
Practical Kolmogorov-Smirnov Testing by Minimum
Distance Applied to Measure Top Income Shares in Korea

JIN SEO CHO∗

School of Economics

Yonsei University

50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea

MYUNG-HO PARK

Center for Long-Term Fiscal Projections

Korea Institute of Public Finance

1924 Hannuri-daero, Sejong 339-007, Korea

PETER C.B. PHILLIPS

Yale University, University of Auckland

Singapore Management University & University of Southampton

First version: October 2014 This version: May 2016

Abstract

We study Kolmogorov-Smirnov goodness of fit tests for evaluating distributional hypotheses where
unknown parameters need to be fitted. Following work of Pollard (1980), our approach uses a Cramér-
von Mises minimum distance estimator for parameter estimation. The asymptotic null distribution of
the resulting test statistic is represented by invariance principle arguments as a functional of a Brow-
nian bridge in a simple regression format for which asymptotic critical values are readily delivered
by simulations. Asymptotic power is examined under fixed and local alternatives and finite sample
performance of the test is evaluated in simulations. The test is applied to measure top income shares
using Korean income tax return data over 2007 to 2012. When the data relate to estimating the upper
0.1% or higher income shares, the conventional assumption of a Pareto tail distribution cannot be re-
jected. But the Pareto tail hypothesis is rejected for estimating the top 1.0% or 0.5% income shares at
the 5% significance level. A Supplement containing proofs and data descriptions is available online.
Key Words: Distribution-free asymptotics, null distribution, minimum distance estimator, Crámer-von
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1 Introduction

Distributional hypotheses can play a significant role in the nature and quality of inference in many dif-

ferent areas of econometric work. In the quantification of inequality, for instance, interpolation methods

based on the Pareto distribution are widely used for measuring top income shares. In recent influential

work involving such exercises, Piketty and Saez (2003) follow an approach that is now quite typical by

assuming that top incomes are well modeled by a Pareto distribution, which is then used to estimate the

top income shares. As another example, the probability integral transform (PIT) is frequently used in den-

sity forecasting exercises (see Diebold, Gunther and Tay, 1998) so that PIT transformed quantities follow

a standard uniform distribution, which is extremely useful in statistical testing and forecast evaluation, if

the assumed distribution is correct. In such applications, it is of considerable interest to assess whether

the distributional hypotheses are supported by the data.

Many test procedures are available to make such assessments. The most commonly used methods

for testing distributional hypotheses in practical work involve goodness-of-fit (GOF) test statistics based

on the Kolmogorov and Smirnov (KS) and Crámer-von Mises (CM) test statistics. When a particular

distribution is hypothesized, these GOF test statistics are known to converge weakly to certain functionals

of a Brownian bridge process under the null. Early fundamental work on the use of weak convergence

methods for the development of such limit theory was done by Durbin (1973).

The practical efficacy of GOF test statistics is often limited by the presence of unknown parameters

in the parent distribution. As Durbin (1973) and Henze (1996) pointed out, the KS test statistic is not

distribution free. In consequence, when unknown parameters of the hypothesized distribution are esti-

mated, the estimation error typically affects the asymptotic null distribution, so that different models will

generate different asymptotic critical values for the test. This limitation applies also to other GOF tests.

The main goal of the current paper is to introduce a methodology for improving the practical efficacy

of GOF testing. We concentrate our attention on the KS test in view of its popularity in applied work

and, for this statistic, we follow the work of Pollard (1980) and examine the use of the minimum Crámer-

von Mises distance (MCMD) estimator in dealing with parameter estimation. Bolthausen (1977) and

Pollard (1980), among others, studied the asymptotic behavior of minimum distance (MD) estimators

and provided asymptotic results for generalized GOF tests. For the purposes of the current study, we

exploit the fact that the MD estimator can be analyzed in the context of regression when the CM distance

is used for MD estimation. The MCMD estimator in turn simplifies the asymptotic null distribution of the
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KS test statistic: just as for the KS test statistic when there are no unknown parameters, the limit theory

is again a functional of a Brownian bridge process, although in the case where parameter estimation

is employed, the limit theory is not given by the same functional. The important practical implication

from using the MCMD estimator for the KS distance is that asymptotic critical values can be obtained

by applying invariance principle arguments in the same way as for the original KS test statistic without

unknown parameter. The current paper further provides the form of the functional linked to the Brownian

bridge and demonstrates its implementation in a practical application by a convenient simulation-based

calculation of asymptotic critical values. By this, an efficient test procedure is delivered that overcomes

the inefficacy of the KS test pointed out in Durbin (1973) and Henze (1996).

In prior work on this topic, the practical inefficacy of the KS test statistic has been tackled by method-

ologies that are numerically intensive. For example, Henze (1996) recommends applying the parametric

bootstrap to GOF tests, and Khmaladze (1981, 1993, 2013) modified the GOF tests by a transformation

so that the asymptotic null distribution is unaffected by parameter estimation errors under the null. The

procedure given here to obtain asymptotic critical values is not as numerically intensive as the parametric

bootstrap or the martingale transformation. Furthermore, simulations show that the new methodology has

performance characteristics similar to those of the parametric bootstrap, whereas it saves the computation

times more substantially than the parametric bootstrap and exhibits better power than the test obtained by

Khmaladze’s (2013) transformation.

The KS test statistic has null and local alternative asymptotic distributions that depend upon data

types. The practical importance of this feature of the test is that grouped (or discretely distributed) data

and continuously distributed data have different asymptotic distributions. We first examine grouped data

and consider the implications for the KS test of using MCMD parameter estimation in the construction

of the test. By focusing on grouped data, the regression nature of the MCMD estimator is manifest

and it becomes clear how to simulate to obtain asymptotic critical values of the test. We next extend the

discussion to include continuously distributed data. A large group limit distribution of the KS test statistic

is derived from the large sample limit distribution by increasing the number of groups and keeping the

data range fixed. By this process, the asymptotic null and local alternative distributions of the KS test of

Bolthausen (1977) and Pollard (1980) can also be obtained in a different way. This process also enables

us to identify the Gaussian process associated with the asymptotic null distribution as another functional

of the Brownian bridge, so that the associated Gaussian process can be simulated.

As an empirical application of the KS test statistic presented here, we revisit the problem of esti-

2



mating top income shares of the income distribution by means of Pareto interpolation. Since Kuznets

(1953, 1955) first examined the top income shares in US income data, these quantities have been com-

monly used in empirical work to assist in addressing drawbacks in Gini coefficient measures that focus

more on the central tendencies of income data. Piketty and Saez (2003), Piketty (2003), Atkinson and

Leigh (2007, 2008), Moriguchi and Saez (2010), and Kim and Kim (2015), among many others, as-

sume a Pareto distribution for grouped income data in the US, France, Australia, New Zealand, Japan,

and Korea (respectively) and estimate top income shares by Pareto interpolation. Atkinson, Piketty, and

Saez (2011) also provide a well-organized summary of results for many countries, including Argentina,

Canada, China, Finland, German, India, Indonesia, Ireland, Italy, the Netherlands, Norway, Portugal,

Singapore, Spain, Sweden, and Switzerland. Using our methodology and Korean income tax return data

from 2007 to 2012, we test the underlying hypothesis of a Pareto distribution and conclude that the Pareto

distributional hypothesis does not hold when estimating the top 1.0% income, although the hypothesis

is not rejected further in the tail of the distribution when estimating the top 0.10% and higher incomes.

The income data we use here are of very high quality and were provided by the National Tax Service of

Korea. Although they are grouped, the group intervals are narrow: out of the 6 years of data we used, the

smallest and largest numbers of groups were 2,760 and 4,241, respectively. Based on this degree of detail

for our data, we also compare our top income shares with those estimated by Kim and Kim (2015) using

Korean tax income tax data with at most 10 income groups. From this, we find that our estimates are very

close to those in Kim and Kim (2015) and affirm the usefulness of their methodology.

The plan of this paper is as follows. Section 2 develops the limit theory for the MCMD estimator and

associated KS test for grouped data. The asymptotic null distribution, power, and local power of the test

are also derived. Section 3 examines the large sample limit distribution for continuously distributed data.

In Section 4, we conduct Monte Carlo experiments to evaluate the adequacy of the asymptotic theory.

Section 5 applies the KS test to the Korean income tax return data from 2007 to 2012. Conclusions are

given in Section 6. Proofs, related material, and data explanations are provided in the Supplement.

A brief word on notation. A function mapping f : X 7→ Y is denoted by f(·), evaluated derivatives

such as f ′(x)|x=x∗ are written simply as f ′(x∗), the vector derivative ∇θF (x, θ) = (∂/∂θ)F (x, θ), and

for i = 0, 1, ∂ijF (x, θ) := (∂i/∂θj)F (x, θ) so that, for i = 0, ∂ijF (x, θ) ≡ F (x, θ). Finally, ‖X‖max :=

maxi,j |xi,j|, where xi,j is the i-th row and j-th column element of X .
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2 Testing Distributional Hypotheses for Grouped Data

Suppose that data is available in a group frequency format whereby some variable of interest, Xi, may be

unobserved but the numbers of timesXi lies within certain specified groups are observed. Typical income

data have this format. In such cases, if Xi is annual income earned by individual i, then income data is

provided in pairs: {[cj, cj+1),#{Xi ∈ [cj, cj+1)} : j = 0, . . . , k− 1; i = 1, . . . , n} along with total group

incomes Ij+1 :=
∑n

i=1 Xi × {Xi ∈ [cj, cj+1)}. According to this scheme, n is the sample size of the

number of individuals, k is the number of income groups, cj and cj+1 are the lower and upper bounds of

(j+1)-th interval, #{A} is the frequency A is observed, and {·} is the indicator function. The end points

c0 and ck are fixed at b and u, respectively.

Using data that fit the above format, Piketty and Saez (2003), Piketty (2003), Atkinson (2005), Atkin-

son and Leigh (2007, 2008), Moriguchi and Saez (2010), and Kim and Kim (2015) among others have

estimated the top income shares in the US, UK, France, Australia, New Zealand, Japan, and Korea. Their

data in these studies may all be understood as continuously distributed grouped data or as collections of

discretely distributed observations.

