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Abstract

The current study investigates testing the mixture hypothesis of Poisson regression models using the
likelihood ratio (LR) test. The motivation of the mixture hypothesis stems from the unobserved het-
erogeneity, and the null hypothesis of interest is that there is no unobserved heterogeneity in the data.
Due to the nonstandard conditions described in the text, the LR test does not weakly converge to the
standard chi-squared random variable under the null hypothesis. We derive its null limit distribution as
a functional of the Hermite Gaussian process. Furthermore, we introduce a methodology to obtain the
asymptotic critical values consistently. Finally, we conduct Monte Carlo experiments and compare the
power of the LR test with the specification test developed by Lee (1986).
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1 Introduction

Poisson regression models are popularly applied to count data. For example, Hausman, Hall, and Griliches

(1984) provide stylized econometric model specifications for count data using Poisson regression models.

Misspecified Poisson models have been investigated in the literature. For example, Lee (1986) provides

a specification test for Poisson regression models. In econometrics, Gourieroux, Monfort, and Trognon

(1984) examine misspecified Poisson regression models and relevant tests. These misspecified models are

often due to the presence of unobserved heterogeneity. In the statistics literature, we find similar works,

and a specific distribution is typically assumed for unobserved heterogeneity. The most popular distribution

assumption for unobserved heterogeneity is a Bernoulli or Binomial distribution. This assumption leads to

a finite mixture of Poisson regression models, overcoming model misspecification. For example, Karlis and

Xekalaki (1999, 2001) and Schlattmann (2003) consider estimating the number of components in a finite

mixture of Poisson regression models. They rely on a computationally intensive resampling procedure for

the inference purpose.

Nevertheless, testing the mixture hypothesis of the Poisson regression models has not been successfully

resolved. As examined in the literature of mixture, testing the hypothesis using the standard likelihood ratio

(LR) test has identification and boundary parameter problems. Thus, without resolving these issues, the null

limit distribution of the LR test cannot be determined effectively.

The goal of this paper is, therefore, to demonstrate the use of the LR test designed to test for the mixture

hypothesis of Poisson regression models. For this, we exploit the methodology developed by Cho and

White (2007). They provide a set of regularity conditions to test the mixture hypothesis for general mixture

models and demonstrate the application of this methodology to testing the mixture of normals. We apply

their methodology to the mixture of Poisson regression models by deriving the null limit distribution of the

LR test. Furthermore, we provide a simulation method to deliver the asymptotic critical values consistently.

In achieving this goal, we specifically assume the Poisson regression model specified by Hausman et al.

(1984), although their exponential assumption is relaxed.

In the literature, testing the mixture hypothesis has been examined by numerous authors. Hartigan

(1985) considers an example of a normal mixture to demonstrate that the null limit distribution of the LR

test is dependent upon the parameter space unidentified under the null. Ghosh and Sen (1985) derive the null

limit distribution of the LR test under the so-called strong identification assumption. Chernoff and Lander

(1995) develop Ghosh and Sen’s (1985) methodology to the case of binomial mixture models. They also

introduce a simulation method to deliver the asymptotic critical values consistently. Dacunha-Castelle and

Gassiat (1999) examine general mixture models and apply their polar conic parametrization method to test
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the mixture hypothesis. Chen and Chen (2001) also examine the same problem using another methodology,

affirming the results in Dacunha-Castelle and Gassiat (1999). In particular, Chen and Chen (2001) examine

the simple mixture of Poisson distributions whose model scope is extended in the current study. Cho and

White (2007) note that many popular mixture models require much higher-order approximations than those

examined in the prior literature when testing for the mixture hypothesis. Due to this, they extend the mixture

scope up to the case where models are differentiable eight times continuously. Cho and White (2010) apply

their methodology to the case of exponential or Weibull mixture models. Cho and White (2007, 2010)

also provide simulation methods that deliver asymptotic critical values consistently similar to Chernoff and

Lander (1995).

