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Abstract

This paper considers testing the mixture hypothesis of Poisson regression models using the likelihood
ratio (LR) test. The main motivation for the mixture hypothesis is the unobserved heterogeneity. The
null hypothesis of interest in this paper is that there is no unobserved heterogeneity in the data. Due to the
nonstandard conditions described in the text, the LR test does not weakly converge to the standard chi-
squared random variable under the null. We derive its limiting distribution by assuming popular Poisson
regression models in terms of a Gaussian process. Furthermore, we discuss how to obtain the asymptotic
critical values of the LR test consistently. Finally, we implement various Monte Carlo experiments and
compare its power with the specification test proposed by Lee (1986). The simulation shows that the LR
test is more powerful than the specification test when its small sample size distortion is adjusted.
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1 Introduction

Poisson regression models are popularly applied for count data. For example, Hausman, Hall, and Griliches

(1984) provide stylized econometric model specifications for count data using Poisson regression models.

Misspecified Poisson models have been investigated in the literature. For example, Lee (1986) provides

a specification test statistic for Poisson regression models. In the econometrics literature, Gourieroux, Mon-

fort, and Trognon (1984) examine misspecified Poisson regression models and relevant tests. These mis-

specified models are often believed to be due to the presence of unobserved heterogeneity. In the statistics

literature, we find similar works, and a specific distribution is typically assumed for unobserved hetero-

geneity. The most popular distribution assumption is a Bernoulli or Binomial distribution. This assumption

results in a finite mixture of Poisson regression models, overcoming model misspecification. For example,

Karlis and Xekalaki (1999, 2001) and Schlattmann (2003) consider estimating the number of components

in a finite mixture of Poisson regression models. They rely on a computationally intensive re-sampling

procedure.

Nevertheless, testing the mixture hypothesis of the Poisson regression models has not been successfully

resolved. As examined in the literature of mixture, testing the hypothesis using the standard likelihood ratio

(LR) statistic has identification and boundary parameter problems. Thus, without resolving these issues, the

asymptotic null distribution of the LR statistic cannot be determined effectively.

The main goal of this paper is, therefore, to demonstrate the use of the LR statistic designed to test for

the mixture hypothesis of the Poisson regression models. For this, we rely on the methodology of Cho and

White (2007). They provide a set of regularity conditions to test the mixture hypothesis for general mixture

models and demonstrate the application of this methodology to testing the mixture of normals. We apply

their methodology to the mixture of Poisson regression models by deriving the null limit distribution of the

LR test. Furthermore, we provide a simulation method to deliver the asymptotic critical values consistently.

In achieving this goal, we specifically assume the Poisson regression model specified by Hausman et al.

(1984), although their exponential assumption is relaxed.

In the literature, testing the mixture hypothesis has been examined by a number of authors. Hartigan

(1985) considers an example of a normal mixture to demonstrate that the null limit distribution of the LR

test is dependent upon the parameter space unidentified under the null. Ghosh and Sen (1985) derive the null

limit distribution of the LR test under the so–called strong identification assumption. Chernoff and Lander

(1995) develop Ghosh and Sen’s (1985) methodology to the case of mixture of binomial distributions. They

also introduce a simulation method to deliver the asymptotic critical values consistently. Dacunha-Castelle

and Gassiat (1999) examine general mixture models and apply their polar conic parametrization method to
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test the mixture hypothesis. Chen and Chen (2001) also examine the same problem using another method-

ology, affirming the results in Dacunha-Castelle and Gassiat (1999). In particular, Chen and Chen (2001)

examine the simplest mixture of Poisson distributions whose model scope is extended in this paper. Cho

and White (2007) note that many popular mixtures require much higher–order approximations than those

examined in the prior literature. Due to this, they extend the mixture scope up to the case where models are

differentiable eight–times continuously. Cho and White (2010) apply their methodology to the case of mix-

ture of exponential or Weibull distributions. Cho and White (2007, 2010) also provide simulation methods

delivering asymptotic critical values consistently in a similar manner to Chernoff and Lander (1995).