Suppose that an applied investigator is interested in testing some distributional assumption regarding

the generating mechanism, or probability measure P with cumulative distribution function (cdf ) F , of

the latent variable Xi underlying the observed grouped data. For practical reasons in what follows we

consider distributions bounded below and above by b = c0 and u = ck, respectively. For example,

empirical income data generally do not follow a Pareto law for low or medium income levels, so it is

natural to focus on income levels that are bounded below in investigating the suitability of a Pareto law.

It is also convenient to bound income levels by some (possibly very large) upper bound, which avoids

extreme observations adversely affecting inference. The following hypotheses are considered:

H0: for all cj , there is a parameter value θ∗ for cdf F such that P(Xi ≤ cj | b ≤ Xi ≤ u) = F (cj, θ∗);

H1: there is no θ∗ for cdf F such that for all cj , P(Xi ≤ cj | b ≤ Xi ≤ u) = F (cj, θ∗).

Under these hypotheses, the parameter value θ∗ is properly defined only under the nullH0.

The null hypothesis is motivated by commonly used estimation procedures. For example, Piketty and

Saez (2003), Piketty (2003), Atkinson and Leigh (2007, 2008), Moriguchi and Saez (2010), and Kim and

Kim (2015) assume an underlying Pareto law for income data and estimate top income levels by a Pareto

interpolation method. The validity of this method relies on the validity of the Pareto law, and violations

of the law lead to inconsistent estimation, thereby motivating tests of the distributional hypothesis.
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The literature provides a variety of distributional test methodologies. Primary among these are

goodness-of-fit (GOF) tests and of these the most popular in empirical work is the Kolmogorov and

Smirnov (KS) statistic. The limit theory of the traditional KS test statistic is a simple functional of a

Brownian bridge process under the null. For grouped or discretely distributed data, Wood and Altavela

(1978) among others, give the asymptotic null distribution of the KS test statistic in terms of another

functional of the same Brownian bridge limit process.

When parameters are estimated, the limit distributions are affected. In his original treatment, Durbin

(1973) pointed out that the asymptotic null distribution of the KS test statistic is not invariant to parameter

estimation, so the test is not distribution free. Henze (1996) observed the same property for discretely

distributed data. This limitation affects practical implementation of the KS test and has led to various nu-

merically intensive procedures. One such procedure is the parametric bootstrap, which provides effective

size control of the KS test asymptotically. A second approach, due to Khmaladze (1981, 1993), modifies

the test statistic by a martingale transformation to eliminate the effect of parameter estimation asymptot-

ically for continuously distributed observations. Khmaladze (2013) has given alternate transformations

that may be used for discretely distributed observations.

The approach pursued in the present work differs from the prior literature. Instead of leaving the

parametric estimator undefined in the test statistic, we suggest a particular estimator that ensures the

null limit distribution of the KS test that approximates its finite sample distribution well and is readily

implementable for practical work. The estimator that achieves this purpose is the minimum Crámer-von

Mises distance (MCMD) estimator. As it turns out, the MCMD estimator can be analyzed in a simple

regression context which enables us to represent the asymptotic null distribution of the resulting KS test as

a new functional of the same Brownian bridge process that appears in the original KS limit theory where

there are no unknown parameters. The regression characteristic of the estimator is more apparent in the

context of grouped data. Importantly, while the modified KS test statistic has a limit functional form that

differs from the KS test with no parameter estimation error, the statistic still has a null distribution that is

well approximated by its asymptotic distribution and depends only on the same Brownian bridge process,

which is easily simulated to obtain critical values for the test.

Before examining the MCMD estimator, we provide the following conditions to fix ideas.

Assumption A. (i) {Xi ∈ R} is independently and identically distributed (IID) with a continuous cdf

p(·) := P(Xi ≤ (·) | b ≤ Xi ≤ u); (ii) For every j = 1, 2, . . . , k, F (cj, ·) : Θ 7→ [0, 1] is in C(1)(Θ),

the space of continuously differentiable functions, where Θ ⊂ Rd is a compact and convex set with k > d
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and such that −∞ < b = c0 < . . . < ck = u < ∞; (iii) θo := arg minθ∈ΘQ(θ) ∈ int(Θ) and is unique

in Θ, where for each θ ∈ Θ, Q(θ) :=
∑k

j=1{F (cj, θ) − p(cj)}2; and (iv) Z ′Z is positive definite, where

Z := [∇θF (c1, θo), . . . ,∇θF (ck, θo)]
′. �

Some remarks are warranted. First, note thatZ ′Z =
∑k−1

j=1 ∇θF (cj, θo)∇′θF (cj, θo) due to the fact that

∇θF (ck, θo) ≡ 0. We include ∇θF (ck, θo) in Z so that the MCMD estimator can be viewed analogously

to the least squares estimator, below. Second, the practical application of the current approach may depend

on dim(θ). If dim(θ) is so large that the number of bins k is less than d, Z ′Z becomes singular, and it is

hard to satisfy Assumption A(iv). As (Z ′Z)−1 is a component constituting the asymptotic distribution of

the MCMD estimator as we detail below, we require that Z ′Z be positive definite in addition to k > d.

Finally, both Q(·) and Z depend on the number of groups k, so it would be more appropriate to indicate

this dependence with the notation Q(·; k) and Zk, but this additional notational complexity is suppressed

for notational simplicity and will be implicit in what follows.

2.1 Model Estimation and Limit Theory

To estimate θ∗ we first employ the empirical distribution function p̂n(c) := n−1#{Xi ≤ c}, where c is

generic notation for c1, . . ., ck. Since p(c) = P(Xi ≤ c | b ≤ Xi ≤ u) is the conditional mean of p̂n(c),

we have by standard limit theory
√
n{p̂n(c)−p(c)} A∼ N [0, p(c)(1−p(c))] and

√
n(p̂n(·)−p(·))⇒ Bo(·),

where the limit process Bo(·) is a Brownian bridge. To estimate the unknown parameter θ∗ in the posited

model with cdf F (·, θ) we then perform a least squares minimum distance estimation between the non-

parametric estimate p̂n(·) and the parametric model F (·, θ) over the end points of the intervals of observa-

tion, giving the MCMD estimator θ̂n := arg minθ∈ΘQn(θ), where Qn(θ) :=
∑k

j=1 {p̂n,j − Fj(θ)}
2 with

p̂n,j := p̂n(cj) and Fj(·) := F (cj, ·) for j = 1, . . . , k. Similarly, we also let pj := p(cj).

The MCMD structure promotes analysis in terms of a regression of p̂n(·), which is a data-based

uniformly consistent estimate of p(·), on the nonstochastic mean regressor function F (·, θ) that equals

p(·) under the null. It is convenient to maintain this regression interpretation in what follows. Note that

(i) p̂n(·) is uniformly consistent for p(·), and (ii) |p(·)−F (·, θ)| is bounded between 0 and 2 uniformly in

θ. Therefore, arg minθQn(θ) = arg minθQ(θ) + oa.s.(1) and θ̂n is consistent for θo := arg minθQ(θ):

Theorem 1. Given Assumption A, θ̂n
a.s.→ θo. �

When the null hypothesis is correct, we have θo = θ∗ because F (·, θ∗) = p(·) under the null, whereas θ∗ is

undefined under the alternative. The convergence rate of θ̂n is determined by that of p̂n(·) and is O (
√
n)
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because the empirical distribution function whose convergence rate is O (
√
n) is the only data-dependent

component involved in the objective function Qn(·).

To find the limit distribution of the MCMD estimator we consider the usual linear approximation

based on the expansion Fj(θ̂n) = Fj(θo) + ∇′θFj(θo)(θ̂n − θo) + oP(n−1/2), which implies in view of

Theorem 1 that Qn(θ̂n) =
∑k

j=1[p̂n,j−Fj(θ̂n)]2 =
∑k

j=1{[p̂n,j−Fj(θo)]−∇
′
θFj(θo)(θ̂n− θo)}2 +oP(1).

We let ŷj := p̂n,j − Fj(θo) and Zj := ∇θFj(θo), so that the leading term on the right side is a sum of

the squared residuals in a regression of ŷj on Zj with regression coefficient θ̂n − θo. Thus, the MCMD

estimator is asymptotically equivalent to the least squares regression on a linear pseudo-model involving

ŷj and Zj , viz., (θ̂n − θo) = (Z ′Z)−1Z ′Ŷ +OP(n−1), where Ŷ := [ŷ1, . . . , ŷk]
′ and Z := [Z1, . . . , Zk]

′.

Since
√
n{p̂n(·)− p(·)} ⇒ Bo(·), we also have

√
n{ŷ(·) − y(·)} =

√
n{p̂n(·)− p(·)} ⇒ Bo(·), where

for each j, we define yj := pj − Fj(θo). Note that for each j, yj = 0 under H0, whereas for some j,

yj 6= 0 under H1. This difference ensures the consistency of the KS test statistic that we introduce in

the next subsection. The regression coefficient θ̂n − θo now satisfies the following property:
√
n{θ̂n −

θo − (Z ′Z)−1Z ′Y } =
√
n(Z ′Z)−1Z ′(Ŷ − Y ) + OP(n−1/2) ⇒ (Z ′Z)−1Z ′W , where Y := [y1, . . . , yk]

′

and W := [Bo(p1), . . . ,Bo(pk)]′. Here, the asymptotic bias of the MCMD estimator (Z ′Z)−1Z ′Y is

zero from that the first-order condition for the optimum θo of Q (θ) in Θ implies that
∑k

j=1{Fj(θo) −

pj}∇θFj(θo) = 0, or Z ′Y = 0, which orthogonality ensures that (Z ′Z)−1Z ′Y = 0. Therefore,
√
n(θ̂n−

θo)⇒ (Z ′Z)−1Z ′W , which leads directly to the limit distribution of θ̂n.

