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A Appendix

A.1 Proofs

Proof of Lemma 1: Note that dτ (γ, u) := E[ξτ (G(γ) − u)] − E[ξτ (G(γ) − xτ (γ))] = uFγ(u) −
uFγ(xτ (γ)) +

∫ xτ (γ)
−∞ gdFγ(g) −

∫ u
−∞ gdFγ(g). Applying integration by parts, xτ (γ)Fγ(xτ (γ)) =

∫ xτ (γ)
−∞

Fγ(g)dg +
∫ xτ (γ)
−∞ gdFγ(g), and uFγ(u) =

∫ u
−∞ Fγ(g)dg +

∫ u
−∞ gdFγ(g), giving

∫ xτ (γ)
−∞ g dFγ(g) −∫ u

−∞ gdFγ(g) = xτ (γ)Fγ(xτ (γ))−uFγ(u)+
∫ xτ (γ)
−∞ Fγ(g)dg−

∫ u
−∞ Fγ(g)dg. Hence, dτ (γ, u) = (xτ (γ)−

u)Fγ(xτ (γ))+
∫ xτ (γ)
−∞ Fγ(g)dg−

∫ u
−∞ Fγ(g)dg. Further, if xτ (γ) > u, then dτ (γ, u) =

∫ xτ (γ)
u {Fγ(xτ (γ))−

Fγ(g)}dg; and if xτ (γ) < u, then dτ (γ, u) =
∫ u
xτ (γ)

{Fγ(g)−Fγ(xτ (γ))}dg, so that dτ (γ, u) := E[ξτ (G(γ)

−u)]− E[ξτ (G(γ)− xτ (γ))] =
∫ max[u,xτ (γ)]
min[u,xτ (γ)]

|Fγ(g)− Fγ(xτ (γ))|dg. This completes the proof. ■

Proof of Theorem 1: The proof follows reasoning similar to that of Oberhofer and Haupt (2016). Applying

Lemma 2N of Oberhofer and Haupt (2016), we first obtain that for w such that ∥w∥ = 1,

R̂ln(w) ≤
1√
n

n∑
i=1

w′
∫
γ
∇θτρτ (γ, θ̂τn)(1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ)dQ(γ) ≤ R̂un(w),

where

R̂ln(w) := − 1√
n

n∑
i=1

∫
γ
1{Gi(γ) = ρτ (γ, θ̂τn)}|w′∇θτρτ (γ, θ̂τn)|1{w′∇θτρτ (γ, θ̂τn) < 0}dQ(γ),

R̂un(w) :=
1√
n

n∑
i=1

∫
γ
1{Gi(γ) = ρτ (γ, θ̂τn)}|w′∇θτρτ (γ, θ̂τn)|1{w′∇θτρτ (γ, θ̂τn) ≥ 0}dQ(γ).

*Cho acknowledges research support from the Yonsei University Research Grant of 2023; Phillips acknowledges research
support from the NSF under Grant No. SES 18-50860 at Yale University and a Kelly Fellowship at the University of Auckland;
and Seo acknowledges research support from the Tier 1 grant FY2023-FRC1-003.
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Furthermore, applying Lemma 9N of Oberhofer and Haupt (2016) demonstrates that

1√
n

n∑
i=1

w′
∫
γ
∇θτρτ (γ, θ̂τn)(1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ)dQ(γ)

= w′A∗
τ

√
n(θ̂τn − θ∗τ ) + w′ 1√

n

n∑
i=1

Jτi + oP(1),

so that if we show that R̂ln(w) = oP(1) and R̂un(w) = oP(1), then (3) follows. For this derivation, we let

R̂n(w) := R̂ln(w)− R̂un(w) =
1√
n

n∑
i=1

∫
γ
1{Gi(γ) = ρτ (γ, θ̂τn)}|w′∇θτρτ (γ, θ̂τn)|dQ(γ)

and show that R̂n(w) = oP(1) by noting that R̂n(w) = oP(1) if and only if R̂ln(w) = oP(1) and R̂un(w) =

oP(1). If we let B(θ0, d) := {θ : ∥θ − θ0∥ ≤ d}, then for a sufficiently large m < ∞, there are finite

numbers of open balls covering Θ(n,m) := {θ :
√
n∥θ − θ∗τ∥ ≤ m}, viz., Θ(n,m) ⊂ ∪n(d)

j=1B(θ(j, d), d)

such that for any d > 0, n(d) < ∞, where θ(j, d) is the center of the j-th open ball. Given this, Assumption

2 implies that for any θτ ∈ B(θ(j, d), d), there exists θ̄τ , θaτ , and θbτ ∈ B(θ(j, d), d) such that∫
γ
|w′∇θτρτ (γ, θτ )|2dQ(γ) ≤

∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ)

and ∫
γ
1{Gi(γ) = ρτ (γ, θτ )}dQ(γ) ≤

∫
γ
1{ρτ (γ, θaτ ) ≤ Gi(γ) ≤ ρτ (γ, θ

b
τ )}dQ(γ).

If we further let

R̄n(j, r) :=
1√
n

n∑
i=1

∫
γ
1{ρτ (γ, θaτ ) ≤ Gi(γ) ≤ ρτ (γ, θ

b
τ )}dQ(γ)

∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ),

then it follows that 0 ≤ R̂n(w) ≤ R̄n(j, r) by noting that for any θ ∈ B(θ(j, d), d),∫
γ
1{Gi(γ) = ρτ (γ, θτ )}|w′∇θτρτ (γ, θτ )|dQ(γ)

≤
∫
γ
1{ρτ (γ, θaτ ) ≤ Gi(γ) ≤ ρτ (γ, θ

b
τ )}dQ(γ)

∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ).

We here note that for each j = 1, 2, . . . , n(d),

E[
∫
γ
1{ρτ (γ, θaτ ) ≤ Gi(γ) ≤ ρτ (γ, θ

b
τ )}dQ(γ)

∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ)]

=

∫
γ
{Fγ(ρτ (γ, θ

b
τ ))− Fγ(ρτ (γ, θ

a
τ ))}dQ(γ)

∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ),
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and

var[R̄n(j, r)] ≤
∫
γ
{Fγ(ρτ (γ, θ

b
τ ))− Fγ(ρτ (γ, θ

a
τ ))}dQ(γ)

(∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ)

)2

.

