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Abstract

The current study provides a Gaussian version used to test for the normal mixture with a
single mean and two distinct variances. We derive the Gaussian versions for the model
by associating its score function with the generalized Laguerre polynomial. The Gaussian
version is analytical, so that it can be simulated to obtain the asymptotic critical values of
the likelihood-ratio test.
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1. Introduction

Mixture models are popular for empirical analysis, and testing for the mixture hypoth-
esis is crucial for many purposes. For instance, the regime-switching model assumes an
autocorrelated mixture model as a model for business cycle.

Nevertheless, testing for the mixture hypothesis is nonstandard. When testing for the
mixture hypothesis naturally, a nuisance parameter is introduced that does not exist under
the null of a single distribution (e.g., Davies, 1977, 1987). The null limit distribution of a
standard test, such as the likelihood-ratio (LR) test, diverges from a chi-squared distribu-
tion due to the presence of the nuisance parameter (e.g., Cho and White, 2007, 2010). The
null limit distribution of the test is characterized by a Gaussian process whose covariance
kernel is model dependent, leading to different null limit distributions for different models.

The primary objective of this study is to provide a version of the Gaussian process that
can be simulated straightforwardly. We investigate a normal mixture with a shared mean
and two distinct variances.

We achieve the goal by representing the Gaussian process as a series of functions with
independent Gaussian random coefficients. When a Gaussian process is represented in
this format, it is easy to simulate and can be used to obtain the asymptotic critical values



of LR test. For the desired representation, we demonstrate that the score function can be
expressed as a sequence of orthogonal generalized Laguerre polynomials.

The existing research has provided Gaussian versions for assessing the mixture hy-
pothesis. Cho and White (2007) have consider the mixture with distinct means and vari-
ance and provide a Gaussian version for the Gaussian process determining the null limit
distribution of the LR test. Cho and White (2010) investigate the LR test for testing the
exponential or Weibull mixture hypothesis and provide Gaussian versions of the Gaussian
processes characterizing the null limit distributions of the LR tests. To our knowledge, no
prior literature exists on a Gaussian version for testing the normal mixture with a shared
mean and two distinct variances. As a related study, the EM test is proposed as an alter-
native test by Chen and Li (2009) to handle unbounded LR test. We impose a bounded
parameter space so that the LR test is bounded under the hypothesis.

This study is structured as follows. In Section 2, we describe the mixture models and
derive the version of the Gaussian process analytically. Section 3 provides simulation evi-
dence, and we conclude in Section 4. Mathematical proofs are collected in the Appendix.

2. The Gaussian Version

We suppose that Yt follows the normal mixture:

Yt ∼ IID
{

N (µ∗, σ
2
1∗), w.p. π∗;

N (µ∗, σ
2
2∗), w.p. 1− π∗,

where σ2
1∗ and σ2

2∗ ∈ [L,U ], and we suppose L and U are sufficiently small and large,
respectively so that the mixture is included in the model. This compact space condition is
imposed for a bounded null limit distribution of the LR test (see Hartigan, 1985; Chen and
Li, 2009). The hypothesis is that Yt ∼ IID N (µ∗, σ

2
∗). That is, the null hypothesis can be

constructed as follows:

H0 : π∗ = 1 and σ2
1∗ = σ2

∗; π∗ = 0 and σ2
2∗ = σ2

∗; or σ2
1∗ = σ2

2∗ = σ2
∗.

The joint hypothesis involves an identification problem. If π∗ = 1, then σ2
2∗ is not identi-

fied. Similarly, if π∗ = 0, then σ2
1∗ is not identified. Conversely, if σ2

1∗ = σ2
2∗ = σ2

∗ , then
π∗ is not identified.

