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Moreover, using the quantile ARDL (QARDL) model, we find a significant relationship particularly in the 
extreme quantiles, regardless of the level or the log level series. Under the long-run coefficients, the positive 
(negative) relationship characterizes the nexus of the reserves-pressure and the CDS-pressure (oil-pressure) 
on the SAR. As for the short-run coefficients, we find that an increase in the lag SAR pressures contributes to 
the current pressure across all quantiles, whereas an increase in the reserves reduces the pressure in the 
extreme quantiles. These results have important implications for policy makers.  
Keywords: Exchange Rate Pressure; CDS Bid-Ask Spreads; Reserve Assets; Oil Prices; Quantile ARDL Model. 
JEL classification: G14 

 

 

* Corresponding author: Department of Economics and Finance, College of Economics and Political Science, Sultan Qaboos 
University, Muscat, Oman. E-mail:  walidmensi1@gmail.com. Cho acknowledges with gratitude the research grant provided 
by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-
2019S1A5A2A01035568).  

mailto:shawkat.hammoudeh@gmail.com
mailto:walidmensi1@gmail.com
mailto:%20jinseocho@yonsei.ac.k
mailto:walidmensi1@gmail.com


2  

1. Introduction 

The study by Girton and Roper (1977) is the first to develop the concept of exchange market pressure 
(EMP). This concept assesses the total pressure on a currency rate, which has been resisted through 
foreign exchange intervention or relieved through exchange rate changes by the monetary authority 
(Patnaik et al., 2017). Oil is a strategic commodity for the large oil-exporter and is priced in the U.S. 
dollar, and thus can affect the domestic exchange rate of such an exporter. Oil prices had steadily 
declined since summer 2014 and persisted until Febraury 2016. The decline had accelerated in that year 
as a result of Saudi Arabia’s decision to open the oil spigot to chock off shale oil producers in the United 
States. Those prices finally collapsed to $26/barrel in February 2016 as a result of the shale producers’ 
flexibility to reduce production costs and increase efficiency. They also received a double blow in March 
2020 when the GOVID-19 pandemic hit the world and due to the conflict between Saudi Arabia and 
Russia on market shares. 

As a result, Saudi Arabia and other GCC countries have been suffering from decreasing oil revenues, 
increasing fiscal budget deficits and dwindling foreign exchange reserves due to these countries’ 
inability to increase oil prices or pursue a fiscal policy austerity or an oil-fiscal anticyclical policy which 
is politically unpopular. Dwindling foreign reserves in the oil-exporting countries, including the GCC 
countries, have also caught the attention of speculators which have exerted upward pressures on the 
spreads of the credit default swaps (CDS) of Saudi Arabia and the other GCC countries. The pressure 
on CDSs has in turn wielded further downward pressures on those countries’ exchange rates which are 
usually stable because of their pegs with an anchor aided by usually strong foreign reserves. However, 
the Kingdom has surprisingly kept its peg with the dollar at $3.75 since 1986. 

Saudi Arabia had $742 billion of foreign reserves in summer 2014. However, those reserves dwindled 
to $493.7 billion (about a 33.46% reduction) in April 2019, standing at 62% of GDP, which translates on 
average to more than a $5 billion drop per month. If the current situation continues, Saudi Arabia will 
deplete its foreign reserves, currently standing at 14 months of imports, in a short period of time, given 
the continuing relatively low oil prices, the procurement of expensive weapons and the war in Yemen. 
If such an outcome materializes in an environment of persistently low oil prices, Saudi Arabia will be 
forced to relinquish its dollar-riyal peg or replace it by a basket of currencies, and its CDS spread will 
go through the roof. This will also have incredible political and economic consequences for the 
Kingdom, and its neighbors as the contagious credit risk spreads. 

However, the recent Saudi Arabia's “Vision 2030” including the National Transformation Plan has 
renewed the debate on the pressure of the Saudi dollar-riyal exchange rate. The objective of this study 
is to set the stage for an un-precedent research that examines the pressure on the Saudi dollar-riyal 
exchange rate due to changes in the explanatory factors that include the Saudi foreign exchange 
reserves, foreign reserves months of imports, Saudi credit default swap (CDS) spreads and oil prices 
among other factors, with a concertation on extreme tail dependence which carries much more risk 
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than the other quantiles. Since the riyal is pegged to the dollar, the pressure on the riyal will be 
represented by dividing the exchange rate over the fiscal budget as a percentage of GDP, as explained 
below, which is a novel concept and has never been tested before. The interdependence between these 
variables is also studied in the current paper. The CDS contracts are important derivatives for investors, 
regulators and dealers as they process risk in the financial sector and the whole economy. CDS’s are 
used by different economic agents as a financial instrument to transmit risk exposures among 
themselves to avoid the potential default risk of sovereign and corporate bonds (Mensi et al., 2019).   

To this end, we use the Quantile Autoregressive Distributed Lag model (QARDL) developed by Cho 
et al. (2015). This model is an extension of the standard or linear ARDL, which materializes by 
combining the ARDL model of Pesaran and Shin (1999) that relies on relations in the short- and long 
run, with the quantile regression methodology of Koenker and Bassett (1978) that captures the 
relationships across the quantiles (or different states or conditions of the markets). The QARDL model 
framework has at least three advantages over the standard approaches that rely on the estimation of 
the cointegration relationship in Engle and Granger (1987) or the quantile cointegration relationship in 
Xiao (2009). First, the QARDL model estimation enables one to examine the long-run and short-run 
relationships between the variables 𝑌𝑌𝑡𝑡  and 𝑿𝑿𝑡𝑡  specific to the quantile level and also their 
interrelationships across multiple quantile levels. Second, the simulations in Cho et al. (2015) show that 
the QARDL estimation and inference deliver better results than those obtained by estimating the 
quantile cointegration relationship directly. Third, despite these advantages, researchers can still 
interpret the estimated parameters in the framework of the error correction model in Engle and Granger 
(1987) by allowing for the presence of both I(1) and I(0) variables. This aspect is substantially different 
from the quantile regression in Koenker and Bassett (1978) and its extensions which assume that the 
economic variables of interest are I(1) variables.  

These advantages fit our proposal which examines the pressure on the Saudi dollar-real exchange rate 
in the tail distributions due to experiencing strong declining oil prices, growing fiscal budget deficits, 
dwindling foreign reserves which have been the pillars that have supported the stability of this 
exchange rate, and rising own CDS spreads. The QARDL model thus allows one to simultaneously 
examine the long-run relationship along with their related short-run movements over a range of 
quantiles. This model provides full information not only on the mean level but also on the entire 
conditional distributions; the short- and long-term relationships between the macro variables.  This 
methodology, which to our knowledge is novel and has not been applied to emerging markets, can also 
be implemented to other GCC countries that are also facing the same exchange rate pressure situation 
which Saudi Arabia has been facing. 

The results show from the DOLS estimation, the long-run coefficient of the foreign reserve (rsrv), turn 
out not to be significant, whereas the coefficients of the CDS (cds) and the oil price (oilp) are both 
significant, thereby indicating that the exchange rate pressure (pres), cds and oilp are cointegrated. In 
addition, the exchange rate pressure pres is negatively associated with cds and oilp as desired. Moreover, 
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we show that the long-run coefficient of the oil price crash increases the pressure on the exchange rate. 
The long run CDS’s and the oil prices decreases contribute to the pressure on the exchange rate.  

Using the quantile ARDL (QARDL) model for the level (without log) series, we observe that the 
adjustment coefficient shows that the cointegration is a stable system. The results also indicate that the 
long-run relationship detected by the error correction model estimation is driven by the quantile 
cointegration relationships at extremely low and high quantile levels. More precisely, the long-run 
coefficients for the foreign reserves and CDS variables are positively related to the SAR pressure in the 
extreme lowest and highest quantile levels (if τ is 0.020 or 0.980). In contrast, the long-run coefficient of 
the oil prices affects negatively the SAR pressure under extreme quantiles. On the other hand, the short 
coefficient for the one-lag (third-lags) SAR pressure affects positively (negatively) the current exchange 
pressure. The short-run coefficient of the lagged foreign reserve variables influences negatively the SAR 
pressure in the extreme quantiles, indicating that a decrease in those reserves increases the SAR exchange 
pressure. The results using the logarithm of the level series are closely similar to those of the level series 
as a long-run cointegration between the current pressure and both the CDS and oil prices under the 
extreme quantiles. The short-run coefficients are statistically significant for the foreign reserves and the 
oil price.  

The literature on the spillovers between the exchange market pressure and macro variables including 
oil prices comes back to mind following the recent oil crisis. Chen and Kuo (201) examine both the 
exchange rate variability and pressures of the Asian currency unit. They find that that exchange rate 
variability has a significant relationship with the estimated ratio of M2 to foreign reserves, banking 
sector fragility, and foreign reserves growth rate. The ratio of the balance on current account to the 
gross domestic product and the industrial production index growth rate have been proven to exhibit a 
significant relationship. The authors also show that that the stabilization of banks, international trade, 
and money supplies are the main factors to prevent financial crises. Keefe (2021) examines the impacts 
of shocks in the global monetary and credit conditions of developed economies on the exchange market 
pressure index (EMPI) in emerging and developing economies, using a panel vector autoregression. 
The author finds that the more open the economies are in trade and finance, the less susceptible they 
are to shocks to the global monetary liquidity and global credit conditions. The results reveal a 
significant transmission of these shocks to the exchange market conditions in emerging markets and 
developing economies in the post 2008 GFC period. Ozcelebi (2020) examines the relationships between 
financial stress index (FSI) of developed economies and the EMPI of emerging markets (Brazil, China, 
Mexico, Russia, and South Africa), using a nonlinear vector autoregression (VAR) model and a 
quantile-based approach. The author shows that the ups/downs in the FSI of developed countries will 
augment/decrease the EMPI during high-EMP periods. This brief review of the literature shows that 
there has been no work conducted on the pressure for the Saudi riyal exchange rate. We also estimate 
the model using the quantile ARDL regression and included the credit default swap as a pressure 
variable which empirically has pressured the riyal forward exchange rate. 
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The remainder of the paper is organized as follows. Section 2 presents the methodology. Section 3 
presents the data and a preliminary analysis, while Section 4 discusses the findings. Section 5 concludes 
with some implications.   