The plan of this paper is as follows. In Section 2, we consider a mixture of Poisson regression models

and derive the null limit distribution of the LR test. We further introduce a simulation method to deliver

the asymptotic critical values consistently. In Section 3, we conduct Monte Carlo simulations, and some

concluding remarks are given in Section 4. Finally, we collect the regularity conditions for the Poission

mixture model in the Appendix.

2 Mixture of Poisson Regression Models

Suppose that the Poisson regression mixture model is correctly specified. When a sequence of identically

and independently distributed (IID) random variables {(Xt,Zt) ∈ N × Rk} can be correctly provided as

follows:

m(π, λ1, λ2,β;Xt|Zt) = πf [g(Zt;λ1,β);Xt] + (1− π)f [g(Zt;λ2,β);Xt],

where for each λ and β,

f [g(Zt;λ,β);Xt = k] =
exp[−g(Zt;λ,β)]g(Zt;λ,β)k

k!
,

and Zt denotes a vector of covariates not including the constant. This is assumed for an identification

purpose.

The motivation of this specification is due to the presence of unobserved heterogeneity. The prior lit-

erature points out that estimating the key parameter β∗ is critically affected by unobserved heterogeneity

(see (see Hausman et al., 1984; Heckman and Singer, 1984; Gourieroux et al., 1984; van den Berg and Rid-

der, 1998; Wooldridge, 1999; Cho and White, 2010, and references therein). Specifically, we suppose that

there exists another variable independent of (Xt,Zt), sayWt, affecting the conditional distribution ofXt|Zt
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through λ, so that the general mixture model can be written as

f [g(Zt;λ,β);Xt = k] =

∫
exp[−g(Zt;λ(w),β)]g(Zt;λ(w),β)k

k!
h(w)dw,

where h(·) is the probability distribution function of Wt. The mixture model m(π, λ1, λ2,β;Xt|Zt) is

obtained by assuming that the heterogeneity variable Wt conforms to a Bernoulli distribution. We do not

specify the functional form of g(·). It does not have to be the exponential function that is popular in the

literature (see Hausman et al., 1984, for example). Without assuming a particular form of g(·), we proceed

with our discussions. The regularity conditions for this are provided in the Appendix.

Given this, we can exploit the LR test principle to test for the mixture hypothesis. For this, we suppose

that (π∗, λ1∗, λ2∗,β∗) maximizes E[log{m( · ;Xt|Zt)}], and we test the following hypotheses: for some

unknown and unique λ∗ ∈ [λ, λ̄],

H0 : π∗ = 1, λ1∗ = λ∗, ; π∗ = 0, λ2∗ = λ∗; or λ1∗ = λ2∗ = λ∗ versus

H1 : π∗ ∈ (0, 1) and λ1∗ 6= λ2∗.

Here, λ and λ̄ are lower and upper bounds of λ greater than zero, respectively. Note that the null model

implies that the Poisson regression model is correctly specified for the distribution of Xt on Zt.

The null hypothesis is different from the standard null in the literature. It is a joint hypothesis, describing

the Poisson regression model, and two non-standard problems are implied. First, there is an identification

problem. If π∗ = 1 (resp. π∗ = 0), then λ2∗ (resp. λ1∗) is not identified. Likewise, if λ1∗ = λ2∗, then π∗ is

not identified. These are so-called Davies’ (1977; 1987) identification problem. Second, if π∗ = 1 or 0, then

π∗ is on the boundary of parameter space, so that the interiority problem violates for the LR test to behave

regularly under the null hypothesis.