Further, for some θ̃τ between θaτ and θbτ , we have

Fγ(ρτ (γ, θ
b
τ ))− Fγ(ρτ (γ, θ

a
τ )) = fγ(ρτ (γ, θ̃τ ))

√
n(θbτ − θaτ )

1√
n
∇θτρτ (γ, θ̃τ ) = o(1)

because f(·)(·) and ∇θτρτ (·, ·) are uniformly bounded on Γ×Θτ by Assumption 2 and
√
n(θbτ − θaτ ) ≤ 2d.

It therefore follows that R̄n(j, r) = oP(1), so that

E[
∫
γ
1{ρτ (γ, θaτ ) ≤ Gi(γ) ≤ ρτ (γ, θ

b
τ )}dQ(γ)

∫
γ
|w′∇θτρτ (γ, θ̄τ )|2dQ(γ)] = o(1),

and var[R̄n(j, r)] = o(1), leading to R̂n(w) = oP(1), and this again leads to (3).

Second, note that (3) implies that
√
n(θ̂τn − θ∗τ ) = −A∗−1

τ n−1/2
∑n

i=1 Jτi + oP(1). Given that θ∗τ
is identified as given in Assumption 2, the first-order condition holds, so that E[Jτi] = 0. Assumption 4

also implies that B∗
τ := E[JτiJ ′

τi] is positive definite. Furthermore, Assumption 3 implies that for each

j = 1, 2, . . . , cτ , E[J2
τij ] < ∞, where Jτij is the j-th row element of Jτi. Therefore, n−1/2

∑n
i=1 Jτi

A∼
N (0, B∗

τ ) by the multivariate CLT, so that
√
n(θ̂τn− θ∗τ )

A∼ N (0, A∗−1
τ B∗

τA
∗−1
τ ). This completes the proof.

■

Proof of Lemma 2: We show stochastic equicontinuity of n−1/2
∑n

i=1(1{Gi(·) ≤ ρτ (·, θ0τ )} − τ) using

Ossiander’s L2 entropy condition: for some ν > 0 and C > 0,

E

(
sup

∥γ−γ′∥<δ
|1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ − (1{Gi(γ

′ ≤ ρτ (γ
′, θ0τ ))} − τ)|2

)1/2

≤ Cδν .

To verify this, first note that if we let Ui(γ) := Fγ(Gi(γ)), where Fγ(·) is the CDF of Gi(γ), the left side is

identical to

E

(
sup

∥γ−γ′∥<δ
|1{Ui(γ)− τ ≤ 0} − 1{Ui(γ

′)− τ ≤ 0})|2
)1/2

by noting that Fγ(ρτ (γ, θ
0
τ )) = τ and Fγ′(ρτ (γ

′, θ0τ )) = τ . Next, apply the proof in Andrews (1994,

p. 2779), letting his Ut and h∗(Zt, ·) be 1 and Ui(·) − τ , respectively and note that Assumptions 1 and 2

imply that Ui(·) is Lipschitz continuous almost surely: for some C > 0, |Ui(γ)−Ui(γ
′)| ≤ C∥γ−γ′∥. Here,

we further note that Ui(γ) is uniformly distributed over [0, 1], so that its density function is bounded above

uniformly on Γ. Therefore, example 3 in Andrews (1994, p. 2779) proves equicontinuity by Ossiander’s L2

entropy condition.

Next derive the covariance structure of the Gaussian stochastic process Gτ (·), noting that for each γ and
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γ′,

E[(1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ)(1{Gi(γ

′) ≤ ρτ (γ
′, θ0τ )} − τ)]

= E[(1{Ui(γ) ≤ τ} − τ)(1{Ui(γ
′) ≤ τ} − τ)]

= E[1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ}]− τE[1{Ui(γ) ≤ τ}]− τE[1{Ui(γ

′) ≤ τ}] + τ2

= E[1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ}]− τ2 = κ(γ, γ′),

where the final equality follows from the fact that E[1{Ui(γ) ≤ τ}] = τ uniformly on γ. This completes

the proof. ■

Proof of Theorem 2: Given Lemma 2, we note by continuous mapping that

∫
γ
∇θτρτ (γ, θ

0
τ )

1√
n

n∑
i=1

(
1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ) ⇒

∫
γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ)

which follows a normal distribution since Gτ (·) is a Gaussian stochastic process. Further note that applying

dominated convergence using Assumption 3,

E
[∫

γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ)

]
=

∫
γ
∇θτρτ (γ, θ

0
τ )E[Gτ (γ)]dQ(γ) = 0 and

E
[∫

γ

∫
γ′
∇θτρτ (γ, θ

0
τ )Gτ (γ)Gτ (γ

′)∇θτρτ (γ
′, θ0τ )dQ(γ)dQ(γ′)

]
=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )E[Gτ (γ)Gτ (γ

′)]∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′)

=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )κτ (γ, γ

′)∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′) =: B0

τ

by the definition of κτ (·, ·). Therefore,
∫
γ ∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ) ∼ N (0, B0

τ ) where B0
τ is positive

definite by Assumption 5. This fact further implies that

√
n(θ̂τn − θ0τ ) ⇒ −A0−1

τ

∫
γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ) ∼ N (0, C0

τ ),

as required. ■

Proof of Theorem 3: The derivation of (4) is almost identical to that of (3) and is not repeated for brevity.

Instead, we focus on deriving the limit distribution from (4).

If we apply (4) to the misspecified model, it now follows that
√
n(θ̃τn−θ∗τ ) = −A∗−1

τ n−1/2
∑n

i=1 Ĵτi+

oP(1). We focus on n−1/2
∑n

i=1 Ĵτi to derive the limit distribution. Apply (A.1), as given in the proof of
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Lemma 3, to the misspecified model giving, for each γ ∈ Γ,

1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ

)
=

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

∗
τ )} − τ

)
=

1√
n

n∑
i=1

[(
1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
∗
τ )} − τ

)
− fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]P ∗−1Si

]
+ oP(1).

Here, we applied the ULLN to obtain n−1
∑n

i=1∇πG̃i(·, π̄γn)
P→ E[∇πG̃i(·, π∗)] by using Assumption 8.

It now follows that

1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

∫
γ
∇θτρτ (γ, θ

∗
τ )
(
1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
∗
τ )} − τ

)
dQ(γ)

− 1√
n

n∑
i=1

∫
γ
∇θτρτ (γ, θ

∗
τ )fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]dQ(γ)P ∗−1Si + oP(1).