The plan of this paper is as follows. In Section 2, we consider a mixture of Poisson regression models

and derive the null limit distribution of the LR test. We further introduce a simulation method to deliver

the asymptotic critical values consistently. In Section 3, we conduct Monte Carlo simulations, and some

concluding remarks are provided in Section 4. Finally, we collect the regularity conditions for the Poission

mixture model in the Appendix.

2 Mixture of Poisson Regression Models

Suppose that the Poisson regression mixture model is correctly specified when a sequence of independently

and identically distributed (IID) random variables {(Xt,Z
′
t)
′ ∈ N × Rp} is given. That is, the following

model is specified:

mt(π, λ1, λ2,β;Xt|Zt) = πf [g(Zt;λ1,β);Xt] + (1− π)f [g(Zt;λ2,β);Xt],

where for each λ and β,

f [g(Zt;λ,β);Xt = k] =
exp[−g(Zt;λ,β)]g(Zt;λ,β)

k

k!
,

and Zt denotes a vector of covariates not including the constant.

The motivation of this mixture model is due to the presence of unobserved heterogeneity (Hausman et al.,

1984; Gourieroux et al., 1984; Wooldridge, 1999, and references therein). We simplify the heterogeneity by

assuming that it conforms to a Bernoulli distribution, leading to the mixture of Poisson regression models.

Here, we do not specify the functional form of g(·). It does not have to be an exponential function as

assumed by Hausman et al. (1984), among others. Without assuming a particular form of g(·), we proceed

with our discussions. The regularity conditions for this model are provided in the Appendix.

2



Given this, we can exploit the LR test principle to test for the mixture hypothesis. For this, we suppose

that (π∗, λ1∗, λ2∗,β∗) maximizes E[log{mt( · ;Xt|Zt)}], and we test the following hypotheses: for some

unknown and unique λ∗ ∈ (λ, λ̄),

H0 : π∗ = 1, λ1∗ = λ∗, ; π∗ = 0, λ2∗ = λ∗; or λ1∗ = λ2∗ = λ∗ versus

H1 : π∗ ∈ (0, 1) and λ1∗ ̸= λ2∗.

Note that the null model implies that the Poisson regression model is correctly specified for the distribution

of Xt on Zt, so that specifying the Poisson mixture model has introduced a redundant parameter.

The null hypothesis is different from the standard null hypothesis in the literature. It is a joint hypothesis,

describing the Poisson regression model using the Poisson mixture model, and two nonstandard problems

are implied by the null hypothesis. First, there is an identification problem. If π∗ = 1 (resp. π∗ = 0),

then λ2∗ (resp. λ1∗) is not identified. Likewise, if λ1∗ = λ2∗, then π∗ is not identified. These are so-

called Davies’ (1977; 1987) identification problem: there exist nuisance parameters identified only under

the alternative hypothesis. Second, if π∗ = 1 or 0, then π∗ is on the boundary of parameter space, so that

the interiority problem violates for the LR test to behave regularly under the null hypothesis.

In the prior literature, the null limit distribution of the LR test is obtained by overcoming the nonstandard

problems. A number of authors examined the nonstandard problems. For example, Ghosh and Sen (1985)

examine the null limit distribution of the LR test under the strong identification assumption, and Chernoff

and Lander (1995) apply Ghosh and Sen’s (1985) methodology to the case of binomial mixtures. Dacunha-

Castelle and Gassiat (1999) examine general mixture models and apply their polar conic parametrization

method to test the mixture hypothesis. Chen and Chen (2001) also examine the same problem, including the

simple Poisson mixture. In particular, Cho and White (2007) assume a general mixture model and derive

the null limit distribution of the LR test generically. Following the methodology of Cho and White (2007),

the null limit distributions of the LR tests are further investigated for specific mixture models. Cho and Han

(2009) and Cho, Park, and Park (2018) focus on the geometric mixture, and Cho and White (2010) focus on

the exponential and Weibull mixtures. Furthermore, Cho (2025) focus on the normal mixtures. All the null

limit distributions of the LR test are different from each other, as the null limit distribution depends on the

model properties.

