.18 0.72 1.00 0.73 1.47

CMn 5% 1.14 1.98 2.82 3.20 3.24
10% 2.18 3.36 4.96 6.40 5.90
1% 0.00 0.00 0.06 0.07 0.29

KSn 5% 0.10 0.16 0.24 0.67 0.88
10% 0.20 0.36 0.72 1.53 1.77

Power of the Test Statistics (Level of Significance: 5%)

Statistics π†\n 25 50 100 300 500
0.10 7.46 6.72 6.06 8.10 10.62
0.20 8.58 8.62 9.20 18.04 27.58

W]
n 0.30 9.32 11.56 15.58 35.86 52.46

0.40 11.70 15.16 24.52 55.62 77.20
0.50 13.74 20.66 33.06 74.44 93.24
0.10 4.56 5.24 5.42 7.56 10.20
0.20 5.60 6.38 7.94 17.00 25.98

LM]
n 0.30 6.32 9.38 13.66 33.80 49.42

0.40 8.30 12.86 21.88 52.92 74.28
0.50 9.62 17.20 30.58 71.38 88.84
0.10 10.34 8.98 9.00 9.78 12.02
0.20 11.56 10.44 10.94 20.36 30.10

QLR]
n 0.30 12.80 14.18 18.32 39.02 55.56

0.40 15.54 18.36 27.16 59.06 79.78
0.50 17.76 23.68 36.58 77.66 94.42
0.10 2.30 3.43 5.03 6.20 9.50
0.20 2.20 4.17 9.53 21.00 30.32

CMn 0.30 3.20 6.70 13.87 34.40 48.21
0.40 3.60 9.73 21.87 54.40 74.12
0.50 5.10 14.00 32.27 75.00 91.12
0.10 0.10 0.47 0.87 0.60 2.08
0.20 0.00 0.37 0.90 4.40 7.00

KSn 0.30 0.50 0.60 1.93 7.20 15.18
0.40 0.20 1.20 3.47 19.20 37.35
0.50 1.10 2.03 6.13 34.80 59.47

Table 5.4: SIZE AND POWER OF THE INDEPENDENCE TESTS (IN PERCENT). This table shows the empirical rejection
rates of the Wald, LM, QLR, Cramér-von Mises (CMn), and Kolmogorov-Smirnov (KSn) test statistics. DGP: The copula
c(u, v;π†, γ1†, γ2†) := (1− π†)c1(u, v; γ1†) + π∗c2(u, v; γ2†), with two margins xi ∼ IIDN (0, 1) and yi ∼ IIDN (0, 5). Here,
c1(·) and c2(·) are the independence and FGM copulas, respectively. Model: ρ(γ, θ1, θ2) = θ1 + θ2γ, γ ∈ [0, 1]. Number of
Experiments: 5,000.
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Estimated FMSE of the mean of the log income paths

Male Female
Quadratic Cubic Quartic Quartic (r) Quadratic Cubic Quartic Quartic (r)

w/o Degree 6.09 5.94 5.93 5.93 5.77 5.66 5.65 5.65
Bachelor 5.58 5.52 5.47 5.55 5.32 5.27 5.23 5.29
Master 5.55 5.48 5.42 5.57 5.09 5.03 4.97 5.09
Ph.D 5.57 5.48 5.41 5.59 5.50 5.45 5.40 5.52

Estimated FMSE of the scaled mean of the log income paths

Male Female
Quadratic Cubic Quartic Quartic (r) Quadratic Cubic Quartic Quartic (r)

w/o Degree 3.20 2.92 2.90 2.90 3.03 2.81 2.78 2.78
Bachelor 3.15 3.04 2.96 3.10 3.10 3.01 2.94 3.04
Master 3.34 3.21 3.12 3.37 3.17 3.08 2.99 3.18
Ph.D 3.30 3.14 3.02 3.34 3.49 3.41 3.32 3.51