Here, Assumptions 6 and 8 imply that
∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]dQ(γ) is well defined.

We further note that
∫
γ ∇θτρτ (γ, θ

∗
τ )(1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
∗
τ )} − τ) and

∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(xτ (γ))E[

∇′
πG̃i(γ, π

∗)]dQ(γ) are defined as Jτi and K∗
τ , respectively, so that we can rewrite this equation as

1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

(Jτi −K∗
τP

∗−1Si) + oP(1).

Given this result, Assumptions 2 and 7 imply that E[Jτi] = 0 and E[Si] = 0. Furthermore, Assumption

9 implies that B̃∗
τ := E[(Jτi − K∗

τP
∗−1Si)(Jτi − K∗

τP
∗−1Si)

′] is positive definite, and for each j =

1, 2, . . . , cτ , E[J2
τij ] < ∞ and E[S2

ij ] < ∞ by Assumptions 7 and 8. It now follows by the multivariate CLT

that
√
n(θ̃τn − θ∗τ )

A∼ N (0, C̃∗
τ ), as required. ■

Proof of Lemma 3: We first derive the covariance kernel of G̃τ (·). Note that for any c, if a > 0, 1{x ≤
c− a} = 1{x ≤ c} − 1{x ∈ (c− a, c]}. On the other hand, if a < 0, 1{x ≤ c− a} = 1{x ≤ c}+ 1{x ∈
(c, c− a]}. Therefore, 1{x ≤ c− a} = 1{x ≤ c} − 1{c− a < x ≤ c}+ 1{c < x ≤ c− a}.

We use this equality to show the given claim. For notational simplicity, let xτ (γ) and µ̂ni(γ) denote

ρτ (γ, θ
0
τ ) and +∇′

πG̃i(γ, π̄γn)(π̂n − π∗), respectively. If we further let x, c, and a be Ĝi(γ), xτ (γ),

and µ̂ni(γ), respectively, it now follows that 1{G̃i(γ, π
∗) + ∇′

πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ
0
τ )} =

1{G̃i(γ, π
∗) ≤ xτ (γ)} + 1{xτ (γ) < G̃i(γ, π

∗) ≤ xτ (γ) − µ̂ni(γ)} − 1{xτ (γ) − µ̂ni(γ) < G̃i(γ, π
∗) ≤

xτ (γ)}. Note that Assumption 8 implies that ∇πG̃i(·, ·) = OP(1) and (π̂n − π∗) = oP(1), so that
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µ̂ni(γ) = oP(1) uniformly in γ. Therefore,

1√
n

n∑
i=1

[1{G̃i(γ, π
∗) ∈ (xτ (γ), xτ (γ)− µ̂ni(γ)]} − 1{G̃i(γ, π

∗) ∈ (xτ (γ)− µ̂ni(γ), xτ (γ)]}

=
1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)− µ̂ni(γ)} − Fγ(xτ (γ))
)
−
(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − Fγ(xτ (γ))
)

=
1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − Fγ(xτ (γ))
)
− 1

n

n∑
i=1

fγ(xτ (γ))∇′
πG̃i(γ, π

∗)
√
n(π̂n − π∗)

− 1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − Fγ(xτ (γ))
)
+ oP(1)

=− fγ(xτ (γ))E[∇′
πG̃i(γ, π

∗)]
√
n(π̂n − π∗) + oP(1),

where the second equality follows from that n−1/2
∑n

i=1 1{G̃i(γ, π
∗) ≤ xτ (γ)−µ̂ni(γ)} = n−1/2

∑n
i=1 1{

G̃i(γ, π
∗) ≤ xτ (γ)}−n−1

∑n
i=1 F

′
γ(xτ (γ))

√
nµ̂ni(γ)+oP(1) and applying the mean-value theorem at the

limit. Note that F ′
γ(xτ (γ)) = fγ(xτ (γ)). Therefore,

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

0
τ )} − τ

)
=

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ
)
− fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]

√
n(π̂n − π∗) + oP(1)

=
1√
n

n∑
i=1

[(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ
)
− fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]P ∗−1Si

]
+ oP(1) (A.1)

Given this, we compute the covariance kernel using the summand on the right side of (A.1), viz.,

E[[(1{G̃i(γ, π
∗) ≤ xτ (γ)} − τ)− fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]P ∗−1Si]

× [(1{G̃i(γ
′, π∗) ≤ xτ (γ

′)} − τ)− fγ′(xτ (γ
′))E[∇′

πG̃i(γ
′, π∗)]P ∗−1Si]]

= E[(1{G̃i(γ, π
∗) ≤ xτ (γ)} − τ)(1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ)]

− fγ(xτ (γ))E[∇′
πG̃i(γ, π

∗)]P ∗−1E[Si(1{G̃i(γ
′, π∗) ≤ xτ (γ

′)} − τ)]

− fγ′(xτ (γ
′))E[∇′

πG̃i(γ
′, π∗)]P ∗−1E[Si(1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ)]

+ fγ(xτ (γ))E[∇′
πG̃i(γ, π

∗)]P ∗−1H∗P ∗−1E[∇πG̃i(γ
′, π∗)]fγ′(xτ (γ)).

Observing that E[(1{G̃i(γ, π
∗) ≤ xτ (γ)} − τ)(1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ)] = κτ (γ, γ
′), the desired

covariance kernel κ̃τ (γ, γ′) is now obtained from this equality.

We next prove that the left side of (A.1) is stochastically equicontinuous. We let ς(γ) := fγ(xτ (γ))E[∇′
π

G̃i(γ, π
∗)]P ∗−1 for notational simplicity and show that the right side of (A.1) satisfies the bound condition
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to apply Ossiander’s L2 entropy condition: for some C and ν > 0,

E

(
sup

∥γ−γ′∥<δ
|(1{G̃i(γ, π

∗) ≤ xτ (γ)} − ς(γ)Si)− (1{G̃i(γ
′, π∗) ≤ xτ (γ

′)} − ς(γ′)Si)|2
)1/2

≤ Cδν .