Theorem 2. Given Assumption A,
√
n(θ̂n − θo)

A∼ N [0, (Z ′Z)−1Z ′ΣZ(Z ′Z)−1], where Σ is a k × k

matrix whose i-th row and j-th column element is min[pi, pj](1−max[pi, pj]). �

Some remarks on this result are in order. First, the core of this limit theory is the simple linear functional

(Z ′Z)−1Z ′W of W , implying that the asymptotic distribution of θ̂n has the form of a functional of the

Brownian bridge process that appears in the asymptotic null distribution of the KS test with no unknown

parameters. Correspondingly, the KS test that depends on the use of θ̂n of these unknown parameters has

an asymptotic null distribution that is also a functional of the same Brownian bridge process. This result

is typically quite different from the outcome of using other estimators of θ in the KS test.

Second, the asymptotic distribution of θ̂n is related to the asymptotic results in Bolthausen (1977)

and Pollard (1980). In particular, Pollard (1980) derived the asymptotic distribution of the MD estimator

using a general functional that extends the L2-norm of Bolthausen (1977). The asymptotic distribution

in Theorem 2 can also be derived by letting the objective function Qn(·) in our formulation be a special
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case of the general functional used in Pollard (1980) and applying Pollard’s theorem 5.6 to deliver the

asymptotic distribution of this general functional. The regression framework for θ̂n used here enables

asymptotic critical values of the limit distribution theory to be obtained by a simple simulation calculation.

2.2 Testing the Hypothesis

We now examine the KS test statistic T̂n := supj≤k |
√
n{p̂n,j − Fj(θ̂n)}|, which has the same form as

the usual KS statistic given in the literature (e.g., Durbin 1973; Henze 1996), the sole difference being

the use of the MCMD estimator θ̂n in T̂n. We distinguish T̂n from the usual statistic with no parameter

estimation error which we define as Tn := supj≤k |
√
n{p̂n,j − Fj(θ∗)}|.

We first develop asymptotic theory under H0, where θo = θ∗. Hence, for each cj we have p̂n,j −

Fj(θ̂n) = p̂n,j − Fj(θ∗) −∇′θFj(θ∗)(θ̂n − θ∗) + oP(1), which implies that supj≤k
√
n|p̂n,j − Fj(θ̂n)| ⇒

supj≤k |Bo(pj)−Z ′j(Z ′Z)−1Z ′W | by continuous mapping. The null limit distribution is therefore bounded

in probability as a functional ofBo(·), and the componentBo(pj)−Z ′j(Z ′Z)−1Z ′W is the j-th row element

ofMW , whereM := I−Z(Z ′Z)−1Z ′. Therefore, Ŝn :=
√
n[p̂n,1−F1(θ̂n), ..., p̂n,k−Fk(θ̂n)]′ ⇒MW ∼

N(0,MΣM). The matrix M projects onto the orthogonal complement of the range of the k × d matrix

Z, so the rank ofMΣM is k−d. For notational simplicity, letG denoteMW . Then, T̂n ⇒ max ‖G‖max.

Note that the asymptotic null distribution of Ŝn differs from that of the KS test statistic with no unknown

parameters because in that case Sn :=
√
n[p̂n,1 − F1(θ∗), ..., p̂n,k − Fk(θ∗)]′ ⇒ W ∼ N(0,Σ), so that in

the limit T̂n and Tn are constructed from different functionals of the same Brownian bridge process Bo(·).

In both cases, the only stochastic component determining the null limit distribution is the Brownian

bridge. The deterministic component M is a constant matrix that depends on the border values of the data

groups, which are known, and the parameter value θo = θ∗ under the null, which may be consistently

estimated. Thus, p̂n(·) is the only stochastic source that determines the asymptotic null distribution of

T̂n, because θ̂n can be represented asymptotically as a linear functional of the same Brownian bridge. If

another estimator is used, the limit distribution typically involves a functional of another Gaussian process

with covariance kernel different from that of the Brownian bridge. The transform device of Khmaladze’s

(1981, 1993, 2013) works to remove such components (by a non-orthogonal projection) that modifies the

statistic so that the asymptotic null distribution is identical to that of Tn. Since Bo(·) is the only stochastic

part of our limiting KS test, we do not have to eliminate the parameter estimation error part from our test

basis in order to construct an easily implemented test, as we now discuss.
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The asymptotic null distribution of the KS test statistic can be approximated simply by estimating the

covariance matrix MΣM . Both M and Σ involve θ∗ with Zj := ∇θFj(θ∗) and pj := Fj(θ∗), so that

replacing θ∗ with θ̂n we have the consistent estimates Ẑj := ∇θFj(θ̂n)
a.s.→ Zj and Fj(θ̂n)

a.s.→ Fj(θ∗) since

θ̂n
a.s.→ θ∗. Then Ẑ := [Ẑ1, . . . , Ẑk]

′ a.s.→ Z, M̂ := I − Ẑ(Ẑ ′Ẑ)−1Ẑ ′
a.s.→ M , and Σ̂n

a.s.→ Σ, where Σ̂n is a

k× k matrix whose i-th row and j-th column element is Fi(θ̂n)(1− Fj(θ̂n)) when Fi(θ̂n) ≤ Fj(θ̂n). The

distribution of max ‖G‖max can be approximated by that of ‖Ĝ‖max, where Ĝ ∼d N [0, M̂Σ̂M̂ ].

For a fixed alternative, we necessarily have yj := pj − F (cj, θo) 6= 0 for some j. We also note that
√
n{[p̂n,j − Fj(θ̂n)] =

√
n[p̂n,j − pj] +

√
n[pj − Fj(θo) + {Fj(θo)− Fj(θ̂n)}], and {Fj(θo)− Fj(θ̂n)} =

−Z ′j(θ̂n−θo)+oP(n−1/2) = −Z ′j(Z ′Z)−1Z ′(Ŷ−Y )+oP(n−1/2). It then follows that
√
n{[p̂n,j−Fj(θ̂n)] =

√
n[p̂n,j−pj]+

√
n[yj−{Z ′j(Z ′Z)−1Z ′(Ŷ −Y )+oP(n−1/2)}] = OP(n1/2), since

√
n[p̂n,j−pj] = OP(1)

and
√
n(Ŷ − Y ) = OP(1), whereas yj − Z ′j(Z ′Z)−1Z ′Y is the j-th element of MY , and at least one of

the elements in MY is different from zero. This follows because the first-order condition for θo implies

that Z ′Y = 0, so that MY = Y . Therefore, the j-th element of MY is necessarily yj = pj −Fj(θo) 6= 0.

Then, T̂n =
√
n‖Y ‖max +OP(1) = OP(n1/2), and the KS test is consistent under any fixed alternative for

which yj = pj − Fj(θo) 6= 0 for some j.

This also implies that the limit distribution can be obtained by removing
√
nyj from

√
n[p̂n,j−Fj(θ̂n)]

for every j. In more detail, observe that Z ′Y = 0 from the first-order condition for θo, and upon recenter-

ing on yj , we have
√
n{[p̂n,j − Fj(θ̂n)]− yj} =

√
n[{p̂n,j − pj} − {Z ′j(Z ′Z)−1Z ′Ŷ + oP(n−1/2)}]⇒ gj ,

where gj is the j-th element of G := MW , and this gives the limit distribution under fixed alternatives.

We next consider the limit behavior of the KS test under the following local alternative H`: P(Xi ≤

cj | c0 ≤ Xi ≤ ck) = Fj(θo) + h(cj)/
√
n for some uniformly bounded function h(·). Under this local

alternative, we have yj = pj−Fj(θo) = h(cj)/
√
n, and Y = n−1/2H , where H := [h(c1), . . . , h(ck)]

′, so

that
√
n{p̂n,j−Fj(θ̂n)} ⇒ hj−Z ′j(Z ′Z)−1Z ′H+gj under the local alternative by the fact that

√
n{[p̂n,j−

Fj(θ̂n)] − yj} ⇒ gj , where hj is the j-th element of H . Evidently the component hj − Z ′j(Z ′Z)−1Z ′H

is the j-th element of MH , so that we have Ŝn ⇒ M(H + W ) ∼ N(MH,MΣM), which reduces to

the null limit theory when MH = 0. Similar to the null case, the limit theory when θo is not estimated is

given by Sn ⇒ H +W ∼ N(H,Σ) underH`.

Defining ξj := h(cj)−Z ′j(Z ′Z)−1Z ′H and using the fact noted above that Y = n−1/2H , it is apparent

that ξj = h(cj) because Z ′Y = n−1/2Z ′H = 0 from first-order conditions for θo. It also trivially follows

that MH is necessarily different from 0 whenever hj 6= 0 for some j, thereby ensuring that the local

alternative differs from the null. Further, the KS test has the following limit T̂n ⇒ ‖H + G‖max. Thus,
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tests based on T̂n have non-negligible power underH`. We further note that the weak limit of Tn under the

local alternative is a functional of the same form but one that involves (H +W ) rather than M(H +W ).

It follows that estimation of the parameter θ using MCMD modifies the limit distribution of Tn by scaling

the components entering the weak limit of T̂n with the projector M = I − Z(Z ′Z)−1Z ′.

We summarize the key claims of this section in the following theorem.

Theorem 3. Given Assumption A, (i) T̂n ⇒ ‖G‖max underH0; (ii) T̂n =
√
n‖Y ‖max +OP(1) underH1;

and (iii) if supj≤k |h(cj)| <∞, T̂n ⇒ ‖H +G‖max underH`. �

Two methods are available to compute critical values of the test. The first method is to estimate the

idempotent matrix M and Σ by a plug-in method using M̂ := I − Ẑ(Ẑ ′Ẑ)−1Ẑ ′ and Σ̂, as mentioned

above. This method produces valid critical values asymptotically by virtue of the invariance principle,

consistency of θ̂n under the null, and continuous mapping. In practice, the process Bo(·) can be evaluated

on the unit interval at the points Fj(θ̂n) and the functional M̂ [Bo(F1(θ̂n)), . . . ,Bo(Fk(θ̂n))]′ can be used to

approximate the weak limit. An alternative method is to apply a parametric bootstrap by generating data

with n number of observations from F (·, θ̂n) and computing the null distribution by iteratively replicating

the test many times.

