
Practical Testing for Normal Mixtures

JIN SEO CHO

School of Economics, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
jinseocho@yonsei.ac.kr

June 2025

Abstract

The current study provides the Gaussian versions used to test for normal mixtures. These versions
are highly practical as they can directly be used to simulate the asymptotic critical values of stan-
dard tests, for example the likelihood-ratio or Lagrange multiplier tests. We investigate testing for
two normal mixtures: one having a single variance and two distinct means, and another having a
single mean and two different variances. We derive the Gaussian versions for the two models by
associating the score functions with the Hermite and generalized Laguerre polynomials, respec-
tively. Additionally, we compare the performance of the likelihood-ratio and Lagrange multiplier
tests using the asymptotic critical values.
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1 Introduction

Mixture models are popular for empirical analysis, and testing for the mixture hypothesis is crucial

for many purposes. For instance, the regime-switching model assumes an autocorrelated mixture

model as a model for business cycle (e.g., Hamilton, 1989). As another example, normal mixtures are

used as structural models with multiple equilibria resulting from economic behaviors carried out by

economic agencies (e.g., Porter, 1983).

Nevertheless, testing for the mixture hypothesis is nonstandard. When testing for the mixture

hypothesis naturally, a nuisance parameter is introduced that does not exist under the null of a single

distribution (e.g., Davies, 1977, 1987). The null limit distribution of a standard test, such as the

likelihood-ratio (LR) and Lagrange multiplier (LM) tests, diverges from a chi-squared distribution due

to the presence of the nuisance parameter (e.g., Cho and White, 2007, 2010; Amengual, Bei, Carrasco,

and Sentana, 2025). The null limit distributions of tests are characterized by Gaussian processes

whose covariance kernels change depending on the model, leading to different critical values. Without

access to the critical values, testing the mixture hypothesis becomes impractical due to the need to

undertake testing computationally demanding testing procedures such as the bootstrap method.

The primary objective of this study is to provide versions of the Gaussian processes that can

be simulated straightforwardly. We investigate two normal mixtures, one with two distinct means

and a common variance, and another with a shared mean and two distinct variances. The null limit

distributions of the LR and LM tests are described as being characterized by Gaussian processes,

with the covariance kernels of these processes differing between the two models. As a result, the two

Gaussian versions are useful in obtaining the asymptotic critical values of the tests.

While we concentrate on the two simple normal mixtures, the critical values for large sample

size can be used for a wide variety of normal mixture models, provided the kernel structures remain

unchanged. As demonstrated by Amengual et al. (2025, proposition 8), the same Gaussian processes

are present when testing for a mixture of conditional normals, thereby allowing us to use the same

asymptotic critical values.

We achieve the goal by representing the Gaussian process as a series of functions with indepen-

dent Gaussian random coefficients. When a Gaussian process is represented in this format, it is easy

to simulate and can be used to obtain the asymptotic critical values. For the first model, Cho and

White (2007) have already provided this version by demonstrating that their Gaussian version has

the same covariance kernel as the Gaussian process. In this study, we derive the version analytically

from the score of the log-likelihood function and ensure its use for the asymptotic critical values. It is

demonstrated that the score function can be expressed as a sequence of orthogonal Hermite polyno-

mials, and the Gaussian version is obtained by applying the large sample theory to each polynomial
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individually. For the second model, we also derive another version similar to the first model. We de-

rive the Gaussian version of the score analytically from the log-likelihood function and demonstrate

that it can be expressed a sequence of orthogonal generalized Laguerre polynomials.

Existing research has provided Gaussian versions for assessing the mixture hypothesis. Cho and

White (2010) investigate the LR test for testing the exponential or Weibull mixture hypothesis and

derive the null limit distributions as functionals of Gaussian processes, which are distinct from those

in this study. They further provide the versions of the Gaussian processes for testing the exponential

or Weibull mixture hypothesis. In parallel, Cho and Han (2009) provide Gaussian version to test for

the mixture hypothesis of geometric distributions. To our knowledge, it is new to the literature to

derive the Gaussian versions analytically using the Hermite or generalized Laguerre polynomials.

This study is structured as follows. In Section 2, we describe the mixture models and derive the

versions of the Gaussian processes analytically. In Section 3, we conduct Monte Carlo simulations

and affirm the theoretical findings in Section 2. Finally, we provide concluding remarks in Section 4

and contain all mathematical proofs in the Supplement.

2 Gaussian Versions

In this section, we concentrate on testing for two normal mixture models that are frequently employed

in empirical studies: one with two distinct means and a single variance, and another with a shared

mean and two different variances.