(A.2)

We here note that

sup
∥γ−γ′∥<δ

|(1{G̃i(γ, π
∗) ≤ xτ (γ)} − ς(γ)Si)− (1{G̃i(γ

′, π∗) ≤ xτ (γ
′)} − ς(γ′)Si)|2

≤ sup
∥γ−γ′∥<δ

|1{G̃i(γ, π
∗) ≤ xτ (γ)} − 1{G̃i(γ

′, π∗) ≤ xτ (γ
′)}|2

+ sup
∥γ−γ′∥<δ

∥ς(γ)− ς(γ′)∥ · ∥Si∥+ sup
∥γ−γ′∥<δ

|(ς(γ)− ς(γ′))Si)|2.

In the proof of Lemma 2, we already saw that there are C1 and ν1 > 0 such that

E

(
sup

∥γ−γ′∥<δ
|(1{G̃i(γ, π

∗) ≤ xτ (γ)})− (1{G̃i(γ
′, π∗) ≤ xτ (γ

′)})|2
)1/2

≤ C1δ
ν1 .

Next, Assumptions 2, 6, and 8 imply that ς(·) is Lipschitz continuous, because the product of two Lipschitz

continuous functions is Lipschitz continuous: for some m > 0, ∥ς(γ) − ς(γ′)∥ ≤ m∥γ − γ′∥, so that for

some C2 and ν2 > 0,

E

(
sup

∥γ−γ′∥<δ
|(ς(γ)− ς(γ′))| · |Si|

)
≤ C2δ

ν2

by letting C2 := ms ·maxj=1,...,s E[|Sij |2] and ν2 = 1. Note that maxj=1,...,s E[|Sij |2] < ∞ from Assump-

tion 7. We note that

|(ς(γ)− ς(γ′))Si)|2 ≤ max
j=1,...,s

E[Sij |2] · ∥ς(γ)− ς(γ′)∥2 ≤ max
j=1,...,s

E[Sij |2] ·m2∥γ − γ′∥2,

so that if we let C3 := m2 ·maxj=1,...,s E[|Sij |2] and ν3 = 2,

E

(
sup

∥γ−γ′∥<δ
|(ς(γ)− ς(γ′))Si|2

)
≤ C3δ

ν3 .

Therefore, if we let C := max[C1, C2, C3] and ν := max[ν1, ν2, ν3], the desired inequality in (A.2) follows.

This shows that

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

0
τ )} − τ

)
is stochastically equicontinuous, completing the proof. ■
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Proof of Theorem 4: Given Lemma 3, we note that∫
γ
∇θτρτ (γ, θ

0
τ )

1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ) ⇒

∫
γ
∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ)

by applying the continuous mapping theorem. The final integral follows a normal distribution from the fact

that G̃τ (·) is a Gaussian stochastic process. By dominated convergence using Assumption 14,

E
[∫

γ
∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ)

]
=

∫
γ
∇θτρτ (γ, θ

0
τ )E[G̃τ (γ)]dQ(γ) = 0 and

E
[∫

γ

∫
γ′
∇θτρτ (γ, θ

0
τ )G̃τ (γ)G̃τ (γ

′)∇θτρτ (γ
′, θ0τ )dQ(γ)dQ(γ′)

]
=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )E[G̃τ (γ)G̃τ (γ

′)]∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′)

=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )κ̃τ (γ, γ

′)∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′)

which is defined as B̃0
τ . Therefore,

∫
γ ∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ) ∼ N (0, B̃0

τ ), implying that

√
n(θ̃τn − θ0τ ) ⇒ −A0−1

τ

∫
γ
∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ) ∼ N (0, C̃0

τ ),

giving the desired result. ■

Proof of Theorem 5: (i) As the proof of the consistency in (i) is almost identical to that of (ii), we prove

only (i).

(i.a) If we apply the mean-value theorem to ρτ (γ, θ̂τn) and ∇θτρτ (γ, θ̂τn) around the unknown param-

eter θ∗τ , for each γ, there are θ̄∗τγ and θ́∗τγ such that

ρτ (γ, θ̂τn) = ρτ (γ, θ
∗
τ ) +∇′

θτρτ (γ, θ̄
∗
τγ)(θ̂τn − θ∗τ ) and

∇θτρτ (γ, θ̂τn) = ∇θτρτ (γ, θ
∗
τ ) +∇2

θρτ (γ, θ́
∗
τγ)(θ̂τn − θ∗τ ).

For notational simplicity, let ν̂n(γ) := −∇′
θτ
ρτ (γ, θ̄

∗
τγ)(θ̂τn − θ∗τ ). Given these expressions, note that

1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ = 1{Gi(γ) ≤ ρτ (γ, θ
∗
τ )} − τ

+ 1{ρτ (γ, θ∗τ ) < Gi(γ) ≤ ρτ (γ, θ
∗
τ )− ν̂n(γ)} − 1{ρτ (γ, θ∗τ )− ν̂n(γ) < Gi(γ) ≤ ρτ (γ, θ

∗
τ )}

= 1{Gi(γ) ≤ ρτ (γ, θ
∗
τ )} − τ + oP(1) (A.3)

using the fact that 1{ρτ (γ, θ∗τ ) < Gi(γ) ≤ ρτ (γ, θ
∗
τ )−ν̂n(γ)} = oP(1) and 1{ρτ (γ, θ∗τ )−ν̂n(γ) < Gi(γ) ≤
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ρτ (γ, θ
∗
τ )} = oP(1) from the fact that for each γ, ν̂n(γ) = oP(1). It follows that

Jτni :=

∫
γ
∇θτρτ (γ, θ̂τn)

(
1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ

)
dQ(γ)

=

∫
γ
∇θτρτ (γ, θ

∗
τ ) (1{Gi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ) dQ(γ) + oP(1) = Jτi + oP(1),

given that for each j and j′ = 1, 2, . . . , cτ , |∂2/(∂θτj∂θτj′)ρτ (·, ·)| ≤ M < ∞ and |∂/(∂θτj)ρτ (·, ·)| ≤
M < ∞ from Assumption 3. Thus,

B̂τn :=
1

n

n∑
i=1

JτniJ
′
τni =

1

n

n∑
i=1

JτiJ
′
τi + oP(1).

We now further note that for each j = 1, 2, . . . , cτ , E[J2
τij ] < ∞ from Assumption 3, so that it now follows

that B̂τn = 1
n

∑n
i=1 JτiJ

′
τi + oP(1)

P→ E[JτiJ ′
τi] =: B∗

τ . Therefore, B̂τn
P→ B∗

τ .