By applying the general framework in Cho and White (2007) to the current Poisson mixture model, we

3



here provide the null limit distribution of the LR test defined as follows:

LRn := 2n

{
max

π,λ1,λ2,β

n∑
t=1

log(mt(π, λ1, λ2,β;Xt|Zt))−max
λ,β

n∑
t=1

log(ft(g(Zt;λ,β);Xt))

}
.

Under the regularity conditions in the Appendix, the LR test has the following null weak limit:

LRn ⇒ sup
λ∈[λ, λ̄]

min2[0,Y(λ)],

where Y(·) is a Gaussian process such that for each λ and λ′,

E[Y(λ)Y(λ′)] =
r(λ, λ′)√

r(λ, λ)
√
r(λ′, λ′)

, (1)

and

r(λ, λ′) :=E[exp{g(Zt;β∗)(
√
λ∗ − λ/

√
λ∗)(

√
λ∗ − λ′/

√
λ∗)}]

− 1− E[g(Zt;β∗)(
√

λ∗ − λ/
√
λ∗)(

√
λ∗ − λ′/

√
λ∗)].

The covariance kernel r(·, ·) implies that the null limit distribution is affected by the distribution of

g(Zt;β∗). We consider two different cases. First, if g(·; ·) ≡ 1, (1) reduces to the simple mixture of Poisson

distributions without covariates. Chen and Chen (2001) examine the null limit distribution of the LR test

for this case using another approach and obtain the same covariance kernel. Second, if the distribution of

g(Zt;β∗) is nontrivial, the covariance kernel has different functional forms for different distributions. For

such a case, it is useful to exploit a computationally intensive testing procedure for the LR test, such as the

parametric bootstrap (see Amengual, Bei, Carrasco, and Sentana, 2025, for example).

Another notable thing with this null limit distribution is in the fact that it depends on the size of the

parameter space [λ, λ̄] as Hartigan (1985) points out in the normal mixture model framework. Certainly, if

a bigger parameter space is assumed, bigger critical values are obtained. Prior literature ignoring this aspect

reports simulation results whose critical values do not appear to converge. When obtaining the critical values

based on the resampling procedure, different specifications for the parameter space are expected to produce

different testing results (see Karlis and Xekalaki, 1999, 2001; Schlattmann, 2003, for example).

We now consider methodologies to obtain the asymptotic critical values consistently or their approxi-

mations. First, we suppose that g(·; ·) ≡ 1. For this case, the asymptotic critical values of the LR test can

be efficiently obtained by following the approximation method in Cho and White (2007). That is, we can

provide an analytical Gaussian process with the same covariance structure as (1), so that the asymptotic
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critical values are obtained by simulation. For each λ ∈ [λ, λ̄], let

G(λ;λ∗) :=
1√

r(λ, λ)

∞∑
j=2

1√
j!

(√
λ∗ −

λ√
λ∗

)j

Wj , (2)

where Wj ∼ IID N(0, 1). Then it is not hard to verify that E[Y(λ)Y(λ′)] = E[G(λ;λ∗)G(λ′;λ∗)]. Thus,

we can simulate

sup
λ∈[λ, λ̄]

min2[0,G(λ;λ∗)]

many times to obtain the asymptotic critical values. The empirical distribution obtained in this way can

consistently deliver the asymptotic null distribution of the LR test. While implementing this procedure, we

note that one of the ingredients of G(·) is λ∗, which is unknown. This unknown parameter can be estimated

consistently. For example, we can estimate it using the null model. The Monte Carlo experiments given

below verify that the parameter estimation error can be neglected if the sample size is moderately large.

Second, we again suppose that g(·; ·) ≡ 1. There is another analytical Gaussian process whose covari-

ance kernel is identical to (1). For this provision, for each ξ, we let

X(ξ) :=
1√

s(ξ, ξ)

∞∑
j=2

ξj√
j!
Wj , (3)

where for each ξ and ξ′, s(ξ, ξ′) := exp(ξξ′)−1−ξξ′. Note that (3) is obtained by letting ξ :=
√
λ∗−λ/

√
λ∗.