2.1 Normal Mixture with Two Distinct Means and a Single Variance

As the first model, we consider a random variable Yt that follows the next normal mixture distribution:

Yt ∼ IID

{
N (µ1∗, σ

2
∗), w.p. π∗;

N (µ2∗, σ
2
∗), w.p. 1− π∗,

and the hypothetical data generating process (DGP) is a normal given as Yt ∼ IID N (µ∗, σ
2
∗). This

implies that the null hypothesis can be constructed as follows:

H0 : π∗ = 1 and µ1∗ = µ∗; π∗ = 0 and µ2∗ = µ∗; or µ1∗ = µ2∗ = µ∗.

The null hypothesis involves an identification problem. If π∗ = 0, then µ1∗ is not identified.

Similarly, if π∗ = 1, then µ2∗ is not identified. Conversely, if µ1∗ = µ2∗ = µ∗, then π∗ is not identified

(e.g., Davies, 1977, 1987).
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The mixture hypothesis can be tested by exploiting the standard test principles. Cho and White

(2007) consider testing the null hypothesis using the LR test principle:

LR(1)
n := 2{Ln(π̂n, µ̂1n, µ̂2n, σ̂

2
n, σ̂

2
n)− Ln(1, µ̂0n, µ2, σ̂

2
0n, σ

2
2)},

where Ln(π, µ1, µ2, σ
2
1, σ

2
2) :=

∑n
t=1 ℓt(π, µ1, µ2, σ

2
1, σ

2
2),

ℓt(π, µ1, µ2, σ
2
1, σ

2
2) := log

(
π√
2πσ2

1

exp

[
−(Yt − µ1)

2

2σ2
1

]
+

1− π√
2πσ2

2

exp

[
−(Yt − µ2)

2

2σ2
2

])
,

(π̂n, µ̂1n, µ̂2n, σ̂
2
n) := argmax

π,µ1,µ2,σ2

Ln(π, µ1, µ2, σ
2, σ2), and

(µ̂0n, σ̂
2
0n) := argmax

µ,σ2

Ln(1, µ, µ2, σ
2, σ2

2).

Here, (µ2, σ
2
2) is a placeholder.

Due to the identification problem, Cho and White (2007) derive the null limit distribution of the

LR test as a functional of a Gaussian process. Denoting the Gaussian process as G(·), it has the

following kernel structure: for each δ1 and δ2,

E[G(δ1)] = 0 and E[G(δ1)G(δ2)] =
V (δ1, δ2)√

V (δ1, δ1)
√

V (δ2, δ2)
,

where δ := µ− µ∗ and

V (δ1, δ2) = exp (δ1δ2)− 1− δ1δ2 −
1

2
δ21δ

2
2.

Using G(·), they further obtain the null limit distribution of the LR test given as follows:

LR(1)
n ⇒ max

[
max2[0, G∗], sup

δ∈∆
min2[0,G(δ)]

]
,

where G∗ ∼ N (0, 1) such that E[G∗G(δ)] = δ4/
√

24V (δ, δ) and ∆ is the space of δ. Chen and Chen

(2001) also demonstrate that the LR test weakly converges to supδ∈∆ min2[0,G(δ)] under the null, if

σ2
∗ is known.

The null weak limit has a straightforward interpretation. First, max2[0, G∗] is the null weak limit

of the LR test obtained while testing µ1∗ = µ2∗. Meanwhile, supδ∈∆ min2[0,G(δ)] is the null weak

limit obtained while testing the hypotheses: π∗ = 1 and µ1∗ = µ∗; or π∗ = 0 and µ2∗ = µ∗. By the

symmetry of the normal mixture, the last two null weak limits are identical. The null weak limit of

the LR test is obtained as the maximum of the three null weak limits by the LR test principle.
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Amengual et al. (2025) exploit the LM test principle to test the same hypothesis. They define the

following LM test:

LM(1)
n := max

[
H2

3,n

6n
+min2

[
0,

H4,n√
24n

]
, sup
δ∈∆

min2

[
0,

Gn(δ)√
V (δ, δ)

]]
,

where

H3,n :=
n∑

t=1

Ŷt(Ŷ
2
t − 3), H4,n :=

n∑
t=1

(3− 6Ŷ 2
t + Ŷ 4

t ), Ŷt :=
Yt − µ̂0n√

σ̂2
0n

, and

Gn(δ) :=
1√
n

n∑
t=1

{
1− δŶt +

δ2

2
(Ŷ 2

t − 1)− exp

[
−δ2

2
− δŶt

]}
.

Here, Gn(·) is the score function obtained by imposing the hypothesis that π∗ = 0, so that the score

function is defined as a function of the unidentified parameter, viz., δ := µ − µ∗. In addition, H3,n

and H4,n are introduced to test the skewness and kurtosis property of a normal distribution.

The null limit distribution of the LM test is also represented using the same Gaussian process.

