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Abstract

This supplement provides proofs of the subsidiary lemmas and the main results in the text of “Se-
quentially Testing Polynomial Model Hypotheses using Power Transforms of Regressors” by J. S. Cho
and P. C. B Phillips (2017).

1 Preliminary Lemmas and Proofs

1.1 Claims

Lemma A1. Given Assumptions 1 and 2,

(i) A′cU = OP(
√
n), Z ′U = OP(

√
n), and E′cU = OP(

√
n), where Ec := (d/dγ)Qc(c) = [0n×c

...Ac
...

0n×(m−c+k)], Qc(γ) := [X(0), . . . , X(c− 1), X(γ), X(c+ 1), . . . , X(m), D], and D := [d1, . . . , dn]′;

(ii) A′cZ = OP(n), Z ′Z = OP(n), and E′cZ = OP(n);

(iii) A′cAc = OP(n), A′cEc = OP(n), B′cU = OP(n), B′cZ = OP(n), E′cZ = OP(n), E′cEc = OP(n),

F ′cU = OP(n), and F ′cZ = OP(n), where Fc := (d2/dγ2)Qc(c) = [0n×c
...Bc

... 0n×(m−c+k)]; and

(iv) B′cU = oP(n) and F ′cU = oP(n). �

Lemma A2. Given Assumptions 1 and 2,

(i) if E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ + s(xt) with E[s(xt)
2] < ∞ and E[log4j∗(xt)] < ∞, for some

γ̃ ∈ Γ, h(γ̃) ∈ (0, h0) and
1

n
QLRn =

(
1− h(γ̃)

h0

)
+ oP(1),

1



where j∗ := min{j ∈ N : E[vt logj(xt)] 6= 0}, and vt is the linear projection error obtained by projecting

yt into the space of (xt(m)′, d′t)
′;

(ii) if E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ + n−1/2s(xt) with |s(xt)| ≤ mt,

QLRn ⇒ sup
γ∈Γ

(
Z(γ) +

ζ(γ)

σ(γ)

)2

,

where ζ(γ) := E[s(xt)x
γ
t ]− E[s(xt)z

′
t]E[ztz

′
t]
−1E[ztx

γ
t ]. �

Lemma A3. Given Assumptions 3 and 4,

(i) if for some m0 > m, E[yt|dt] = t(m0)′α∗ + d′tη∗,

1

n
QLRn = sup

γ∈Γ

σ̃2(γ,m0)

{σ̃2(γ, γ)}1/2{σ̃2(m0,m0)}1/2
+ oP(1);

(ii) if E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t) with s(·) being a smoothly slowly varying (SSV) function as in

Phillips (2007), and ns′(n)→ c ( 6= 0),

1

n
QLRn = sup

γ∈Γ

(
c2σ2
∗

σ2
∗ + c2q

)(
p(γ)

σ̃(γ, γ)

)2

+ oP(1),

where p(γ) := (γ − 1)(7γ + 15)/{4(γ + 1)2(γ + 2)} and q := 91/64;

(iii) if E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t) with s(·) being an SSV function, and ns′(n)→∞,

1

n
QLRn = sup

γ∈Γ

(
σ2
∗
q

)(
p(γ)

σ̃(γ, γ)

)2

+ oP(1),

(iv) if E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t)/{n3/2s′(n)} with s(·) being an SSV function,

QLRn ⇒ sup
γ∈Γ

(
Z̃(γ) +

p(γ)

σ̃(γ)

)2

.

2 Proofs of the Preliminary Lemmas

Proof of Lemma A1: (i) By the definition ofEc := [0n×c
...Ac

... 0n×(m−c+k)], we note that ifA′cU = OP(
√
n),

then E′cU = OP(
√
n). Therefore, we focus on proving that A′cU = OP(

√
n).