Thus, we can alternatively simulate

sup
ξ∈[ξ, ξ̄]

max2[0,X(ξ)] (4)

to obtain the asymptotic critical values, where

ξ :=
√

λ∗ −
λ̄√
λ∗

and ξ̄ :=
√
λ∗ −

λ√
λ∗

,

respectively. We also note that X(·) is the Hermite Gaussian process introduced by Cho and White (2007)

and Cho (2025), which is the Gaussian process obtained while testing for the mixture normal. Although there

is no direct relationship between the Poisson mixture and the normal mixture, the same Gaussian process is

obtained to characterize the null limit distribution of the LR test. For other mixture models, the null limit

distribution of the LR test is characterized by different Gaussian processes whose covariance kernels are

different from X(·). For the different Gaussian processes, Cho and Han (2009), Cho and White (2010), and

Cho (2025) provide analytical Gaussian processes different from (3) to obtain the null limit distribution of

the LR test by simulation.
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Finally, we consider the null limit distribution of the LR test when g(Zt;β∗) has a nontrivial distribution.

We first define a conditional Gaussian process given covariate Zt = z as

X̃(δ|Zt = z) :=
1√

s(δ(z), δ(z)′)

∞∑
j=2

δ(z)j√
j!

Wj

for each δ(z), where for each λ, δ(z) := g(z;β∗)
1/2(

√
λ∗ − λ/

√
λ∗). This is a Gaussian process forming

the null limit distribution when the covariate Zt is fixed at z. That is, it follows that for given Zt = z,

LRn(z) ⇒ sup
λ∈[λ, λ̄]

min2[0, X̃(δ|z)].

Note that if g(·; ·) ≡ 1, X̃(·|Zt = z) ≡ X(·). We further note that this weak limit can be rewritten as

a function of X(·) by transforming the domain of λ. That is, if we let ν(z) := ξg(z;β)1/2 and ν̄(z) :=

ξ̄g(z;β)1/2, respectively, it trivially follows that

sup
λ∈[λ, λ̄]

min2[0, X̃(δ|z)] = sup
ν∈[ν(z), ν̄(z)]

min2[0,X(ν)] (5)

The random feature of X̃(·) driven by Zt is now transferred to the random parameter space [ν(z), ν̄(z)] on

the right-hand side (RHS) of (5).

We next apply Piterbarg (1996) to handle the random parameter space and approximate the tail distribu-

tion of (5). By Theorem 7.1 of Piterbarg (1996), it follows that as u tends to infinity, the unconditional tail

probability for an extremum is given as

P

(
sup

ν∈[ν(z), ν̄(z)]
min2[0,X(ν)] > u2

)
= HαE[λ([ν(z), ν̄(z)])]u2/α(1− Φ(u))(1 + o(1)), (6)

where Hα is the asymptotic double-sum coefficient defined in Piterbarg (1996, p. 16); λ( · ) stands for

Lebesgue measure; and Φ( · ) is the standard normal cumulative distribution function (CDF). Therefore, if

we let the RHS of (6) be the level of significance, its corresponding u2 becomes the asymptotic critical

value. Here, we note that (6) is effective for a substantially large u2. In case u2 is not large enough or the

level of significance is not sufficiently small, the equality in (6) does not hold. For such a case, the critical

value obtained from the equality in (6) becomes conservative. Due to this, we should treat the critical value

obtained from (6) as a conservative approximation.

The RHS of (6) can also be approximated by using the Hermite Gaussian process. The random parameter

space for ν on the left-hand side (LHS) of (6) can be replaced by [L∗, U∗] := [ξω∗, ξ̄ω∗], where ω∗ :=
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E[g(Zt;β∗)
1/2]. Thus, we can deliver the tail asymptotic null distribution consistently by simulating

sup
ν∈[L∗, U∗]

min2[0,X(ν)]. (7)

In case [L∗, U∗] is unknown, we can consistently estimate it using the null model as before. That is, we can

replace ξ, ξ̄, and ω∗ by their estimates:

ξ̂
n
:= (λ̂0

n)
1/2 − λ̄/(λ̂0

n)
1/2, ̂̄ξn := (λ̂0

n)
1/2 − λ/(λ̂0

n)
1/2, and ω̂0

n := n−1
∑

g(Zt; β̂
0

n)
1/2,

respectively, where (λ̂0
n, β̂

0

n) is the maximum-likelihood estimator (MLE) obtained from the null model

assumption. Therefore, the tail asymptotic null distribution can be consistently delivered by simulating the

following many times:

sup
ν∈[L̂n, Ûn]

min2[0,X(ν)], (8)

where [L̂n, Ûn] := [ξ̂
n
ω̂0
n,
̂̄ξnω̂0

n]. If the level of significance is sufficiently small, the asymptotic critical

values delivered from (8) can control type-I error successfully. Otherwise, we should expect that the critical

values are conservative asymptotically.

3 Monte Carlo Experiments

We suppose that {(Xt, Zt)
′ ∈ N×R} is generated according to Xt|Zt ∼ IID Pois(2 exp(Zt)) and Zt ∼ IID

U(−1, 1). A model for this is specified as follows:

πPois(λ1 exp(βZt)) + (1− π)Pois(λ2 exp(βZt)),

where λ1, λ2 ∈ [1, 3], and there is no restriction on β. As 2 exp(Zt) has a nontrivial distribution, we test for

the Poisson mixture by applying the asymptotically approximated critical values in (8).

First, we examine the asymptotic critical values. Table 1 shows the critical values obtained under various

assumptions on the sample size. These critical values are obtained by simulating (8) 50,000 times. Simu-

lating (8) is not affected by the estimation error, and their differences decrease as the sample size increases.

The last column shows the asymptotic critical values by supposing that (λ∗, β∗) = (2, 1) is known. Other

cases replace it with the MLE (λ̂0
n, β̂

0
n).

Second, we examine the empirical rejection rates of the LR test under the null. We contain the simulation

results in Table 2. As shown in Table 2, the small sample size distortion exists, and the distortion does
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not disappear, even when the sample size is substantially large. Furthermore, the difference between the

nominal level and the empirical rejection rate increases as the nominal level increases. This feature shows

that the critical values obtained by simulating (8) are conservative approximations. As the critical values

are approximated by the tail probability for an extremum, they are conservative approximations. Despite its

conservatism, we can control the size distortion by reducing the level of significance.

Third, we examine the power properties of the LR test. For the power comparison, we employ another

test. Lee (1986) proposes the following specification test:

SR =
1√
2n

n∑
t=1

{Xt(Xt − 1)− λ̂0
n exp(β̂

0
nZt)}

λ̂0
n exp(β̂

0
nZt)

,

which weakly converges to the standard normal random variable under the null. We compare the power of

the LR test with that ofSR. When the critical values are obtained by the limiting and empirical distributions,

we denote them as LR′ and LR′′, respectively. The sample size is 100, and the number of repetitions is

3,000. Specific DGPs for {Xt|Zt} is π∗Pois(λ1∗ exp(Zt)) + (1 − π∗)Pois(λ2∗ exp(Zt)) and Zt ∼ IID

U(−1, 1). The values of π∗ and (λ1∗, λ2∗) are given in Table 3 along with the power simulation results.

The power simulation results can be summarized as follows. When LR′ is compared with SR, the

results are nuanced. When π∗ approaches zero, SR is more powerful than LR′. Otherwise, LR′ is more

powerful than SR. Also, LR′ is more powerful than SR as π∗ is away from zero or one. Nevertheless,

these nuances disappear when SR is compared to LR′′. In every case, LR′′ is the most powerful test.

From this feature, we can say that the LR test has a respectable power property.

4 Conclusion

In this study, we investigate testing the mixture hypothesis of Poisson regression models by assuming pop-

ularly applied Poisson regression models. In particular, we employ the LR test for the goal of this study

to derive the limit distribution of the LR test under the null hypothesis that the Poisson regression model is

correctly specified.