Table 6.5: FUNCTIONAL MEAN SQUARED ERRORS (FMSE) USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE
YEARS. This table shows the estimated FMSEs of the log income paths under the quadratic, cubic, quartic and restricted quartic
specifications for each group of the workers classified according to their education levels and genders. Here, the restricted quartic
specification means the model specified by Murphy and Welch (1990) given in (11).
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Inference results on the mean of log income paths across different genders

Education Level Wald LM QLR

Quadratic

w/o Degree 5.08 11.45∗∗ 11.51
Bachelor 140.41∗∗ 124.26∗∗ 1426.65∗∗

Master 54.40∗∗ 29.02∗∗ 345.38∗∗

Ph.D 40.32∗∗ 42.77∗∗ 459.46∗∗

Cubic

w/o Degree 20.02∗∗ 41.57∗∗ 28.50
Bachelor 174.84∗∗ 130.21∗∗ 1437.72∗∗

Master 40.69∗∗ 32.37∗∗ 364.48∗∗

Ph.D 60.51∗∗ 48.23∗∗ 468.17∗∗

Quartic

w/o Degree 24.88∗∗ 42.31∗∗ 30.16
Bachelor 289.97∗∗ 153.36∗∗ 1439.01∗∗

Master 63.05∗∗ 34.45∗∗ 365.54∗∗

Ph.D 83.61∗∗ 55.99∗∗ 470.26∗∗

Quartic (r)

w/o Degree 13.32∗∗ 19.73∗∗ 18.17
Bachelor 150.16∗∗ 132.58∗∗ 1414.82∗∗

Master 33.72∗∗ 30.13∗∗ 352.93∗∗

Ph.D 43.57∗∗ 47.34∗∗ 457.77∗∗

Inference results on the mean of the scaled log income paths across different genders

Education Level Wald LM QLR

Quadratic

w/o Degree 17.23∗∗ 16.55∗∗ 9.94
Bachelor 21.46∗∗ 41.00∗∗ 73.40∗∗

Master 6.65 13.33∗∗ 19.12
Ph.D 0.71 1.17 3.14

Cubic

w/o Degree 13.53∗∗ 27.18∗∗ 26.89∗

Bachelor 26.58∗∗ 54.48∗∗ 84.47∗∗

Master 7.69 18.07∗∗ 38.22∗

Ph.D 6.08 13.14∗ 11.86

Quartic

w/o Degree 26.15∗∗ 29.77∗∗ 28.55∗

Bachelor 53.80∗∗ 57.17∗∗ 85.76∗∗

Master 13.18∗ 17.58∗∗ 39.28∗

Ph.D 9.97 17.55∗∗ 13.95

Quartic (r)

w/o Degree 12.86∗∗ 16.57∗∗ 16.56
Bachelor 24.93∗∗ 39.59∗∗ 61.57∗∗

Master 7.72 12.18∗∗ 26.68∗

Ph.D 0.63 0.83 1.45

Table 6.6: INFERENCE RESULTS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS. This table shows the
Wald, LM, and QLR test statistics and the inference results for the null hypothesis of equal mean of log income paths across
different genders. The figures attached by ‘*’ and ‘**’ indicate the rejection of the null hypothesis at the 5% and 1% significance
level, respectively.
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Inference results on the mean of log income paths across different education levels

Male Female
Wald LM QLR Wald LM QLR

Quadratic
w/o Degree vs. Bachelor 1908.46∗∗ 1374.39∗∗ 24803.82∗∗ 1588.52∗∗ 1129.27∗∗ 16617.83∗∗

Bachelor vs. Master 385.68∗∗ 172.95∗∗ 2621.40∗∗ 300.29∗∗ 191.17∗∗ 2153.12∗∗

Master vs. Ph.D 56.11∗∗ 51.10∗∗ 333.48∗∗ 73.14∗∗ 42.08∗∗ 194.69∗∗

Cubic
w/o Degree vs. Bachelor 2178.92∗∗ 1510.92∗∗ 25441.14∗∗ 2013.79∗∗ 1348.72∗∗ 16973.37∗∗

