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This Online Supplement is an Appendix that provides proofs of all the results in the paper,
including the lemmas, as well as some additional empirical findings. Proofs are given in Section

A.1 and the supplementary empirical application is in Section A.2

A Appendix

A.1 Proofs

Proof of Lemma 1: Note that d-(v,u) = E[&(G(v) — u)] — E&-(G(v) — 2. (7))] = uFy(u) —
uFy(zr (7)) + fmT ™) gdFy(g) — [* ng (g). Applying integration by parts, z(v)Fy (2, (7)) = fm;g)
(g dg + f” ' gdF,(g), and uFy(u) = [*_ Fy(g)dg + [", 9dF)(g). giving [0 g dF,(g) —
[ 6y (9) = (1) By s (1)) —uPy (04 7100 By (g)dg— [ Fy(g)dg. Hence, ds () = (ar()-
u)Fﬂ,(:nT(’y))+ff;£7) F,Y(g)dg—f_“OO F.(g)dg. Further, if z-(y) > u, then d, (7, u) = f {F (zr(7))—
F,(g)}dg; and if x; () < u, then d- (v, )— f“ 7){F (9)—Fy(x+(7))}dg, so that d- (v, u) := E[&,
—u)] — E[¢-(G(y) — z-(7))] = fmax[“ @ (Y \F (9) — Fy(z+())|dg. This completes the proof. [

min|u,x- 'y)]

Proof of Theorem 1: The proof follows reasoning similar to that of Oberhofer and Haupt (2016). Applying
Lemma 2N of Oberhofer and Haupt (2016), we first obtain that for w such that ||w|| = 1,

Rin(w) < jﬁ ; W' / Vo 01 (3, 0mn) (1{Gi(7) < pr(7,0rm)} — 7)dQ(Y) < Rum(w),

where
~ 1 & ~ —~ ~
Rln % Z/ ]l{G = PT(% Orn)}‘w,ve-,—pT('% 07n)|ﬂ{wlv97—p7'('77 QTTL) < 0}(1@(’7),
=1
7 > / L{Gi(7) = pr(7,0r0) ' Vo, pr (7, 00) [ L{w' Vg, pr (7, 07n) > 0}dQ().
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Furthermore, applying Lemma 9N of Oberhofer and Haupt (2016) demonstrates that

~

;ﬁ S’ [ Voupe(0,8n) (1{Gs(2) < prl0.Bra)} = T)AQ)
i=1 v
— W A (B — 07) + w'\/lﬁ Z; T+ op(1),

so that if we show that Eln(w) = op(1) and ﬁun(w) = op(1), then (3) follows. For this derivation, we let

~ ~

Ry (w) := ﬁln(w) — Ryn(w) = \/177 Z/ H{Gi(v) = pr(v, é\fn)}’wlvéfpr(% é\rn)’dQ(V)
i=1""

and show that ﬁn(w) = op(1) by noting that En(w) = op(1) if and only if Ry, (w) = op(1) and f?un(w) =
op(1). If we let B(0y,d) := {0 : ||0 — 0y|| < d}, then for a sufficiently large m < oo, there are finite
numbers of open balls covering O(n, m) := {6 : \/n||§ — 0%| < m}, viz., O(n,m) C U?idl)B(G(j, d),d)
such that for any d > 0, n(d) < oo, where (7, d) is the center of the j-th open ball. Given this, Assumption
2 implies that for any 6, € B(6(j,d), d), there exists 0., 02, and #° € B(6(3j,d), d) such that

/ W'V, pr (7,0,)PdQ) < / 0V, pr (7, 0,)PdQ()
Yy Yy

and

[ 16 = pr(2,614Q0) < [ 1o (3,6 < Gir) < .. 62)}dQ).
Y

.
If we further let

n

Rulicr) = 7= 3 [ 100,69 < Gi) < (2,09} [ 10V, -8 Pa)
i=1"7

n ¥
then it follows that 0 < R,,(w) < Ry (j, ) by noting that for any 6 € B(6(j, d), ),
L H{Gi(7) = pr (1, 6:)} 'V, pr (7, 6,)|dQ(7)
< / e (7,62) < Gi(9) < ps(3,60%)14Q() / /g, pr (7, 8,) Q).
We here note that for each j = 1,2,...,n(d),
| / U{pr(7,02) < Gi(1) < pr(3,0%)}dQ() / (/g pr (7, 8:) Q)]

- / {Fy(pr(7,62)) = Fy (p2(,02) }dQ() / W' Vo. pr (1, 02) PAQ(),
v Y



and

var[Ro(j,7)] < /

~

2
(P (02 (1, 0%)) — Fy (p (,69)) }dQ() ( [1%a0:tr eT>|2d@<7>> .
Y

Further, for some 6, between 62 and 6°, we have

jﬁvmpm, 0,) = o(1)

Fy(pr(1,6%)) = B (pr (1,62)) = £ (pr (7, 8)) /(6% — 62)
because f(.(-) and Vg_p, (-, -) are uniformly bounded on I' x ©, by Assumption 2 and Vn(02 —62) < 2d.
It therefore follows that R,,(j,7) = op(1), so that