Pollard (1980) provided a general theory on the asymptotic distribution of the MD estimator and the

GOF test statistic for both of which the same norm is assumed. The results given in Theorem 3 are closely

related but differ in that the CM distance is used for parameter estimation, whereas the KS distance is

used for testing goodness-of-fit. This approach offers the advantage of a regression formulation of the KS

test and convenient simulation-based calculation of asymptotic critical values for the test.

3 Testing using Continuous Data

This section extends the analysis to the KS test formed with continuously distributed data. We exploit the

large sample weak limit theory of the KS test given in Section 2 by using sequential asymptotics in which

large sample asymptotics with n→∞ are followed by infill asymptotics in which the data range u− b is

fixed but the group interval is reduced. Then the sequential weak limit of the KS test can be linked to the

large sample limit of the KS test for continuously distributed data.

For convenience of notation, we distinguish asymptotics in which k tends to infinity from those in

which n tends to infinity by affixing ‘k’ and ‘n’ to the relevant weak convergence symbols. Thus, ‘ n⇒’

and ‘ k⇒’ denote weak convergence in which n→∞ and k→∞, respectively.
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3.1 Estimation Limit Theory with Continuous Data

We develop a large group limit theory for the MCMD estimator with the data range fixed, and proceed

by examining the corresponding limits of the components in Theorem 1. First, we note that group in-

terval distances can be possibly different for different groups, and it may not be easy to handle this

structure for the goal. So, we first reorganize the structure for technical convenience by letting ω be

a new distance of every group such that for each j ∈ {1, 2, . . . , k}, nj · ω = ωj for some nj ∈ N.

We also let mk :=
∑k

j=1 nj , so that ω · mk ≡ u − b, and further let dj be the upper bound of the

new j-th group, where j = 1, 2, . . . ,mk such that d0 = b and dmk
= u. As k is finite, it is not hard

to select ω to satisfy the given condition. This new structure is considered only for technical conve-

nience and could be irrelevant to the original data. Even so, the limit behaviors of the KS test can be

easily obtained from this, as k tends to infinity. Note that if k tends to infinity, mk also tends to in-

finity but ω tends to zero by construction. Next, let F̄ (·, θo) := F ((1 − (·))b + (·)u, θo), which is

defined on the unit interval, and for j = 1, . . . , d, and i = 0, 1, define ∂ijF̄k(x, θo) := ∂ijF (c(x), θo),

where c(x) := max{cj : (1 − x)b + xu ≤ cj, j = 0, 1, . . . , k}. Note that ∂ijF̄k(·, θo) is càdlàg.

As k tends to infinity with the distance between c0 and ck being constant, ∂ijF̄k(·, θo) converges uni-

formly to ∂ijF̄ (·, θo), provided that ∂ijF̄ (·, θo) is continuous on [0, 1]. Therefore, the large group limit of

the i-row and j-column element of Ak := m−1
k Z ′Z is obtained as m−1

k

∑k
`=1 ∂iF (c`, θo)∂jF (c`, θo) =

m−1
k

∑mk

`=1 ∂iF (c(d`), θo)∂jF (c(d`), θo) =
∫ 1

0
∂iF̄k(x, θo)∂jF̄k(x, θo)dx

k→
∫ 1

0
∂iF̄ (x, θo)∂jF̄ (x, θo)dx,

which holds by monotone convergence. If we further let ∇θF̄ (·, θo) := [∂1F̄ (·, θo), . . . , ∂dF̄ (·, θo)]′

and ∇θF̄k(·, θo) := [∂1F̄k(·, θo), . . . , ∂dF̄k(·, θo)]′, we obtain Ak =
∫ 1

0
∇θF̄k(x, θo)∇′θF̄k(x, θo)dx

k→

Ao :=
∫ 1

0
∇θF̄ (x, θo)∇′θF̄ (x, θo)dx. Next, we examine the large group limit of m−1

k Z ′W . Let p̄(·) :=

p((1 − (·))b + (·)u) and set p̄k(x) := p(c(x)). As k → ∞, p̄k(·) converges uniformly to p̄(·), provided

that p̄(·) is continuous on [0, 1]. We also let B̄o(·) := Bo(p̄(·)) and set B̄ok(·) := Bo(p̄k(·)). Since B̄o(·)

is a continuous process on [0, 1] almost surely, B̄ok(·) is uniformly bounded and also uniformly converges

to B̄o(·) with probability 1. Therefore, we find that Uk := m−1
k Z ′W =

∫ 1

0
∇θF̄k(x, θo)B̄ok(x)dx

k→

U :=
∫ 1

0
∇θF̄ (x, θo)B̄o(x)dx with probability 1, which implies that Uk

k⇒ U . The large group weak

limit is therefore a normally distributed random variable U ∼ N(0, Bo), with covariance matrix Bo :=∫ 1

0

∫ x′
0
p̄(x)(1−p̄(x′))∇θF̄ (x, θo)∇′θF̄ (x′, θo)dxdx

′+
∫ 1

0

∫ 1

x′
p̄(x′)(1−p̄(x))∇θF̄ (x, θo)∇′θF̄ (x′, θo)dxdx

′.

The following additional conditions are imposed to deliver the asymptotic behavior of the KS test.

Assumption B. (i) u− b is constant; (ii) For each θ ∈ Θ and j, F (·, θ) and ∂jF (·, θ) are continuous on
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[b, u]; (iii) p(·) is continuous on [b, u]; (iv)
∫ 1

0
∇θF̄ (x, θo)∇′θF̄ (x, θo)dx is finite and positive definite; and

(v) Bo is finite and positive definite. �

Although the interval distances are not identical, the desired integrals are well defined as long as the

maximum interval distance tends to zero. Assumptions B(ii and iii) are useful because as continuous

functions defined on a bounded space they are integrable. These conditions ensure that the stated limits

Ao, Bo, and U are all well defined as k tends to infinity. Assumption B(iii) is redundant under the null,

because p(·) = F (·, θ∗) and θ∗ = θ0, so that (ii) implies (iii). Assumptions B(iv) and (v) are standard

conditions that ensure the sequential limit distribution of the KS test behaves regularly.

The stated results are collected in the following lemma.

Lemma 1. Given the Assumptions A and B, (i) m−1
k Z ′Z

k→ Ao :=
∫ 1

0
∇θF̄ (x, θo)∇′θF̄ (x, θo)dx; and (ii)

m−1
k Z ′W

k⇒ U :=
∫ 1

0
∇θF̄ (x, θo)B̄o(x)dx ∼ N(0, Bo). �

Some remarks are warranted. First, from the first-order condition for θo, Z ′Y = 0 holds uniformly in

k. Furthermore, m−1
k Z ′Y =

∫ 1

0
∇θF̄k(x, θo)[p̄k(x)− F̄k(x, θo)]dx

k→
∫ 1

0
∇θF̄ (x, θo)[p̄(x)− F̄ (x, θo)]dx,

therefore implying that
∫ 1

0
∇θF̄ (x, θo)p̄(x)dx =

∫ 1

0
∇θF̄ (x, θo)F̄ (x, θo)dx. Second, Lemma 1 implies a

straightforward large group weak limit for θ̂n. The following theorem trivially holds by joint convergence.

Theorem 4. Given Assumptions A and B,
√
n(θ̂ − θo)

n⇒ (Z ′Z)−1Z ′W
k⇒ A−1

o U . �

Note that A−1
o U ∼ N(0, A−1

o BoA
−1
o ) that corresponds to theorem 5.1 of Bolthausen (1977), in which the

asymptotic distribution of the MD estimator obtained using CM distance is derived. Theorem 4 shows

that theorem 5.1 of Bolthausen (1977) can also be obtained in a regression context. As shown in the next

subsection, the same mode of analysis suggests a way to obtain asymptotic critical values for the KS test.

The asymptotic results in Theorem 4 are obtained by assuming that the data range [u, b] is fixed. Data

and models with unbounded range may be similarly analyzed by transforming group border values using

the probability integral transform, so that the standard uniform distribution is set as the null distribution.

3.2 Testing Hypotheses with Continuous Data

Using the large group weak limit result for the MCMD estimator given in Theorem 4, we examine the

large group limit distributions of the KS test statistic under the null and local alternatives. Note that T̂n is

not bounded in probability under the alternative as shown in Section 2.
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We first examine the large group null limit distribution of the KS test statistic. We start the discus-

sion from the asymptotic null distribution. Defining Ḡok(·) := B̄ok(·) − ∇′θF̄k(·, θo)A−1
k Uk and Ḡo(·) :=

B̄o(·)−∇′θF̄ (·, θo)A−1
o U , then Ḡok(·)

k→ Ḡo(·) uniformly with probability 1, because F̄k(·, θo)
k→ F̄ (·, θo)

and B̄ok(·)
k→ B̄o(·) uniformly on [0, 1] with probability 1. Furthermore, for each i (resp. j), there

is j (resp. i) such that Bo(pi) − Z ′i(Z
′Z)−1Z ′W = Ḡok(j/mk) by the construction of Ḡok(·), so that

supj≤mk
|Ḡok(j/mk)|

k→ supz∈[0,1] |Ḡo(z)| with probability 1, viz., the large group null weak limit is ob-

tained as a functional of Ḡo(·) such that for each z, E[Ḡo(z)] = 0, and if z ≤ z̃, E[Ḡo(z)Ḡo(z̃)] =

p̄(z)(1− p̄(z̃))−∇′θF̄ (z, θo)A
−1
o D(z̃)−∇′θF̄ (z̃, θo)A

−1
o D(z)+∇′θF̄ (z, θo)A

−1
o BoA

−1
o ∇θF̄ (z̃, θo), where

for each z ∈ [0, 1], D(z) := (1 − p̄(z))
∫ z

0
p̄(x)∇θF̄ (x, θo)dx + p̄(z)

∫ 1

z
(1 − p̄(x))∇θF̄ (x, θo)dx. This

covariance kernel corresponds to that of theorem 1 of Durbin (1973). The difference is that Durbin’s

Gaussian process is derived as a variation of the Brownian bridge affected by the limit distribution of the

ML estimator, whereas our result arises from MCMD estimation.