Bachelor vs. Master 234.10∗∗ 181.54∗∗ 280.39∗∗ 250.68∗∗ 197.24∗∗ 2215.04∗∗

Master vs. Ph.D 64.47∗∗ 48.02∗∗ 335.42∗∗ 50.23∗∗ 41.50∗∗ 203.51∗∗

Quartic
w/o Degree vs. Bachelor 3398.34∗∗ 1585.75∗∗ 25512.52∗∗ 3021.71∗∗ 1495.33∗∗ 17010.54∗∗

Bachelor vs. Master 399.12∗∗ 204.82∗∗ 2806.21∗∗ 380.31∗∗ 229.96∗∗ 2215.59∗∗

Master vs. Ph.D 100.55∗∗ 58.26∗∗ 336.26∗∗ 78.14∗∗ 45.57∗∗ 203.62∗∗

Quartic (r)
w/o Degree vs. Bachelor 1683.18∗∗ 1466.64∗∗ 24955.59∗∗ 1423.92∗∗ 1276.41∗∗ 16754.52∗∗

Bachelor vs. Master 192.97∗∗ 180.38∗∗ 2732.06∗∗ 216.33∗∗ 204.09∗∗ 2174.74∗∗

Master vs. Ph.D 62.83∗∗ 54.63∗∗ 333.22∗∗ 50.57∗∗ 42.72∗∗ 202.33∗∗

Inference results on the scaled mean of log income paths across different education levels

Male Female
Wald LM QLR Wald LM QLR

Quadratic
w/o Degree vs. Bachelor 255.01∗∗ 486.43∗∗ 637.70∗∗ 101.86∗∗ 216.82∗∗ 182.05∗∗

Bachelor vs. Master 44.21∗∗ 59.41∗∗ 6.77 24.62∗∗ 40.87∗∗ 47.08∗∗

Master vs. Ph.D 8.91∗ 9.75∗ 20.65 27.97∗∗ 26.33∗∗ 67.23∗∗

Cubic
w/o Degree vs. Bachelor 420.04∗∗ 966.72∗∗ 1274.81∗∗ 207.00∗∗ 538.63∗∗ 537.59∗∗

Bachelor vs. Master 36.63∗∗ 86.33∗∗ 189.23∗∗ 26.99∗∗ 55.92∗∗ 109.00∗

Master vs. Ph.D 9.29 16.25∗∗ 22.59 19.03∗∗ 26.89∗∗ 76.05∗∗

Quartic
w/o Degree vs. Bachelor 719.97∗∗ 946.54∗∗ 1346.18∗∗ 332.41∗∗ 541.68∗∗ 574.77∗∗

Bachelor vs. Master 87.17∗∗ 81.95∗∗ 191.55∗∗ 58.52∗∗ 60.14∗∗ 109.55∗∗

Master vs. Ph.D 17.85∗∗ 18.36∗∗ 23.43 28.35∗∗ 27.27∗∗ 76.16∗∗

Quartic (r)
w/o Degree vs. Bachelor 381.66∗∗ 601.31∗∗ 789.26∗∗ 159.10∗∗ 247.77∗∗ 318.74∗∗

Bachelor vs. Master 36.31∗∗ 53.38∗∗ 117.40∗∗ 24.85∗∗ 37.37∗∗ 68.70∗∗

Master vs. Ph.D 9.30∗ 9.67∗ 20.39∗ 18.34∗∗ 26.08∗∗ 74.87∗∗

Table 6.7: INFERENCE RESULTS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS. This table shows the
Wald, LM, and QLR test statistics and the inference results for the null hypothesis of equal mean of log income paths across
different education levels. The figures attached by ‘*’ and ‘**’ indicate the rejection of the null hypothesis at the 5% and 1%
significance level, respectively.