B[ 1or(0:07) < Gi) < 0202, 00}4002) | 10/F0.pe (3, 8P = o),

and var[R,,(j,7)] = o(1), leading to Ry, (w) = op(1), and this again leads to (3).
Second, note that (3) implies that \/n(0,, — 67) = —A*1p=1/2 > Jri + op(1). Given that 6%
is identified as given in Assumption 2, the first-order condition holds, so that E[J;] = 0. Assumption 4
also implies that BY := E[J;J.,] is positive definite. Furthermore, Assumption 3 implies that for each
j=1,2,..., ¢ E[inj] < 00, where J,;; is the j-th row element of .J,;. Therefore, n='/23°7"  J.; 2
N (0, B?) by the multivariate CLT, so that v/ (6, — 67) AN (0, Az~ B A*~1). This completes the proof.
|

Proof of Lemma 2: We show stochastic equicontinuity of n='/2 3% (1{Gi(:) < p,(-,09)} — 7) using

Ossiander’s L? entropy condition: for some v > 0 and C' > 0,

1/2

E (H up_ JUHG0) < pr( 0)} — 7 — (H{Gi(Y < p- (4, 02))} — T)!2> < Co".
=<

To verify this, first note that if we let U; () := F,(G;(7)), where F,(-) is the CDF of G;(y), the left side is

identical to

1/2
E ( up [H{Ui(7) —7 <0} = H{Ui(Y) — 7 < 0})!2>
=<

by noting that F,(p,(v,60%)) = 7 and F,/(p;(v',0%)) = 7. Next, apply the proof in Andrews (1994,
p. 2779), letting his U; and h*(Z,-) be 1 and U;(-) — 7, respectively and note that Assumptions | and 2
imply that U;(-) is Lipschitz continuous almost surely: for some C' > 0, |U;(v)—U;(v")| < C||v—~'||. Here,
we further note that U;(+y) is uniformly distributed over [0, 1], so that its density function is bounded above
uniformly on I'. Therefore, example 3 in Andrews (1994, p. 2779) proves equicontinuity by Ossiander’s L?
entropy condition.

Next derive the covariance structure of the Gaussian stochastic process G, (), noting that for each - and



E[(1{Gi(7) < pr (7,00} = 7)(1{Gi(Y') < pr (7, 00)} — 7)]
=E[(1{Ui() <7} =) (H{Ui(Y) < 7} = 7)]
= E[1{Ui(y) < 7}{U;(y) < 7}] = 7E[1{Ui(y) < 7} = 7E[I{Ui(y') < 7}] + 7°
=E[I{Ui(7) < 7}{U:(7) < 7} — 72 = K(7,7),

where the final equality follows from the fact that E[1{U;(~) < 7}] = 7 uniformly on . This completes
the proof. |

Proof of Theorem 2: Given Lemma 2, we note by continuous mapping that

[ V00020922 30 (1G0) < 0000} = 7) dQ() = [ Vi (3. 68)6:(7)d0)
Y i=1 Y

which follows a normal distribution since G, (-) is a Gaussian stochastic process. Further note that applying

dominated convergence using Assumption 3,

E [ L V&M(%@)%(VMQ(V)} = L Vo, p7(7, 0)E[G-(7)]dQ(y) =0 and

[ [, 0008060060/ Fapr s #2001
:
— [ [ 0.0 ODBG- (G- (0] pr (1, 8) QR
Yy
= [ [ a0r 0080000011/, e, 62)0(1) Q) = B
e

by the definition of x,(-,-). Therefore, f Vo, pr(7,09)G-(7)dQ(y) ~ N(0,BY) where BY is positive
definite by Assumption 5. This fact further implies that

V(O — 09) = — A7 / Vo, pr(7,09)G-(1)dQ(y) ~ N(0,C7),
i
as required. |

Proof of Theorem 3: The derivation of (4) is almost identical to that of (3) and is not repeated for brevity.
Instead, we focus on deriving the limit distribution from (4).

If we apply (4) to the misspecified model, it now follows that \/ﬁ(gm —0¥) = —Ai_ln_l/ 2 Z?:l jﬂ +
op(1). We focus on n=1/2 5" | J; to derive the limit distribution. Apply (A.1), as given in the proof of



Lemma 3, to the misspecified model giving, for each v € I,

Here, we applied the ULLN to obtain n= Y"1 V. Gil-, Tyn) 5 E[V.G;(-,7*)] by using Assumption 8.

It now follows that
S =S [ Voo, (16 < 003,000}~ 7) i)
\/ﬁizl \/ﬁz‘:1 R ’ T ’ - o

1 - * ~ * *—
= T2 2 [ Vo082, (BTG (3,57 AQ) S, + 0p(1).
i=1""7
Here, Assumptions 6 and 8 imply that f,y VngT(%Hﬁ)fw(xT(’y))E[V;éi(’y,W*)]d@(y) is well defined.

We further note that [ Vo _p-(7, 05)(1{Gi(v,7*) < pr(7,65)} — 7) and L, Vo pr (7, 07) fo (2 (7)) E|
V! .Gi(v,7*)]dQ(~) are defined as J; and K*, respectively, so that we can rewrite this equation as

1 = ~ 1 —
— N J,=—— J.; — KXpP*1g; 1).
7 2T = e s~ KEPIS) el

Given this result, Assumptions 2 and 7 imply that E[J;;] = 0 and E[S;] = 0. Furthermore, Assumption
9 implies that B* := E[(Jr; — K*P*18;)(Jr; — K*P*~18;)] is positive definite, and for each j =
1,2,...,¢, E[JZ)]

that \/n(6, — 67) ~ N(0,C*), as required. [ ]

T

< oo and E[SZQJ] < 0o by Assumptions 7 and 8. It now follows by the multivariate CLT

Proof of Lemma 3: We first derive the covariance kernel of G,(-). Note that for any ¢, if a > 0, 1{z <
c—a}=1{x <c} —1{x € (¢ —a,c]}. Onthe other hand, if a < 0, I1{x < c—a} =1{zx < c}+ 1{z €
(¢,c — a]}. Therefore, 1{z < c—a}=1{z <c}—1l{c—a<z<c}+1{c<z<c—a}.