In the prior literature, the null limit distribution of the LR test is obtained by overcoming the nonstan-

dard problems. These nonstandard aspects are examined by numerous authors. For example, Ghosh and

Sen (1985) examine the null limit distribution of the LR test under the strong identification assumption,

and Chernoff and Lander (1995) apply Ghosh and Sen’s (1985) methodology to the case of binomial mix-

tures. Dacunha-Castelle and Gassiat (1999) examine general mixture models and apply their polar conic

parametrization method to test the mixture hypothesis. Chen and Chen (2001) also examine the same prob-

lem, including the simple Poisson mixture. In particular, Cho and White (2007) assume a general mixture

model and derive the null limit distribution of the LR test generically. Following the methodology of Cho

and White (2007), the null limit distributions of the LR tests are further investigated for specific mixture
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models. Cho and Han (2009) and Cho, Park, and Park (2018) focus on the geometric mixture, and Cho and

White (2010) focus the exponential and Weibull mixtures. Furthermore, Cho (2025) focuses on the normal

mixtures. All the null limit distributions of the LR test are different as it depends on the model properties.

By applying the general framework in Cho and White (2007) to the current Poisson mixture model, we

here provide the null limit distribution of the LR test. Under the regularity conditions in the Appendix, the

LR test has the following null weak limit:

LRn ⇒ sup
λ∈[λ, λ̄]

min2[0,Y(λ)],

where

LRn := 2n

{
max

π,λ1,λ2,β

n∑
t=1

log(m(π, λ1, λ2,β;Xt|Zt))−max
λ,β

n∑
t=1

log(f(g(Zt;λ,β);Xt))

}
,

and Y is a Gaussian process such that for each λ, λ′,

E[Y(λ)Y(λ′)] =
r(λ, λ′)√

r(λ, λ)
√
r(λ′, λ′)

, (1)

such that

r(λ, λ′) :=E[exp{g(Zt;β∗)(
√
λ∗ − λ/

√
λ∗)(

√
λ∗ − λ′/

√
λ∗)}]

− 1− E[g(Zt;β∗)(
√
λ∗ − λ/

√
λ∗)(

√
λ∗ − λ′/

√
λ∗)].

The covariance kernel r(·, ·) implies that the null limit distribution is affected by the distribution of

g(Zt;β∗). We consider two different cases. First, if g(·; ·) ≡ 1, (1) reduces to the simplest mixture case

of Poisson distributions without covariates. Chen and Chen (2001) examine the null limit distribution of

the LR test using another approach and obtain the same covariance kernel. Second, if the distribution of

g(Zt;β∗) is nontrivial, the covariance kernel can have different functional forms for different distributions.

For such a case, it is useful to exploit a computationally intensive testing procedure for the LR test such as

the parametric bootstrap (see Amengual, Bei, Carrasco, and Sentana, 2025, for example).

One of the notable things with this null limit distribution is in the fact that it depends on the size of

parameter space [λ, λ̄] as pointed out by Hartigan (1985). Certainly, if a bigger parameter space is assumed,

bigger critical values are obtained. Prior literature ignoring this aspect reports simulation results whose

critical values do not appear to converge. When obtaining bootstrap–based critical values, different speci-

fications for the parameter space are expected to produce different testing results (see Karlis and Xekalaki,
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1999, 2001; Schlattmann, 2003, for example).

We now consider methodologies to obtain the asymptotic critical values consistently or their approxi-

mations. First, we suppose that g(·; ·) ≡ 1. For this case, the asymptotic critical values of the LR test can be

efficiently obtained by following the approximation method in Cho (2006). That is, we can provide an an-

alytical Gaussian process having the same covariance structure as (1), so that we can obtain the asymptotic

critical values by simulation. For each λ ∈ [λ, λ̄], let

G(λ;λ∗) :=
1√

ρ(λ, λ)

∞∑
j=2

1√
j!