Specifically, Amengual et al. (2025) derive the following null weak limit:

LM(1)
n ⇒ max

[
plimδ→0G2(δ) + min2[0, G0], sup

δ∈∆
min2[0,G(δ)]

]

such that E[G0G(δ)] = −δ4/
√

24V (δ, δ).

The null weak limit of the LM test has a structure parallel to the LR test. First, plimδ→0G2(δ) +

min2[0, G0] is the null weak limit of the LM test testing µ1∗ = µ2∗. Second, supδ∈∆min2[0,G(δ)]
is the null weak limit of the LM test testing π∗ = 1 and µ1∗ = µ∗; or π∗ = 0 and µ2∗ = µ∗.

Amengual et al. (2025) define the LM test in a manner to choose the maximum out of the three LM

tests, producing the null weak limits given as above.

All these tests imply that the Gaussian process G(·) plays a central role when testing for the

mixture hypothesis. Nonetheless, it is not straightforward to find the analytical distribution of G(·).
Due to this difficulty, Cho and White (2007) provide a version of G(·) whose covariance kernel is

identical to that of G(·). That is, if we let

G̃(δ) := 1√
V (δ, δ)

∞∑
j=3

δj√
j!
Zj,

where Zj ∼ IID N (0, 1), for any δ1 and δ2 ∈ ∆, it follows that E[G̃(δ1)G̃(δ2)] = E[G(δ1)G(δ2)]. This
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aspect implies that Z3 = plimδ→0G̃(δ). Therefore, the null limit distribution of the LR test can be

obtained by simulating

max

[
max2[0, Z4], sup

δ∈∆
min2[0, G̃(δ)]

]
. (1)

Bostwick and Steigerwald (2014) provide a STATA code for the simulation. For the LM test, we

further note that and −E[Z4G̃(δ)] = −δ4/
√

24V (δ, δ), which is identical to E[G0G(δ)]. Therefore,

its null limit distribution can be obtained by simulating

max

[
Z2

3 +min2[0,−Z4], sup
δ∈∆

min2[0, G̃(δ)]
]
. (2)

Although Cho and White (2007) obtained the version of G(·) by simply comparing the covariance

kernels of G(·) and G̃(·), it is possible to obtain the version analytically. In the next theorem, we

provide the analytical derivation of G̃(·).

Theorem 1. Given the assumptions made so far, if the null hypothesis holds,

Gn(·) :=
∞∑
j=3

(·)j√
j!

[
− 1√

n

n∑
t=1

1√
j!

(
− 1√

2

)j

Hj

(
Ŷt√
2

)]
⇒ Z̃(·) :=

∞∑
j=3

(·)j√
j!
Zj,

where Hj(·) is the j-th degree Hermite polynomial (e.g., Spiegel, 1968, p. 151).

Remarks. (a) Theorem 1 implies that we can define G̃(·) := Z̃(·)/
√
V (·, ·). It is straightforward

to obtain that

E[Z̃(δ1)Z̃(δ2)] =
∞∑
j=3

1

j!
(δ1δ2)

j = exp(δ1δ2)− 1− 1

2
δ1δ2 = V (δ1, δ2).

Therefore, G̃(·) has the same covariance kernel as G(·).
(b) The standard normal random variables Z3, Z4, . . . are obtained by applying the central limit

theorem (CLT) to the sum of independent Gaussian random variables. That is, for each j < ∞,

− 1√
n

n∑
t=1

1√
j!

(
− 1√

2

)j

Hj

(
Ŷt√
2

)
⇒ Zj

by noting that
∫∞
−∞H2

j (x) exp(−x2)dx = 2jj!
√
π. The independence between Zj and Zj′ (j ̸=

j′) is due to the orthogonality of the Hermite polynomials, i.e.,
∫∞
−∞ Hj(x)Hj′(x) exp(−x2)dx =

0.

(c) The third and fourth-degree Hermite polynomials are related to the skewness and kurtosis com-
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ponents of the LM test, respectively. Specifically,

H3,n√
6n

=
1√
n

n∑
t=1

1√
3!

(
− 1√

2

)3

H3

(
Ŷt√
2

)
⇒ −Z3 and

H4,n√
24n

=
1√
n

n∑
t=1

1√
4!

(
− 1√

2

)4

H4

(
Ŷt√
2

)
⇒ −Z4.

This implies that the test bases formed by the skewness and kurtosis components constitute the

test basis that converges to the Gaussian process under the null hypothesis. From this, the LR

test differs from the LM test in treating Z3. The LR test is devised to treat Z3 as a part of G̃(·)
under the null using the fact that Z3 = plimδ→0G̃(δ). Meanwhile, the LM test is devised to

accommodate the role of Z3 explicitly as a part of its null weak limit.