We use this equality to show the given claim. For notational simplicity, let 2, () and fi,;(y) denote
pr(7,0%) and —l—V;éi(’y,ﬁW)(%n — 7*), respectively. If we further let x, ¢, and a be éi(’y), (),
and 7ini(7y), respectively, it now follows that 1{G;(y,7*) + V;@('y,frm)(%n —7*) < pr(7,09)) =
H{Gi(y, 7) < 2 (1)} + Har(7) < Gi(y,7*) < 27 (7) = Bni ()} = Har(7) = fni(y) < Gi(y,m) <
xz+(v)}. Note that Assumption 8 implies that V,G;(-,-) = Op(1) and (7, — ) = op(1), so that



Lni(y) = op(1) uniformly in 7. Therefore,

\/15 Y {Gi(ym) € (27 (7) 20 (3) = B (N} = H{Gi(7,7) € (2(7) = Fini(7), 2 ()]}
i=1

~—= 30 (HG () < ) = )} = (o)) = (HG0:7") < ()} = Fy a-(1)
=1

== 3" (WGl 1) < 2 ()}~ By(asly )——vamf Gily, T )WWi(Fn — )
=1

where the second equality follows from that n=1/2 37 H{Gi(y, 7) < 2r(Y)—Fini (7)} = n~1/2 S 1
Gi(y, 7)) < 2r(7)} —nt > ie1 Fo(z7(7))v/niini () +op(1) and applying the mean-value theorem at the
limit. Note that F7 (z-(v)) = fy(z+(7)). Therefore,

=3 (UGi07") + V4Gi(3. Fa) (B = ) < (.08} = 7)

=1
7)< 20(1)} = 7) — o (@ ()G, 7V — 7) + 0p(1)
Gl 7) < 220} = 7) = fo e (EIVGGily, 7 P S:] + 0p(1) (AD)

Given this, we compute the covariance kernel using the summand on the right side of (A.1), viz.,

E[[(1{Gi(v,7*) < 2: (1)} = 7) = fo(@r(M)E[VGi(y, 7*)| P*1S]]
x [({Gi(y,7) < 2 ()} = 7) = fyr (@ (Y )E[VZGi(y , 7*) P Si]]
= E[(H{Gi(7,7) < 2:(7)} = 7)(U{Ci(7,7") < 2:(7)} = 7)]
— [y (@ (N))E[VEGily, 7)) P E[Si (1{Gi(v, 7") < @7 (7))} = 7))
— [y (@ (V)EIVZG(Y, ) P EISi(L{Gi(y, ) < 2-(7)} = 7)]
+ f (e ())E[VGily, 7)) P H P E[VRGily 7)) fy (22(7))-

Observing that E[(1{G;(7,7*) < z:(7)} — 7)(1{Gs(7,7*) < z,(7)} — 7)] = Kr(7,7), the desired
covariance kernel %, (y,7’) is now obtained from this equality.

We next prove that the left side of (A.1) is stochastically equicontinuous. Welet¢(7y) := f,(z,(7))E[V}
éi (7, )] P*~! for notational simplicity and show that the right side of (A.1) satisfies the bound condition



to apply Ossiander’s L2 entropy condition: for some C and v > 0,

1/2
E <|| Surl>| ) [(L{Gi(7,7) < (1)} — s(1)S) — AU{Gi (v, 7*) < 2 (¥)} — <(v)Si) < Cé.
Y=<
(A.2)
We here note that

Wi (L{Gi(y,7) < 2-(M)} = <)) = (H{Gily,7%) < 2:(7)} = <(7) )
y=7'll<

< sup  |L{Gi(y,7) < 2 ()} — H{Gi(Y, 1) < 2,(7)}]?
[ly—=>'lI<o

+ sup [ls(y) =< - I1Sill+  sup [(s() — ()5S
lv—>'1I<o lv—~"lI<o

In the proof of Lemma 2, we already saw that there are C; and v; > 0 such that

1/2

E| sup [(H{Gi(y,7") S z-(1)}) — (G, 7) 2D ) < Cra.
lv="ll<é

Next, Assumptions 2, 6, and 8 imply that ¢(+) is Lipschitz continuous, because the product of two Lipschitz

continuous functions is Lipschitz continuous: for some m > 0, ||s(v) — <(¥")|| < m|y — 7|l so that for

some C5 and 15 > 0,

E( sup  [(s(y) = s(¥) - ISz'\) < Cpd™

ly—'ll<s
by letting C := ms-max;—; s E[|S;;|*] and v2 = 1. Note that max;_; s E[|S;;]|?] < oo from Assump-
tion 7. We note that
(5(0) =<(MNS)I* < max ELSy[7 - ls(7) = (V) < max B[Sy m?lly = I,