We next examine the large group local alternative limit distribution of T̂n. For this purpose, suppose

h(·) is a continuous function on [b, u], let h̄(·) := h((1 − (·))b + (·)u), and define h̄k(x) := h(c(x)).

As k → ∞, h̄k(·) converges uniformly to h̄(·) and is uniformly bounded on [0, 1], because h̄(·) is a

continuous function on a compact interval. Hence, Qk := m−1
k Z ′H =

∫ 1

0
∇θF̄k(x, θo)h̄k(x)dx

k→ Q :=∫ 1

0
∇θF̄ (x, θo)h̄(x)dx. Note that p̄(·) − F̄ (·, θo) = h̄(·)/

√
n, so that Q is proportional to

∫ 1

0
∇θF̄ (x, θo)

(p̄(x) − F̄ (x, θo))dx that is the asymptotic limit of m−1
k Z ′Y as k → ∞. Furthermore, Z ′Y = 0.

Therefore, Q = 0, and if we let ξ̄k(·) := h̄k(·) − ∇′θF̄k(·, θo)A−1
k Qk, for each j, ξj = h̄k(j/mk) −

∇′θF̄k(j/mk, θo)A
−1
k Qk and ξ̄k(·)

k→ ξ̄(·) := h̄(·) − ∇′θF̄ (·, θo)A−1 Q ≡ h̄(·) uniformly on [0, 1],

so that ξ̄k(·) + Ḡok(·)
k→ ξ̄(·) + Ḡo(·) = h̄(·) + Ḡo(·) uniformly on [0, 1] with probability 1. Hence,

supj≤mk
|ξ̄k(j/mk) + Ḡok(j/mk)|

k→ supz∈[0,1], |ξ̄(z) + Ḡo(z)| with probability 1, which implies that

supj≤k |ξ̄k(j/mk) + Ḡok(j/mk)|
k⇒ supz∈[0,1] |ξ̄(z) + Ḡo(z)|. Thus the localizing parameter of the limit

Gaussian process shifts from zero under the null to ξ̄(·) underH`, which is identical to h̄(·). It is therefore

apparent that, if h(·) 6= 0, the KS test statistic has non-negligible local power asymptotically.

These results are summarized in the following theorem.

Theorem 5. Given Assumptions A and B, (i) T̂n
n⇒ supj≤mk

|Ḡok(
j
mk

)| k⇒ supz∈[0,1] |Ḡo(z)| under H0 ;

and (ii) if h(·) ∈ C([b, u]), T̂n
n⇒ supj≤mk

|h̄k( j
mk

) + Ḡok(
j
mk

)| k⇒ supz∈[0,1] |h̄(z) + Ḡo(z)| underH`. �

The gain from using MCMD estimation is that the distribution of Ḡo(·) is easily simulated: the dis-

tribution of Ḡo(·) can still be approximated by applying the invariance principle. If we let Bo
` (·) :=
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1√
`

∑d`(·)e
j=1 uj − (·)√

`

∑`
j=1 uj , B

o
` (·) ⇒ Bo(·) as ` → ∞, where the ceiling function d·e gives the smallest

integer greater than or equal to its argument, and uj ∼ IID N(0, 1). Thus, we approximate Ḡo(·) by

Ĝom(·) := Bo
` (F (·, θ̂n)) − ∇θF (·, θ̂n)Â−1

o,mÛm, where Âo,m := m−1
∑m

j=1∇θF (cj, θ̂n)∇′θF (cj, θ̂n); and

Ûm := m−1
∑m

j=1∇θF (cj, θ̂n)Bo
` (F (cj, θ̂n)). Here, m is a sufficiently large number set by the researcher

for the number of groups such that each group has an equal group interval, so that cj = b+(u−b)×j/m.

Ifm tends to increase, the group interval distance given by (u−b)/m tends to zero, so that for sufficiently

large m, Âo,m and Ûm well approximate their corresponding limits. This is also the case for Bo
` (·) when

` is sufficiently large, so that Ĝom(·) approximates well Ḡo(·) if m and ` are sufficiently large. Also, note

that this simulation method is effective in practice because the parameter estimation error is linked to

the same Brownian bridge as that obtained for the empirical process. For other estimators, this type of

linkage in the limit theory is not obvious and so cannot be relied upon in simulations.

4 Simulations

This section reports simulations conducted to assess the relevance of the asymptotic theory in finite sam-

ples. For this purpose, we suppose that a Pareto distribution is hypothesized for positively valued grouped

data. Specifically, the hypothetical data distribution for Xi is given by P(Xi ≤ c) = 1− (cmin/c)
θ, where

cmin is the minimal value of Xi, and θ is the shape parameter.

We further suppose that data are grouped such that b is greater than or equal to cmin, and u is finite.

This framework implies that the unconditional distribution is modified to the conditional distribution

P(Xi ≤ cj | b ≤ Xi ≤ u) = 1 − {(u/cj)θ − 1}/{(u/b)θ − 1}. We denote this distribution as Pareto(θ)

and let the right side of the equation be the model for the grouped data. That is, for each j, Fj(θ) =

1−{(u/cj)θ− 1}/{(u/b)θ− 1}. In our simulations, we use the following parameter settings: the bounds

are b = 1.0, and u = 10.0; for every j, the interval length is cj − cj−1 = ω and we consider two cases for

ω ∈ {0.1, 1.0}. For data generated according to this schematic, we examine the finite sample properties

of the KS test statistic under the null, alternative, and local alternative hypotheses.

4.1 Testing under the Null Hypothesis

We implement the following procedures for examining the KS test under the null. First, we let θ∗ = 2.0

and generate n observations with conditional distribution Fj(θ∗). Six sample sizes are considered: 100,
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200, 400, 600, 800, and 1,000. Second, we consider two approaches to assess the adequacy of the limit

theory in Theorem 3(i), and we call these methods A and B, respectively.

Method A first estimates M and W using the MCMD estimator θ̂n. Specifically, for each j, we let

ẑj = (u/b)θ̂n log(u/b)[(u/cj)
θ̂n − 1] − (u/cj)

θ̂n log(u/cj)[(u/b)
θ̂n − 1] be the j-th element of Ẑ and

estimate M by M̂ := Ik − Ẑ(Ẑ ′Ẑ)−1Ẑ ′. Next, Bo(·) is approximated by Bo
` (·) with ` = 10, 000, and we

let B̂o := [. . . , Bo
` (Fj(θ̂n)), . . .]′, and compare T̂n with the asymptotic critical values implied by M̂B̂o.

The null distribution is obtained by independently generating M̂B̂o 200 times, and we iterate the whole

process 5,000 times. Method B implements the parametric bootstrap in the same way.

In addition to our KS test statistic, we also apply the (Q)ML estimator to the same data and compare

its performance with our KS test statistic. For the (Q)ML procedure the following KS test statistic is

computed: T̃n := supj≤k |
√
n{p̂n,j − Fj(θ̃n)}|, where θ̃n denotes the (Q)ML estimator. For method

A, we iteratively simulate max[. . . , |Bo
` (Fj(θ̃n))|, . . .] 200 times and obtain the corresponding critical

values. Third, we apply the parametric bootstrap. Finally, Khmaladze’s (2013) distribution-free test is

applied. Specifically, θ∗ is estimated by (Q)ML, and the following KS test statistic is computed based

upon T̈n := maxs≤k |
∑s

j=1 z̃n,j|, where z̃n,j is the j-th-row element of Z̃n :=
˜̂
Y n −

˜̂
Y
′

nA3(A3 − B3) −˜̂
Y
′

nA4(A4 − B4) with ˜̂
Y n := [ỹn,1, . . . , ỹn,k]

′, ỹn,j := {#{Xi ∈ [cj, cj+1)} − nc̃j}/
√
nc̃j , and c̃j :=

Fj(θ̃n)− Fj−1(θ̃n); A3 := Ã3/(Ã
′
3Ã3)1/2 with Ã3 := R − (R′Q̃)Q̃− (R′Q̂)Q̂, R := [1, 0, . . . , 0]′, Q̃ :=

[
√
c̃1, . . . ,

√
c̃k]
′, and Q̂ := Q̈/(Q̈′Q̈)1/2 with Q̈ := [d̃1/

√
c̃1, . . . , d̃k/

√
c̃k]
′ and d̃j := (∂/∂θ)F (cj, θ̃n) −

(∂/∂θ)F (cj−1, θ̃n); A4 := Ã4/(Ã
′
4Ã4)1/2 with Ã4 := R̂ − (R̂′Q̃)Q̃ − (R̂′Q̂)Q̂ − (R̂′A3)A3 and R̂ :=

[0, 1, 0, . . . , 0]′; B3 := B̃3/(B̃
′
3B̃3)1/2 with B̃3 := Q̃− (Q̃′R)R− (Q̃′R̂)R̂; and B4 := B̃4/(B̃

′
4B̃4)1/2 with

B̃4 := Q̂− (Q̂′R)R− (Q̂′R̂)R̂− (Q̂B3)B3. Then, T̈n weakly converges to Z̃ := maxs≤k |
∑s

j=3 zj| under

the null by Khmaladze’s (2013) corollary 4, where zj ∼ IID N(0, 1). The asymptotic critical values are

obtained by simulating the limit random variable 1 million times. We call this approach method C.

Tables 1 contains the empirical rejection rates of T̂n and T̃n. The simulation results can be summarized

as follows: (i) The simulation results for T̂n generally well support the theory given in Theorem 3(i). The

nominal rejection rates of T̂n are consistently well estimated by the empirical rejection rates, and more

precise empirical rejection rates are obtained as n increases. (ii) T̃n shows results that are very different.