2. Empirical QARDL Analysis of the Pressures on the SA Exchange Rate 

The QARDL model has been developed by combining the ARDL framework with the quantile 
regression. Recently, the linearity assumption supposed by the ARDL framework has been questioned 
by many studies, and thus new studies have been conducted to instead find a nonlinear approch 
theoretically and empirically. For example, Cho et al. (2020) provide an econometric methodology to 
consistently estimate and infer the nonlinear ARDL (NARDL) model introduced by Shin et al. (2014), 
which presumes a nonlinear relationship between integrated series depending on the sign condition of 
right-hand side variables. A number of empirical studies estimate the nonlinear economic relationships 
between integrated series, using the NARDL framework as has been recently reviewed by Cho et al. 
(2021). See also the references therein.  

Note that the main motivation of the NARDL model is in capturing the asymmetric relationship 
between different conditions of the right-hand side variables that cannot be discovered by supposing a 
linear relationship among the economic variables of interest. Nevertheless, the asymmetric relationship 
constrained by the sign condition may not fully accommodate the asymmetric relationship between the 
integrated series using the nonlinear ARDL model. Instead, the QARDL model is capable of capturing 
this relationship. Although, this quantile model does not allow for a nonlinear ARDL relationship, it is 
able of estimating different coefficients at different quantile levels, thereby capturing the asymmetric 
relationship between the integrated series at different quantile levels. This is not properly revealed if 
the sign condition presumed by the NARDL model was imposed on the model estimation. Furthermore, 
the asymmetric relationship displayed by the QARDL model estimation, per se, could be more 
informative for economic policy makers than that illustrated by the NARDL model estimation. Note 
that the QARDL model estimation can indicate an optimal policy for the current economic state that 
could be different from other states of economy. Furthermore, the economic and financial variables 
used in our model such as the exchange rate pressure, oil prices and foreign reserves should display 
different reactions in extreme market conditions which the QARDL can appropriately take care of. 

In this section, we empirically examine the long-run relationship between the pressures on the SA 
exchange rate and other macro-variables in Saudi Arabia, using the quantile regression approach. The 
model we desire to explore is the QARDL model a s  d e v e l o p e d  i n  Cho, Kim, and Shin (2015) 
which extends the ARDL relationship between nonstationary variables. Specifically, if we suppose 
that the matrix (𝑌𝑌𝑡𝑡 ,𝑿𝑿𝑡𝑡′ )′ is an I(1) process, the quantile version of the ARDL relationship is given as 
follows: for each quantile level τ ∈ (0, 1), we have the quantile ARDL model given1 

                                                            
1 This equation is provided by following the original definition of the ARDL model in Pesaran and Shin (1999). 
The literature notes that the ARDL model can also be transformed into the error-correction model that is now 
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𝑌𝑌𝑡𝑡 = 𝛼𝛼∗(𝜏𝜏) + ∑ 𝜙𝜙𝑗𝑗∗(𝜏𝜏)𝑌𝑌𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + ∑ 𝜽𝜽𝑗𝑗∗(𝜏𝜏)′𝑿𝑿𝑡𝑡−𝑗𝑗

𝑞𝑞
𝑗𝑗=0 + 𝑈𝑈𝑡𝑡(𝜏𝜏),                                                              (1) 

 
which can be rewritten as the derived quantile ARDL  

𝑌𝑌𝑡𝑡 = 𝛼𝛼∗(𝜏𝜏) + 𝜸𝜸∗(𝜏𝜏)′𝑿𝑿𝑡𝑡 +  ∑ 𝜙𝜙𝑗𝑗∗(𝜏𝜏)𝑌𝑌𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + ∑ 𝜹𝜹𝑗𝑗∗(𝜏𝜏)′Δ𝑋𝑋𝑡𝑡−𝑗𝑗

𝑞𝑞−1
𝑗𝑗=0 + 𝑈𝑈𝑡𝑡(𝜏𝜏),                                     (1’)  

 
where 𝜹𝜹𝑗𝑗∗(𝜏𝜏) ≔ −∑ 𝜽𝜽𝑖𝑖∗(𝜏𝜏)𝑞𝑞

𝑖𝑖=𝑗𝑗+1  and 𝛄𝛄∗(𝜏𝜏) ≔ ∑ 𝜽𝜽𝑗𝑗∗(𝜏𝜏)𝑞𝑞
𝑗𝑗=0 .  The quantile error-correction form 

defined in Eq. (1’) is also used to derive Eq. (2) below similarly to the derivation of the conditional 
mean case as the quantile error-correction model: 

𝛥𝛥𝑌𝑌𝑡𝑡 = 𝛼𝛼∗(𝜏𝜏) + 𝜁𝜁∗(𝜏𝜏)(𝑌𝑌𝑡𝑡−1 − 𝜷𝜷∗(𝜏𝜏)′𝑿𝑿𝑡𝑡−1) + ∑ 𝜙𝜙𝑗𝑗∗(𝜏𝜏)Δ𝑌𝑌𝑡𝑡−𝑗𝑗
𝑝𝑝−1
𝑗𝑗=1 + ∑ 𝜽𝜽𝑗𝑗∗(𝜏𝜏)′Δ𝑿𝑿𝑡𝑡−𝑗𝑗

𝑞𝑞−1
𝑗𝑗=0 + 𝑈𝑈𝑡𝑡(𝜏𝜏),      (2) 

where 𝜁𝜁∗(𝜏𝜏) is the quantile error correction term and the long run parameter is 

𝜷𝜷∗(𝜏𝜏) ≔ 𝜸𝜸∗(𝜏𝜏)�1 − ∑ 𝜙𝜙𝑖𝑖∗(𝜏𝜏)𝑝𝑝
𝑖𝑖=1 �−1,    

 
which may be called the long-run quantile coefficient. The short-run parameters in Eq. (2) are associated 
with the parameters in Eq. (1) in the following manner: 

 ζ∗(𝜏𝜏) ≔ ∑ 𝜙𝜙𝑖𝑖∗(𝜏𝜏) − 1,𝑝𝑝
𝑖𝑖=1     𝜽𝜽0∗(𝜏𝜏) ≔  𝜽𝜽0∗(𝜏𝜏),  

and for i=1,  2 ,  …,  p-1,   

𝜙𝜙𝑗𝑗∗(𝜏𝜏) ≔  −∑ 𝜙𝜙ℎ∗(𝜏𝜏)𝑝𝑝
ℎ=𝑗𝑗+1 ,            and           𝜽𝜽𝑗𝑗∗(𝜏𝜏) ≔ −∑ 𝜽𝜽𝑗𝑗∗(𝜏𝜏).𝑝𝑝

ℎ=𝑗𝑗+1    

As indicated above, the long-run quantile relationship between Yt and Xt is captured by β∗(τ ). The 
other parameters in Eq. (2) characterize the short-run interrelationship between Yt and Xt. Cho, Kim, 
and Shin (2015) provide a consistent estimator for the parameters in Eq. (1) and define a long-run 
parameter estimator using the estimator and show that it is consistent at the speed of the sample size 
(i.e., super-consistent) 2  and is further normally distributed, so that an inference on the long-run 
parameter can be conducted using the conventional Wald (1943) test’s principle. 

For the purpose of this section, we construct our data set to contain the main features of the pressure on 
the SA exchange rate and other macro-variables. We first define the pressure on the exchange rate (pres) 
by the following formula: 

(Saudi riyal dollar exchange rate) ∕ (1 + Budget Surplus or Deficit / GDP) 

This formula shows that an increase in the budget surplus relative to GDP relieves the depreciation 

                                                            
often referred to the ARDL model. 
 
2 The estimator converges to the unknown parameter much faster than in the standard case. The convergence 
rate here is n, whereas the standard case supposes the convergence rate is equal to the square root of n. 
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pressure on the Saudi riyal exchange rate and vice versa. 