2

so that if we let C'3 := m” - max;j—1,._ EHSUP] and v3 = 2,

E( sup  |(s(7) —c(v’))5i|2> < 030"

lv—'lI<o

Therefore, if we let C' := max[C7, Cy, Cs] and v := max|vy, va, v3], the desired inequality in (A.2) follows.
This shows that

\/15 Z (]l{éz’(%w*) + V;éi(%ﬁm)(%n — 1) < pr(7, 92)} B T)
i=1

is stochastically equicontinuous, completing the proof. |



Proof of Theorem 4: Given Lemma 3, we note that
0y 1 - A 0 0NA
Vo, pr(1,09)= > (H{Gi(1) < pr(1.6D)} = 7) dQ() = [ Vo, p,(7,62)G,(7)dQ()
v \/ﬁ i=1 Y

by applying the continuous mapping theorem. The final integral follows a normal distribution from the fact

that §T() is a Gaussian stochastic process. By dominated convergence using Assumption 14,

E [ / vefpx%e?)@w)d@(w] - / V.00 (1, 0OE[G (1)]ldQ(7) = 0 and

E [ / / Vo0 (109G (1)Gr () Vo, pr (7, 602)dQ(1)dQ(Y )
- / / Vo r (3, 0BG (1)G- ()], pr (7, 62)4Q(1)AQ()

— [ [ Fo00r0 89704 ) Vi, 00)000) a0 )
vy
which is defined as BY. Therefore, f,y V. pr(7,09)G+(7)dQ(7) ~ N(0, BY), implying that

Vit — 02 = ~427 [ Vo p.(1,09G,(:)dQ0) ~ N (0,52,
v
giving the desired result. u

Proof of Theorem 5: (i) As the proof of the consistency in (i) is almost identical to that of (ii), we prove

only (7).
(i.a) If we apply the mean-value theorem to p, (7, §m) and Vo_p- (7, [9\7”) around the unknown param-

eter 07, for each ~, there are 5% and éiv such that

~ —

PT(’Y, 97’77,) = PT('Y, 0:—) + V/QTPT('% 0:'7)(97'77, - 9:) and

Vo, 07 (7, 0rm) = Vo, p-(7,07) + Vipr (7, 07,) (0rn — 07).

For notational simplicity, let 7, () := —Vy_p-(7,05.) (§m — 0%). Given these expressions, note that

~

]l{Gz(’Y) < /07'(77 ern)} - T= 1{G1(7) < p7(77 Qi)} -T
+ Hpr(7,07) < Gi(7) < pr(7,07) — ()} — Kpr(7,07) — (7)) < Gi(7) < pr(v,67)}
= H{Gi(7) < p-(7,07)} — 7+ op(1) (A3)

using the fact that 1{p (7, 67) < Gi(v) < pr(7,07)—vn(7)} = op(1) and 1{p- (7, 07) —vn(7) < Gi(y) <



pr(7,0%)} = op(1) from the fact that for each v, 7, () = op(1). It follows that

Jrni 1= /VeTpT(% Orn) (R{Gz‘(v) < pr(7.0mm)} — T) dQ(v)
- / Vo, p2(7,02) (1{Gi(7) < pr(3,05)} — 7) dQ() + 05(1) = Jos + 0p(1),
Y

given that for each j and j' = 1,2,...,¢., [02/(00,;00,j)p-(-,-)| < M < oo and |8/(80+;)p-(-,")| <
M < oo from Assumption 3. Thus,

== %ZJTanﬂ/-m = Z'J Jl +OP

We now further note that foreach 7 = 1,2,..., ¢, E[Jm] < oo from Assumptlon 3, so that it now follows
that By, = 250 J,0J! . + 0p(1) <> E[J,J.,] = B Therefore, B,,, > BE.

Proof of consistency of Em is not detailed because it follows in a similar fashion to the consistency of
Brn. In particular, given the moment conditions in Assumption 8 and the condition for the other consistent
estimators for P*, H*, and K as given in Assumption 11, it follows that jmi = jﬂ + op(1), and the result
Bry © B follows.

(i.b) Given the second-order differentiability of p,(-y,-) in Assumption 2 and Theorem 3(i), we apply

(A.3) to obtain that
1{Gi(7) < pr(7,020)} = 7 = 1{Gi(¥) < pr (7,00} — 7 + 0p(1),

implying that K-, (v,7") = K- (7,7) + op(1), where
07) 5= - S HG0) < prl D = DA{GH) < 000} =)

Furthermore, Vg_ pT(-,gm) L Vo, pr(-,0%) from the fact that 9m R 62 and the continuity of p. (-, -).
Therefore, from the definition of §£n, if K-(-,-) is consistent for (-, -) uniformly on I" x T', then the
desired result follows.

For the proof of the consistency of (-, -), we note that

n

R ) = 3G < e, OOILIGHY) < pr (.60}

i=1

— =Y UH{G0) < pr (00} = = D HG() < pr (7,600} + 7
i=1

=1

Here, the uniform consistency of n =1 >°% | 1{G;(*) < p-(-,0%)} followsif {n=1 3" | 1{G;(-) < p,(-,62)}}

is stochastically equicontinuous as shown in Newey (1991). Note that the proof of Lemma 2 already shows



that {n=1 37 | 1{Gi(*) < p-(-,09)}} is stochastically equicontinuous.