As pointed out by Durbin (1973), the KS test statistic with a plug-in ML estimator has significant level

distortions that persist even when n is large. These distortions occur mainly because T̃n has an asymptotic

distribution that is affected by the ML estimator. Method A therefore yields substantial level distortions in

this case, and they are relieved by using method B, which accommodates the parameter estimation error
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and has the same asymptotic null distribution as that of T̃n. Method C removes the parameter estimation

error from the test basis, and T̈n becomes distribution free. (iii) There is a tendency for the empirical

rejection rates of T̂n to be closer to the nominal levels when ω is small. (iv) Applying the asymptotic null

distribution directly to the test yields more precise empirical rejection rates than applying methods B and

C. These results indicate that T̂n performs best under the null when it is constructed by data observations

grouped into small intervals and compared with the asymptotic null distribution.

Some additional remarks are in order. First, the asymptotic null limit distribution is different for

different ω. Figure 1(a) shows the null limit distributions for various ω’s. They are obtained using

method A with θ̂n being replaced by θ∗. Note that the null limit distribution converges as ω tends to

zero. Second, we examine the methodology given below Theorem 5 to test the distributional hypothesis

of continuously distributed Xi. By letting ` = 10, 000 and m = 2n, we draw the percentile-percentile

(PP) plots between the level of significance and the p-value for n = 100, 200, 400, 600, and 800. The

simulation environments are identical to those for Table 1. Note that the resulting PP-plots shown in

Figure 1(b) are close to the 45-degree line even when the sample size is as small as 100, affirming the

claims in Theorem 5.

4.2 Testing under the Alternative

We now examine test power. For this purpose, we change the distribution ofXi from Pareto to the follow-

ing exponential distribution as the generating mechanism: P(Xi ≤ x|b ≤ Xi ≤ u) = {1− exp(−λ∗(x−

b))}/{1 − exp(−λ∗(u − b))}. We denote this distribution Exp(λ∗). We group the observations from

Exp(1.2) in the same way as in Section 4.1 and test the Pareto distributional assumption as before.

The empirical rejection rates of T̂n and (T̃n, T̈n) are contained in Table 2. The results can be sum-

marized as follows: (i) First, T̂n, T̃n, and T̈n are consistent. As the sample size increases, the rejection

rates approach unity for methods A, B, and C. (ii) The empirical rejection rates of T̃n using method A are

uniformly dominated by T̂n using methods A and B. This is mainly because the asymptotic critical values

of T̃n implemented by method A are too large, as evidenced in the substantial level distortions under the

null seen in Table 1. (iii) The overall power of T̃n when the test is implemented by method B is similar to

that of T̂n implemented by methods A or B and always dominate that of T̈n implemented by method C.

(iv) The empirical rejection rates of T̂n implemented by method A are close to those of method B. Even

when the sample size is as small as 100, the empirical rejection rates are similar. So, the asymptotic null
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distribution based critical values yield performances similar to those based upon the parametric bootstrap.

(v) When the sample size is small, the power of T̃n implemented by method B is slightly higher than that

of T̂n implemented by methods A or B, but the differences are very small.

4.3 Testing under the Local Alternative

To examine the local power of the test statistic we construct a mixed distribution of the null and alternative

distributions using draws from both. Specifically, when Zi ∼ Exp(λ∗) and Wi ∼ Pareto(2.0), we let

Xi = 5√
n
Zi + (1− 5√

n
)Wi, so that Xi is a mixture of Pareto and exponential random variables for which

the mixture distribution of Xi converges to the Pareto distribution at an n−1/2 convergence rate. For

λ∗ = 0.8, 1.0, 1.2, 1.4, and 1.6, we test the Pareto distributional assumption using methods A, B, and C.

The simulation results of T̂n and (T̃n, T̈n) are contained in Table 3. We let n = 500 and summarize

the results as follows: (i) For every λ∗, the empirical rejection rates exceed nominal size except for the

test T̃n implemented by method A for which power is less than size. Hence, the test T̂n (resp. T̈n) has

nontrivial power under local alternatives when method A or B (resp. method C) is applied, but T̃n has

nontrivial powers only when method B is applied. (ii) Local power of T̃n is not given for method A

in many cases because the critical values of T̃n exceed the upper bound and test size is zero as seen in

Table 1. (iii) Methods A and B have similar power patterns for the test T̂n. We deduce from these results

that the performance of methods A and B are similar under local alternatives. (iv) The overall empirical

rejection rates of T̂n are similar to those of T̃n when that test is implemented by method B, implying that

we can expect similar local powers from T̂n and T̃n when using parametric bootstrap methods. (v) The

local power of T̈n implemented by method C is almost uniformly dominated by that of T̂n implemented

by method A, although the local power difference decreases as λ∗ increases.

5 Empirical Applications

We now proceed to apply these distributional tests in measuring top income shares. Estimating top income

shares has been a longstanding topic of interest in the inequality literature since Kuznets (1953, 1955),

who calculated upper income shares for the US over the period 1913 to 1948. The widely used Gini

coefficient is an alternative inequality measure but has been found to be insensitive to variations in upper

income levels. In view of this limitation of the Gini coefficient, upper x% income shares have become
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commonly used as an additional, easily interpreted measure of income inequality.

The conventional approach to measuring upper income levels is to continuously interpolate the top

x% income levels by relying on estimates from a Pareto distribution. Most income data are available in a

group frequency format, making interpolation necessary for implementing this approach.

In spite of its popularity, the Pareto distribution for income data is restrictive and may be a misleading

representation for top incomes in some cases. Feenberg and Poterba (1993) test the validity of the top

income share estimates obtained by the Pareto interpolation method with those obtained by using micro-

data. For the top 0.50% US income data from 1979 to 1989, they found that the results from these

two different methodologies yielded almost identical results. This outcome is suggestive, indicating that

the Pareto condition may be a reasonable assumption for these US data. On the other hand, Atkinson

(2005) introduced a nonparametric method called the mean-split histogram method that estimates the top

income shares under certain underlying conditions on the income distributions. Thus, both parametric

and nonparametric methods have been used in past work on inequality measurement, and empirical tests

have been used to assess the adequacy of the parametric assumptions in upper income share estimation.

With the same motivation as Feenberg and Poterba (1993), we apply our KS test to Korean income

tax return data from 2007 to 2012. Our empirical goal is to calculate estimates of upper income shares

for Korea using our new methodology and compare findings with those available in the prior literature.

5.1 Korean Income Data from 2007 to 2012

Top income shares are estimated by comparing income tax return data of Korea with population data.

The source and nature of the data are briefly discussed in what follows in this subsection. More detailed

explanations on data constructions are given in the Supplement.

The Statistical Yearbook of National Tax published by the National Tax Service (NTS) contains annual

Korean income tax statistics for each year, and the data therein were used for measuring the top income

shares by Kim and Kim (2015). The number of income groups in The Statistical Yearbook of National

Tax differ from year to year, and there are at most around 10 income groups. Although the NTS provides

income tabulations for a long period, tests of the Pareto distributional assumption are better suited to the

methodology when the number of groups is much bigger.

We therefore use another set of income tax return data that are also provided by the NTS for the years

from 2007 to 2012. These data have a different format from those in The Statistical Yearbook of National
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Tax. Table 1 of the Supplement to this paper provides summary statistics of the income tax return data

used herein. Several features stand out. The most noticeable feature of the data is the number of groups.

For example, our 2010 data have 3988 groups, whereas the conventional data in the Statistical Yearbook

of National Tax have only 10 groups for the same year. This large number of groups is obtained by making

the group interval much smaller than those in the conventional income data. The first and the last group

intervals for the year 2010 are [0.0,KRW50 mil.) and [ KRW39, 910 mil.,∞). For the other groups, the

data are provided in the same format with each group interval width being KRW10 mil. By contrast the

conventional income tax data have irregular group patterns. A second important feature is that there is

no double counting from the same income source, a phenomenon that arises with some data, such as the

Japanese data examined by Moriguchi and Saez (2010). A third feature of interest is the time period

covered by our data. The time span includes the global financial crisis, which opens up the possibility of

studying the impact of the global financial crisis on the distribution of income in Korea with these data.

We also obtain total income for each year to compute upper x% income shares. For this calculation,

we follow the approach in Piketty and Saez (2003) and Moriguchi and Saez (2010), where total income is

derived from the national accounts for personal income by adjusting non-taxable income. This adjustment

is a commonly used process in the literature for obtaining total income, as detailed in the Supplement.

Finally, we obtain population data in Korea. Various population data have been used in the prior

literature. For example, Piketty and Saez (2003) and Atkinson (2005) employ US family data and UK

individual unit data, respectively, accordingly to the country tax units available. For Korea, the tax unit is

the individual unit, and a significant number of men serve mandatory military service in their 20s. So we

calculate population in terms of the working-age population of age 20 and above by excluding conscripted

personnel such as soldiers and call this measure employment. In addition to this definition of population,

we construct another measure to assist in making comparisons of top income shares with other studies.

This measure includes the working-age population aged 15 and over, and we call this measure the labor

force. These two populations measures correspond with population measures used in studies of other

countries such as the UK and Japan in Atkinson (2005) and Moriguchi and Saez (2008).

5.2 Empirical Analysis

Using the income tax return data described above, we estimate the top income shares in Korea from 2007

to 2012. The specific procedures are as follows: (i) We first identify the income group for the top x%
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income level to ensure inclusion. The size of top x% income population is computed using the population

data, and we let [c]−1, c]) denote this group. Note that c] − c]−1 is KRW10 million for our data sets. (ii)

We test the Pareto distributional assumption for the grouped data. We choose b and u so that b ≤ c]−1

and u ≥ c] and estimate θ∗ by the MCMD estimator to test the Pareto distributional hypothesis. The

asymptotic critical values are estimated and applied. Readers are referred to our discussion below on how

b and u are determined. (iii) We estimate the top x% income level and denote this level x̂n. This procedure

involves first estimating the preliminary top x% income level by choosing it as c† := F−1(q, θ̂n), where

q :=
top x% income population size− population size with incomes greater than u

population size with incomes ∈ (b, u)
.