Using the two data sets of the level and log level series, we separately estimate the parameters in Eq. 
(2) for each set so that a better approximate long-run relationship can be identified by our model 
analysis. We specifically follow the two-step estimation plan that applies the estimation of the long-run 
parameter in Cho, Kim and Shin (2015). For each quantile level τ ∈ (0, 1), we first estimate the long-run 
parameter β∗(τ ) by estimating the parameters in Eq. (1) as in Cho, Kim and Shin (2015) and then 
estimate the short-run parameters in Eq. (2). Here, the lag orders p and q are estimated by the SIC 
procedure as in Pesaran and Shin (1998). For the second-step estimation, we specifically let the residual 
𝑢𝑢�𝑡𝑡(𝜏𝜏) ≔ 𝑌𝑌𝑡𝑡 −  𝜷𝜷�𝑛𝑛(𝜏𝜏)′𝑿𝑿𝑡𝑡 ,  where 𝜷𝜷�𝑛𝑛(𝜏𝜏) denotes the long-run parameter estimator obtained from the first 
step, and we next estimate the short-run parameters by the quantile regression by regressing 𝛥𝛥𝑌𝑌𝑡𝑡 
against (1,𝑢𝑢�𝑡𝑡−1(𝜏𝜏),Δ𝑌𝑌𝑡𝑡−1, … ,Δ𝑌𝑌𝑡𝑡−𝑝𝑝+1,Δ𝑿𝑿𝑡𝑡−1′ , … ,Δ𝑿𝑿𝑡𝑡−𝑞𝑞+1′ )′. As 𝜷𝜷�𝑛𝑛(𝜏𝜏) is super-consistent, we can treat it 
as a known parameter in estimating the short-run parameters, and the large sample distribution of 
𝜷𝜷�𝑛𝑛(𝜏𝜏) does not affect the limit distribution of the short-run parameters. In particular, when obtaining 
the p-values of the t-test statistics, we assume the sandwich-form asymptotic covariance matrix for the 
robust standard errors. In the case when the assumed covariance matrix is not properly estimated, we 
bootstrap the residuals to obtain the standard error of the estimate. When estimating the asymptotic 
covariance matrix, we also use the Hall and Sheather (1988) bandwidth so that we can consistently 
estimate the density function associated with the standard error by the Epanechnikov (1969) kernel 
function. 

The quantile levels are selected by our empirical data analysis. Since the Saudi exchange rate has been 
pegged to the U.S. since 1986, we tried many quantile levels for the QARDL analysis of our data and 
then let the quantile τ belong to T := {0.020, 0.125, 0.250 0.375, 0.500, 0.625, 0.750, 0.875, 0.980}. As it will 
be clear soon, all the quantile levels in (0.00, 1.00) are not relevant to the QARDL process.  When τ is 
located around the mean quantile 0.500, the estimated parameters turn out to be insignificant.  On 
the contrary, as the quantile level τ approaches the extreme quantiles 0.00 or 1.00, it becomes obvious 
that the estimated parameters are significant. We therefore added 0.020 and 0.980 to the quantile levels 
as the extreme end points of T, which shows the extreme sensitivity of the Saudi exchange rate pressure 
to shocks and outliers. 

When applying the two-step estimation, we also estimate several variations of the model. First, we 
estimate the error-correction model as in Engle and Granger (1987) to compare the model’s estimations. 
For this purpose, we first estimate the long-run parameters by the dynamic OLS (DOLS) estimation as 
developed by Stock and Watson (1993) and next estimate the short-run parameters by the least 
squares method. The DOLS estimator is also super-consistent as is the case for the least squares estimator, 
but the associated t-test statistics are asymptotically normal under the null hypothesis. Due to its 
straightforward application, we rely on the DOLS estimation for the long-run parameters using the 
same lag orders as above. Next, we extend the QARDL analysis by adding exogenous variables to 
the right side of the equation. Specifically, all I(1) variables under consideration are not cointegrated 
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as it turns out. Instead of removing the non-cointegrated variables from the system of the model in Eq. 
(3), we treat them as exogenous variables. That is, we extend the models in Eq. (1) into the following: 

𝑌𝑌𝑡𝑡 = 𝛼𝛼∗(𝜏𝜏) + 𝜸𝜸∗(𝜏𝜏)′𝑿𝑿𝑡𝑡 + ∑ 𝜙𝜙𝑗𝑗∗(𝜏𝜏)𝑌𝑌𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + ∑ 𝜹𝜹𝑗𝑗∗(𝜏𝜏)′Δ𝑿𝑿𝑡𝑡−𝑗𝑗

𝑞𝑞−1
𝑗𝑗=0 + ∑ 𝝀𝝀𝑗𝑗∗(𝜏𝜏)′𝑞𝑞−1

𝑗𝑗=0 Δ𝑾𝑾𝑡𝑡−𝑗𝑗 + 𝑈𝑈𝑡𝑡(𝜏𝜏),  

                                                                                                           (3) 

and   

     𝛥𝛥𝑌𝑌𝑡𝑡 = 𝛼𝛼∗(𝜏𝜏) + 𝜁𝜁∗(𝜏𝜏)(𝑌𝑌𝑡𝑡−1 − 𝜷𝜷∗(𝜏𝜏)′𝑿𝑿𝑡𝑡−1) + ∑ 𝜙𝜙𝑗𝑗∗(𝜏𝜏)Δ𝑌𝑌𝑡𝑡−𝑗𝑗
𝑝𝑝−1
𝑗𝑗=1 +  ∑ 𝜽𝜽𝑗𝑗∗(𝜏𝜏)′Δ𝑿𝑿𝑡𝑡−𝑗𝑗

𝑞𝑞−1
𝑗𝑗=1 +

                           ∑ 𝝀𝝀𝑗𝑗∗(𝜏𝜏)′Δ𝑾𝑾𝑡𝑡−𝑗𝑗
𝑞𝑞−1
𝑗𝑗=0 +  𝑈𝑈𝑡𝑡(𝜏𝜏),                                                                                                  (4) 

respectively, to estimate the unknown parameters by the two-step estimation procedure, where X and W 
are redefined as the cointegrated and non-cointegrated variables, respectively, where in our case ΔWt-1   

=∆rsrvt-1. The other parameters and Y are the same as before. For example, if rsrv  is non-cointegrated 
with the other variables, we let Xt and Wt be (prest, cdst, oilpt) and rsrvt, respectively, so that we can 
estimate the influence of rsvs on the quantile error-correction system constructed by pres, cds, and oilp. 

The estimation procedure is parallel to the estimation of the parameters in Eqs. (1) and (2). We first 
estimate the long-run parameter β∗(τ) by extending the estimation method in Cho, Kim and Shin 
(2015), and next estimate the short-run parameters in Eq. (4) by the quantile regression. For reference 
purposes, we also call the models in Eqs. (1) and (2) a s  the benchmark models, and the models in Eqs. 
(3) and (4) as the extensive-form models. 

3. Data and Descriptive Statistics 

This study uses monthly data for The SAR pressure (pres). Note that Saudi Arabia has a fixed exchange 
rate regimes pegged to the  U.S. Dollar. The exchange rate has  been  3.75 SAR/USD since June 1986. 
Here, the monthly frequency data are unavailable for the budget deficit or surplus and GDP in Saudi 
Arabia, although annual observations are available. We therefore converted the yearly budget surplus 
or deficit and GDP observations to monthly observations using the cubic spline method. Specifically, 
it assigns each value in the annual series to the January and December observations and places all 
intermediate points by a cubic polynomial. We next let the other variables be the oil price (oilp) 
measured by the Arabian light crude oil Asia spot price, the Saudi Arabia total reserve assets (rsrv) which 
are measured in 10,000 Saudi riyals, and the credit default swap (CDS) bid-ask spread of Saudi Arabia 
(cds). All these variables are monthly observable. The data are extracted from Bloomberg. 
 
Table 1 provides the unit root testing results for these variables. We first applied the augmented Dickey 
a nd Fuller (1979, ADF) test statistic to all available observations of pres, rsrv, cds, and oilp. When applying 
the ADF test statistic, the autoregressive lag of each variable was selected by the Schwarz (1978) 
information criterion (SIC). As each variable has a  different sample size, we first applied the ADF 
test to the whole samples. For example, rsrv has available observations from Jan. of 2001 to Dec. of 
2018, and as a result, we could not find evidence that rsrv is a stationary process. Likewise, for the other 
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variables pres, cds, and oilp, we obtain the inference results that they all exhibit nonstationary processes. 
In addition to this inference, we apply the ADF test to the log of the variables, i.e., log(pres), log(rsrv), 
log(cds), and log(oilp), and infer from this application that the logs have also nonstationary processes. 
Next, we restrict the sample period to the shortest sample period displayed by cds, which has the 
shortest sample period among the variables under consideration. As a result, we could obtain the same 
conclusion as before. That is, there is no evidence for the variables that exhibit stationary processes. 
Thus, irrespective of whether they are level or log observations, they are all nonstationary processes. 
 
The inference results in Table 1 enable us to specify the variables to fit them to the model framework. 
We construct two data sets to estimate the unknown parameters using the level and log observations 
separately. For constructing the first data set, we let pres be the target variable Y to comply with the goal 
of this study and let X be the other variables, viz., rsrv, cds, and oilp. We next construct the second 
data set by taking the log to the variables. That is, we let Y and X be log(pres) and (log(rsrv), log(cds), 
log(oilp)), respectively.  These two data sets start from August of 2008 and ends at December of 2018.  
 
Before discussing the parameter estimation, we first examine the descriptive statistics. Table 2 provides 
the estimated descriptive statistics using the full sample observations and those restricted to the 
sample period from August of 2008 to December of 2018. As we see from the comparisons, there is no 
big change in the estimates for ∆pres, ∆rsvs, and ∆cds. Their sample means, medians, and standard 
deviations are more or less similar irrespective of whether the full or restricted observations are 
examined. This aspect implies that there is no sizable structural change for the variables. On the 
contrary, the standard deviation of ∆oilp has substantially increased from 4.7519 to 7.0353, which 
implies that ∆oilp has become more volatile since 2008. We suppose that ∆oilp has been stationary since 
August of 2008 from the fact the ADF test does not detect nonstationarity for ∆oilp and then estimate 
the long-run and short-run parameters. 

[Insert Tables 1 & 2 here] 

4. Results and Discussions 

4.1 Model Estimation Using the Level Observations 

In this subsection, we discuss estimating the long-run and short-run parameters in the quantile models 
defined by Eqs. (1), (2), (3), and (4), using the level observations.  
 