We therefore only show that {n=1 >0 | 1{G;(-) < p+(-,09)}1{G;(") < p-(,02)}} is stochastically
equicontinuous for the uniform continuity of (-, -), where “(-")” is used to distinguish it from “(-)”. For this
purpose, we use Ossiander’s L? entropy condition as in the proof of Lemma 2: if we let U; () := F,(G;(7))
be the PIT of G;(+y) as in the proof of Lemma 2,

11{Gi(7) < pr (7, 0D }{Gi(Y) < pr (7,0} = {Gi(") < p- (7", 0} U{G: (") < p (7", 69)}|
= |1{U;(v) < IH{U(Y) < 7} — Ui (") < 73 {U; (") < 7}

)

so that Ossiander’s L? entropy condition requires that there are are v > 0 and C' > 0 such that

E sup 1L{Ui(7) < 7} L{Ui(Y) < 7} — HUi(y") < 7}L{U;(v") < 737 | < C0.
Gy ) = )| <8
(A.4)

We first note that

[L{Ui(y) < T{U(Y) < 7} = H{U(Y") < THH{UI(Y") < 7}
= [{Ui(y) < THUHU:(Y) < 7} = HUi(Y") < 7})
+ H{Ui(v") < TH{Ui(y) < 7} = H{U(v") < 7})]
< |HU(Y) < 7} = H{U(Y") < 7} + [H{Ti(y) < 7} = H{Ti(v") < 7}

Therefore,

E L( ,)_S(u,I,) <5 |1{Ui(7) < T}]l{Ui('y/) <7}-— ]l{Ui(’Y”) < T}]l{Ui(’ym) < THZI

ly—"1I<d

< 2E [ sup ‘ﬂ{Ui(V) <7} - HUi(Y') < T}‘Q

+2E | sup  |L{Ui(y) < 7} - L{Ui(Y) < 7} B L{Ui(v") < 7} - HUi(Y") < TH] :

lv—'lI<o [y —=~"""]| <6

‘We here note that

2
E| swp [{Ui(y) <7} - H{UG) <7}~ sup \H{in”)sT}—n{Ui«y"')gT}\]

ly="ll<d [l =<8

2
<E ( sup | H{Ui(7) < 7} = H{Ui(7') < T}\)

ly—~'l<é

2
xE ( sup  |H{Ui(y") < 7} = HUi(y") < T}|>
ez

10



by applying Cauchy-Schwarz. Note that

2
E {” sup (L) < 7= LU < T}!}

—"|I<é

<E

I =" 1<s

sup  |L{Ui(y") < 7} — H{Ui(v") < THQ] :

It follows that

2
E| sup |HUi(y) <7}=HUG) <7} sup  [H{U(Y") <7} - L{Ui(y") < T}\]
v="ll<d Iy =" |<8
2
" " 2
<E| sup  [H{U(") <7} - HU(Y") < 7} ] :
" =~""[I<d

implying that

E sup | {Ui(7) < T3{Ui(Y) < 7} = H{Ui(7") < 7}{U; (") < T}|2]

(v )= (" y"")lI<6

<2E [” _SU,PHQ |1{Ui(7) < 7} — H{Ui(?") < T}‘Ql

+2E

sup  |LH{Ui(y") < 7} — L{U;(v") < r}\2]

I —"l|<8

=4E

sup  [L{U(7") < 7} — HU(Y") < 7}12] .

Iy =v""I<é

We have already seen in the proof of Lemma 2 that there are v > 0 and C' > 0 such that

E| s [I{U(Y) <7} - UG < <0,
Iy’ =y""lI<é
so that
E[ sup  |H{UI(y) < TU(Y) < 7} = W{U(") < I < 7} | <406
vy ) =" ") ll<é

We now let C? := 4C in (A.4) for the same v to complete the proof that {n =1 >"I | 1{G:(") < p-(-,09)}1{
Gi(") < pr(,09)}} is stochastically equicontinuous. This completes the proof. [

Proof of Theorem 6: Theorem 3 (ii) implies that for each j = 1,2,...,p, n /23" JATﬂ- 2 N(0, E;‘fj).
In addition, E’T“ is positive definite by Assumption 15. It therefore follows by the Cramér-Wold device that
nV2S T A N(0, B*), so that v/n(B, — 0%) = —A1n~2 5" T 4 op(1) A N(0,C%). m
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Proof of Lemma 4: To show the claim, for each j = 1, 2,...,p, we first let
J AN
Wnj(v) = % Z HGi(y) < Pr; (%9%)}
i=1

for notational simplicity. Second, note that Lemma 3 implies that for any €¢; > 0 and 7; > 0, there exist n;

and 0; > 0 such that if n > ngj,

P ( sup ‘@nj('y) — @nj(’y')‘ > ej> < nj. (A.5)
lv—"11<8;

Third, applying the Cramér-Wold device gives the desired result. That is, for all A € RP such that X'\ = 1,

if we show that for all ¢ > 0 and 1 > 0, there are ng and § > 0 such that if n > ng,

p

p
P sup Z)\J(wm Z)\J Onj(Y') — 1) > €| <, (A.6)
Iy =7lI<é | =1 j=1

the desired result follows as in Wooldridge and White (1988, proposition 4.1). Here, foreachj = 1,2,...,p,
A; denotes the j-th row element of .