If c† ∈ [c]−1, c]), we let x̂n be c†; if c† > c], let x̂n be the upper bound c] of the interval; otherwise, let x̂n

be c]−1. This additional restriction is imposed because x̂n must lie between c]−1 and c] by virtue of the

first-step requirement. (iv) We finally compute the top x% share of incomes. We first estimate the total

income greater than x̂n by m̂n := ({F (c], θ̂n)−F (x̂n, θ̂n)}/{F (c], θ̂n)−F (c]−1, θ̂n)})×I]+
∑k

j=]+1 Ij ,

where Ij denotes the total income in the group of [cj−1, cj), and k is the number of groups as before. The

top x% share of income is computed by dividing m̂n with total income from the national account.

Several remarks on this process are in order. First, the Pareto condition is tested in Step (ii). Even if the

null is rejected, we proceed to Step (iii) by assuming that the Pareto distribution is a good approximation

to the top income distribution and then examine how the Pareto assumption affects the estimation of the

top income shares. Below we compare the top x% income shares estimated by the Pareto interpolation

method with those obtained by Atkinson’s (2005) mean-split histogram method, which estimates top

income shares by a piecewise linear interpolation method that is constructed by upper and lower bounds

for income density function under the assumption that income density is not an increasing function around

the region of interest. According to Atkinson, Piketty, and Saez (2011), top income shares are estimated

by this method for many countries such as Australia, New Zealand, Norway, and UK. Second, when

implementing Step (ii), b and u have to be selected in such a way that the interval [c]−1, c]) is a subgroup

of the grouped data. In principle, this selection may affect inference - that is, when the initial bottom and

top border values are modified, test results from using T̂n may also be modified. However, for our data, if

the top x% income level is high enough, the results turn out to be insensitive to the selection of b and u.

The top x% income levels are estimated and contained in Tables 4. We summarize the key properties

of our estimates as follows: (i) When the top 1.0% income level is estimated, the Pareto assumption does
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not hold for every year from 2007 to 2012. For example, for 2007, the p-value of T̂n is zero regardless of

the population data. As mentioned above, the value of T̂n is dependent on the selection of (b, u). In fact,

we tried many selections of (b, u) and had to reject the null hypothesis for every selection. The reported

interval in Table 1 of the Supplement is one of these trials. This shows that the Pareto assumption is hard

to accept as holding for estimation the top 1.0% income. (ii) Although the results are not reported in the

tables, even for estimating the top 0.5% income, the Pareto assumption does not hold for every year in

the sample data. (iii) When the top 0.10%, 0.05%, or 0.01% and higher incomes are estimated, we could

not reject the Pareto hypothesis. More precisely, for every year, we could find intervals (b, u) such that

the null hypothesis cannot be rejected. Finding such an interval was not difficult. When an interval was

arbitrarily selected, the Pareto hypothesis could not be rejected at the first stage for most cases. If the null

hypothesis was rejected at the first trial, we searched for bottom and top values of the interval until the

Pareto hypothesis could not be rejected. Sequential testing in this way is justified asymptotically, thereby

avoiding the data snooping problem that arises when hypotheses are tested iteratively. These findings

imply that for the Pareto assumption to be properly exploited, at least the top 0.10% and higher income

shares need to be estimated. (iv) The estimated x% top income levels (x̂n) are between [c]−1, c]) for most

cases. Sometimes, the preliminary estimates of the top income levels (c†) are greater than the presumed

border value c]. For such cases, we let x̂n be c] as required in Step (iii). We added the superscript ‘]’ to

the figures in Table 4 to indicate such an occurrence. The preliminary estimates of the top income levels

(c†) are not substantially different from the boundary values (c]) for every case.

Using the estimated top income levels, we next implement Step 4 and estimate the top x% income

shares. For each population data set and each year, we compute the shares and provide the estimates

in Figure 2, whose numerical values are provided in the Supplement. We summarize the findings as

follows: (i) Figure 2 can be compared with those obtained by Atkinson’s (2005) mean-split histogram

method that are provided by Park and Jeon (2014) for the same data. They are generally very close to

our own estimates, but show greater differences at the 1.00% top income level, the level for which the

Pareto hypothesis is rejected and non parametric estimates may be preferred. (ii) We also compare our

findings with those of Kim and Kim (2015; KK) who estimated the top income shares using the income

tax table from 1933 to 2010. These authors used population data for adults aged 20 or older and income

data from the Statistical Yearbook of National Tax. Both data sets differ from those used here and have

certain limitations, as discussed earlier. In spite of the differences, the KK estimates are similar to our

own, with the greatest difference being 0.69% points, which occurs for the top 1.00% income shares in
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year 2010. For higher income shares, the differences are small. We therefore conclude that our findings

concerning upper income shares in Korea corroborate those obtained by KK over the period 2007 to

2010. (iii) The top income shares have a general tendency to rise over time. In year 2009 the income

shares went down, most probably due to the global financial crisis, but began to rise again and maintain a

rising tendency thereafter, concomitant with the slow recovery in the global economy from the financial

crisis. These results indicate that the top income shares can usefully supplement the Gini coefficient,

because income inequality as measured by the Gini coefficient has declined since 2009 according to

official Korean statistics. The results also match earlier findings in the literature. For instance, Piketty

and Saez (2003), Atkinson (2005), Piketty (2003), Atkinson and Leigh (2007, 2008) Moriguchi and Saez

(2010), and Kim and Kim (2015), among others, observe that the top income shares of the US, UK, and

France, Australia, New Zealand, Japan, and Korea all increased over time between 2000 to 2010. (iv)

Despite the general rising tendency of the top income shares over 2007 to 2012, the patterns are not

monotonic and have a noticeable blip around 2010 and 2011. We note that jumps are observed from top

x% income levels over 2010 and 2011. For example, the growth rates of the top 1% income levels in

2010 and 2011 are about 11.79% and 10.34%, whereas the growth rates of 2008, 2009, and 2012 are

2.71, 2.39, and 3.44%, respectively. On the other hand, total income derived from the national accounts

does not exhibit such big jumps in 2010 and 2011, although it does jump to 8.25% in 2012 from 5.94%,

which partly explains the noticeable blips in income shares in 2010 and 2011. In terms of international

comparisons, although they do show an overall increasing pattern from 2000, the top income shares of

most other countries do not show definitely rising tendencies since 2007, based on available estimates.

The world top income database provides the top income shares of 27 countries that are reported in the

literature, as reviewed in Atkinson, Piketty, and Saez (2011). For example, countries such as Canada,

Netherlands, and UK show declining patterns, and this is believed to be due to the global financial crisis.

On the other hand, some countries such as Germany, US, and Korea maintain a rising tendency over the

same period. The upper income earners of these countries have apparently overcome the effects of the

global financial crisis more rapidly than other countries that manifest declining top income shares.

6 Conclusion

Issues of income inequality now attract considerable attention at both national and international levels. Of

growing interest in the assessment of income inequality is the share of upper incomes within the income

22



distribution and whether and by how much such shares may be growing over time. Analysis of such

issues requires quantification of suitable inequality measures and is frequently conducted empirically

using explicit distributional assumptions, such as the Pareto, to characterize upper tail shape, as in the

research of Piketty and Saez (2003). The tests given in the present work enable applied researchers to

evaluate the adequacy of such distributional assumptions in practical empirical studies where, as is most

frequently the case, unknown parameters need to be estimated. Our test criteria integrate the Kolmogorov

and Smirnov (KS) test criteria with a minimum distance parameter estimation procedure that leads to a

convenient limit theory for the test statistic under the null. The test is easily implemented and is shown to

perform well under both null and local alternative hypotheses.

Our application of this KS test to Korean income data over 2007 to 2012 shows that the Pareto distri-

bution is supported only for very high income levels. The Pareto tail shape is rejected when estimating the

top 1.0% or 0.5% income shares for every year in the data; but for tail observations lying in the top 0.10%,

0.05%, or 0.01% and higher income shares, the Pareto shape is much harder to reject. These empirical

findings suggest the use of care in applying Pareto interpolation techniques for measuring top 0.50% or

lower income shares. Our results also generally support the observation that upper income shares have

been increasing over time in Korea, in line with more global observations on income shares.
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(a) Null Limit Distributions (b) PP-plots

Figure 1: Null Limit Distributions and PP-plots. Figure1(a) shows the null limit distributions for ω =
1.00, 0.50, 0.10, 0.05, 0.01, and 0.005. They are obtained by Method using the unknown θ∗, and the
experiment repetition is 100,000. Figure 1(b) shows the PP-plots between the level of significance and
the p-value for continuous data that are implemented by the method below Theorem 5. Refer to Table 1
for simulation environments.