Estimated FMSE of the mean of the log income paths

Male Female
Quadratic Cubic Quartic Quartic (r) Quadratic Cubic Quartic Quartic (r)

w/o Degree 5.17 5.14 5.13 5.13 4.84 4.81 4.81 4.80
Bachelor 4.74 4.71 4.70 4.70 4.48 4.45 4.45 4.44
Master 4.72 4.69 4.69 4.68 4.31 4.28 4.28 4.27
Ph.D 4.75 4.71 4.71 4.71 4.63 4.61 4.61 4.60

Estimated FMSE of the scaled mean of the log income paths

Male Female
Quadratic Cubic Quartic Quartic (r) Quadratic Cubic Quartic Quartic (r)

w/o Degree 2.32 2.25 2.24 2.24 2.28 2.22 2.21 2.20
Bachelor 2.27 2.20 2.20 2.19 2.30 2.23 2.23 2.22
Master 2.24 2.18 2.18 2.17 2.21 2.15 2.15 2.14
Ph.D 2.20 2.12 2.11 2.10 2.24 2.19 2.19 2.17

Table 6.8: FUNCTIONAL MEAN SQUARED ERRORS (FMSE) USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE
YEARS. This table shows the estimated FMSEs of the log income paths under the quadratic, cubic, quartic and restricted quartic
specifications for each group of the workers classified according to their education levels and genders. Here, the restricted quartic
specification means the model specified by Murphy and Welch (1990) given in (11).

64



Inference results on the mean of log income paths across different genders

Education Level Wald LM QLR

Quadratic

w/o Degree 1.20 1.49 6.85
Bachelor 164.48 ∗∗ 132.47∗∗ 1243.35∗∗

Master 37.62∗∗ 31.32∗∗ 316.42∗∗

Ph.D 34.80∗∗ 34.93∗∗ 347.86∗∗

Cubic

w/o Degree 8.86 10.30 8.16
Bachelor 435.48∗∗ 146.03∗∗ 1244.39∗∗

Master 98.55∗∗ 34.18∗∗ 316.65∗∗

Ph.D 131.26∗∗ 45.65∗∗ 349.11∗∗

Quartic

w/o Degree 16.39∗∗ 12.12∗ 8.77
Bachelor 592.76∗∗ 163.50∗∗ 1244.44∗∗

Master 131.90∗∗ 36.13∗∗ 316.73∗∗

Ph.D 199.89∗∗ 48.03∗∗ 349.29∗∗

Quartic (r)

w/o Degree 1.51 1.44 7.26
Bachelor 172.20∗∗ 147.59∗∗ 1243.31∗∗

Master 39.38∗∗ 34.26∗∗ 316.41∗∗

Ph.D 45.41∗∗ 45.79∗∗ 349.04∗∗

Inference results on the mean of the scaled log income paths across different genders

Education Level Wald LM QLR

Quadratic

w/o Degree 2.58 2.22 0.37
Bachelor 0.57 1.35 2.22
Master 0.12 0.19 0.41
Ph.D 0.32 3.18 1.42

Cubic

w/o Degree 3.68 9.54∗ 1.68
Bachelor 4.26 13.09∗ 3.27
Master 0.84 2.65 0.65
Ph.D 2.71 8.22 2.67

Quartic

w/o Degree 14.43∗ 11.03 2.28
Bachelor 12.24∗ 14.65∗ 3.31
Master 4.53 2.75 0.73
Ph.D 10.65 7.98 2.85

Quartic (r)

w/o Degree 1.81 2.06 0.77
Bachelor 0.59 1.29 2.18
Master 0.10 0.15 0.41
Ph.D 3.69 5.44 2.60

Table 6.9: INFERENCE RESULTS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS. This table shows
the Wald, LM, and QLR test statistics and the inference results for the null hypothesis of equal mean of log income paths across
different genders. The figures attached by ‘*’ and ‘**’ indicate the rejection of the null hypothesis at the 5% and 1% significance
level, respectively.
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Inference results on the mean of log income paths across different education levels

Male Female
Wald LM QLR Wald LM QLR

Quadratic
w/o Degree vs. Bachelor 1934.80∗∗ 1452.75∗∗ 21226.31∗∗ 1543.13∗∗ 1256.10∗∗ 13911.35∗∗