4.1.1 Benchmark model estimation 
 
We first estimate the benchmark quantile error-correction model and contain the estimated 
parameters in the second column of Table 3 along their p-values. If the p-values are less than 5%, we 
mark them by the boldface font. As shown in this table, we report the long-run parameter estimation in 
Panel (a).3 From the DOLS estimation, the long-run coefficient of rsrv turns out not to be significant, 
whereas the coefficients of cds and oilp are significant. This fact implies that pres, cds and oilp are 
cointegrated, but rsrv is not, so that it can be more appropriate to treat rsrv as an exogenous variable. 
                                                            
3 By the SIC procedure, we estimated p and q to be equal to 4 and 2 lags, respectively. 
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As can be seen from the estimates, pres is negatively associated with cds and oilp. In the long term, we 
show that an oil price plunge increases the pressure on the exchange rate. Further, an inverse long-run 
relationship exists between the CDS and the pressure on the exchange rate, indicating that a higher 
CDS implies a stronger depreciation on the Saudi riyal.  
 
Second, Panel (b) provides the estimated short-run parameters, along with their p-values. Note that 
the speed of adjustment (i.e., quantile error-correction term) parameter (i.e., or the coefficient of the 
lagged cointegration error) is negatively valued and significant, implying that the current cointegration 
is a stable system. We further note that the coefficients of the lagged pres are statistically significant 
up to the third lag, and that of ∆rsrvt−1 is also statistically significant, although rsrv is not cointegrated 
with pres, cds and oilp. This aspect implies that it can be more appropriate to treat rsrv as an exogenous 
variable for the error-correction model. 
 
We next estimate the quantile error-correction model in Eq. (2) and report the estimated parameters in 
the same table. From the third column of Table 3 to the last, we report the long-run and short-run 
parameter estimates for each quantile level τ ∈ T. The results show that, first, for most τ ∈ T, particularly 
for τ in the middle of 0 and 1, the long-run coefficients are not significant, whereas the long-run 
coefficients are significant for the extremely small or large quantile levels. That is, if τ is 0.020 or 
0.980, the long-run coefficients are significantly different from zero. For the other quantile levels, the 
long-run coefficients are not statistically significant. From this, we can infer that the long-run 
relationship detected by the error-correction model estimation is driven by the quantile cointegration 
relationships at the extremely low and high quantile levels. Second, although rsrv is not cointegrated with 
other variables by the error-correction model estimation, it turns out that rsrv is cointegrated with the 
others for τ = 0.020, but they are not cointegrated for the other τ ’s. This fact implies that the cointegration 
relationship among the variables is not the same for all τ ’s, and it can be different even from that of the 
error-correction model. For quantile τ = 0.20, rsrv should be treated as an endogenous variable, but for 
the other tau’s, it can be treated as exogenous. Third, the signs of the estimated coefficients are not 
necessarily equal to each other across the quantile levels. For example, the long-run coefficient of oilp 
is positively valued for τ = 0.02, whereas the same coefficient is negatively valued for τ = 0.98, 
underscoring that the pressure’s sensitivity to oil prices depends on market conditions. On the contrary, 
the signs of the long-run coefficient for cds are the  same for both τ = 0.02 and 0.98. This aspect 
implies that the long-run relationship between pres and oilp needs to be understood differently for the 
low and high τ ’s. Fourth, we now examine the short-run parameter estimation. Note that the 
adjustment parameter of each quantile model is negatively valued and significant across all quantile 
levels, demonstrating that the quantile cointegration displays a stable system for each quantile level. 
Furthermore, for τ = 0.020, in which rsrv can be treated as a cointegrated variable, the coefficient of 
∆rsrvt−1 is not significant anym o r e , which is a different aspect from that of the error-correction model. 
In summary, from this estimation, we mainly obtain the following result: the long-run relationship 
among pres, rsrv, cds, and oilp is driven by the extremely low or high quantile levels, and the long-run 
relationship between pres and oilp are different across different quantile levels. 

[Insert Tables 3 & 4 here] 

4.1.2 Extensive-form model estimation 
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We next extend the model scope by letting ∆rsrvt be exogenous and estimate the extensive-form models, 
viz., Eqs. (3) and (4). As for the analysis in Table 3, we first estimate the error- correction and quantile 
error-correction models across the different quantile levels, and next contain the long-run and short-
run parameter estimators, along with their p-values in Panels (a) and (b) of Table 4, respectively. 
 
The error-correction model estimation results are reported in the second column of Table 4 and can be 
summarized as follows. First, we estimated l a g  o r d e r s  p and q to be 3 and 2 lags, respectively, a s  
s e l e c t e d  by the SIC procedure, and the D OLS estimation in Panel (a) yields similar coefficients as 
the estimates in the error-correction model in Table 3. Their signs are the same, and the coefficient 
values are more or less similar to each other. Second, the short-run parameter estimates in Panel (b) of 
Table 4 are also more or less similar to those in Panel (b) of Table 3. The signs are the same between 
the corresponding coefficients, and their values are not quite different from each other. The only 
different part is that the coefficient of ∆prest−2 is significant, whereas that of Table 3 is not. Instead, the 
coefficient of ∆prest−3 in Table 3 is significantly estimated, whereas it is not estimated in Table 4 by the 
lag order estimation of the SIC procedure. 
 
Overall, the error-correction model estimation in Table 4 reinforces the model estimation results in Table 
3. The long-run relationship between pres and (cds, oilp) is negatively associated, and ∆rsrvt−1 
significantly alleviates the serial correlation in the error term of the short-run equation. 
 
The quantile error-correction model estimation results are reported from the third to the last columns 
of Table 4. As discussed above, if τ = 0.02, rsrv is cointegrated with the other variables. Although we 
estimate the parameters in the extensive-form models without including rsrv in the long-run equation 
for the same quantile level, the estimation results should be referred to only for reference purposes. We 
summarize the estimation results as follows. First, as before, the long-run quantile parameter estimates 
are only significant when the quantile level τ is extremely low or high, confirming the importance 
of extreme events for pegged exchange rates. Note that when τ = 0.020, the long-run coefficients of 
cds and oilp are significant, whereas only the long-run quantile coefficient of cds is significant for τ = 
0.980 only. For the other quantile levels in T, the long-run coefficients are not significant. Although we 
do not report in Table 4, we also estimated the long-run quantile coefficient 𝜷𝜷∗(𝜏𝜏)  by letting τ be 
0.999 and could observe that the long-run parameters are significant for both cds and oilp. This aspect 
implies that the long-run quantile relationship holds for the low and high τ ’s and that the long-run 
relationship captured by the quantile error-correction model estimation is driven by the quantile long-run 
relationships attained at the extremely low and high quantile levels, implying that the long-run 
relationship captured by the ECM is manifested by the quantile long-run relationship at the extreme 
quantile levels. This aspect is the same observation as for the model estimation given in Table 3 for the 
benchmark error-correction model. 
 
Second, for quantile level τ = 0.980, the long-run quantile coefficients display the same signs as the 
corresponding parameters in Table 3, although the coefficient of oilp is not significant. Nevertheless, if 
we further increase the level of τ, the long-run quantile coefficient of oilp becomes significant. When τ = 
0.999, the estimated coefficients of cds and oilp are 0.0298 and -0.0030, respectively, and their p-values 
are 0.0000, implying that the same conclusion can be inferred as in Table 3. If τ is extremely high, pres 
is positively and negatively associated with cds and oilp, respectively, in the long run. The positive 
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relation with cds signals that a higher default risk means a stronger depreciation pressure on the 
Saudi riyals, while the negative relationship with the oil prices means that greater oil revenues 
implies a stronger appreciation pressure on the Saudi riyal. On the contrary, for quantile level τ = 
0.02, pres is positively associated with rsrv, cds and oilp in the long run as the third column of Table 3 
displays. The negative coefficients of cds and oilp given in Table 4 for τ = 0.02 must be different from 
the signs in Table 3 as the cointegrated variable rsrv was omitted from the long-run quantile equation. 
Third, the short-run parameter estimates are provided in Panel (b). Note that across different quantile 
levels, the coefficients of the cointegration errors are negatively valued, so that the cointegration 
system must be a stable one, although some of them are close to zero and may not be distinguishable 
from zero. When the quantile level is close to 0.5, the adjustment coefficient is not significant, reflecting 
the non-significance of the normal events. 
 
Finally, when quantile τ = 0.980, we also note that the estimated quantile short-run coefficients are more 
or less similar to the corresponding ones in Table 3. Only the coefficients of ∆prest−1 and ∆rsrvt−1 are 
significant, and their signs are the same as in Table 3. In short, we obtain the same conclusion as those 
obtained from Table 3. The cointegration relationship exhibited by the error-correction model is 
mainly driven by the long-run relationships attained at the low and high quantile levels, and the long-
run relationship between pres and oilp are differently signed across the low and high quantile levels. 
To sum up  this section, we obtain that the cointegration relationship displayed by the error-
correction model is driven mainly by the long-run relationships attained at the extremely low and 
high quantile levels. Furthermore, pres is positively cointegrated with cds at both the low and high 
quantile levels, highlighting a strong depreciation pressure on the Saudi currency, but pres is positively 
and negatively cointegrated with oilp at the low and high quantile levels, respectively, although the 
error-correction model estimation implies that pres is negatively cointegrated with cds and oilp but not 
with rsrv. 

4 .2 Model Estimation Using the Log Observations 

In this subsection, we examine the long-run and short-run quantile equations using the log observations 
and f i n d  whether the empirical findings in Subsection 4.1 are also effective even for the log 
observations or not. 