(d) We assumed the a simple mixture of normals, but it can also be used to test for a mixture of

conditional normals, as observed by Amengual et al. (2025, proposition 8), where the same

Gaussian process is found when testing for a mixture of conditional normals driven by two

distinct location parameters.

2.2 Normal Mixture with Two Different Variances and a Single Mean

As the second model, we suppose that Yt follows the next normal mixture:

Yt ∼ IID

{
N (µ∗, σ

2
1∗), w.p. π∗;

N (µ∗, σ
2
2∗), w.p. 1− π∗,

but the hypothetical DGP condition is given as Yt ∼ IID N (µ∗, σ
2
∗).

This implies that the null hypothesis can be constructed as follows:

H0 : π∗ = 1 and σ2
1∗ = σ2

∗; π∗ = 0 and σ2
2∗ = σ2

∗; or σ2
1∗ = σ2

2∗ = σ2
∗.

As before, the joint hypothesis involves an identification problem. If π∗ = 1, then σ2
2∗ is not identified.

Similarly, if π∗ = 0, then σ2
1∗ is not identified. Conversely, if σ2

1∗ = σ2
2∗ = σ2

∗ , then π∗ is not identified.

As before, we can apply the LR test principle to test the hypothesis. If we let the LR test be

LR(2)
n := 2{Ln(π̃n, µ̃n, µ̃n, σ̃

2
1n, σ̃

2
2n)− Ln(1, µ̂0n, σ̂

2
0n, σ

2
2)},
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where

(π̃n, µ̃n, σ̃
2
1n, σ̃

2
2n) := argmax

π,µ,σ2
1 ,σ

2
2

Ln(π, µ, µ, σ
2
1, σ

2
2),

Cho and White (2007) obtain its null limit distribution as follows:

LR(2)
n ⇒ sup

γ∈Γ
min2[0,U(γ)],

where γ := 1 − σ2/σ2
∗ , Γ is the space of γ, and U(·) is a Gaussian process with the following

covariance kernel: for each γ1 and γ2 in Γ,

E[U(γ1)] = 0, E[U(γ1)U(γ2)] =
W (γ1, γ2)√

W (γ1, γ1)
√

W (γ2, γ2)
,

and

W (γ1, γ2) =
1√

1− γ1γ2
− 1− 1

2
γ1γ2.

Due to the identification problem, the null limit distribution of the LR test is represented as a

functional of the Gaussian process. Here, the Gaussian process U(·) is obtained while testing π∗ = 1

and σ2
1∗ = σ2

∗; or π∗ = 0 and σ2
2∗ = σ2

∗ . Due to the symmetry of the normal mixture, the weak null

limits of the LR test are identical under both hypotheses: π∗ = 1 and σ2
1∗ = σ2

∗; and π∗ = 0 and

σ2
2∗ = σ2

∗ . The null weak limit of the LR test under the hypothesis that σ2
1∗ = σ2

2∗ is dominated by

supγ∈Γmin2[0,U(γ)] with probability 1, resulting in the same maximum as previously found.

By applying the LM test principle, Amengual et al. (2025) define another LM test as follows:

LM(2)
n := sup

γ∈Γ
min2

[
0,

Dn(γ)√
W (γ, γ)

]
,

where

Dn(γ) :=
1√
n

n∑
t=1

{
1 +

γ

2
(1− Ŷ 2

t )−
1√
1− γ

exp

[
−
(

γ

1− γ

)
Ŷ 2
t

2

]}
.

Here, Dn(·) is the score function obtained while testing π∗ = 0 and σ2
2∗ = σ2

∗ . As σ2
1∗ is not identified,

the score function is defined as a function of γ := 1 − σ2/σ2
∗ . By showing that Dn(·) ⇒ V(·), a

zero-mean Gaussian process with the covariance kernel W (γ1, γ2), Amengual et al. (2025) show that

LM(2)
n ⇒ sup

γ∈Γ
min2 [0,U(γ)]

under the null hypothesis. This fact implies that the null weak limits of LR(2)
n and LM(2)

n are charac-
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terized by the same Gaussian process U(·) and that they are equivalent.

We obtain a version of U(·) analytically in parallel to Theorem 1. The next theorem provides it.

Theorem 2. Given the assumptions made so far, if the null hypothesis holds,

Dn(·) =
∞∑
j=2

(·)j
[
− 1√

n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)]
⇒ Ṽ(·) :=

∞∑
j=2

(·)j
√

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

Zj,

where L
(α)
j (·) is the j-th degree generalized Laguerre polynomial (e.g., Hochstrasser, 1964, p.775,

22.3.9).