(√
λ∗ −

λ√
λ∗

)j
Wj , (2)

where Wj ∼ IID N(0, 1). Then it is not hard to verify that E[Y(λ)Y(λ′)] = E[G(λ;λ∗)G(λ′;λ∗)]. Thus,

we can simulate

sup
λ∈[λ, λ̄]

min2[0,G(λ;λ∗)]

many times to obtain the asymptotic critical values. The empirical distribution obtained in this way can

consistently deliver the asymptotic null distribution of the LR test. While implementing this procedure, we

note that one of the ingredients of G is λ∗, which is unknown. This unknown parameter can be estimated

consistently. For example, we can estimate it using the null model. The Monte Carlo experiments given

below verify that the parameter estimation error can be neglected if the sample size is moderately large.

Second, we again suppose that g(·; ·) ≡ 1. There is another analytical Gaussian process whose covari-

ance kernel is identical to (1). For this provision, for each ξ, we let

X(ξ) :=
1√
s(ξ, ξ)

∞∑
j=2

ξj√
j!
Wj , (3)

where for each ξ, ξ′, s(ξ, ξ′) := exp(ξξ′)− 1− ξξ′. Note that (3) is obtained by letting ξ :=
√
λ∗−λ/

√
λ∗.

Thus, we can alternatively simulate

sup
ξ∈[ξ, ξ̄]

min2[0,X(ξ)] (4)

to obtain the asymptotic critical values, where ξ and ξ̄ are
√
λ∗−λ̄/

√
λ∗ and

√
λ∗−λ/

√
λ∗, respectively. We

also note that X(·) is the Hermite Gaussian process introduced by Cho and White (2007) and Cho (2025),

which is the Gaussian process obtained while testing for the mixture normal. Although there is no direct

relationship between the Poisson mixture and the normal mixture, the same Gaussian process is obtained to

characterize the null limit distribution of the LR test. For other mixtures, the null limit distribution of the LR

test is characterized by different Gaussian processes whose covariance kernels are different from X(·). Cho

and Han (2009), Cho and White (2010), and Cho (2025) provide analytical Gaussian processes different
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from (3) to obtain the null limit distribution of the LR test by simulation.

Third, we consider the null limit distribution of the LR test when g(Zt;β∗) has a nontrivial distribution.

We first define a conditional Gaussian process given covariate Zt = z as

X̃(δ|Zt = z) :=
1√

s(δ(z), δ(z)′)

∞∑
j=2

δ(z)j√
j!
Wj

for each δ(z), where for each λ, δ(z) := g(z;β∗)
1/2(
√
λ∗ − λ/

√
λ∗). This is a Gaussian process forming

the null limit distribution when the covariate Zt is fixed at z. That is, it follows that for given Zt = z,

LRn(z)⇒ sup
λ∈[λ, λ̄]

min2[0, X̃(δ|z)].

Note that if g(·; ·) ≡ 1, X̃(·|Zt = z) ≡ X(·). We further note that this weak limit can be rewritten as

a function of X(·) by transforming the domain of λ. That is, if we let ν(z) := ξg(z;β)1/2 and ν̄(z) :=

ξ̄g(z;β)1/2, respectively, it trivially follows that

sup
λ∈[λ, λ̄]

min2[0, X̃(δ|z)] = sup
ν∈[ν(z), ν̄(z)]

min2[0,X(ν)] (5)

The random feature of X̃(·) driven by Zt is now transferred to the random parameter space [ν(z), ν̄(z)] on

the right-hand side (RHS) of (5).

Next, we apply Piterbarg (1996) to handle the random parameter space and approximate the tail distri-

bution of (5). By theorem 7.1 of Piterbarg (1996), it follows that as u tends to infinity, the unconditional tail

probability for an extremum is given as

P

(
sup

ν∈[ν(z), ν̄(z)]
min2[0,X(ν)] > u2

)
= HαE[λ([ν(z), ν̄(z)])]u2/α(1− Φ(u))(1 + o(1)), (6)

where Hα is the asymptotic double-sum coefficient defined in (Piterbarg, 1996, p. 16); λ( · ) stands for

Lebesgue measure; and Φ( · ) is the standard normal cumulative distribution function (CDF). Therefore, if

we let the RHS of (6) be the level of significance, its corresponding u2 becomes the asymptotic critical

value. Here, we note that (6) is effective for a substantially large u2. In case u2 is not large enough or the

level of significance is not sufficiently small, the equality in (6) does not hold. For such a case, the critical

value obtained from the equality in (6) becomes conservative. Due to this, we should treat the critical value

obtained from (6) as a conservative approximation.