4.2.1 Benchmark model estimation 

We proceed our estimation in parallel to the estimations using the level observations. We first estimate 
the error correction model using the benchmark model. As before, the long-run parameters are 
estimated by the DOLS estimation and the short-run parameters are estimated by the least squares. The 
second column of Table 5 reports the estimation outputs. We summarize the estimation results as 
follows. First, the SIC procedure estimates the lag orders for p and q to be 4 and 2 months, respectively, 
which is the same as the lag orders in Table 3. Using the estimated lag orders, we report the estimated 
long-run coefficients in Panel (a) of Table 5, from which we observe that the long-run coefficient of 
log(rsrv) is not significant but the long-run coefficients of log(cds) and log(oilp) are negatively valued and 
significant, implying that log(pres) is negatively cointegrated with log(cds) and log(oilp), but ∆ log(rsrv) 
can be treated as an exogenous variable. This is the same observation as for the level examination.   
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Second, we report the estimated short-run coefficients in Panel (b) of Table 5. The qualitative results are 
more or less similar to the level observation case. That is, the speed of adjustment coefficient is 
negatively  valued, so that the error-correction system must be a stable one, and the coefficients of ∆ 
log(prest−1) and ∆ log(prest−3) are significant, maintaining the same signs as for the level observation 
case. The only different aspect from the level observation case is that the coefficient of ∆ log(oilpt−1) 
becomes significant, whereas the ∆ log(rsrvt−1) is insignificant. 
 
We next estimate the quantile error-correction model expressed in Eq. (2) using the log observations 
and report the estimated parameters in Table 5. From the third to the last columns of Table 3, we 
report the long-run and short-run parameter estimates across the different τ ’s. We summarize the 
estimation results as follows.  
 
First, for most quantiles τ ∈ T, particularly for τ in the middle of 0 and 1, the long-run coefficients 
are not significant, whereas the long-run quantile coefficients are significant only for τ = 0.980, which 
is different from the level observation case as the long-run quantile coefficients were significant for 
τ = 0.020 in Table 3. We therefore let τ = 0.010 and estimated the long-run parameter and could observe 
that the long-run coefficients of log(cds) and log(oilp) are -0.1246 and 0.0245, respectively, and their p-
values are 0.0000. On the contrary, the long-run quantile coefficient of log(rsrv) is 0.1364 and its p-value 
is 0.2825. From this observation, we conclude that the long-run relationship detected by the error-
correction model estimation must be driven by the quantile cointegration relationship among log(pres), 
log(cds) and log(oilp) at the extremely low and high quantile levels as for the level observation case. 
By the log transformation, more extreme quantile levels are required to detect the long-run quantile 
relationship among the log observations.  
 
Second, as before, the signs of the estimated coefficients are not equal across different quantile levels. In 
particular, the long-run quantile coefficients of log(cds) are negatively observed across different 
quantile levels, which holds even when τ = 0.980. Note that this observation is different from the 
level observation case in which the long-run quantile coefficients of cds are positively valued for τ = 0.02 
and 0.980. By the log transformation, the long-run quantile coefficients of cds are reversed to negative from 
positive values. On the contrary, the quantile long-run coefficients of log(oilp) maintain the same signs as 
for the level observation case. That is, when τ is extremely low (i.e., τ = 0.01), the coefficient of log(oilp) 
is positively valued and significant; if τ is extremely high (i.e., τ = 0.980), the same coefficient is negatively 
valued and significant. This aspect implies that the long-run relationship between log(pres) and log(oilp) 
need to be differently understood for the low and high τ’s .  
 
Third, we further examine the quantile long-run relationship by further increasing the level of τ. We let 
τ be 0.999 and could observe that log(pres), log(cds), log(oilp), and log(rsrv) are cointegrated. 
Although the estimates are not reported in Table 5, the estimated coefficients of log(cds), log(oilp), and 
log(rsrv) are -0.5832, -0.8366, and -0.3011, respectively, and all of their p-values are 0.0000. This is a 
different result from the earlier estimates owing to the fact that even log(rsrv) is cointegrated with 
log(pres) as well as log(cds) and log(oilp). Therefore, if τ is extremely high, ∆ log(rsrv) may not be 
treated as exogenous.  
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Finally, we examine the short-run quantile parameter estimation. Note that the speed of adjustment 
parameter of each quantile model is negatively valued and significant across all quantile levels except 
for τ = 0.750, implying that the quantile cointegration displays a stable system for each quantile level. 
Furthermore, for τ = 0.020, in which rsrv can be treated as a cointegrated variable, the coefficient of ∆ 
log(rsrvt−1) is significant, which is different from estimating the error correction model. If τ = 0.980, 
the coefficients of ∆ log(rsrvt−1) and ∆ log(rsrvt−3) are significant, whose aspect is also observed even 
when τ = 0.999. 
 
Overall, the estimations in Table 5 are qualitatively similar to those in Table 3 for the benchmark model. 
The long-run relationship among log(pres), log(cds) and log(oilp) is driven by the those in the low 
and high quantile levels, but log(rsrv) is not cointegrated with the other variables for any quantile level 
under consideration, which is one of the two aspects different from Table 3. Another different aspect is 
that the long-run quantile coefficients of log(cds) are negatively valued for significant cases, whereas 
the corresponding coefficients in Table 3 are positively valued if they are significant.  

[Insert Tables 5 & 6 here] 

4.2.2 Extensive-form model estimation 

We next estimate the extensive-form model, viz., Eqs. (3) and (4) by letting ∆ log(rsrvt) be exogenous. As 
before, we first estimate the error-correction and quantile error-correction models across different 
quantile levels and next report the long and short-run parameter estimators, along with their p-values 
in Panels (a) and of Table 6, respectively. 
 
The error-correction estimation results are reported in the second column of Table 6. We summarize the 
results as follows. First, the lag orders p and q are estimated by the SIC procedure to be equal to 3 
and 2 lags, respectively, as for Table 4, and the DOLS estimation in Panel (a) produces similar 
coefficients as the estimates in the error- correction model in Table 5. Their signs are the same, and their 
coefficient values are similar. Second, even the short-run parameter estimates in Panel (b) of Table 6 are 
similarly obtained to those in Panel (b) of Table 5. The signs of corresponding coefficients are the same, 
and their values are not quite different from each other. The only difference is that the coefficient of 
∆ log(prest−2) is now significant relative to the level observation case, whereas that of Table 5 is not. 
Instead, the coefficient of ∆ log(prest−3) in Table 5 was significantly estimated, which was not estimated 
in Table 6 by the SIC procedure. In short, the error-correction model estimation in Table 6 validates the 
error-correction model estimation in Table 5. The long-run relationship between log(pres) and (log(cds), 
log(oilp)) is negatively associated, and ∆ log(oilpt−1) significantly alleviates the serial correlation in the 
error term of the short-run equation. 
 
Finally, we report the quantile error-correction model estimation results from the third to the last 
columns of Table 6. We summarize the estimation results as follows. First, the long-run parameter 
estimates are provided in Panel (a).  For each quant i le  level  τ ∈ T, none of the long-run quantile 
coefficients is significant.  We therefore further increase or decrease the level of τ. Although it was 
not reported in Table 6, if τ = 0.999, the long-run quantile coefficients are significant. Specifically, the 
long-run coefficients of log(cds) and log(oilp) are estimated as 0.9851 and 0.3516, respectively with p-
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values are equal to 0.0000. Likewise, if τ is 0.001, the long-run coefficients of log(cds) and log(oilp) are 
estimated as -0.0872 and -0.0167, respectively, and their p-values are 0.0000 and 0.0101, respectively. 
This aspect implies that the long-run relationship between log(pres), log(cds), and log(oilp)) is driven 
by the extremely high and low quantile levels. More extreme quantile levels are required to obtain 
the long-run quantile cointegration than estimating the benchmark model. Second, although the long-
run quantile coefficients display the significant coefficient values for quantile τ = 0.999, the estimation 
results using the benchmark model imply that log(rsrv) should be included in the long-run equation. 
Therefore, we refer to the estimation results with τ = 0.999 only for reference purposes. Note that the 
estimated coefficients of log(rsrv), log(cds) and log(oilp) are negatively valued as discussed above, but the 
coefficients of log(cds) and log(oilp) are now reversed to positive.  
 
On the contrary, if we let τ = 0.010, as we discussed above, ∆ log(rsrvt−1) can be treated as an exogenous 
variable, and the extensive-form model estimation in Table 6 shows that the coefficient of log(cds) is 
significantly negative, but that of   log(oilp) is negatively valued and close to zero, which is a consistent 
result to what is delivered by the benchmark model. Finally, the short-run parameter estimates are 
provided in Panel (b). Note that across different quantile levels, the coefficients of the cointegration 
errors are negatively valued, so that the cointegration system must be a stable one, although some of 
them are close to zero and may not be distinguishable from zero. When the quantile level is 0.500 or 
0.625, the middle quantile adjustment coefficient is not significant. 
 
Overall, the estimations in Table 6 are qualitatively similar to those in Table 5. The long-run 
relationship among log(pres), log(cds) and log(oilp) is driven by the those in the low and high quantile 
levels, and the cointegration coefficients have different signs and/or values across different quantile 
levels. 
 
To sum up this section, the cointegration relationship exhibited by the error-correction model is 
driven mainly by the long-run relationships attained at the extremely low and high quantile levels. 
Furthermore, as for the error-correction model, log(pres) is negatively cointegrated with log(cds) at both 
low and high quantile levels, but it is negatively and positively cointegrated with log(rsrv) and log(oilp) at 
the high and low quantile levels, respectively. This implies that the pressure factors play different roles 
during extreme market conditions, which is different from the result of the error-correction model 
estimation where log(pres) is negatively cointegrated with log(cds) and log(oilp) but not with log(rsrv). 