Proof of consistency of B̃τn is not detailed because it follows in a similar fashion to the consistency of

B̂τn. In particular, given the moment conditions in Assumption 8 and the condition for the other consistent

estimators for P ∗, H∗, and K∗
τ as given in Assumption 11, it follows that Ĵτni = Ĵτi+ oP(1), and the result

B̃τn
P→ B̃∗

τ follows.

(i.b) Given the second-order differentiability of ρτ (γ, ·) in Assumption 2 and Theorem 3(i), we apply

(A.3) to obtain that

1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ = 1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ + oP(1),

implying that κ̂τn(γ, γ′) = κ̂τ (γ, γ
′) + oP(1), where

κ̂τ (γ, γ
′) :=

1

n

n∑
i=1

(1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ)(1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ).

Furthermore, ∇θτρτ (·, θ̂τn)
P→ ∇θτρτ (·, θ0τ ) from the fact that θ̂τn

P→ θ0τ and the continuity of ρτ (·, ·).
Therefore, from the definition of B̂♯

τn, if κ̂τ (·, ·) is consistent for κτ (·, ·) uniformly on Γ × Γ, then the

desired result follows.

For the proof of the consistency of κ̂τ (·, ·), we note that

κ̂τ (γ, γ
′) :=

1

n

n∑
i=1

1{Gi(γ) ≤ ρτ (γ, θ
0
τ )}1{Gi(γ

′) ≤ ρτ (γ
′, θ0τ )}

− τ

n

n∑
i=1

1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} −

τ

n

n∑
i=1

1{Gi(γ
′) ≤ ρτ (γ

′, θ0τ )}+ τ2.

Here, the uniform consistency of n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )} follows if {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}}
is stochastically equicontinuous as shown in Newey (1991). Note that the proof of Lemma 2 already shows
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that {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}} is stochastically equicontinuous.

We therefore only show that {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}1{Gi(·′) ≤ ρτ (·′, θ0τ )}} is stochastically

equicontinuous for the uniform continuity of κ̂τ (·, ·), where “(·′)” is used to distinguish it from “(·)”. For this

purpose, we use Ossiander’s L2 entropy condition as in the proof of Lemma 2: if we let Ui(γ) := Fγ(Gi(γ))

be the PIT of Gi(γ) as in the proof of Lemma 2,

∣∣1{Gi(γ) ≤ ρτ (γ, θ
0
τ )}1{Gi(γ

′) ≤ ρτ (γ
′, θ0τ )} − 1{Gi(γ

′′) ≤ ρτ (γ
′′, θ0τ )}1{Gi(γ

′′′) ≤ ρτ (γ
′′′, θ0τ )}

∣∣
=
∣∣1{Ui(γ) ≤ τ}1{Ui(γ

′) ≤ τ} − 1{Ui(γ
′′) ≤ τ}1{Ui(γ

′′′) ≤ τ}
∣∣ ,

so that Ossiander’s L2 entropy condition requires that there are are ν > 0 and C > 0 such that

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2] ≤ C0δν .

(A.4)

We first note that

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣
= |1{Ui(γ) ≤ τ}(1{Ui(γ

′) ≤ τ} − 1{Ui(γ
′′) ≤ τ})

+ 1{Ui(γ
′′) ≤ τ}(1{Ui(γ) ≤ τ} − 1{Ui(γ

′′′) ≤ τ})|

≤
∣∣1{Ui(γ

′) ≤ τ} − 1{Ui(γ
′′) ≤ τ}

∣∣+ ∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′′′) ≤ τ}

∣∣ .
Therefore,

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2]

≤ 2E

[
sup

∥γ−γ′′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′′) ≤ τ}

∣∣2]

+ 2E

[
sup

∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣ · sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣] .

We here note that

E

[
sup

∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣ · sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣]2

≤ E

( sup
∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣)2


× E

( sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣)2
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by applying Cauchy-Schwarz. Note that

E

{ sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣}2


≤ E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2] .

It follows that

E

[
sup

∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣ · sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣]2

≤ E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2]2 ,

implying that

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2]

≤ 2E

[
sup

∥γ−γ′′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′′) ≤ τ}

∣∣2]

+ 2E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2]

= 4E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2] .

We have already seen in the proof of Lemma 2 that there are ν > 0 and C > 0 such that

E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2] ≤ Cδν ,

so that

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2] ≤ 4Cδν .

We now let C0 := 4C in (A.4) for the same ν to complete the proof that {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}1{
Gi(·′) ≤ ρτ (·′, θ0τ )}} is stochastically equicontinuous. This completes the proof. ■

Proof of Theorem 6: Theorem 3 (ii) implies that for each j = 1, 2, . . . , p, n−1/2
∑n

i=1 Ĵτji
A∼ N (0, B̃∗

τj ).

In addition, B̃∗
τ is positive definite by Assumption 15. It therefore follows by the Cramér-Wold device that

n−1/2
∑n

i=1 Ĵi
A∼ N (0, B̃∗), so that

√
n(θ̃n − θ∗) = −A∗−1n−1/2

∑n
i=1 Ĵi + oP(1)

A∼ N (0, C̃∗). ■
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Proof of Lemma 4: To show the claim, for each j = 1, 2, . . . , p, we first let

ω̂nj(γ) :=
1√
n

n∑
i=1

1{Ĝi(γ) ≤ ρτj (γ, θ
0
τj )}

for notational simplicity. Second, note that Lemma 3 implies that for any ϵj > 0 and ηj > 0, there exist n0j

and δj > 0 such that if n > n0j ,

P

(
sup

∥γ−γ′∥<δj

∣∣ω̂nj(γ)− ω̂nj(γ
′)
∣∣ > ϵj

)
< ηj . (A.5)

Third, applying the Cramér-Wold device gives the desired result. That is, for all λ ∈ Rp such that λ′λ = 1,

if we show that for all ϵ > 0 and η > 0, there are n0 and δ > 0 such that if n > n0,

P

 sup
∥γ−γ′∥<δ

∣∣∣∣∣∣
p∑

j=1

λj(ω̂nj(γ)− τj)−
p∑

j=1

λj(ω̂nj(γ
′)− τj)

∣∣∣∣∣∣ > ϵ

 < η, (A.6)

the desired result follows as in Wooldridge and White (1988, proposition 4.1). Here, for each j = 1, 2, . . . , p,

λj denotes the j-th row element of λ.

To show (A.6), we let ϵ > 0 and η > 0 and show the stochastic equicontinuity using its definition.