To show (A.6), we let ¢ > 0 and 7 > 0 and show the stochastic equicontinuity using its definition.
If \; # 0, we let ¢; and n; be €/(p - |\j]) and n/p, respectively. Then, it follows that if n > ng :=

max[ngi, noz, - - - >n0p]’
o~ -~ ¢ 77
P SUp @i () = @ni (V)| > —7 | <=
<|Iw—7’|<6j | | Pl b

from (A.5). On the other hand, if A\; = 0,

—~ —~ €
P sup |>‘J| ) ‘wnj(’Y) _an(’yl)‘ >-1=0<
I —=~'11<3; p

SPE!

Therefore,

ZP< sup IAjI-}@nj(v)—@nj(v')be)<n,

=1 [ly—="11<d;

and we also note that

p p
n>ZIP’< sup  [Aj] - [@nj(7) — Bnj ()] >e> >P (Y sup [N @i (7) = @i (V)] > €
j=1 Iy —~"ll<d; j=1 ly—'11<8;
p p
>P (Y sup [ A{@n (1) = @iV e | ZP D] sup | N(@ni(7) — @i (V)| > €
j=1 Iy —>"11<d; j=1 ly—'ll<o
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by letting 6 := min[dy, d2, ..., dp). Thatis, for each e > 0 and > 0, there are ng and § > 0 such that
P P
P sup Z)\j(wm Z)\J Onj(Y) =) > €] <n.
ly—='ll<d j=1 j=1

This completes the proof. u

Proof of Theorem 7: Given Lemma 4, note that

0 i - . on _ o, 0\5
Lvep(v,e )\/ﬁ; (11{Gz(v) <p(7,0°)} )d@(v) = Lvep(779 )G (7)dQ(v)

by continuous mapping. Further note that the final integral follows a normal distribution from the fact that
foreachj =1,2,...,p, @J. (+) is a Gaussian stochastic process. By dominated convergence theorem using

Assumption 16,
[/ Vop(,0°)G()dQ( >]= [ Fapt. MRG0, and

defining £(-,-) : I' x I' = RP*? such that its j-th row and j'-th column element is K, 7, (-,") given in

Lemma 4,

_ / //vop(%am(w) 1p(7,0°)dQ(7)dQ(Y)

which yields BC. Therefore, [, Vop(v,0°)G G(~)dQ(7) ~ N(0, B°). Given that B is positive definite by
Assumption 16, it follows that

Vi@, ~ 6% =~ [ Vop(6)G(2)dQx) ~ A0, C°),
¥

as desired, completing the proof. |

Proof of Lemma 5: Since the asymptotic approximation of ,, is the same as that of f,,, we prove only (i).

Given that g, (+) is stochastically differentiable in the sense of Pollard (1985, theorem 5), we can construct

the Lagrange function to obtain the CTSFQR estimator (see also Newey and McFadden, 1994, section 7).

The asymptotic first-order conditions are

Q0. + DX, =op(1) and R(f,) =0, (A7)
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where \,, stands for the asymptotic Lagrange multiplier. Note further that

OQn = QQn + QA* (6, — 0") +0p(1) and  R(B,) = R(0%) + D*(0) (6, — 07) + 08(1),  (A8)
where Q,, := (n~? py J;). Solving for (6,, — 6*) from these two conditions, it now follows that

\/ﬁ(en . 9*) — ((QA*)fl + (QA*)le*/E*le*(QA*)fl)\/ﬁQQn
+((QA7) I DYE)VaR(0") + op(v/n),

where E* := —D*(QA*)~'D* and \/ﬁQ@n 2 N (0, 2B*) by applying Theorem 6. Next,

((QA*)fl + (QA*)le*/E*flp*(QA*)fl)\/ﬁQQn
R N(0,(24%)7H(QA*) + D¥E*~1D*(QA") T1QB*Q(QA*) " [(QA4*) + DY E*1D*|(QA*) 7).

Here, we note that {2 and A* are block diagonal matrices, so that the given asymptotic variance matrix
simplifies to
[I + (QA*)_lD*/E*_lD*]é* [I + D*/E*_lD*(QA*)_l],

so that /ir{ (6, — 0%) — (QA") LD E*"1R(6%)} A N (0, [T+ (QA*) 1 D*E*~1D*|C*[I + D*E*~' D*
(Q2A4%)71]). Substituting —D*(2A*)~1 D* for E*, the desired result follows. [ |

Proof of Theorem 8: (ii) Since the proofs of (i) are almost identical to those of (ii), we prove only (if).

(ii.a) Applying the mean-value theorem, R(6,,) = R(6*) + V’eR(HI;L)(gn — 6*) for some 6", between 6,
and 6*, and if H, is imposed, \/ﬁR(gn) = gR(GZ)\/ﬁ(gn — #*). Note that 6”, 5 6%, so that ViR (6,) =

L R(0%)/n(By, — 0%) + op(1). Therefore, y/nR(6y,) = V,R(0*)y/n(0, — 0) & N (0, V,R(6*)C*VyR
(6*)) by Theorem 6 (ii). Since D, 5 Vi, R(0") it follows that D,,C,, D!, consistently estimates the asymp-
totic variance matrix of \/HR(gn) from the fact that A, is consistent for A*. It therefore follows that
Wi := nR(0,)'{D,C,D.,} ' R(0,) A X2 under H,.