5.   Concluding Remarks  

Budget deficit is an economic challenge of many economies, particularly those that are oil-dependent. 
Saudi Arabia, the largest oil producer in the world, is one of the countries that suffer from this deficit 
in the recent years. The foreign exchange rates pressure, budget deficit, the oil price plunge and the 
CDS spread continue to be a concern for the economic policymakers in Saudi Arabia. The aim of this 
paper is to examine the quantile relationship between the SAR foreign exchange rates pressure, budget 
reserve, the oil price and the CDS spread which is desirable due to the high volatility in the oil market. 
To this end, the quantile ARDL model along with the error correction model is applied to a monthly 
level and log level data, ranging from August 2008 to December 2018. 
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By using the fully modified ordinary least squares (DOLS) estimation, 4  we find evidence of an 
insignificant relationship between the long-run coefficient of the  fore ign  reserves and the SAR 
pressure. Moreover, the long-run coefficients of CDS and oil prices are negatively associated with the 
foreign exchange pressure, affording evidence of cointegration between the SAR pressure, CDS 
spread and oil prices. In addition, the SAR pressure is negatively related with the CDS and oil prices. 
A decrease in the long-run coefficients of CDS and the oil prices continues to reduce the pressure on 
the exchange rate.  

Using the quantile ARDL model, we find for the level series that the adjustment coefficient value shows 
that the cointegration is a stable system, indicating that the long-run relationship detected by the error 
correction model estimation is driven by the extreme quantile cointegration relationships. The negative 
long-run coefficients for the foreign reserves and the CDS variables contribute to stronger pressure on 
the SAR. The long-run coefficient of oil prices negatively affects the pressure for the extreme lower and 
upper quantiles. As for the short coefficient for the one-lag (third-lags) pressure, the result shows that it 
affects positively (negatively) the current SAR exchange pressure. This indicates that the oil price impact 
on the exchange rate pressure is time sensitive. The short-run coefficient of the lag reserves negatively 
influences the exchange rate pressure for the extreme quantiles, thereby indicating that a decrease in the 
foreign reserves increases the SAR exchange pressure.  

Using the logarithm level series, we find the same results hold for the level series where the findings 
indicate a long-run cointegration between the current exchange rate pressure and both the CDS and oil 
prices under the extreme quantiles. The short-run coefficients are statistically significant for both the 
foreign reserves and the oil price. The reaction of the Saudi dollar-riyal exchange rate to the pressures 
emanating from the foreign reserves, CDS spreads and oil prices depends on the tail distributions.  

The results have important implications for policy makers in the Kingdom. The Saudi government 
should seriously seek ways to reduce the budget deficit in order to avoid inflation recession problem 
related to threats to the exchange rate by adopting proper monetary and financial policies and careful 
budgeting plans to achieve a balanced budget. The policy makers should also consider the evolving 
relationship among the considered variables across extreme quantiles (or market scenarios). 

The Saudi leading role in OPEC and OPEC+ has implications for its exchange rates. Unwise and drastic 
measures such as flooding the oil market and opening the oil spigots may threaten its exchange rate 
peg. Saudi Arabia and other GCC countries should maintain their alliance within OPEC+ to keep oil 
prices stable in the long run. In this case, they should be able to avoid strong pressures on their 
exchange rates. They should also maintain an active oil-stabilization fund which can work anti-
cyclically during downturns in oil prices in the short run. Besides, they should pursue a more ambitious 

                                                            
4 We estimated the same model by the fully-modified OLS (FMOLS) estimation developed by Phillips and Hansen (1990) 
and obtained similar estimates to the DOLS estimates. 
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economic diversification policy in the long run to reduce their strong reliance on a single commodity. 

This research can be extended by calculating time-varying probabilities of default (PD) based on the 
sovereign CDS spreads months out, and then run the Saudi and Qatar exchange rates on those 
probabilities. This will give clear signals of the risk lurking ahead of the pressures on their exchange 
rates and their macroeconomy. However, it will be remiss if we do not indicate that the credit default 
swaps are imperfect barometers of credit risk and may not reflect a country’s fundamental 
creditworthiness, particularly during times of distress. In other words, the spread of a sovereign CDS 
can overstate the probability of default by the sovereign reference entity.  Moreover, our paper can use 
the value of term structure of those sovereign CDS to predict the exchange rate changes of those GCC 
countries. While the sovereign CDS contains information on both global and local factors, the CDS term 
premium is able to effectively catch the local prospect of economic risk specific for those countries. The 
research can relate the exchange rates to the CDS’s, alongside the CDS risk premia to capture the local 
factors related, for example, to local bond and stock markets, in addition to accounting for the global 
oil market. The literature can also construct portfolios of the GCC countries that have the highest CDS 
term premia and those of the GCC countries of the lowest GCC CDS term premia and figure out which 
one gives the highest future returns. Further, the countries should set aside the proper reserves in the 
oil-stabilization fund for bad credit. 

References 

CHO, J.S., KIM, T.-H., and SHIN, Y. (2015): “Quantile Cointegration in the Autoregressive 
Distributed Lag Modeling Framework,” Journal of Econometrics, 188, 281–300. 

CHO, J.S., GREENWOOD-NIMMO, M., AND SHIN, Y. (2020): “Consistent Two-Step Estimation 
of the Nonlinear Autoregressive Distributed Lag Model: Theory and Application,” Discussion 
Paper, School of Economics, Yonsei University. 

CHO, J.S., GREENWOOD-NIMMO, M., AND SHIN, Y. (2021): “Recent Developments of the 
Autoregressive Distributed Lag Modelling Framework,” Journal of Economic Surveys, forthcoming. 

DEJONG, R. M. and DAVIDSON, J. (2000): “The Functional Central Limit Theorem and Weak 
Convergence to Stochastic Integrals I: Weakly Dependent Processes,” Econometric Theory, 16, 
621–642. 

DICKEY, D. A. a n d  FULLER, W. A. (1979): “Distribution of the Estimators for Autoregressive 
Time Series with a Unit Root,” Journal of the American Statistical Association, 74, 427–431. 

ENGLE, R. and GRANGER, C. (1987): “Co-integration and Error Correction: Representation, 
Estimation and Testing,” Econometrica, 55, 251–276. 

EPANECHINKOV, V.A. (1969)” “Non-parametric Estimation of a Multivariate Probability Density,” 
Theory of Probability and Its Applications, 14, 153–158. 



18  

GIRTON, L., and ROPER. D, (1977): “A monetary model of exchange market pressure applied 
to the postwar Canadian experience,” American Economic Review, 67, 537–548. 

HALL, P., a n d  S. SHEATHER. (1988): “On the Distribution of a Studentized Quantile,” Journal of 
the Royal Statistical Society, B, 50, 381–391. 

KOENKER, R. and BASSETT, G. (1978): “Regression Quantiles,” Econometrica, 46, 33–50. 

MENSI, W., SHAHZAD, S.J.H., HAMMOUDEH, S., HKIRI, B., and Al-YAHYAEE, K.H. (2019): 
“Long-run relationships between US financial credit markets and risk factors: Evidence 
from the Quantile ARDL approach,” Finance Research Letters, 29, 101–110. 

NEWEY, W. K. a n d  WEST, K. D. (1987): “A Simple, Positive Semi-Definite, Heteroskedasticity 
and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703–708. 

PATNAIK, I., FELMAN, J., and SHAH, A. (2017): “An exchange market pressure measure for 
cross country analysis,” Journal of International Money and Finance, 73, Part A, 62–77. 

PESARAN, M.H. a n d  SHIN, Y. (1998): “An Autoregressive Distributed Lag Modelling Approach 
to Cointegration Analysis,” in S. Strøm, (Ed.), Econometrics and economic theory in the twentieth 
century: the Ragnar Frisch centennial symposium, Cambridge University Press, Cambridge, UK, 
371–413.  

PESARAN, M. H., and SHIN Y. (1999): “An autoregressive distributed lag modeling approach 
o cointegration analysis,” In S. Strom, (ed) Econometrics and Economic Theory in the 
20th Century: The Ragnar Frisch Centennial Symposium, Cambridge University Press, 
Cambridge. 

PESARAN, M.H., SHIN, Y., and SMITH, R. (2001): “Bound Testing Approaches to the Analysis of 
Level Relationship,” Journal of Applied Econometrics, 16, 289–326. 

PHILLIPS, P. C. B. and HANSEN, B. E. (1990): “Statistical Inference in Instrumental Variable 
Regression with I(1) Processes,” Review of Economic Studies, 57, 99–125.  

SCHWARZ, G. (1978): “Estimating the Dimension of a Model,” Annals of Statistics, 2, 461–464. 

SHIN, Y., YU, B., and GREENWOOD-NIMMO, M.  (2014): “Modelling Asymmetric Cointegration 
and Dynamic Multipliers in a Nonlinear ARDL Framework,” in Horrace, W., and Sickles, R. 
(Eds.), Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications, 281–314. New 
York: Springer Science & Business Media.  

STOCK, J. and WATSON, M. (1993): “A simple Estimator of Cointegrating Vectors in Higher Order 



19  

Integrated Systems,” Econometrica, 61, 783-820. 

WALD, A. (1943): “Tests of Statistical Hypotheses Concerning Several Parameters When the Number 
of Observations is Large,” Transactions of American Mathematical Society, 54, 426–482. 

XIAO, Z., (2009): “Quantile Cointegrating Regression,” Journal of Econometrics, 150, 248–260. 