The RHS of (6) can also be approximated by using the Hermitian Gaussian process. The random pa-
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rameter space for ν on the left-hand side (LHS) of (6) can be replaced by [L∗, U∗] := [ξω∗, ξ̄ω∗], where

ω∗ := E[g(Zt;β∗)
1/2]. Thus, simulating

sup
ν∈[L∗, U∗]

min2[0,X(ν)] (7)

can deliver the tail asymptotic null distribution consistently. In case [L∗, U∗] is unknown, we can consistently

estimate it using the null model as before. That is, we can replace ξ, ξ̄, and ω∗ by their estimates:

ξ̂
n

:= (λ̂0
n)1/2 − λ̄/(λ̂0

n)1/2, ̂̄ξn := (λ̂0
n)1/2 − λ/(λ̂0

n)1/2, and ω̂0
n := n−1

∑
g(Zt; β̂

0

n)1/2, (8)

respectively, where (λ̂0
n, β̂

0

n) is the maximum-likelihood estimator (MLE) obtained from the null model

assumption. The tail asymptotic null distribution can be consistently delivered by simulating the following

many times:

sup
ν∈[L̂n, Ûn]

min2[0,X(ν)], (9)

where [L̂n, Ûn] := [ξ̂
n
ω̂0
n,
̂̄ξnω̂0

n].

3 Monte Carlo Experiments

We suppose that {(Xt, Zt) ∈ N×R} is generated according to Xt|Zt ∼ IID Pois(2 exp(Zt)) and Zt ∼ IID

U(−1, 1) for simulations under the null. Therefore, g(Zt;λ∗,β∗) = λ∗ exp(β∗Zt) in terms of the notation

in Section 2, and (λ∗, β∗) = (2, 1). A mixture model for this is specified as follows:

πPois(λ1 exp(βZt)) + (1− π)Pois(λ2 exp(βZt)),

where π ∈ [0, 1], λ1, λ2 ∈ [1, 3], and there is no restriction on β. Here, the space for λ1 and λ2 are selected

in a manner the mixture model of doubt is correctly specified under both null and alternative hypotheses. As

λ∗ exp(β∗Zt) has a nontrivial distribution, we test for the Poisson mixture by applying the asymptotically

approximated critical values in (6).

First, we examine the asymptotic critical values. Table 1 shows the critical values obtained under various

assumptions on the sample size. These critical values are obtained by simulating (9) 50,000 times and

contained in Table 1. Simulating (9) is not affected by the estimation error, and their differences decrease as

the sample size increases. The last column shows the asymptotic critical values by supposing that (λ∗, β∗) =

(2, 1) is known, so that we obtain the critical values by simulating (9) with [L∗, U∗] = [ξω∗, ξ̄ω∗], where
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ω∗ := E[
√

2 exp(1
2Zt)], ξ :=

√
λ∗−λ̄/

√
λ∗, and ξ̄ :=

√
λ∗−λ/

√
λ∗. If the sample size is finite, we replace

(λ∗, β∗) with (λ̂0
n, β̂

0
n), viz., the MLE obtained from the null model, so that the lower and upper bounds for

ν can be estimated as given in (8) to simulate (9).

Second, we examine the empirical rejection rates of the LR test under the null. We contain the simulation

results in Table 2. As shown in Table 2, the small sample size distortion exists and the distortion does not

disappear although the sample size is substantially large. Furthermore, the difference between the nominal

level and the empirical rejection rate increases as the nominal level increases. This feature shows that

the critical values obtained by simulating (6) are conservative approximates. When the critical values are

approximated by the tail probability for an extremum, this distortion is expected. Despite the small sample

size distortion, we also note that the distortion size can be controlled by reducing the level of significance.