Remarks. (a) If we let Ũ(·) := Ṽ(·)/
√
W (·, ·), it follows from Theorem 2 that

LR(2)
n , LM(2)

n ⇒ sup
γ∈Γ

min2[0, Ũ(γ)] (3)

under the null. Therefore,

E[Ũ(γ1)Ũ(γ2)] =
∞∑
j=2

(γ1γ2)
j Γ(j + 1/2)

Γ(1
2
)Γ(j + 1)

=
1√

1− γ1γ2
− 1− 1

2
γ1γ2 = W (γ1, γ2)

by noting that
∞∑
j=0

(γ1γ2)
j Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

=
1√

1− γ1γ2

as shown by Lemma A.1 in the Appendix. This also implies that both U(·) and Ũ(·) have the

same covariance kernel.

(b) The standard normal random variables Z2, Z3, . . . are obtained by applying the CLT to the

generalized Laguerre polynomials in parallel to Theorem 1. That is, for each j < ∞,

− 1√
n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)
⇒

√
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

Zj

by noting that for each j,∫ ∞

0

{
L
(−1/2)
j (x)

}2 1√
π
exp(−x)x−1/2dx =

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

Here, π−1/2 exp(−(·))(·)−1/2 denotes the asymptotic probability density function of Ŷ 2
t /2. The

independence between Zj and Zj′ (j ̸= j′) follows from the orthogonality of the generalized
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Laguerre polynomials. That is, for j ̸= j′,∫ ∞

0

L
(−1/2)
j (x)L

(−1/2)
j′ (x)

1√
π
exp(−x)x−1/2dx = 0.

(c) The 2nd degree generalized Laguerre polynomial L(−1/2)
2 (·) is the first Laguerre polynomial

used to rephrase the score function Dn(·) in Theorem 2 and is related to the kurtosis component

of the LM test. We can see this feature by noting that the generalized Laguerre polynomial has

a certain relationship with the Hermite polynomial. That is,

L
(−1/2)
j (x) =

(−1)j

j!22j
H2j(

√
x).

Therefore, it follows that

1√
n

n∑
t=1

L
(−1/2)
2

(
Ŷ 2
t

2

)
= −

√
Γ(2.5)

Γ(0.5)Γ(3)

(
H4,n√
24n

)
⇒

√
Γ(2.5)

Γ(0.5)Γ(3)
Z4,

where H4,n/
√
24n is the kurtosis component used to define LM(1)

n . This fact implies that the

test basis formed by the kurtosis component constitutes the test basis of both tests.

(d) We initially assumed a simple mixture of normal distributions, but this approach can be used to

test for a mixture of conditional normals as well, according to Amengual et al. (2025, proposi-

tion 8). When testing for a mixture of conditional normals with two distinct scale parameters,

the resultant Gaussian process emerges as U(·).

3 Simulations

In this section, we conduct simulations and compare the LR and LM tests using the asymptotic critical

values obtained from the two Gaussian versions.

3.1 Normal Mixture with Distinct Means

For the null simulation, we simulate Yt ∼ IIDN (0, 1) and test the hypothesis that Yt follows a normal

distribution. We set µ1∗, µ2∗ ∈ [−2, 2] but do not restrict the parameter space for σ2
∗ . Given that

µ∗ = 0 under the null hypothesis, this specification implies that ∆ = [−2, 2]. We obtain the null limit

critical values by grid search and report them in Table A.1. These values are obtained by repeating

100,000 independent experiments using the formulas given in (1) and (2) for the LR and LM tests,
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respectively. Here, we have approximated G̃(·) by

G̃k(·) :=
1√

V (·, ·)

k∑
j=3

(·)j√
j!
Zj

with k = 500. As k is large, the distributional difference between G̃(·) and G̃k(·) is negligible.

Table A.2 reports the empirical rejection rates of the LR and LM tests under the null. The total

number of experiments is 10,000. The empirical rejection rates of the LR test are similar to the

nominal significance levels for each level. Meanwhile, the LM test exhibits a conservative testing

result when the sample size is small, but it converges to the nominal levels as the sample size increases.

For the power simulation, we let

Yt ∼ IID

{
N (−1, 1), w.p. 1/2;

N (1, 1), w.p. 1/2,

so that the alternative hypothesis is valid. Table A.3 reports the simulation results obtained by repeat-

ing 2,000 independent experiments. For both tests, the empirical rejection rates converge to 100% as

the sample size increases. We also note that the LR test is consistently more powerful than the LM

test at each significance level.

The simulation results suggest that the LR test is more beneficial than the LM test when testing

for the mixture of normal distributions driven by two distinct means.

3.2 Normal Mixture with Distinct Variances

Using the Gaussian version Ũ(·), we conduct another simulation to compare the performances of the

LR and LM tests.