 

 

 

 

  



20  

Table 1:  THE AUGMENTED DICKEY AND FULLER (1979) TEST STATISTICS FOR THE VARIABLES 

 pres rsrv cds oilp log(pres) log(rsrv) log(cds) log(oilp) 

sample period 07/1986 
12/2018 

01/2001 
12/2018 

06/2008 
12/2018 

07/1986 
12/2018 

07/1986 
12/2018 

01/2001 
12/2018 

06/2008 
12/2018 

07/1986 
12/2018 

ADF test -1.9890 -1.3981 -2.4146 -2.0565 -1.7909 -1.8414 -2.7890 -1.7089 
p-value (0.2917) (0.5828) (0.1399) (0.2627) (0.3849) (0.3507) (0.0627) (0.4260) 

sample period 08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

ADF test -2.0982 -1.0647 -2.4143 -2.2540 -2.0472 -1.0047 -2.7891 -2.1429 
p-value (0.2458) (0.7282) (0.1399) (0.1887) (0.2666) (0.7503) (0.0627) (0.2285) 
This table shows the ADF test results for the variables used in this study. The first panel shows the testing results using 
the whole sample observations of each variable. The second panel shows the testing results using the samples from 08/2008 
to 12/2018. As a result, we cannot reject the unit-root hypothesis for all variables of consideration. None of the p-values is 
less than 5%. 

 
 
 

Table 2: DESCRIPTIVE STATISTICS OF T H E  DIFFERENCED LEVEL AND LOG OF LEVEL OBSERVATIONS 

 ∆ pres ∆rsrv ∆cds ∆oilp ∆ log(pres) ∆ log(rsrv) ∆ log(cds) ∆ log(oilp) 

sample period 07/1986 
12/2018 

01/2001 
12/2018 

06/2008 
12/2018 

07/1986 
12/2018 

07/1986 
12/2018 

01/2001 
12/2018 

06/2008 
12/2018 

07/1986 
12/2018 

Mean -0.0012 0.2061 -0.0161 0.1173 -0.0002 0.0105 -0.0032 0.0047 
Median -0.0074 0.1719 0.0000 0.2000 -0.0019 0.0062 0.0000 0.0116 
Maximum 0.1217 2.3756 17.000 17.860 0.0342 0.0963 1.2039 0.4872 
Minimum -0.0649 -2.0214 -16.900 -34.250 -0.0195 -0.0482 -0.9545 -0.4495 
Std. Dev. 0.0300 0.7286 4.4562 4.7519 0.0089 0.0250 0.3410 0.1015 
Obs. 389 216 124 389 389 216 124 389 

sample period 08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

08/2008 
12/2018 

Mean 0.0083 0.0610 -0.0161 -0.4527 0.0024 0.0013 -0.0032 -0.0057 
Median -0.0028 0.0879 0.0000 -0.0350 -0.0008 0.0018 0.0000 -0.0005 
Maximum 0.1217 1.6967 17.000 15.130 0.0342 0.0402 1.2039 0.2645 
Minimum -0.0649 -2.0214 -16.900 -34.250 -0.0173 -0.0305 -0.9545 -0.4495 
Std. Dev. 0.0389 0.7977 4.4562 7.0353 0.0107 0.0143 0.3410 0.1013 
Obs. 124 124 124 124 124 124 124 124 
This table shows the descriptive statistics of the variables of consideration, using the whole sample period of each variable and 
the restricted sample period from August 2008 to December 2018. 
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Table 3: ESTIMATION OF THE BENCHMARK MODEL USING LEVEL OBSERVATIONS 
 

τ ECM 0.020 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.980 
panel (a): long-run parameters (Eq. (2) using parameters of Eq. (1) indirectly) 
rsrvt -0.0017 0.0299 0.0116 0.0141 0.0219 0.0228 0.0411 0.0163 0.0148 0.0156 
p-value 0.6396 0.0000 0.8415 0.9630 0.9803 0.9809 0.9792 0.9535 0.9197 0.0694 
cdst -0.0329 0.0208 -0.0127 -0.0085 0.0104 0.0188 0.0511 0.0013 0.0239 0.0493 
p-value 0.0000 0.0017 0.8130 0.9759 0.9900 0.9831 0.9722 0.9959 0.8608 0.0000 
oilpt -0.0128 0.0052 -0.0124 -0.0126 -0.0107 -0.0130 -0.0152 -0.0140 -0.0113 -0.0051 
p-value 0.0000 0.0017 0.8130 0.9759 0.9900 0.9831 0.9722 0.9959 0.8608 0.0000 
panel (b): short-run parameters (using Eq. (2)) 

 

 cnst 0.0285 0.0116 0.0440 0.0266 0.0121 0.0114 0.0056 0.0283 0.0256 0.0386 
 p-value 0.1407 0.0247 0.0387 0.0001 0.0001 0.0002 0.0005 0.0033 0.0000 0.0014 
 coint. errort−1 -0.0054 -0.0133 -0.0107 -0.0066 -0.0037 -0.0033 -0.0021 -0.0067 -0.0061 -0.0102 
 p-value 0.1473 0.0007 0.0352 0.0000 0.0000 0.0002 0.0010 0.0042 0.0000 0.0061 
 ∆prest−1 1.3615 1.1799 1.2771 1.3343 1.3551 1.3439 1.3114 1.2267 1.0801 1.2412 
 p-value 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 ∆prest−2 -0.0368 -0.3780 -0.0983 -0.1029 -0.0880 -0.0646 0.0047 0.1378 0.2318 -0.0281 
 p-value 0.8020 0.5312 0.6457 0.3699 0.4587 0.6606 0.9596 0.2529 0.0259 0.9478 
 ∆prest−3 -0.3808 -0.0178 -0.2439 -0.2860 -0.3200 -0.3272 -0.3629 -0.4183 -0.3819 -0.3345 
 p-value 0.0000 0.9533 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1346 
 ∆rsrvt−1 -0.0016 -0.0019 -0.0008 -0.0001 -0.0002 0.0000 -0.0002 -0.0008 -0.0016 -0.0041 
 p-value 0.0104 0.4400 0.4014 0.6262 0.4110 0.8774 0.5991 0.1595 0.0002 0.0057 
 ∆cdst−1 0.0001 -0.0004 0.0000 0.0000 0.0000 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 
 p-value 0.5786 0.1651 0.7725 0.9786 0.8272 0.9954 0.1821 0.3527 0.3785 0.8044 
 ∆oilpt−1 0.0001 -0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 
 p-value 0.1957 0.4889 0.1130 0.2533 0.8860 0.3177 0.7885 0.0856 0.7484 0.0809 
 Sample period 08/2008 ∼ 12/2018         
 Estimated order of 

 
4          

 Estimated order of 
 

2          

This table shows the two-step estimation results using the benchmark model and the error correction model. Each 
column in panel (a) shows the long-run parameter estimators in the error correction model and the quantile model for 
each quantile level in T. The long-run parameters in the error-correction model are estimated by Stock and Watson’s 
(1993) DOLS estimation, while those in the quantile model are estimated by the QARDL estimation as  in Cho, Kim and 
Shin (2015). The columns in panel (b) show the short-run parameter estimators. The short-run parameters in the error-
correction model are estimated by the OLS estimation, and those in the quantile model are estimated by the quantile 
regression. The p-values less than 0.05 are marked by the boldface font. 
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Table 4:  ESTIMATION OF THE EXTENSIVE-FORM MODEL USING LEVEL OBSERVATIONS 
 

τ ECM 0.020 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.980 
Panel (a): long-run parameters (Eq. (4) using long run parameters in Eq. (1)) 
cdst -0.0307 -0.0229 -0.0209 -0.0210 -0.0122 -0.0016 -0.0077 -0.0082 0.0033 0.0343 
p-value 0.0000 0.0000 0.5367 0.8865 0.9757 0.9981 0.9810 0.9709 0.9681 0.0000 
oilpt -0.0141 -0.0069 -0.0102 -0.0088 -0.0103 -0.0062 -0.0088 -0.0068 -0.0046 -0.0018 
p-value 0.0000 0.0000 0.6423 0.9269 0.9687 0.9892 0.9664 0.9630 0.9320 0.6586 

 

Panel (b): short-run parameters (using Eq. (4)) 
 

 cnst 0.0601 0.1308 0.0660 0.0426 0.0215 0.0188 0.0370 0.0430 0.0426 0.0496 
 p-value 0.0050 0.0181 0.0275 0.0760 0.0810 0.0250 0.1433 0.0008 0.0006 0.0002 
 coint. errort−1 -0.0115 -0.0305 -0.0144 -0.0094 -0.0046 -0.0043 -0.0079 -0.0092 -0.0093 -0.0104 
 p-value 0.0054 0.0126 0.0228 0.0682 0.0761 0.0246 0.1446 0.0011 0.0012 0.0013 
 ∆prest−1 1.5922 1.4275 1.5525 1.6362 1.7081 1.6819 1.5305 1.4463 1.2283 1.3707 
 p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 
 ∆prest−2 -0.6325 -0.5550 -0.6071 -0.6735 -0.7349 -0.7046 -0.5435 -0.4745 -0.2885 -0.5180 
 p-value 0.0000 0.0125 0.0000 0.0000 0.0000 0.0000 0.1065 0.0000 0.1671 0.1621 
 ∆rsrvt 0.0010 0.0005 0.0012 0.0003 0.0002 -0.0003 -0.0003 -0.0015 -0.0023 -0.0018 
 p-value 0.2365