In addition to the null simulation, we examine the power properties of the LR test. For the power

comparison, we employ another test. Lee (1986) considers the following specification test:

SR =
1√
2n

n∑
t=1

{Xt(Xt − 1)− λ̂0
n exp(β̂0

nZt)}
λ̂0
n exp(β̂0

nZt)
,

which weakly converges to the standard normal random variable under the null. We compare the power of

the LR test with that of SR when the sample size is 100, and the number of repetition is 3,000. If the critical

values obtained by the limiting and empirical distributions, we denote them as LR′ and LR′′, respectively.

Specifically, the empirical rejection rates indexed by LR′ are obtained by comparing the LR tests with the

critical value in Table 1, viz., 3.6930. Meanwhile the rejection rates indexed by LR′′ are computed by

comparing the LR tests with the critical value from its empirical distribution. Note that 10,000 LR test values

are already available under the null while filling in Table 2. Top 5% value of them is used as the critical

value for the LR test to examine its power properties when it does not suffer from size distortion under the

null. Specific data generating processes for {Xt|Zt} is π∗Pois(λ1∗ exp(Zt)) + (1 − π∗)Pois(λ2∗ exp(Zt))

and Zt ∼ IID U(−1, 1). The values of π∗ and (λ1∗, λ2∗) are given in Table 3, such that λ1∗ and λ2∗ ∈ [1, 3].

By this, the mixture model is correctly specified under the alternative hypothesis. When LR′ is compared

with SR, the results are nuanced. When π∗ approaches zero, SR is more powerful than LR′. Otherwise,

LR′ is more powerful than SR. Also, LR′ is more powerful than SR as π∗ is away from zero or one.

This aspect is expected because LR′ does not accommodate the small sample size distortion. Nevertheless,

these nuances disappear when SR is compared to LR′′. In every case, LR′′ is more powerful than SR.

From this feature, we can say that the specification test has a relatively low power in testing for the mixture

hypothesis and the LR test has a respectful power properties.

Before moving to the next section, we provide additional remark on the power of the LR test. In case the
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space for λ1∗ and λ2∗ is selected too small, so that λ1∗ and/or λ2∗ /∈ [1, 3], then the power of the LR test can

be smaller than that under the current environment. If the space is too small, then the model is misspecified,

so that the MLE for (λ1∗, λ2∗) does not converge to the unknown parameter under the alternative, and this

decreases the power of the LR test. This aspect implies that the mixture model has to be carefully specified

so that it is correctly specified under both null and alternative hypotheses.

4 Conclusion

In this paper, we consider testing the mixture hypothesis of Poisson regression models by focusing on the

popularly applied Poisson regression models. In particular, we employ the LR test for the goal of this paper

by deriving its limit distribution under the null that the conditional distribution is the Poisson regression

model.

In achieving the goal of this study, we exploit the methodology developed by Cho and White (2007).

The main result is that the LR test weakly converges to a functional of the Hermitian Gaussian process in

case the regressor does not exist. When the regressor does exist, the asymptotic critical values are further

obtained by providing a simulation method delivered by the tail probability for an extremum.

In addition, we conduct Monte Carlo simulations to examine the performances of the LR test. Specif-

ically, we examine the empirical size of the LR test by comparing it with the asymptotic critical values

obtained using the simulation methods. Furthermore, we compare the power properties of the LR test with

the specification test developed by Lee (1986). When the LR test is applied to the critical values accommo-

dating small sample size distortion, it is very useful for the inference of Poisson mixtures.

Despite its appealing features of the LR test, it has the following drawbacks. First, the Poisson mixture

model has to be specified by letting the space of λ∗ be sufficiently large without knowing the level of

unobserved heterogeneity. If the space is selected too small, so that the mixture model is misspecified under

the alternative, the power of the LR test can be lost. Second, when the asymptotic critical values are obtained

by the tail probability for an extremum, the level of significance has to be sufficiently small. Otherwise, the

asymptotic critical values are conservative, making it hard to control the type-I error. We leave tackling

these limitations as future research topics.