We first determine the asymptotic critical values for both tests in the simulation. We repeat

100,000 independent experiments using the formula given in (3). Here, we have approximated G̃(·)
by

Ũk(·) :=
1√

W (·, ·)

k∑
j=2

(·)j
√

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

Zj

with k = 500. We let σ2
1∗, σ2

2∗ ∈ [1/2, 3/2] but do not restrict the parameter space for µ∗. As we set

σ2
∗ = 1 under the null, Γ = [−1/2, 1/2]. We report the critical values in Table A.4. Both LR and LM

tests have the same asymptotic critical values.

Table A.5 reports the empirical rejection rates of the LR and LM tests under the null. We let Yt ∼
IIDN (0, 1) and test the normal distribution hypothesis. The total number of iterations is 10,000. The
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level performance is different from Section 3.1. The empirical rejection rates of the LM test are more

similar to the nominal significance levels than the LR test. Meanwhile, the LR test is conservative

when the sample size is small, although it converges to the nominal levels as the sample size grows.

For the power simulation, we let

Yt ∼ IID

{
N (0, 0.6), w.p. 1/2;

N (0, 1.4), w.p. 1/2,

so that the alternative hypothesis is valid. Table A.6 reports the power simulation results. For both

tests, the empirical rejection rates converge to 100% as the sample size increases. We also note that

the LM test is always more powerful than the LR test for each significance level. This is opposite to

that in Section 3.1.

The simulation results imply that the LM test is more useful than the LR test when testing for the

mixture of normals driven by two different variances.

4 Concluding Remarks

The current study analytically derives the versions of the Gaussian processes associated with testing

for the normal mixtures. The Gaussian versions are useful as we can exploit them to obtain the asymp-

totic critical values of the LR and LM tests by simulation. We examine two normal mixtures. One is

the normal mixture with two different means and a single variance, and another is the normal mixture

with two different variances and a single mean. For each model, we obtain the Gaussian version by

associating the related score function with the Hermite or generalized Laguerre polynomial.

We compare the performances of the LR and LM tests using the Gaussian versions through simula-

tion. Both models yield distinct simulation outcomes. When two different means are allowed, the LR

test outperforms the LM test in terms of level and power. However, the LM test outperforms the LR

test when two different variances are assumed. Choosing a suitable test tailored to a specific mixture

hypothesis should lead to enhanced finite sample accuracy in testing for a normal mixture.

A Appendix

In the Appendix, we prove the main theorems in Section 2. Before proving them, we first provide a

supplementary lemma.
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Lemma A.1.
∞∑
j=0

sj
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

=
1√
1− s

.

Proof of Lemma A.1: We note that

∞∑
j=0

sj
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

=
1

Γ(1
2
)

∞∑
j=1

sj−1Γ(j −
1
2
)

Γ(j)
=

Γ(1
2
)

Γ(1
2
)

∞∑
j=1

sj−1 Γ(j − 2
2
)

(j − 1)!(−1
2
)!

=
∞∑
j=1

sj−1

(
j − 3

2

j − 1

)
=

∞∑
j=0

sj
(
j − 1

2

j

)
=

∞∑
j=0

sj
(
−1

2

j

)
(−1)j

=
∞∑
j=0

(−s)j
(
−1

2

j

)
= (1− s)−1/2 =

1√
1− s

.

This completes the proof. ■

We now prove the main theorems.

Proof of Theorem 1: Using the formula of the Hermite polynomial generating function, we first note

that

exp

[
−δŶt −

δ2

2

]
=

∞∑
j=0

1

j!
Hj

(
Ŷt√
2

)(
− δ√

2

)j

,

where

H0

(
Ŷt√
2

)(
− δ√

2

)0

= 1, H1

(
Ŷt√
2

)(
− δ√

2

)1

= −δŶt, H2

(
Ŷt√
2

)(
− δ√

2

)2

= (Ŷ 2
t − 1)δ2

by noting that H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) := 8x3 − 12x, and so on (e.g.,

Spiegel, 1968, p. 151), implying that

2∑
j=0

1

j!
Hj

(
Ŷt√
2

)(
− δ√

2

)j

= 1− δŶt +
δ2

2
(Ŷ 2

t − 1),
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so that

Gn(δ) :=
1√
n

n∑
t=1

{
1− δŶt +

δ2

2
(Ŷ 2

t − 1)− exp

[
−δ2

2
− δŶt

]}

= −
∞∑
j=3

1

j!

1√
n

n∑
t=1

Hj

(
Ŷt√
2

)(
− δ√

2

)j

.

We here note that if n is sufficiently large, Ŷt
A∼ IID N (0, 1), so that if we apply the CLT, it further

follows that for any j < ∞,

− 1√
n

n∑
t=1

1√
j!