By the definition of A′cU , n−1/2A′cU = [n−1/2
∑
xct log(xt)ut], so that if E[x2c

t log2(xt) u
2
t ] <∞, we

can apply the martingale central limit theorem (CLT). Using the Cauchy-Schwarz inequality, we obtain: (a)

E[x2c
t log2(xt)u

2
t ] ≤ E[x4c

t log4 (xt)]
1/2E[u4

t ]
1/2 ≤ E[x8c

t ]1/4E[log8(xt)]
1/4E[u4

t ]
1/2; (b) E[x2c

t log2(xt)u
2
t ]
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≤ E[u4
t log4(xt)]

1/2E[x4c
t ]1/2 ≤ E[u8

t ]
1/4E[log8(xt)]

1/4E[x4c
t ]1/2; and (c) E[x2c

t log2(xt)u
2
t ] ≤ E[x4c

t u
4
t ]

1/2

E[log4(xt)]
1/2 ≤ E[x8c

t ]1/4 E[u8
t ]

1/4E[log4(xt)]
1/2. We now note that the elements in the right side of (a),

(b), and (c) are finite by Assumption 2(iii), respectively.

As for Z ′U , n−1/2Z ′U = n−1/2
∑
zt,iut obeys a CLT if E[z2

t,iu
2
t ] < ∞. We note that E[z2

t,iu
2
t ] ≤

E[z4
t,i]

1/2E[u4
t ]

1/2 by the Cauchy-Schwarz inequality. If E[z4
t,i] < ∞ and E[u4

t ] < ∞, the desired results

follow. These conditions are already required in Assumption 2.

(ii) As in (i), if A′cZ = OP(n), E′cZ = OP(n) by the definition of Ec. For A′cZ = [
∑
xct log (xt)zt,i],

this obeys the law of large numbers (LLN) if E[|xct log(xt)zt,i|] < ∞. We consider two cases separately:

for some `, when zt,i = dt,` and when zt,i = x`t .

Take the case: zt,i = dt,`. Note that E[xct log(xt)zt,i] = E[xct log(xt)dt,`]. Therefore, (a) E[xct log(xt)dt,`

] ≤ E[x2c
t log2(xt)]]

1/2E[d2
t,`]

1/2 ≤ E[x4c
t ]1/4E[log4(xt)]

1/4E[d2
t,`]

1/2; (b) E[xct log (xt)dt,`] ≤ E[d2
t,` log2(

xt)]
1/2E[x2c

t ]1/2 ≤ E[d4
t,`]

1/4E[log4(xt)]
1/4E[x2c

t ]1/2; (c) E[xct log(xt)dt,`] ≤ E[x2c
t d

2
t,`]

1/2E[log2(xt)]
1/2

≤ E[x4c
t ]1/4E[d4

t,`]
1/4E[log2(xt)]

1/2 by the Cauchy-Schwarz inequality. All these bounds are finite by As-

sumption 2(iii).

Next consider the case when zt,i = x`t . Then, E[xct log(xt)zt,i] = E[xc+`t log(xt)], which is bounded by

E[x
2(c+`)
t ]1/2E[log2(xt)]

1/2. We note that Assumption 2(iii) then ensures the required finite bound.

As for Z ′Z, n−1Z ′Z = n−1
∑
zt,izt,` obeys an LLN if E[|zt,izt,`|] < ∞. We note that E[|zt,izt,`|] ≤

E[z2
t,i]

1/2E[z2
t,`]

1/2 by the Cauchy-Schwarz inequality. If E[z2
t,i] < ∞, the desired results follows as it is

assumed in Assumption 2(iii).

(iii) By the definitions of Ec and Fc := [0n×c
...Bc

... 0n×(m−c+k)], if A′cAc = OP(n), B′cU = OP(n),

B′cZ = OP(n), and A′cZ = OP(n) then A′cEc = OP(n), F ′cU = OP(n), F ′cZ = OP(n), E′cEc = OP(n),

and E′cZ = OP(n). We have already shown that A′cZ = OP(n) in (ii). We, therefore, focus on proving

A′cAc = OP(n), B′cU = OP(n), and B′cZ = OP(n).

We examine each case in turn. (a) We note that n−1A′cAc = n−1
∑
x2c
t log2(xt), so that if E[x2c

t log2(

xt)] < ∞, the LLN holds. We note that E[x2c
t log2(xt)] ≤ E[x4c

t ]1/2E[log4(xt)]
1/2, and the right side is

finite by Assumption 2(iii).