A Assumptions

The following regularity conditions are adapted from Cho and White (2007) by accommodating the stylized

aspects of popular Poisson regression models.
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A1: (i) An observed data set {(Xt,Z
′
t)
′ ∈ N × Rk} (k ∈ N), is a set of strictly stationary and geometric

β–mixing random variables; and {Zi} is time–invariant and does not contain a constant term.

(ii) The conditional Xt given Zt is identically and independently distributed, and for some element(s)

(π∗, λ1∗, λ2∗,β∗) ∈ [0, 1]× [λ, λ̄]× [λ, λ̄]×B, its conditional distribution is identical to

π∗f(λ1∗g(Zt;β∗);Xt) + (1− π∗)f(λ2∗g(Zt;β∗);Xt)

where for i = 1, 2,

f(λi∗g(Zt;β∗);Xt = k) =
exp{−λi∗g(Zt;β∗)}{λi∗g(Zt;β∗)}k

k!
,

and [λ, λ̄] × B is a compact and convex set in R+ × Rd (d ∈ N). Further, for each β ∈ B, g( · ;β) is a

positively valued measurable function.

A2: (i) A null model for the conditional distribution of Xt given Zt is specified as

{f(λg(Zt;β);Xt) : (λ,β) ∈ [λ, λ̄]×B}

such that f(λg(Zt; · )) is four–times continuously differentiable almost surely.

(ii) An alternative model for the conditional distribution of Xt given Zt is specified as

{πf(λ1g(Zt;β);Xt) + (1− π)f(λ2g(Zt;β);Xt) : (π, λ1, λ2,β) ∈ [0, 1]× [λ, λ̄]× [λ, λ̄]×B},

and for each (π, λ1, λ2,β), E[`t(π, λ1, λ2,β)] exists and is finite, where

`t(π, λ1, λ2,β) := log[πf(λ1g(Zt;β);Xt) + (1− π)f(λ2g(Zt;β);Xt)].

A3: There exists a sequence of positive, strictly stationary, and ergodic random variables, {Mt}, such that

for some δ > 0,

1. E[M1+δ
t ] < ∆ <∞;

2. sup(π,λ1,λ2,β) |∇j1`t(π, λ1, λ2,β)∇j2`t(π, λ1, λ2,β)| ≤Mt;

3. sup(π,λ1,λ2,β) |∇j1,j2`t(π, λ1, λ2,β)| ≤Mt;

4. sup(λ,β,γ) |∇i1f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|4 ≤Mt;
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5. sup(λ,β,γ) |∇i1∇i2f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|2 ≤Mt;

6. sup(λ,β,γ) |∇i1∇i2∇i3f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|2 ≤Mt;

7. sup(λ,β,γ) |∇i1∇i2∇i3∇i4f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)| ≤Mt,

where j1, j2 ∈ {π, λ1,β1, · · · ,βd}, and i1, · · · , i4 ∈ {λ,β1, · · · ,βd}.

For each λ, λ′, denote the matrices

B(λ, λ′) :=

 E[rt(λ)rt(λ
′)] E[rt(λ

′)s′t]

E[rt(λ)st] E[sts
′
t]

 , C :=

 E[t2t ] E[tts
′
t]

E[ttst] E[sts
′
t]


and let λmin and λmax be the minimum and the maximum eigenvalues of a given matrix, where for each λ,

rt(λ) := 1− f(λg(Zt;β∗);Xt)/f(λ∗g(Zt;β∗);Xt),

st := ∇(λ,β)f(λg(Zt;β);Xt)/f(λg(Zt;β);Xt)|(λ∗,β∗),

tt := ∇2
λf(λg(Zt;β∗);Xt)/f(λg(Zt;β∗);Xt)|λ=λ∗ ,

and λ∗ is an unique element in (λ, λ̄) given by the hypothesis.