We can apply the LR test principle to test the hypothesis. If we let the LR test be

LRn := 2

{
argmax
π,µ,σ2

1 ,σ
2
2

Ln(π, µ, µ, σ
2
1, σ

2
2)− argmax

µ,σ2

Ln(1, µ, µ2, σ
2, σ2

2)

}
,

2



where Ln(π, µ1, µ2, σ
2
1, σ

2
2) :=

∑n
t=1 ℓt(π, µ1, µ2, σ

2
1, σ

2
2) and

ℓt(π, µ1, µ2, σ
2
1, σ

2
2) := log

[
π√
2πσ2

1

exp

[
−(Yt − µ1)

2

2σ2
1

]
+

1− π√
2πσ2

2

exp

[
−(Yt − µ2)

2

2σ2
2

]]
,

then we can obtain the following null limit distribution by applying Cho and White (2007):

LRn ⇒ sup
γ∈Γ

2
max[0,U(γ)],

where γ := 1−σ2/σ2
∗ , Γ := [1−U/σ2

∗, 1−L/σ2
∗] is the space of γ, and U(·) is a Gaussian

process with the following covariance kernel: for each γ1 and γ2 ∈ Γ,

E[U(γ1)] = 0, E[U(γ1)U(γ2)] =
W (γ1, γ2)√

W (γ1, γ1)
√

W (γ2, γ2)
,

and
W (γ1, γ2) :=

1√
1− γ1γ2

− 1− 1

2
γ1γ2.

Due to the identification problem, the null limit distribution of the LR test is now repre-
sented as a functional of the Gaussian process U(·), and it is obtained from the null limit
of the score function obtained while testing π∗ = 1 and σ2

1∗ = σ2
∗; or π∗ = 0 and σ2

2∗ = σ2
∗ .

We next obtain a version of U(·) analytically. If we let Dn(·) be the score function
obtained while testing π∗ = 1, the next theorem provides its null weak limit:

Theorem 1. Given the assumptions, as a function of γ,

Dn(γ) =
∞∑
j=2

(γ)j

[
− 1√

n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)]
⇒ Ṽ(γ) :=

∞∑
j=2

(γ)j

√
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

Zj,

under the hypothesis, where L
(α)
j (·) is the j-th degree generalized Laguerre polynomial

(e.g., Hochstrasser, 1964, p.775, 22.3.9), and Zj ∼ IID N(0, 1).

Remarks. (a) The score function under the null is obtained as

Dn(γ) :=
1√
n

∂

∂π
Ln(1, µ̂n0, µ̂n0, σ̂

2
0n, σ̂

2
0n)

=
1√
n

n∑
t=1

{
1 +

γ

2
(1− Ŷ 2

t )−
1√
1− γ

exp

[
−
(

γ

1− γ

)
Ŷ 2
t

2

]}
,
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where Ŷt := (Yt − µ̂0n)/
√

σ̂2
0n.

(b) If we let Ũ(γ) := Ṽ(γ)/
√
W (γ, γ), Theorem 1 implies that LRn ⇒ supγ∈Γmin2[0, Ũ(γ)]

under the null, so that

E[Ũ(γ1)Ũ(γ2)] =
∞∑
j=2

(γ1γ2)
j Γ(j + 1/2)

Γ(1
2
)Γ(j + 1)

=
1√

1− γ1γ2
−1− 1

2
γ1γ2 = W (γ1, γ2)

by noting that
∞∑
j=0

(γ1γ2)
j Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

=
1√

1− γ1γ2
(1)

as shown in the Appendix. This also implies that both U(·) and Ũ(·) have the same
covariance kernel, so that the asymptotic critical values of the LR test can be ob-
tained by simulating supγ∈Γmin2[0, Ũ(γ)].

(c) The standard normal random variables Z2, Z3, . . . are obtained by applying central
limit theorem (CLT) to the generalized Laguerre polynomials. That is, for each j,

− 1√
n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)
⇒

√
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

Zj

by noting that for each j,∫ ∞

0

{
L
(−1/2)
j (x)

}2 1√
π
exp(−x)x−1/2dx =

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

.