Top 0.01% Income Shares Top 0.05% Income Shares

Top 0.10% Income Shares Top 1.00% Income Shares

Figure 2: Top Income Shares over Time. The figures show the estimated top income shares for 0.01, 0.05,
0.10, and 1.00%. The four different populations are used to estimate the shares.
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Estimators ω Methods Levels \ n 100 200 400 600 800 1,000

MCMD

0.10

1% 1.46 1.18 1.76 1.66 1.44 1.36
A 5% 5.56 5.38 6.40 5.70 5.24 5.56

10% 10.64 10.12 11.56 10.66 10.06 10.64
1% 1.52 1.34 1.72 1.48 1.40 1.44

B 5% 5.44 5.12 6.28 5.86 5.44 5.96
10% 10.42 9.90 11.36 10.84 10.54 10.52

1.00

1% 1.14 1.16 1.14 1.56 1.46 1.30
A 5% 5.56 4.90 5.10 5.22 5.84 5.66

10% 10.06 9.32 10.00 10.08 11.18 10.48
1% 1.18 1.08 1.06 1.32 1.56 1.80

B 5% 5.04 4.76 4.98 5.00 5.68 5.44
10% 9.98 9.38 9.76 10.02 10.96 10.56

ML

0.10

1% 0.02 0.04 0.04 0.02 0.02 0.06
A 5% 0.18 0.30 0.48 0.32 0.28 0.32

10% 0.78 1.00 1.06 0.98 1.16 1.08
1% 1.14 1.42 1.50 1.34 1.58 1.52

B 5% 5.62 5.20 5.50 5.24 5.94 5.58
10% 10.54 10.80 10.96 10.10 10.92 10.80
1% 1.56 1.34 1.18 1.42 1.54 1.34

C 5% 6.14 5.60 5.80 6.36 6.44 6.24
10% 11.00 10.76 10.60 11.76 11.96 11.64

1.00

1% 0.00 0.00 0.00 0.00 0.00 0.00
A 5% 0.00 0.02 0.00 0.00 0.00 0.00

10% 0.00 0.02 0.02 0.00 0.00 0.00
1% 1.46 1.66 1.48 1.42 1.52 1.48

B 5% 5.24 5.42 5.26 5.38 5.70 5.30
10% 10.00 10.80 10.04 10.20 10.22 10.30
1% 0.86 1.00 1.18 0.92 1.06 1.02

C 5% 5.06 5.52 5.24 5.42 4.86 5.08
10% 10.18 10.86 10.30 11.04 9.56 10.42

Table 1: Empirical Levels of the Test Statistic Using the MCMD and ML Estimators. Repetitions: 5,000.
Bootstrap and Null Distribution Repetitions: 200. DGP: Xi ∼ Pareto(θ∗); (θ∗) = (2.0); Bottom Value
of Data Range (b): 1.00; Top Value of Data Range (u): 10.00; n observations are grouped into (u− b)/ω
number of intervals such that for each j = 1, . . . , k, cj − cj−1 = ω. Model: for each j = 1, 2, . . . , k,
Fj(θ) = 1− [(u/cj)

θ − 1]/[(u/b)θ − 1].
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Estimators ω Methods Levels \ n 100 200 400 600 800 1,000

MCMD

0.10

1% 43.56 77.84 98.88 99.90 100.0 100.0
A 5% 68.24 93.18 99.84 100.0 100.0 100.0

10% 81.24 97.50 99.94 100.0 100.0 100.0
1% 44.80 78.32 98.94 99.82 100.0 100.0

B 5% 69.74 93.66 99.80 100.0 100.0 100.0
10% 81.28 97.46 99.94 100.0 100.0 100.0

1.00

1% 40.06 75.76 98.46 99.94 100.0 100.0
A 5% 61.06 90.10 99.86 100.0 100.0 100.0

10% 71.10 95.12 99.96 100.0 100.0 100.0
1% 37.10 74.46 98.34 99.94 100.0 100.0

B 5% 59.04 90.34 99.82 100.0 100.0 100.0
10% 71.56 95.02 99.96 100.0 100.0 100.0

ML

0.10

1% 6.00 27.02 78.38 99.96 99.72 100.0
A 5% 20.22 57.46 95.70 99.90 100.0 100.0

10% 35.26 75.18 98.68 100.0 100.0 100.0
1% 41.56 79.02 99.08 100.0 100.0 100.0

B 5% 66.96 93.32 99.92 100.0 100.0 100.0
10% 78.30 97.24 99.98 100.0 100.0 100.0
1% 2.26 5.68 13.16 22.80 35.10 47.30

C 5% 8.00 14.60 29.46 45.40 59.04 70.82
10% 13.62 22.72 41.08 58.10 71.60 82.94

1.00

1% 0.04 1.36 16.78 51.26 82.06 95.40
A 5% 1.58 11.48 59.42 90.18 99.12 99.78

10% 5.82 28.12 82.24 97.66 99.94 99.94
1% 38.90 78.32 98.82 99.94 100.0 100.0

B 5% 62.22 92.16 99.86 100.0 100.0 100.0
10% 73.46 95.96 100.0 100.0 100.0 100.0
1% 28.62 57.62 92.28 99.04 99.94 100.0

C 5% 50.30 80.20 98.58 99.96 100.0 100.0
10% 63.20 88.82 99.46 100.0 100.0 100.0

Table 2: Empirical Powers of the Test Statistic Using the MCMD and ML Estimators. Repetitions: 5,000.
Bootstrap and Null Distribution Repetitions: 200. DGP: Xi ∼ Exp(λ∗); λ∗ = 1.2. Refer to Table 1 for
other simulation environments.
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Estimators ω Methods Levels \ λ∗ 0.80 1.00 1.20 1.40 1.60

MCMD

0.10

1% 28.88 18.38 11.52 8.14 6.14
A 5% 51.74 35.90 26.36 19.44 16.16

10% 64.04 47.74 37.70 28.88 25.06
1% 29.14 18.28 11.84 8.24 6.00

B 5% 50.84 35.58 26.30 19.76 15.92
10% 63.78 47.86 37.42 29.34 25.04

1.00

1% 15.04 8.40 6.30 4.18 2.82
A 5% 30.32 20.22 15.04 11.54 9.40

10% 41.16 30.20 23.40 19.26 16.32
1% 15.00 8.98 5.90 4.02 2.60

B 5% 30.24 20.26 14.56 11.86 8.98
10% 40.92 29.42 23.62 19.24 16.58

ML

0.10

1% 2.94 1.68 0.90 0.36 0.38
A 5% 11.96 7.16 4.34 2.86 2.16

10% 22.12 14.12 9.40 6.68 5.12
1% 27.10 17.26 11.86 8.46 6.24

B 5% 47.98 35.58 26.22 19.88 15.42
10% 60.80 47.70 37.92 30.22 24.50
1% 3.54 2.82 1.92 1.52 1.42

C 5% 10.24 9.30 6.82 6.30 5.60
10% 17.22 14.32 12.00 11.90 10.94

1.00

1% 0.00 0.00 0.00 0.00 0.00
A 5% 0.28 0.12 0.00 0.02 0.00

10% 1.34 0.58 0.20 0.06 0.10
1% 15.16 9.62 6.80 4.32 3.73

B 5% 31.06 21.84 15.08 11.86 10.44
10% 41.76 31.16 23.16 19.64 17.10
1% 11.22 6.40 4.86 3.40 2.36

C 5% 26.72 17.26 13.60 10.64 9.06
10% 37.40 27.52 21.74 17.94 15.60

Table 3: Empirical Local Powers of the Test Statistic Using the MCMD and ML Estimators. Repe-
titions: 5,000. Bootstrap and Null Distribution Repetitions: 200. Sample Size: 500. DGP: Xi ∼
(1− 5/

√
n)Pareto(θ∗) + (5/

√
n)Exp(λ∗); θ∗ = 2.0. Refer to Table 1 for other simulation environments.
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Years Top x% Statistics \ Populations ≥ 15 year old ≥ 20 year old measured by measured by
Labor Forces Employments

2007

1.00% x̂n 0.8802 0.9000] 0.8860 1.0735
p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10% x̂n 2.3370 2.4484 2.3599 3.1541
p-value of T̂n 45.500 45.500 45.500 45.000

0.05% x̂n 3.4698 3.6512 3.5070 4.8222
p-value of T̂n 45.500 45.500 45.500 94.000

0.01% x̂n 9.5534 10.072 9.6618 13.206
p-value of T̂n 97.500 99.500 97.500 78.500

2008

1.00% x̂n 0.9286 0.9593 0.9362 1.1000]

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10% x̂n 2.4325 2.5497 2.4614 3.2908
p-value of T̂n 100.00 100.00 100.00 100.00

0.05% x̂n 3.5975 3.7852 3.6435 4.9975
p-value of T̂n 100.00 100.00 100.00 37.000

0.01% x̂n 9.5740 10.117 9.7095 13.291
p-value of T̂n 72.500 72.500 72.500 52.500

2009

1.00% x̂n 0.9382 0.9692 0.9458 1.1609
p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10% x̂n 2.4943 2.6136 2.5191 3.3987
p-value of T̂n 100.00 14.000 14.000 100.00

0.05% x̂n 3.6794 3.8672 3.7241 5.0761
p-value of T̂n 14.000 14.000 14.000 14.000

0.01% x̂n 9.4237 9.9125 9.5404 12.946
p-value of T̂n 100.00 100.00 100.00 19.000

2010

1.00% x̂n 1.0000] 1.0686 1.0400 1.2923
p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10% x̂n 2.7646 2.8973 2.7953 3.7364
p-value of T̂n 22.000 22.000 22.000 22.000

0.05% x̂n 4.0410 4.2463 4.0883 5.5887
p-value of T̂n 22.000 22.000 22.000 22.000

0.01% x̂n 10.392 10.981 10.500] 14.626
p-value of T̂n 35.500 58.500 36.000 58.500

2011

1.00% x̂n 1.0739 1.1000] 1.0836 1.3000]

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10% x̂n 3.0855 3.2428 3.1268 4.2407
p-value of T̂n 29.000 29.000 29.000 29.000

0.05% x̂n 4.6096 4.8471 4.6719 6.3624
p-value of T̂n 29.000 29.000 29.000 29.000

0.01% x̂n 11.825 12.396 11.980 16.248
p-value of T̂n 17.500 100.00 17.500 57.000

2012

1.00% x̂n 1.1000] 1.1521 1.1239 1.3817
p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10% x̂n 3.1511 3.2980 3.1863 4.2427
p-value of T̂n 100.00 100.00 100.00 100.00

0.05% x̂n 4.6182 4.8442 4.6723 6.3367
p-value of T̂n 100.00 100.00 100.00 100.00

0.01% x̂n 11.789 12.381 11.931 16.161
p-value of T̂n 66.500 34.000 78.500 100.00

Table 4: Empirical Testing and Top Income Estimation of Korea (2007–2012). Notes: x̂n is the estimated
top x% income out of the given population; superscript ] indicates that the estimated top x% income is
identical to c]. The unit of x̂n is KRW100 mil., and p-values are in %.
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