In achieving the goal, we exploit the methodology developed by Cho and White (2007). The main result

is that the LR test weakly converges to a functional of the Hermite Gaussian process in case the regressor

does not exist. When nontrivial regressors exist, conservative asymptotic critical values are further provided.

For this, we combine the tail probability for an extremum with the simulation method. We further conduct

Monte Carlo simulations to examine the performance of the LR test. Specifically, we examine the empirical

size of the LR test by comparing it with the asymptotic critical values obtained using the simulation methods.
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We further compare the power property of the LR test with the specification test proposed by Lee (1986).

When the LR test is applied to the critical values accommodating the small sample size distortion, the LR

test shows a respectful power property.

5 Appendix: Assumptions

The following regularity conditions are adapted from Cho and White (2007) by accommodating the stylized

aspects of the popular Poisson regression model.

A1: (i) An observed data set {(Xt,Z
′
t)
′ ∈ N × Rp} (p ∈ N), is a set of IID random variables; and {Zt} is

time–invariant and does not contain a constant term.

(ii) The conditional Xt given Zt is identically and independently distributed, and for some element(s)

(π∗, λ1∗, λ2∗,β∗) ∈ [0, 1]× [λ, λ̄]× [λ, λ̄]×B, its conditional distribution is identical to

π∗f(λ1∗g(Zt;β∗);Xt) + (1− π∗)f(λ2∗g(Zt;β∗);Xt)

where for i = 1, 2,

f(λi∗g(Zt;β∗);Xt = k) =
exp{−λi∗g(Zt;β∗)}{λi∗g(Zt;β∗)}k

k!
,

and [λ, λ̄] × B is a compact and convex set in R+ × Rd (d ∈ N). Further, for each β ∈ B, g( · ;β) is a

positively valued measurable function.

A2: (i) A null model for the conditional distribution of Xt given Zt is specified as

{f(λg(Zt;β);Xt) : (λ,β) ∈ [λ, λ̄]×B}

such that f(λg(Zt; · )) is four–times continuously differentiable almost surely.

(ii) An alternative model for the conditional distribution of Xt given Zt is specified as

{πf(λ1g(Zt;β);Xt) + (1− π)f(λ2g(Zt;β);Xt) : (π, λ1, λ2,β) ∈ [0, 1]× [λ, λ̄]× [λ, λ̄]×B},

and for each (π, λ1, λ2,β), E[ℓt(π, λ1, λ2,β)] exists and is finite, where

ℓt(π, λ1, λ2,β) := log[πf(λ1g(Zt;β);Xt) + (1− π)f(λ2g(Zt;β);Xt)].
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A3: There exists a sequence of IID random variables {Mt} such that for some δ > 0,

1. E[M1+δ
t ] < ∆ < ∞;

2. sup(π,λ1,λ2,β) |∇j1ℓt(π, λ1, λ2,β)∇j2ℓt(π, λ1, λ2,β)| ≤ Mt;

3. sup(π,λ1,λ2,β) |∇j1,j2ℓt(π, λ1, λ2,β)| ≤ Mt;

4. sup(λ,β,γ) |∇i1f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|4 ≤ Mt;

5. sup(λ,β,γ) |∇i1∇i2f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|2 ≤ Mt;

6. sup(λ,β,γ) |∇i1∇i2∇i3f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|2 ≤ Mt;

7. sup(λ,β,γ) |∇i1∇i2∇i3∇i4f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)| ≤ Mt,

where j1, j2 ∈ {π, λ1,β1, · · · ,βd}, and i1, · · · , i4 ∈ {λ,β1, · · · ,βd}.

For each λ, λ′, denote the matrices

B(λ, λ′) :=

 E[rt(λ)rt(λ′)] E[rt(λ′)s′t]

E[rt(λ)st] E[sts′t]

 , C :=

 E[t2t ] E[tts′t]

E[ttst] E[sts′t]


and let λmin and λmax be the minimum and the maximum eigenvalues of a given matrix, where for each λ,

rt(λ) := 1− f(λg(Zt;β∗);Xt)/f(λ∗g(Zt;β∗);Xt),

st := ∇(λ,β)f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|(λ∗,β∗)
,

tt := ∇2
λf(λg(Zt;β∗);Xt)/f(λg(Zt;β∗);Xt)|λ=λ∗ ,

and λ∗ is an unique element in (λ, λ̄) given by the hypothesis.