(
− 1√

2

)j

Hj

(
Ŷt√
2

)
⇒ Zj ∼ N (0, 1)

by noting that∫ ∞

−∞
Hj

(
y√
2

)
1√
2π

exp

(
−y2

2

)
dy = 0 and

∫ ∞

−∞
H2

j

(
y√
2

)
1√
2π

exp

(
−y2

2

)
dy = j!2j

(e.g., Spiegel, 1968, p.152). Furthermore, for any j ̸= j′,∫ ∞

−∞
Hj

(
y√
2

)
Hj′

(
y√
2

)
1√
2π

exp

(
−y2

2

)
dy = 0

by the orthogonality of the Hermite polynomials (e.g., Spiegel, 1968, p. 152). Therefore, E[ZjZj′ ] =

0. From the normality, it implies that Zj and Zj′ are independent. Therefore,

Gn(·) =
∞∑
j=3

1√
j!

[
− 1√

n

n∑
t=1

1√
j!

(
− 1√

2

)j

Hj

(
Ŷt√
2

)]
(·)j ⇒

∞∑
j=3

1√
j!
Zj(·)j.

This completes the proof. ■

Proof of Theorem 2: Using the formula of the generalized Laguerre polynomial generating function,

we note that
1√
1− γ

exp

[
−
(

γ

1− γ

)
Ŷ 2
t

2

]
=

∞∑
j=0

γjL
(−1/2)
j

(
Ŷ 2
t

2

)
,

where

L
(−1/2)
0

(
Ŷ 2
t

2

)
= 1 and L

(−1/2)
1

(
Ŷ 2
t

2

)
=

1

2
− Ŷ 2

t

2

by noting that L(−1/2)
0 (x) = 1, L(−1/2)

1 (x) = 1
2
− x, and so on (e.g., Hochstrasser, 1964, p. 779,
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22.5.38), implying that
1∑

j=0

γjL
(−1/2)
j

(
Ŷ 2
t

2

)
= 1 +

γ

2
(1− Ŷ 2

t ),

so that

Dn(γ) :=
1√
n

n∑
t=1

{
1 +

γ

2
(1− Ŷ 2

t )−
1√
1− γ

exp

[
−
(

γ

1− γ

)
Ŷ 2
t

2

]}

= −
∞∑
j=2

γj

√
n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)
.

We here note that if n is sufficiently large, Ŷt
A∼ IID N (0, 1), so that Ŷ 2

t
A∼ IID X 2

1 , and the asymptotic

probability density function of Xt := Ŷ 2
t /2 can be given as follows:

f(x) :=
x−1/2

√
π

exp(−x).

We further note that for each j,∫ ∞

0

L
(−1/2)
j (x)f(x) = 0 and

∫ ∞

0

{
L
(−1/2)
j (x)

}2

f(x) =
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

that is uniformly bounded by 1
2

with respect to j (e.g., Hochstrasser, 1964, p.775, 22.2.12). Therefore,

we can apply the CLT for each j, so that for each j,

− 1√
n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)
⇒

√
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

Zj.

Furthermore, we note that for any j ̸= j′,∫ ∞

0

L
(−1/2)
j (x)L

(−1/2)
j′ (x)f(x)dx = 0

by the orthogonality of the generalized Laguerre polynomials (e.g., Hochstrasser, 1964, pp. 773-775,

22.1.1 and 22.2.12), implying that E[ZjZj′ ] = 0, meaning that Zj and Zj′ are independent. Therefore,

Dn(·) =
∞∑
j=2

(·)j
[
− 1√

n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)]
⇒

∞∑
j=2

(·)j
√

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

Zj.

This completes the proof. ■
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Test \ Level 1.00% 2.50% 5.00% 7.50% 10.00%
LR(1)

n 8.69 6.91 5.63 4.86 4.31
LM(1)

n 9.23 7.38 6.07 5.27 4.69

Table A.1: ASYMPTOTIC CRITICAL VALUES OF THE LR AND LM TESTS. Figures show the asymp-
totic critical values of the LR and LM tests obtained by applying the grid search method to the practical
Gaussian process G̃(·). The parameter space of µ∗ is [−2.0, 2.0]. The critical values are obtained by
repeating independent experiments 100,000 times.

Test Level \ n 50 100 200 300 400 500
1.00% 1.33 1.06 1.00 1.02 1.02 1.05
2.50% 3.09 2.83 2.40 2.58 2.62 2.31

LR(1)
n 5.00% 5.69 5.47 4.79 5.23 5.02 4.66

7.50% 8.11 7.67 7.32 7.74 7.20 6.99
10.0% 10.76 10.10 9.73 10.18 9.73 9.63
1.00% 1.78 1.88 2.20 2.32 2.73 2.68
2.50% 2.45 2.86 3.10 3.43 3.88 3.90

LM(1)
n 5.00% 3.25 3.88 4.38 4.90 5.47 5.49

7.50% 4.02 4.98 5.63 6.28 7.05 7.04
10.0% 4.94 6.07 7.14 7.63 8.82 8.98

Table A.2: EMPIRICAL REJECTION RATES UNDER THE NULL (IN PERCENT). Figures show the
empirical rejection rates of the LR and LM tests. DGP: Yt ∼ IIDN (0, 1). The parameter space of µ∗
is [−2.0, 2.0]. The total number of replications is 10,000.