Under Hy, viR(0,) = VAR(0) + V,R(62)y/n(6, — 6%), so that v/nR(6,) = Op(y/n) because
VnR(0*) = O(y/n) and V’QR(GEL)\/E(@I — 6*) = Op(1), implying that W,, = Op(n). Therefore, if
cn = o(n), limy, s IF’(W >cp) = 1.

(ii.b) Solving for X, from (A.7) and (A.8), /nA, = —(E*1D*(QA*) 1) /nQQ,, — E*~1\/nR(6*)
+op(y/n). Given that \/nQQ, ~ N (0, QB*Q), it follows that

Vidn + EXNRR(0%) A N(0, E*LD*C* DY E*Y), (A.9)

so that, if H, holds, R(6*) = 0 and
nX {E*1D*C*DYE*1 1N, A a2, (A.10)
Note that { E* 1 D*C*D* E*~1}~1 = E*(D*C*D*)~1E* = D*(QA*)~1D*(D*C*D*)~1D* (QA*)~!
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D* using the fact that E* := —D*(QA*)~'D*. Therefore,

n X {E*1D*C*DYE*1} 71, = nA, D*(QA*) ' DY (D*C*D*) "' D*(QA*) DY},
= n\, Dy (QA*) ' D} (DnCr D)) ™ Dy (QA™) ' Dy Ay, + 0p(1)
= QLA DL (DG DL LD A0 + 0p(1),

where the penultimate equality follows because D, 5 D*and B, % B* under H,, as implied by Lemma
5 and the consistency of /~1n for A*. The last equality follows from (A.7) and the fact that €2 is a diagonal
matrix. Note that this final expression is asymptotically equivalent to the definition of LM,,. So the desired

result now follows from (A.10).

Under H,, note that Q0Q),, + l'jjl)\n = op(1) from (A.7) and \/ﬁxn = Op(y/n) from (A.9), so that
V1nQ, = Op(y/n). Furthermore, D,, = Op(1) and B, = Op(1) from Assumption 18, implying that
LM,, = Op(n). Therefore, if ¢,, = o(n), lim, s P(LM,, > ¢,) = 1.

(ii.c) Given stochastic differentiability of ¢, (-) in the sense of Pollard (1985, theorem 5), we can apply a
second-order Taylor expansion around 6,,, so that 2n{G (6r) — Gn (65)} = 1(6, — 0, ) QLA* (6, — 6,,) +0p(1)
using the fact that the stochastic second derivative of g, (+) is asymptotically equal to QA* at 8*. The proof of
Lemma 5 already showed that \/n(0,, — 6*) — (QA*)~1/nQQ,, = {(QA*) 1 D*E*~1D*(QA*)~1}/nQ
Qn + ((QAS)ID*E*=1)\/nR(0*) + op(/n), from which we further note that (Q2A*)~1/nQQ,, = A*~!
V1On = (6, — 6%) + op(1) as implied by Theorem 6. It follows that

Vb, — 6,) = {(QA*) I D*E* DY (QA") " }WnQQ, + (QA*) " 'D*E*~1)/nR(0*) + op(v/n).
Hence, if H, holds,

Qn{fjn(en) — qAn(gn)} = nQ;Q(QA*)’lD*’E*’l{D*(QA*)’lD*’}E*’lD*(QA*)’lQQn + op(1)
— nQ%A*le*/{D*(QA*)le*/}le*A*flén + O[[D(].),

since E* := —D*(QLA*)~1 D*. We further note that \/nD*A*1Q,, = W ~ N (0, D* A*"1 B*A*~1D*),
It therefore follows that QLR, = 2n{Gu(fn) — Gu(6n)} = W/{D*(QA*)"1D*}~1W under H,, as
desired.

Under Ha, /7 (6, — 6,) = Op(y/n) since {(QA*)"1D¥E*~1D*(QA*)~1}/nQQ, = Op(1) and
R(6*) # 0, so that QLR,, = Op(n). Therefore, if ¢, = o(n), lim, yoo P(QLR, > ¢,) = 1. This

completes the proof. |

A.2 Supplementary empirical applications

This section provides additional empirical material for Section 8. First, we provide the estimated p,(-) for
each group classified by gender and education. Using quadratic, cubic and quartic models for x,(-), Figure

A.1 plots the estimated LIPs using work experiences over 0—40 years, and Figure A.2 plots the estimated
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LIPs using work experience over 10—40 years. The red, blue, and green lines in the figures denote the fitted
LIPs obtained by the quadratic, cubic, and quartic specifications, respectively. The (three colored) curves at
the top and the curves at the bottom of each figure are the estimated quantile LIPs for 7 = 0.75 and 7 = 0.25,
respectively. The (three colored) curves in the middle of each figure are the median quantile functions for
7 = 0.5. As is apparent in the two figures, the shapes of the estimated quantile curves differ between Figures
A.1 and A.2. In particular, the curves in Figure A.2 generally have less curvature and are closer to linearity
than those of Figure A.1 which show different patterns depending on the polynomial specification. Further,
the fitted quantile functions differ among the polynomial function specification. This feature indicates that
the overall shape of the quantile function curve requires a reasonable degree of nonlinearity to accommodate
the irregular patterns of the first 10 experience years in the income profiles.