Bachelor vs. Master 218.02∗∗ 175.93∗∗ 2363.97∗∗ 235.96∗∗ 190.21∗∗ 1858.30∗∗

Master vs. Ph.D 52.66∗∗ 43.94∗∗ 287.84∗∗ 51.89∗∗ 39.87∗∗ 198.45∗∗

Cubic
w/o Degree vs. Bachelor 6746.20∗∗ 1562.16∗∗ 21226.98∗∗ 5245.07∗∗ 1461.64∗∗ 13911.62∗∗

Bachelor vs. Master 822.53∗∗ 202.55∗∗ 2365.01∗∗ 760.05∗∗ 220.86∗∗ 1859.11∗∗

Master vs. Ph.D 147.68∗∗ 54.71∗∗ 288.56∗∗ 92.39∗∗ 42.28∗∗ 198.51∗∗

Quartic
w/o Degree vs. Bachelor 8675.22∗∗ 1612.74∗∗ 21227.09∗∗ 6696.87∗∗ 1508.23∗∗ 13911.81∗∗

Bachelor vs. Master 966.42∗∗ 212.19∗∗ 2365.07∗∗ 960.79∗∗ 252.28∗∗ 1859.29∗∗

Master vs. Ph.D 157.25∗∗ 56.15∗∗ 288.69∗∗ 96.65∗∗ 43.91∗∗ 198.53∗∗

Quartic (r)
w/o Degree vs. Bachelor 1916.51∗∗ 1536.87∗∗ 21226.46∗∗ 1629.18∗∗ 1412.39∗∗ 13911.53∗∗

Bachelor vs. Master 217.74∗∗ 192.23∗∗ 2364.33∗∗ 238.53∗∗ 210.17∗∗ 1858.61∗∗

Master vs. Ph.D 67.40∗∗ 52.16∗∗ 288.62∗∗ 53.45∗∗ 41.19∗∗ 198.55∗∗

Inference results on the scaled mean of log income paths across different education levels

Male Female
Wald LM QLR Wald LM QLR

Quadratic
w/o Degree vs. Bachelor 2.23 2.81 4.30 1.51 1.24 1.84

Bachelor vs. Master 2.93 3.89 13.01 2.39 3.58 11.17
Master vs. Ph.D 2.84 3.34 7.31 3.38 4.48 12.53

Cubic
w/o Degree vs. Bachelor 5.12 3.78 4.98 1.89 1.39 2.11

Bachelor vs. Master 8.71 5.33 14.06 7.73 4.45 11.98
Master vs. Ph.D 4.58 3.46 8.03 4.81 5.33 12.59

Quartic
w/o Degree vs. Bachelor 7.15 4.21 5.08 13.15∗ 7.12 2.30

Bachelor vs. Master 19.39∗∗ 5.89 14.11 17.15∗∗ 4.52 12.16
Master vs. Ph.D 11.11∗ 3.82 8.15 20.12∗∗ 6.41 12.61

Quartic (r)
w/o Degree vs. Bachelor 2.12 2.96 4.46 1.02 1.41 2.02

Bachelor vs. Master 5.21 3.88 13.37 3.85 3.63 11.48
Master vs. Ph.D 8.34∗ 3.94 8.09 2.96 5.06 12.63

Table 6.10: INFERENCE RESULTS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS. This table shows
the Wald, LM, and QLR test statistics and the inference results for the null hypothesis of equal mean of log income paths across
different education levels. The figures attached by ‘*’ and ‘**’ indicate the rejection of the null hypothesis at the 5% and 1%
significance level, respectively.
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Figure 1: ESTIMATED MEAN CURVES OVER 0 TO 40 WORK EXPERIENCE YEARS. The red line corresponds to the pointwise
mean of the individual log income paths, and the dotted lines correspond to its 80% bootstrap confidence bands. The mean
estimates of log income paths under the quadratic, cubic and quartic specifications are displayed in brown, blue, and green lines.
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Figure 2: ESTIMATED MEAN CURVES OVER 10 TO 40 WORK EXPERIENCE YEARS. The red line corresponds to the pointwise
mean of the individual log income paths, and the dotted lines correspond to its 80% bootstrap confidence bands. The mean
estimates of log income paths under the quadratic, cubic and quartic specifications are displayed in brown, blue, and green lines.
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