 
0.7879 0.1635 0.6747 0.6654 0.4711 0.5586 0.0914 0.0008 0.4414 

 ∆rsrvt−1 -0.0018 -0.0046 -0.0009 -0.0006 -0.0003 -0.0006 -0.0009 -0.0015 -0.0020 -0.0053 
 p-value 0.0324 0.1318 0.3913 0.4149 0.3761 0.1077 0.1379 0.0474 0.0025 0.0120 
 ∆cdst−1 0.0002 0.0000 -0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 -0.0001 -0.0003 
 p-value 0.2564 0.9699 0.7030 0.9163 0.8394 0.3493 0.3408 0.6856 0.4002 0.3115 
 ∆oilpt−1 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 
 p-value 0.2208 0.2385 0.9556 0.6512 0.5390 0.4138 0.4303 0.4944 0.5328 0.2374 
 Sample period 08/2008 ∼ 12/2018         
 Estimated order of 

 
3          

 Estimated order of 
 

2          

This table shows the two-step estimation results, using the benchmark model and the error-correction model. Each column 
in panel (a) shows the long-run parameter estimators in the error-correction model and the quantile model for each quantile 
level in T. The long-run parameters in the error-correction model are estimated by Stock and Watson’s (1993) DOLS 
estimation, and those in the quantile model are estimated by the QARDL estimation as  in Cho, Kim and Shin (2015). 
The columns in panel (b) show the short-run parameter estimators. The short-run parameters in the error-correction 
model are estimated by the OLS estimation, and those in the quantile model were estimated by the quantile regression. 
The p-values less than 0.05 are marked by the boldface font. 
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Table 5: ESTIMATION OF THE BENCHMARK MODEL USING LOG OF LEVEL OBSERVATIONS 
 

τ ECM 0.020 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.980 
 

panel (a): long-run parameters (Eq. (2) using parameters of Eq. (1) indirectly)  

log(rsrvt) 0.0877 0.1329 0.1405 0.1794 0.1893 0.1557 0.4292 0.1816 0.1198 -0.8056 
p-value 0.2223 0.6664 0.9680 0.9876 0.9939 0.9965 0.9949 0.9899 0.9713 0.5423 
log(cdst) -0.0930 -0.1237 -0.0621 -0.0414 -0.0334 -0.0223 0.0519 0.0046 -0.0322 -0.8379 
p-value 0.0000 0.1524 0.9495 0.9897 0.9962 0.9982 0.9978 0.9991 0.9725 0.0237 
log(oilpt) -0.4225 0.0242 -0.1205 -0.1581 -0.1803 -0.1701 -0.1751 -0.2257 -0.2273 -0.1507 
p-value 0.0000 0.1524 0.9495 0.9897 0.9962 0.9982 0.9978 0.9991 0.9725 0.0237 

 

panel (b): short-run parameters (using Eq. (2)) 
 

 Cnst 0.0041 0.0102 0.0149 0.0091 0.0074 0.0071 0.0008 0.0089 0.0218 -0.0203 
 p-value 0.4279 0.0001 0.0000 0.0078 0.0008 0.0014 0.0000 0.0675 0.0000 0.0038 
 coint. errort−1 -0.0013 -0.0128 -0.0110 -0.0067 -0.0053 -0.0048 -0.0023 -0.0054 -0.0111 0.0033 
 p-value 0.4424 0.0000 0.0000 0.0070 0.0007 0.0015 0.0001 0.0732 0.0000 0.0024 
 ∆ log(prest−1) 1.4018 1.5192 1.2915 1.3118 1.3348 1.3176 1.3242 1.2282 1.2166 1.0561 
 p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 ∆ log(prest−2) -0.0980 -0.4703 -0.2189 -0.0940 -0.0835 -0.0414 0.0119 0.0910 -0.0276 0.3907 
 p-value 0.5017 0.1831 0.0715 0.5610 0.5572 0.8169 0.9400 0.6339 0.7754 0.2304 
 ∆ log(prest−3) -0.3619 -0.1086 -0.1272 -0.2625 -0.2990 -0.3146 -0.3804 -0.3723 -0.2516 -0.5901 
 p-value 0.0000 0.5017 0.0832 0.0000 0.0000 0.0000 0.0000 0.0053 0.0000 0.0015 
 ∆ log(rsrvt−1) -0.0160 -0.0847 -0.0344 -0.0149 -0.0080 -0.0093 -0.0101 -0.0175 -0.0234 -0.0013 
 p-value 0.1341 0.0111 0.0088 0.1178 0.1372 0.1165 0.0967 0.2044 0.0026 0.9626 
 ∆ log(cdst−1) -0.0001 0.0009 0.0001 0.0000 0.0000 0.0000 -0.0002 -0.0002 -0.0003 -0.0012 
 p-value 0.8845 0.0658 0.6998 0.8185 0.7502 0.8115 0.4488 0.6433 0.3715 0.2029 
 ∆ log(oilpt−1) 0.0021 0.0092 0.0027 0.0009 0.0005 0.0008 0.0005 0.0013 0.0029 0.0046 
 p-value 0.1320 0.0076 0.1287 0.2553 0.5099 0.3864 0.6391 0.2983 0.0223 0.1949 
 Sample period 08/2008 ∼ 12/2018         
 Estimated order of 

 
4          

 Estimated order of 
 

2          

This table shows the two-step estimation results using the benchmark model and the error-correction model. Each column 
in panel (a) shows the long-run parameter estimators in the error-correction model and the quantile model for each quantile 
level in T. The long-run parameters in the error-correction model were estimated by Stock and Watson’s (1993) DOLS 
estimation, and those in the quantile model were estimated by the QARDL estimation in Cho, Kim and Shin (2015). The 
columns in panel (b) show the short-run parameter estimators. The short-run parameters in the error-correction model 
were estimated by the OLS estimation, and those in the quantile model were estimated by the quantile regression. The 
p-values less than 0.05 are marked by the boldface font.
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Table 6: ESTIMATION OF THE EXTENSIVE-FORM MODEL USING LOG OF LEVEL OBSERVATIONS 
 

τ ECM 0.020 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.980 
Panel (a): long-run parameters Eq. (4) using long run parameters in Eq. (1)) 
 
log(cdst) -0.1094 -0.0751 -0.0977 -0.0713 -0.0582 -0.0664 -0.0442 -0.0452 -0.0378 11.9619 
p-value 0.0000 0.1207 0.9086 0.9774 0.9907 0.9901 0.9934 0.9811 0.9604 0.0637 
log(oilpt) -0.2343 -0.1033 -0.0342 -0.1476 -0.1299 -0.1035 -0.1467 -0.1641 -0.1374 4.5478 
p-value 0.0000 0.4592 0.9889 0.9838 0.9928 0.9947 0.9925 0.9762 0.9500 0.8069 

 

Panel (b): short-run parameters (using Eq. (4)) 
 

 cnst 0.0340 0.0378 0.0204 0.0219 0.0145 0.0147 0.0163 0.0274 0.0236 -0.0051 
 p-value 0.0000 0.0005 0.0000 0.0114 0.0303 0.0808 0.1827 0.0000 0.0000 0.0288 
 coint. errort−1 -0.0133 -0.0206 -0.0127 -0.0106 -0.0073 -0.0076 -0.0079 -0.0126 -0.0113 -0.0002 
 p-value 0.0000 0.0003 0.0000 0.0107 0.0295 0.0808 0.1836 0.0000 0.0000 0.0021 
 ∆ log(prest−1) 1.4693 1.3351 1.4217 1.5597 1.6164 1.5786 1.5044 1.3471 1.3441 0.9098 
 p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100 
 ∆ log(prest−2) -0.5116 -0.4437 -0.4583 -0.6019 -0.6475 -0.6086 -0.5305 -0.3916 -0.4072 -0.0754 
 p-value 0.0000 0.0066 0.0000 0.0000 0.0001 0.0064 0.1364 0.0000 0.0000 0.8202 
 ∆ log(rsrvt) 0.0080 0.0090 -0.0086 -0.0058 -0.0069 -0.0141 -0.0090 -0.0157 -0.0358 -0.0291 
 p-value 0.4711 0.6256 0.2998 0.3631 0.3308 0.1678 0.3336 0.0625 0.0000 0.3535 
 ∆ log(rsrvt−1) -0.0234 -0.0784 -0.0467 -0.0098 -0.0132 -0.0170 -0.0133 -0.0278 -0.0235 -0.0392 
 p-value 0.0363 0.0113 0.0055 0.2496 0.1008 0.1376 0.2464 0.0099 0.0294 0.1130 
 ∆ log(cdst−1) 0.0005 0.0003 0.0001 0.0002 0.0002 0.0003 0.0002 0.0001 -0.0001 -0.0018 
 p-value 0.2977 0.5287 0.7217 0.5330 0.1978 0.2511 0.4376 0.8322 0.7057 0.1502 
 ∆ log(oilpt−1) 0.0025 0.0074 0.0048 0.0017 0.0014 0.0015 0.0013 0.0006 -0.0002 0.0003 
 p-value 0.0784 0.0315 0.1678 0.2816 0.1760 0.2457 0.3367 0.6553 0.8770 0.9500 
 Sample period 08/2008 ∼ 12/2018         
 Estimated order of 

 
3          

 Estimated order of 
 

2          
This table shows the two-step estimation results using the benchmark model and error correction model. Each column 
in panel (a) shows the long-run parameter estimators in the error-correction model and the quantile model for each 
quantile level in T. The long-run parameters in the error-correction model were estimated by Stock and Watson’s (1993) 
DOLS estimation, and those in the quantile model were estimated by the QARDL estimation in Cho, Kim and Shin 
(2015). The columns in panel (b) show the short-run parameter estimators. The short-run parameters in the error 
correction model were estimated by the OLS estimation, and those in the quantile model were estimated by the quantile 
regression. The p-values less than 0.05 are marked by the boldface font. 
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