Second, we report the estimation errors measured by qm(@;) in each group specification, capturing
the value of the criterion function (2) at the estimate 57. Tables A.1 and A.2 display the errors in the
estimated LIPs using work experiences over 0—40 years and 10-40 years, respectively. As shown in the

~

tables, the quartic specification provides the smallest ¢,,(6;), and the quadratic specification yields the

~

largest ¢, (0-) among the three specifications. Nonetheless, the quadratic, cubic, and quartic models yield
similar estimation errors overall. In the lower panel of each table, we also report qm(@) computed using
the rescaled income paths that are obtained by dividing each individual LIP with its integral over the entire
working experience profile. As in the nonscaled data case, the estimation errors decline as the degree of the

polynomial function rises, although the overall results remain similar.
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Estimated errors of the quantiles of the original log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

w/o Degree 12.00 11.98 11.96 11.13 11.12 11.10
= 0.25 Bachelor 10.82 10.77 10.67 10.25 10.20 10.10
Master 10.93 10.70 10.59 9.91 9.80 9.68
Ph.D 10.62 10.35 10.20 10.65 10.55 10.43
w/o Degree 14.23 14.23 14.20 13.92 13.92 13.89
- —05 Bachelor 13.52 13.39 13.27 12.87 12.80 12.67
’ Master 13.59 13.28 13.16 12.22 12.06 11.89
Ph.D 13.59 13.31 13.14 13.56 13.39 13.26

w/o Degree 11.04 11.03 11.01 11.06 11.05 11.01

=075 Bachelor 10.86 10.66 10.61 10.29 10.21 10.11
Master 10.85 10.58 10.52 9.78 9.66 9.54
Ph.D 11.40 11.04 11.04 10.80 10.60 10.55

Estimated errors of the quantiles of the rescaled log income path
Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

w/o Degree 5.87 5.85 5.76 5.63 5.63 5.56

025 Bachelor 6.13 6.10 5.86 6.03 6.02 5.85
Master 6.47 6.35 6.03 6.21 6.16 5.88

Ph.D 6.45 6.27 5.85 6.58 6.54 6.22

w/o Degree 6.83 6.83 6.77 6.65 6.65 6.59

S =05 Bachelor 7.11 7.07 6.80 6.95 6.95 6.76
’ Master 7.56 7.38 6.99 7.15 7.07 6.83

Ph.D 7.53 7.28 6.79 7.50 7.48 7.21

w/o Degree 5.20 5.20 5.19 5.04 5.02 5.01

075 Bachelor 5.38 5.29 5.10 5.25 5.19 5.05
Master 5.72 5.50 5.23 5.32 5.20 5.06

Ph.D 5.70 5.46 5.14 5.62 5.51 5.36

Table A.1: ESTIMATION ERRORS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS.
This table shows the estimation errors of the original and rescaled log income paths using the quadratic,
cubic and quartic models for each group of the workers classified according to their education levels and
genders.
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Estimated errors of the quantiles of the log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic
w/o Degree 8.97 8.94 8.94 8.12 8.10 8.10
;= 0.25 Bachelor 7.92 7.89 7.89 7.31 7.29 7.28
Master 7.91 7.90 7.90 7.07 7.06 7.06
Ph.D 7.65 7.63 7.62 7.57 7.56 7.55
w/o Degree 10.65 10.64 10.63 10.19 10.18 10.18
F—05 Bachelor 9.89 9.87 9.86 9.27 9.25 9.24
Master 9.89 9.88 9.87 8.74 8.72 8.72
Ph.D 9.93 9.90 9.89 9.82 9.80 9.80
w/o Degree 8.28 8.27 8.27 8.10 8.09 8.09
=075 Bachelor 7.89 7.88 7.88 7.47 7.46 7.45
' Master 7.84 7.82 7.82 7.13 7.11 7.11
Ph.D 8.32 8.32 8.32 7.95 7.95 7.95
Estimated errors of the quantiles of the rescaled log income path
Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic
w/o Degree 3.99 3.90 3.89 3.86 3.79 3.78
-~ 095 Bachelor 3.87 3.81 3.80 3.90 3.85 3.84
' Master 3.79 3.74 3.74 3.81 3.75 3.75
Ph.D 3.70 3.65 3.63 3.82 3.76 3.75
w/o Degree 4.68 4.63 4.61 4.61 4.57 4.56
=05 Bachelor 4.54 4.49 4.48 4.57 4.54 4.53
Master 4.43 4.39 4.38 4.44 4.42 4.41
Ph.D 4.34 4.30 4.28 4.56 4.53 4.52
w/o Degree 3.54 3.53 3.51 3.50 3.49 3.48
=075 Bachelor 343 342 341 3.46 3.46 3.45
Master 3.35 3.35 3.34 3.32 3.33 3.32
Ph.D 3.27 3.26 3.25 3.46 3.46 3.45

Table A.2: ESTIMATION ERRORS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS.
This table shows the estimation errors of the original and rescaled log income paths under the quadratic,
cubic, and quartic for each group of the workers classified according to their education levels and genders.
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Figure A.1: ESTIMATED QUANTILE FUNCTIONS OVER 0 TO 40 WORK EXPERIENCE YEARS USING THE
ORIGINAL LIPs.
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Figure A.2: ESTIMATED QUANTILE FUNCTIONS OVER 10 TO 40 WORK EXPERIENCE YEARS USING
THE ORIGINAL LIPS.
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