If λj ̸= 0, we let ϵj and ηj be ϵ/(p · |λj |) and η/p, respectively. Then, it follows that if n > n0 :=

max[n01, n02, . . . , n0p],

P

(
sup

∥γ−γ′∥<δj

∣∣ω̂nj(γ)− ω̂nj(γ
′)
∣∣ > ϵ

p · |λj |

)
<

η

p

from (A.5). On the other hand, if λj = 0,

P

(
sup

∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ

p

)
= 0 <

η

p
.

Therefore,
p∑

j=1

P

(
sup

∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ

)
< η,

and we also note that

η >

p∑
j=1

P

(
sup

∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ

)
≥ P

 p∑
j=1

sup
∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ


≥ P

 p∑
j=1

sup
∥γ−γ′∥<δj

∣∣λj{ω̂nj(γ)− ω̂nj(γ
′)}
∣∣ > ϵ

 ≥ P

 p∑
j=1

sup
∥γ−γ′∥<δ

∣∣λj(ω̂nj(γ)− ω̂nj(γ
′))
∣∣ > ϵ
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by letting δ := min[δ1, δ2, . . . , δp]. That is, for each ϵ > 0 and η > 0, there are n0 and δ > 0 such that

P

 sup
∥γ−γ′∥<δ

∣∣∣∣∣∣
p∑

j=1

λj(ω̂nj(γ)− τj)−
p∑

j=1

λj(ω̂nj(γ
′)− τj)

∣∣∣∣∣∣ > ϵ

 < η.

This completes the proof. ■

Proof of Theorem 7: Given Lemma 4, note that∫
γ
∇θρ(γ, θ

0)
1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρ(γ, θ0)} − τ

)
dQ(γ) ⇒

∫
γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ)

by continuous mapping. Further note that the final integral follows a normal distribution from the fact that

for each j = 1, 2, . . . , p, G̃τj (·) is a Gaussian stochastic process. By dominated convergence theorem using

Assumption 16,

E
[∫

γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ)

]
=

∫
γ
∇θρ(γ, θ

0)E[G̃(γ)]dQ(γ) = 0, and

defining κ̃(·, ·) : Γ × Γ 7→ Rp×p such that its j-th row and j′-th column element is κ̃τj ,τj′ (·, ·) given in

Lemma 4,

E
[∫

γ

∫
γ′
∇θρ(γ, θ

0)G̃(γ)G̃(γ′)∇θρ(γ
′, θ0)dQ(γ)dQ(γ′)

]
=

∫
γ

∫
γ′
∇θρ(γ, θ

0)E[G̃(γ)G̃(γ′)′]∇′
θρ(γ, θ

0)dQ(γ)dQ(γ′)

=

∫
γ

∫
γ′
∇θρ(γ, θ

0)κ̃(γ, γ′)∇′
θρ(γ, θ

0)dQ(γ)dQ(γ′)

which yields B̃0. Therefore,
∫
γ ∇θρ(γ, θ

0)G̃(γ)dQ(γ) ∼ N (0, B̃0). Given that B̃0 is positive definite by

Assumption 16, it follows that

√
n(θ̃n − θ0) ⇒ −A0−1

∫
γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ) ∼ N (0, C̃0),

as desired, completing the proof. ■

Proof of Lemma 5: Since the asymptotic approximation of θ̄n is the same as that of θ̈n, we prove only (ii).

Given that q̂n(·) is stochastically differentiable in the sense of Pollard (1985, theorem 5), we can construct

the Lagrange function to obtain the CTSFQR estimator (see also Newey and McFadden, 1994, section 7).

The asymptotic first-order conditions are

ΩQ̈n + D̈′
nλ̈n = oP(1) and R(θ̈n) ≡ 0, (A.7)
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where λ̈n stands for the asymptotic Lagrange multiplier. Note further that

ΩQ̈n = ΩQ̂n +ΩA∗(θ̈n − θ∗) + oP(1) and R(θ̈n) = R(θ∗) +D∗(θ̃n)(θ̈n − θ∗) + oP(1), (A.8)

where Q̂n := (n−1
∑n

i=1 Ĵi). Solving for (θ̈n − θ∗) from these two conditions, it now follows that

√
n(θ̈n − θ∗) = ((ΩA∗)−1 + (ΩA∗)−1D∗′E∗−1D∗(ΩA∗)−1)

√
nΩQ̈n

+ ((ΩA∗)−1D∗′E∗−1)
√
nR(θ∗) + oP(

√
n),

where E∗ := −D∗(ΩA∗)−1D∗′ and
√
nΩQ̂n

A∼ N (0,ΩB̃∗Ω) by applying Theorem 6. Next,

((ΩA∗)−1 + (ΩA∗)−1D∗′E∗−1D∗(ΩA∗)−1)
√
nΩQ̈n

A∼ N (0,(ΩA∗)−1[(ΩA∗) +D∗′E∗−1D∗](ΩA∗)−1ΩB̃∗Ω(ΩA∗)−1[(ΩA∗) +D∗′E∗−1D∗](ΩA∗)−1).

Here, we note that Ω and A∗ are block diagonal matrices, so that the given asymptotic variance matrix

simplifies to

[I + (ΩA∗)−1D∗′E∗−1D∗]C̃∗[I +D∗′E∗−1D∗(ΩA∗)−1],

so that
√
n{(θ̈n−θ∗)−((ΩA∗)−1D∗′E∗−1)R(θ∗)} A∼ N (0, [I+(ΩA∗)−1D∗′E∗−1D∗]C̃∗[I+D∗′E∗−1D∗

(ΩA∗)−1]). Substituting −D∗(ΩA∗)−1D∗′ for E∗, the desired result follows. ■

Proof of Theorem 8: (ii) Since the proofs of (i) are almost identical to those of (ii), we prove only (ii).