Here, π−1/2 exp(−(·))(·)−1/2 denotes the asymptotic probability density function of
Ŷ 2
t /2. The independence between Zj and Zj′ (j ̸= j′) follows from the orthogonal-

ity of the generalized Laguerre polynomials. That is, for j ̸= j′,∫ ∞

0

L
(−1/2)
j (x)L

(−1/2)
j′ (x)

1√
π
exp(−x)x−1/2dx = 0.

(d) The current approach can be used to test for a mixture of conditional normals as
well. When testing for a mixture of conditional normals with two distinct scale
parameters, U(·) emerges as the resultant Gaussian process.

4



3. Simulation Evidence

Using the Gaussian version Ũ(·), we conduct simulations to affirm Theorem 1.
For the simulation, we generate Yt ∼ IIDN (0, 1) and test the hypothesis that Yt follows

a normal distribution. We let σ2
1∗, σ

2
2∗ ∈ [1/2, 3/2] but do not restrict the parameter space

for µ∗. Given that σ2
∗ = 1 under the null, this specification implies that Γ = [−1/2, 1/2].

We first determine the asymptotic critical values of the LR test. We repeat 100,000 in-
dependent experiments to obtain the empirical distribution of supγ∈Γmin2[0, Ũ(γ)]. Here,
we have approximated Ũ(·) by

Ũk(·) :=
1√

W (·, ·)

k∑
j=2

(·)j
√

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

Zj

with k = 500. We report the critical values of the LR test in Table 1.
Table 2 reports the empirical rejection rates of the LR test under the null. We let Yt ∼

IIDN (0, 1) and test the normal distribution hypothesis. The total number of iterations is
10,000. As the sample size increases, the empirical rejection rates of the LR test converge
to the nominal significance levels. This implies that the Gaussian version Ũ(·) consistently
delivers the null limit distribution of the LR test.

For the power simulation, we let

Yt ∼ IID
{

N (0, 0.6), w.p. 1/2;
N (0, 1.4), w.p. 1/2,

so that the alternative hypothesis is valid. Table 3 reports the power simulation results.
The empirical rejection rates of the LR test converge to 100% as the sample size increases.
This fact implies that the LR test has a consistent power.

The simulation results imply that the LR test is useful when testing for the mixture of
normals driven by two different variances.

4. Conclusion

The current study analytically derives a version of the Gaussian processes associated
with testing for the normal mixture with two different variances and a single mean. We
obtain the Gaussian version by relating the score function to the series of the general-
ized Laguerre polynomials. Due to its analytical form, it can be simulated to obtain the
asymptotic critical values of the LR test. The null limit distribution is model dependent.
Therefore, if the normal mixture with more than two components is tested, the null limit
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distribution of the LR test differs from that given in the current study. We leave this as a
future research topic.

5. Appendix

Before proving Theorem 1, we first prove (1). We note that

∞∑
j=0

sj
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

=
1

Γ(1
2
)

∞∑
j=1

sj−1Γ(j −
1
2
)

Γ(j)
=

Γ(1
2
)

Γ(1
2
)

∞∑
j=1

sj−1 Γ(j − 2
2
)

(j − 1)!(−1
2
)!

=
∞∑
j=1

sj−1

(
j − 3

2

j − 1

)
=

∞∑
j=0

sj
(
j − 1

2

j

)
=

∞∑
j=0

(−s)j
(
−1

2

j

)
=

1√
1− s

.

This establishes (1).

We now prove the main theorem.

Proof of Theorem 1: Using the formula of the generalized Laguerre polynomial generat-
ing function, we note that

1√
1− γ

exp

[
−
(

γ

1− γ

)
Ŷ 2
t

2

]
=

∞∑
j=0

γjL
(−1/2)
j

(
Ŷ 2
t

2

)
,

where L
(−1/2)
0

(
Ŷ 2
t

2

)
= 1 and L

(−1/2)
1

(
Ŷ 2
t

2

)
= 1

2
− Ŷ 2

t

2
by noting that L(−1/2)

0 (x) = 1,

L
(−1/2)
1 (x) = 1

2
− x, and so on (e.g., Hochstrasser, 1964, p. 779, 22.5.38), implying that∑1

j=0 γ
jL

(−1/2)
j

(
Ŷ 2
t

2

)
= 1 + γ

2
(1− Ŷ 2

t ), so that

Dn(γ) :=
1√
n

n∑
t=1

{
1 +

γ

2
(1− Ŷ 2

t )−
1√
1− γ

exp

[
−
(

γ

1− γ

)
Ŷ 2
t

2

]}

= −
∞∑
j=2

γj

√
n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)
.