A4: (i) For each (λ, λ′) ̸= (λ∗, λ∗), λmin{B(λ, λ′)} > 0 and λmax{B(λ, λ′)} < ∞.

(ii) λmax(C) < ∞ and λmin(C) > 0.
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Nominal Level \ Sample Size 50 100 200 ∞
1.00 % 6.7449 6.6231 6.5874 6.4012
2.50 % 5.0202 4.9191 4.9153 4.9440
5.00 % 3.7040 3.6930 3.6804 3.6750
7.50 % 2.9685 2.9558 2.9601 2.9744
10.0 % 2.4412 2.4567 2.4615 2.4581
12.5 % 2.0576 2.0704 2.1011 2.0788
15.0 % 1.7597 1.7614 1.7834 1.7588

Table 1: CRITICAL VALUES. Figures show the critical values obtained by simulating (7) independently.
Number of Replications: 50,000. DGP: Xt|Zt ∼ IID Pois(2 exp(Zt)) and Zt ∼ IID U(−1/2, 1/2). Model:
Xt|Zt ∼ πPois(λ1 exp(βZt)) + (1− π)Pois(λ2 exp(βZt)) and λ1, λ2 ∈ [1, 3].

Nominal Level \ Sample Size 100 300 500 700 1,000
1.00 0.47 0.76 0.83 0.85 0.85
5.00 2.79 3.67 3.69 4.05 4.05
10.0 6.09 7.67 8.30 8.84 8.84
15.0 9.77 11.88 12.83 13.73 13.73

Table 2: EMPIRICAL REJECTION RATES OF THE LR TEST UNDER THE NULL (IN PERCENT). Figures
show the empirical rejection rates under the null hypothesis, which are obtained by repeating indepen-
dent experiments. Number of Replications: 10,000. DGP: Xt|Zt ∼ IID Pois(2 exp(Zt)) and Zt ∼ IID
U(−1/2, 1/2). Model: Xt|Zt ∼ πPois(λ1 exp(βZt)) + (1− π)Pois(λ2 exp(βZt)) and λ1, λ2 ∈ [1, 3].
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λ1∗ 1.80 1.60 1.40 1.20
λ2∗ 2.20 2.40 2.60 2.80
LR′ 3.56 4.56 7.53 16.63

π∗ = 0.1 LR′′ 6.43 7.73 13.23 24.66
SR 4.40 4.70 7.16 11.11
LR′ 4.26 9.33 25.03 55.63

π∗ = 0.3 LR′′ 7.43 14.60 34.36 65.36
SR 4.83 8.63 19.73 40.70
LR′ 3.73 11.63 35.60 72.70

π∗ = 0.5 LR′′ 6.56 16.80 45.43 80.13
SR 5.43 9.93 27.40 61.11
LR′ 4.13 10.90 32.46 67.70

π∗ = 0.7 LR′′ 7.53 16.46 41.83 75.06
SR 5.46 8.03 27.43 61.36
LR′ 3.80 6.23 14.16 30.20

π∗ = 0.9 LR′′ 7.40 10.43 20.70 37.80
SR 4.86 7.00 12.70 26.93

Table 3: POWER OF THE TESTS (IN PERCENT, 5% NOMINAL LEVEL) Figures show the empirical re-
jection rates of LR′, LR′′, and SR under the alternative hypothesis, which are obtained by repeating
independent experiments. Number of Replications: 3,000. DGP: Zt ∼ IID U(−1/2, 1/2) and Xt|Zt ∼
IID π∗Pois(λ1∗ exp(Zt)) + (1 − π∗)Pois(λ2∗ exp(Zt)). Model: Xt|Zt ∼ πPois(λ1 exp(βZt)) + (1 −
π)Pois(λ2 exp(βZt)) and λ1, λ2 ∈ [1, 3].
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