A4: (i) For each (λ, λ′) 6= (λ∗, λ∗), λmin{B(λ, λ′)} > 0 and λmax{B(λ, λ′)} <∞.

(ii) λmax(C) <∞ and λmin(C) > 0.
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Nominal Level \ Sample Size 50 100 200 ∞
1.00 % 6.7449 6.6231 6.5874 6.4012

(0.4524) (0.4878) (0.3764) (0.3374)
5.00 % 3.7040 3.6930 3.6804 3.6750

(0.0784) (0.0841) (0.0866) (0.0806)
10.0 % 2.4412 2.4567 2.4615 2.4581

(0.0391) (0.0400) (0.0366) (0.0397)
15.0 % 1.7597 1.7614 1.7834 1.7588

(0.0248) (0.0237) (0.0260) (0.0256)

Table 1: CRITICAL VALUES OF THE LR TEST. Figures show the critical values obtained by repeating
(7) or (9) independently, and figures in parentheses denote the standard errors. Number of Replications:
50,000. Data Generating Process: Xt|Zt ∼ IID Pois(2 exp(Zt)) and Zt ∼ IID U(−1, 1). Model: Xt|Zt ∼
πPois(λ1 exp(βZt)) + (1− π)Pois(λ2 exp(βZt)) and λ1, λ2 ∈ [1, 3].

Nominal Level \ Sample Size 100 300 500 700 1,000
1.00 0.47 0.76 0.83 0.85 0.85
5.00 2.79 3.67 3.69 4.05 4.05
10.0 6.09 7.67 8.30 8.84 8.84
15.0 9.77 11.88 12.83 13.73 13.73

Table 2: EMPIRICAL REJECTION RATES OF THE LR TEST UNDER THE NULL (IN PERCENT). Figures
show the empirical rejection rates under the null hypothesis, which are obtained by repeating independent
experiments. Number of Replications: 10,000. Data Generating Process: Xt|Zt ∼ IID Pois(2 exp(Zt)) and
Zt ∼ IID U(−1, 1). Model: Xt|Zt ∼ πPois(λ1 exp(βZt)) + (1−π)Pois(λ2 exp(βZt)) and λ1, λ2 ∈ [1, 3].
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λ1∗ 1.80 1.60 1.40 1.20
λ2∗ 2.20 2.40 2.60 2.80
LR′ 3.56 4.56 7.53 16.63

π∗ = 0.1 LR′′ 6.43 7.73 13.23 24.66
SR 4.40 4.70 7.16 11.11
LR′ 4.26 9.33 25.03 55.63

π∗ = 0.3 LR′′ 7.43 14.60 34.36 65.36
SR 4.83 8.63 19.73 40.70
LR′ 3.73 11.63 35.60 72.70

π∗ = 0.5 LR′′ 6.56 16.80 45.43 80.13
SR 5.43 9.93 27.40 61.11
LR′ 4.13 10.90 32.46 67.70

π∗ = 0.7 LR′′ 7.53 16.46 41.83 75.06
SR 5.46 8.03 27.43 61.36
LR′ 3.80 6.23 14.16 30.20

π∗ = 0.9 LR′′ 7.40 10.43 20.70 37.80
SR 4.86 7.00 12.70 26.93

Table 3: POWER OF THE TESTS (IN PERCENT, 5% NOMINAL LEVEL). Figures show the empirical rejection
rates of LR′, LR′′, andSR under the alternative hypothesis, which are obtained by repeating independent
experiments. Number of Replications: 3,000. Data Generating Process: Zt ∼ IID U(−1, 1) and Xt|Zt ∼
IID π∗Pois(λ1∗ exp(Zt)) + (1 − π∗)Pois(λ2∗ exp(Zt)). Model: Xt|Zt ∼ πPois(λ1 exp(βZt)) + (1 −
π)Pois(λ2 exp(βZt)) and λ1, λ2 ∈ [1, 3].
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