Test Level \ n 100 400 700 1,000 1,500 2,000
1.00% 5.80 54.05 84.50 95.65 99.85 100.0
2.50% 12.85 67.10 91.35 98.00 99.95 100.0

LR(1)
n 5.00% 21.00 76.60 95.10 98.90 99.95 100.0

7.50% 28.30 82.20 96.70 99.20 99.95 100.0
10.0% 34.75 82.85 97.30 99.50 99.95 100.0
1.00% 0.15 4.95 37.25 72.40 93.55 99.55
2.50% 0.25 18.60 59.40 82.85 97.80 99.85

LM(1)
n 5.00% 0.55 34.25 73.80 92.50 99.00 99.95

7.50% 1.15 46.80 81.25 95.40 99.35 99.95
10.0% 2.80 56.25 86.45 97.15 99.60 99.95

Table A.3: EMPIRICAL REJECTION RATES UNDER THE ALTERNATIVE (IN PERCENT). Figures
show the empirical rejection rates of the LR and LM tests. DGP: Yt ∼ IIDN (−1, 1) with probability
1/2; and N (1, 1) with probability 1/2. The parameter space of µ∗ is [−2.0, 2.0]. The total number of
replications is 2,000.
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Test \ Level 1.00% 2.50% 5.00% 7.50% 10.00%
LR(2)

n 6.64 4.94 3.69 2.97 2.47
LM(2)

n 6.64 4.94 3.69 2.97 2.47

Table A.4: ASYMPTOTIC CRITICAL VALUES OF THE LR AND LM TESTS. Figures show the asymp-
totic critical values of the LR and LM tests obtained by applying the grid search method to the practical
Gaussian process Ũ(·). The parameter space of σ2

∗ is [1/2, 3/2]. The critical values are obtained by
repeating independent experiments 100,000 times.

Test Level \ n 1,000 5,000 10,000 20,000 40,000 60,000
1.00% 0.59 0.56 0.84 1.01 0.81 0.92
2.50% 1.69 1.75 2.20 2.44 2.02 2.35

LR(2)
n 5.00% 3.28 3.80 4.40 4.74 4.31 4.53

7.50% 5.28 5.94 6.51 6.85 6.51 6.91
10.0% 7.25 8.02 8.72 9.14 8.77 9.44
1.00% 2.22 1.92 1.83 1.95 1.68 1.61
2.50% 3.80 3.63 3.40 3.60 3.13 3.15

LM(2)
n 5.00% 6.08 5.93 5.90 6.28 5.77 5.93

7.50% 8.14 8.15 8.35 9.08 8.37 8.49
10.0% 10.05 10.45 10.51 11.40 10.78 10.73

Table A.5: EMPIRICAL REJECTION RATES UNDER THE NULL (IN PERCENT). Figures show the
empirical rejection rates of the LR and LM tests. DGP: Yt ∼ IIDN (0, 1). The parameter space of σ2

∗
is [1/2, 3/2]. The total number of replications is 10,000.

Test Level \ n 200 500 800 1,000 1,500 2,000
1.00% 4.50 17.90 45.65 54.85 76.65 88.75
2.50% 9.80 30.00 59.85 68.40 85.35 94.50

LR(2)
n 5.00% 17.00 40.00 71.45 78.65 91.25 97.00

7.50% 22.80 47.20 78.00 84.30 93.85 98.15
10.0% 28.40 52.55 81.70 87.40 95.35 98.75
1.00% 18.80 38.60 57.70 68.65 82.70 92.55
2.50% 26.25 49.35 67.05 77.70 89.40 96.55

LM(2)
n 5.00% 33.15 58.65 75.25 83.60 93.10 97.70

7.50% 38.30 64.85 79.70 87.10 95.65 98.20
10.0% 42.35 68.65 82.45 89.75 96.75 98.65

Table A.6: EMPIRICAL REJECTION RATES UNDER THE ALTERNATIVE (IN PERCENT). Figures
show the empirical rejection rates of the LR and LM tests. DGP: Yt ∼ IIDN (0, 0.6) with probability
1/2; and N (0, 1.4) with probability 1/2. The parameter space of σ2

∗ is [1/2, 3/2]. The total number of
replications is 2,000.
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