(ii.a) Applying the mean-value theorem, R(θ̃n) = R(θ∗) +∇′
θR(θ♭n)(θ̃n − θ∗) for some θ♭n between θ̃n

and θ∗, and if Ho is imposed,
√
nR(θ̃n) = ∇′

θR(θ♭n)
√
n(θ̃n − θ∗). Note that θ♭n

P→ θ∗, so that
√
nR(θ̃n) =

∇′
θR(θ∗)

√
n(θ̃n − θ∗) + oP(1). Therefore,

√
nR(θ̃n) = ∇′

θR(θ∗)
√
n(θ̃n − θ∗)

A∼ N (0,∇′
θR(θ∗)C̃∗∇θR

(θ∗)) by Theorem 6 (ii). Since D̃n
P→ ∇′

θR(θ∗) it follows that D̃nC̃nD̃
′
n consistently estimates the asymp-

totic variance matrix of
√
nR(θ̃n) from the fact that Ãn is consistent for A∗. It therefore follows that

Ẅn := nR(θ̃n)
′{D̃nC̃nD̃

′
n}−1R(θ̃n)

A∼ X 2
r under Ho.

Under Ha,
√
nR(θ̃n) =

√
nR(θ∗) + ∇′

θR(θ♭n)
√
n(θ̃n − θ∗), so that

√
nR(θ̃n) = OP(

√
n) because

√
nR(θ∗) = O(

√
n) and ∇′

θR(θ♭n)
√
n(θ̃n − θ∗) = OP(1), implying that Ẅn = OP(n). Therefore, if

cn = o(n), limn→∞ P(Ẅ ≥ cn) = 1.

(ii.b) Solving for λ̈n from (A.7) and (A.8),
√
nλ̈n = −(E∗−1D∗(ΩA∗)−1)

√
nΩQ̂n − E∗−1√nR(θ∗)

+oP(
√
n). Given that

√
nΩQ̂n

A∼ N (0,ΩB̃∗Ω), it follows that

√
nλ̈n + E∗−1√nR(θ∗)

A∼ N (0, E∗−1D∗C̃∗D∗′E∗−1), (A.9)

so that, if Ho holds, R(θ∗) = 0 and

nλ̈′
n{E∗−1D∗C̃∗D∗′E∗−1}−1λ̈n

A∼ X 2
r . (A.10)

Note that {E∗−1D∗C̃∗D∗′E∗−1}−1 = E∗(D∗C̃∗D∗′)−1E∗ = D∗(ΩA∗)−1D∗′(D∗C̃∗D∗′)−1D∗ (ΩA∗)−1
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D∗′ using the fact that E∗ := −D∗(ΩA∗)−1D∗′. Therefore,

nλ̈′
n{E∗−1D∗C̃∗D∗′E∗−1}−1λ̈n = nλ̈′

nD
∗(ΩA∗)−1D∗′(D∗C̃∗D∗′)−1D∗(ΩA∗)−1D∗′λ̈n

= nλ̈′
nD̈n(ΩA

∗)−1D̈′
n(D̈nC̈nD̈

′
n)

−1D̈n(ΩA
∗)−1D̈nλ̈n + oP(1)

= nQ̈′
nA

∗−1D̈′
n(D̈nC̈nD̈

′
n)

−1D̈nA
∗−1Q̈n + oP(1),

where the penultimate equality follows because D̈n
P→ D∗ and B̈n

P→ B∗ under Ho, as implied by Lemma

5 and the consistency of Ãn for A∗. The last equality follows from (A.7) and the fact that Ω is a diagonal

matrix. Note that this final expression is asymptotically equivalent to the definition of ¨LMn. So the desired

result now follows from (A.10).

Under Ha, note that ΩQ̈n + D̈′
nλ̈n = oP(1) from (A.7) and

√
nλ̈n = OP(

√
n) from (A.9), so that

√
nQ̈n = OP(

√
n). Furthermore, D̈n = OP(1) and B̈n = OP(1) from Assumption 18, implying that

¨LMn = OP(n). Therefore, if cn = o(n), limn→∞ P( ¨LMn ≥ cn) = 1.

(ii.c) Given stochastic differentiability of q̂n(·) in the sense of Pollard (1985, theorem 5), we can apply a

second-order Taylor expansion around θ̃n, so that 2n{q̂n(θ̈n)− q̂n(θ̃n)} = n(θ̈n− θ̃n)
′ΩA∗(θ̈n− θ̃n)+oP(1)

using the fact that the stochastic second derivative of q̂n(·) is asymptotically equal to ΩA∗ at θ∗. The proof of

Lemma 5 already showed that
√
n(θ̈n − θ∗)− (ΩA∗)−1√nΩQ̈n = {(ΩA∗)−1D∗E∗−1D∗′(ΩA∗)−1}

√
nΩ

Q̈n + ((ΩA∗)−1D∗E∗−1)
√
nR(θ∗) + oP(

√
n), from which we further note that (ΩA∗)−1√nΩQ̈n = A∗−1

√
nQ̈n = (θ̃n − θ∗) + oP(1) as implied by Theorem 6. It follows that

√
n(θ̈n − θ̃n) = {(ΩA∗)−1D∗E∗−1D∗′(ΩA∗)−1}

√
nΩQ̈n + ((ΩA∗)−1D∗E∗−1)

√
nR(θ∗) + oP(

√
n).

Hence, if Ho holds,

2n{q̂n(θ̈n)− q̂n(θ̃n)} = nQ̈′
nΩ(ΩA

∗)−1D∗′E∗−1{D∗(ΩA∗)−1D∗′}E∗−1D∗(ΩA∗)−1ΩQ̈n + oP(1)

= nQ̈′
nA

∗−1D∗′{D∗(ΩA∗)−1D∗′}−1D∗A∗−1Q̈n + oP(1),

since E∗ := −D∗(ΩA∗)−1 D∗′. We further note that
√
nD∗A∗−1Q̈n ⇒ W̃ ∼ N (0, D∗A∗−1B̃∗A∗−1D∗′).

It therefore follows that ¨QLRn := 2n{q̂n(θ̈n) − q̂n(θ̃n)} ⇒ W̃ ′{D∗(ΩA∗)−1D∗′}−1W̃ under Ho, as

desired.