We here note that if n is sufficiently large, Ŷt
A∼ IID N (0, 1), so that Ŷ 2

t
A∼ IID X 2

1 ,
and the asymptotic probability density function of Xt := Ŷ 2

t /2 can be given as follows:
f(x) := x−1/2

√
π

exp(−x). We further note that for each j,
∫∞
0

L
(−1/2)
j (x)f(x) = 0 and∫∞

0
{L(−1/2)

j (x)}2f(x) = Γ(j + 1
2
)/{Γ(1

2
)Γ(j + 1)} that is uniformly bounded by 1

2
with
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respect to j (e.g., Hochstrasser, 1964, p.775, 22.2.12). Therefore, we can apply CLT for
each j, so that for each j,

− 1√
n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)
⇒

√
Γ(j + 1

2
)

Γ(1
2
)Γ(j + 1)

Zj.

Furthermore, we note that for any j ̸= j′,
∫∞
0

L
(−1/2)
j (x)L

(−1/2)
j′ (x)f(x)dx = 0 by the

orthogonality of the generalized Laguerre polynomials (e.g., Hochstrasser, 1964, pp. 773-
775, 22.1.1 and 22.2.12), implying that E[ZjZj′ ] = 0, meaning that Zj and Zj′ are inde-
pendent. Therefore,

Dn(·) =
∞∑
j=2

(·)j
[
− 1√

n

n∑
t=1

L
(−1/2)
j

(
Ŷ 2
t

2

)]
⇒

∞∑
j=2

(·)j
√

Γ(j + 1
2
)

Γ(1
2
)Γ(j + 1)

Zj.

This completes the proof. ■
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Test \ Level 1.00% 2.50% 5.00% 7.50% 10.00%
LRn 6.64 4.94 3.69 2.97 2.47

Table 1: ASYMPTOTIC CRITICAL VALUES OF THE LR TEST. Figures show the asymptotic critical values of
the LR obtained by simulating Ũk(·). The critical values are obtained by repeating independent experiments
100,000 times.

Test Level \ n 1,000 5,000 10,000 20,000
1.00% 0.59 0.56 0.84 1.01
2.50% 1.69 1.75 2.20 2.44

LRn 5.00% 3.28 3.80 4.40 4.74
7.50% 5.28 5.94 6.51 6.85
10.0% 7.25 8.02 8.72 9.14

Table 2: EMPIRICAL REJECTION RATES OF THE LR TEST UNDER THE NULL (IN PERCENT). Figures
show the empirical rejection rates of the LR test. DGP: Yt ∼ IIDN (0, 1). The parameter space of σ2

∗ is
[1/2, 3/2]. The total number of replications is 10,000.

Test Level \ n 200 500 800 1,000 1,500
1.00% 4.50 17.90 45.65 54.85 76.65
2.50% 9.80 30.00 59.85 68.40 85.35

LRn 5.00% 17.00 40.00 71.45 78.65 91.25
7.50% 22.80 47.20 78.00 84.30 93.85
10.0% 28.40 52.55 81.70 87.40 95.35

Table 3: EMPIRICAL REJECTION RATES UNDER THE ALTERNATIVE (IN PERCENT). Figures show the
empirical rejection rates of the LR test. DGP: Yt ∼ IIDN (0, 0.6) with probability 1/2; and N (0, 1.4) with
probability 1/2. The parameter space of σ2

∗ is [1/2, 3/2]. The total number of replications is 2,000.
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