Under Ha,
√
n(θ̈n − θ̃n) = OP(

√
n) since {(ΩA∗)−1D∗′E∗−1D∗(ΩA∗)−1}

√
nΩQ̈n = OP(1) and

R(θ∗) ̸= 0, so that ¨QLRn = OP(n). Therefore, if cn = o(n), limn→∞ P( ¨QLRn ≥ cn) = 1. This

completes the proof. ■

A.2 Supplementary empirical applications

This section provides additional empirical material for Section 8. First, we provide the estimated ρτ (·) for

each group classified by gender and education. Using quadratic, cubic and quartic models for xτ (·), Figure

A.1 plots the estimated LIPs using work experiences over 0–40 years, and Figure A.2 plots the estimated
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LIPs using work experience over 10–40 years. The red, blue, and green lines in the figures denote the fitted

LIPs obtained by the quadratic, cubic, and quartic specifications, respectively. The (three colored) curves at

the top and the curves at the bottom of each figure are the estimated quantile LIPs for τ = 0.75 and τ = 0.25,

respectively. The (three colored) curves in the middle of each figure are the median quantile functions for

τ = 0.5. As is apparent in the two figures, the shapes of the estimated quantile curves differ between Figures

A.1 and A.2. In particular, the curves in Figure A.2 generally have less curvature and are closer to linearity

than those of Figure A.1 which show different patterns depending on the polynomial specification. Further,

the fitted quantile functions differ among the polynomial function specification. This feature indicates that

the overall shape of the quantile function curve requires a reasonable degree of nonlinearity to accommodate

the irregular patterns of the first 10 experience years in the income profiles.

Second, we report the estimation errors measured by qτn(θ̂τ ) in each group specification, capturing

the value of the criterion function (2) at the estimate θ̂τ . Tables A.1 and A.2 display the errors in the

estimated LIPs using work experiences over 0–40 years and 10–40 years, respectively. As shown in the

tables, the quartic specification provides the smallest qτn(θ̂τ ), and the quadratic specification yields the

largest qτn(θ̂τ ) among the three specifications. Nonetheless, the quadratic, cubic, and quartic models yield

similar estimation errors overall. In the lower panel of each table, we also report qτn(θ̂τ ) computed using

the rescaled income paths that are obtained by dividing each individual LIP with its integral over the entire

working experience profile. As in the nonscaled data case, the estimation errors decline as the degree of the

polynomial function rises, although the overall results remain similar.
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Estimated errors of the quantiles of the original log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 12.00 11.98 11.96 11.13 11.12 11.10
Bachelor 10.82 10.77 10.67 10.25 10.20 10.10
Master 10.93 10.70 10.59 9.91 9.80 9.68
Ph.D 10.62 10.35 10.20 10.65 10.55 10.43

τ = 0.5

w/o Degree 14.23 14.23 14.20 13.92 13.92 13.89
Bachelor 13.52 13.39 13.27 12.87 12.80 12.67
Master 13.59 13.28 13.16 12.22 12.06 11.89
Ph.D 13.59 13.31 13.14 13.56 13.39 13.26

τ = 0.75

w/o Degree 11.04 11.03 11.01 11.06 11.05 11.01
Bachelor 10.86 10.66 10.61 10.29 10.21 10.11
Master 10.85 10.58 10.52 9.78 9.66 9.54
Ph.D 11.40 11.04 11.04 10.80 10.60 10.55

Estimated errors of the quantiles of the rescaled log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 5.87 5.85 5.76 5.63 5.63 5.56
Bachelor 6.13 6.10 5.86 6.03 6.02 5.85
Master 6.47 6.35 6.03 6.21 6.16 5.88
Ph.D 6.45 6.27 5.85 6.58 6.54 6.22

τ = 0.5

w/o Degree 6.83 6.83 6.77 6.65 6.65 6.59
Bachelor 7.11 7.07 6.80 6.95 6.95 6.76
Master 7.56 7.38 6.99 7.15 7.07 6.83
Ph.D 7.53 7.28 6.79 7.50 7.48 7.21

τ = 0.75

w/o Degree 5.20 5.20 5.19 5.04 5.02 5.01
Bachelor 5.38 5.29 5.10 5.25 5.19 5.05
Master 5.72 5.50 5.23 5.32 5.20 5.06
Ph.D 5.70 5.46 5.14 5.62 5.51 5.36

Table A.1: ESTIMATION ERRORS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS.
This table shows the estimation errors of the original and rescaled log income paths using the quadratic,
cubic and quartic models for each group of the workers classified according to their education levels and
genders.
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Estimated errors of the quantiles of the log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 8.97 8.94 8.94 8.12 8.10 8.10
Bachelor 7.92 7.89 7.89 7.31 7.29 7.28
Master 7.91 7.90 7.90 7.07 7.06 7.06
Ph.D 7.65 7.63 7.62 7.57 7.56 7.55

τ = 0.5

w/o Degree 10.65 10.64 10.63 10.19 10.18 10.18
Bachelor 9.89 9.87 9.86 9.27 9.25 9.24
Master 9.89 9.88 9.87 8.74 8.72 8.72
Ph.D 9.93 9.90 9.89 9.82 9.80 9.80

τ = 0.75

w/o Degree 8.28 8.27 8.27 8.10 8.09 8.09
Bachelor 7.89 7.88 7.88 7.47 7.46 7.45
Master 7.84 7.82 7.82 7.13 7.11 7.11
Ph.D 8.32 8.32 8.32 7.95 7.95 7.95

Estimated errors of the quantiles of the rescaled log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 3.99 3.90 3.89 3.86 3.79 3.78
Bachelor 3.87 3.81 3.80 3.90 3.85 3.84
Master 3.79 3.74 3.74 3.81 3.75 3.75
Ph.D 3.70 3.65 3.63 3.82 3.76 3.75

τ = 0.5

w/o Degree 4.68 4.63 4.61 4.61 4.57 4.56
Bachelor 4.54 4.49 4.48 4.57 4.54 4.53
Master 4.43 4.39 4.38 4.44 4.42 4.41
Ph.D 4.34 4.30 4.28 4.56 4.53 4.52

τ = 0.75

w/o Degree 3.54 3.53 3.51 3.50 3.49 3.48
Bachelor 3.43 3.42 3.41 3.46 3.46 3.45
Master 3.35 3.35 3.34 3.32 3.33 3.32
Ph.D 3.27 3.26 3.25 3.46 3.46 3.45

Table A.2: ESTIMATION ERRORS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS.
This table shows the estimation errors of the original and rescaled log income paths under the quadratic,
cubic, and quartic for each group of the workers classified according to their education levels and genders.

18



Figure A.1: ESTIMATED QUANTILE FUNCTIONS OVER 0 TO 40 WORK EXPERIENCE YEARS USING THE

ORIGINAL LIPS.
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Figure A.2: ESTIMATED QUANTILE FUNCTIONS OVER 10 TO 40 WORK EXPERIENCE YEARS USING

THE ORIGINAL LIPS.
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