(b) Note that n−1B′cU = n−1
∑
xct log2(xt)ut and, if E[|xct log2(xt)ut|] <∞, the LLN holds. We also

note that (b.i) E[xct log2(xt)ut] ≤ E[x2c
t log4(xt)]

1/2 E[u2
t ]

1/2 ≤ E[x4c
t ]1/4E[log8(xt)]

1/4 E[u2
t ]

1/2; (b.ii)

E[xct log2(xt)ut] ≤ E[u2
t log4(xt)]

1/2E[x2c
t ]1/2 ≤ E[u4

t ]
1/4E[log8(xt)]

1/4E[x2c
t ]1/2; and (b.iii) E[xct log2(

xt)ut] ≤ E[u2
tx

2c
t ]1/2E[log2(xt)]

1/2 ≤ E[u4
t ]

1/4E[x4c
t ]1/4E[log2(xt)]

1/2. Thus, each of the elements form-

ing the right side is finite by Assumption 2(ii.a), 2(ii.b), and 2(ii.c), respectively.

(c) Finally, we examine n−1B′cZ = [n−1
∑
xct log2(xt)zt,i]. As before, there are two separate cases:
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for some `, zt,i = dt,` or zt,i = x`t . We first consider zt,i = dt,`. Note that E[|xct log2(xt)zt,i|] = E[|xct log2

(xt)dt,`|]. Therefore, (c.i) E[|xct log2(xt)dt,`|] ≤ E[x2c
t log4(xt)]

1/2E[d2
t,`]

1/2 ≤ E[x4c
t ]1/4E[log8(xt)]

1/4

E[d2
t,`]

1/2; (c.ii) E[xct log2(xt)xt,i] ≤ E[d2
t,` log4(xt)]

1/2E[x2c
t ]1/2 ≤ E[d4

t,`]
1/4E[log8(xt)]

1/4E[x2c
t ]1/2; and

(c.iii) E[|xct log2(xt)dt,`|] ≤ E[d2
t,` x

2c
t ]1/2E[log4(xt)]

1/2 ≤ E[d4
t,`]

1/4 E[x4c
t ]1/4E[log4(xt)]

1/2. Then, the

right sides are finite by Assumption 2(iii.a), 2(iii.b), and 2(iii.c), respectively.

Next consider zt,i = x`t . Then, E[|xct log2(xt)zt,i|] = E[|xc+`t log2(xt)|] ≤ E[|x2c+2`
t |]1/2 E[| log4(xt)

|]1/2. This bound is also finite by Assumption 2(iii).

(iv) By the definition of Fc, if B′cU = oP(n), it follows that F ′cU = oP(n). We already proved that

B′cU = OP(n) in (iii), and applying the LLN and the martingale difference sequence (MDS) condition in

Assumption 2(ii) implies that B′cU = oP(n). This completes the proof. �

Proof of Lemma A2: (i and ii) Assumptions 1 and 2 satisfy the regularity assumptions 1, 2(iii, v), 4(ii), and

5 of Baek, Cho, and Phillips (2015, BCP). Furthermore, we can let [xt, x
2
t , . . . , x

m
t ] be a part of dt of BCP.

From these two facts, the assumptions in theorem 5 of BCP are satisfied. Therefore, the BCP results apply

to Lemma A2 with m(xt) of BCP being s(xt) in the current paper. �

Proof of Lemma A3: Part (i): Given that m0 > m, if we define G(m0) :=
∑m0

j=m+1 αj∗[1
j , 2j , . . . , tj , . . . ,

(n− 1)j , nj ]′, then

σ̂2
n,0 − σ̂2

n,A = sup
γ∈Γ

{n−1(U +G(m0))′MS(γ)}2

(n−1S(γ)′MS(γ))
.

Here, we note that supγ |n−1U ′MS(γ)| = oP(1). Furthermore, G(m0) = O(nm0) and n−m0G(m0) =

αm0∗S(m0) + o(1), so that n−1G(m0)′MS(γ) = αm0∗n
m0−1S(m0)′MS(γ) +OP(nm0−2). This implies

that supγ∈Γ |n−1−m0G(m0)′MS(γ)− αm0∗n
−1S(m0)′MS(γ)| = oP(1), so it follows that

σ̂2
n,0 − σ̂2

n,A = sup
γ∈Γ

α2
m0∗n

2m0
{n−1S(m0)′MS(γ)}2

(n−1S(γ)′MS(γ))
+ oP(n2m0). (1)

We next note that σ̂2
n,0 = n−1(U +G(m0))′M(U +G(m0)). Hence,

σ̂2
n,0 = σ2

∗ + α2
m0∗n

2m0n−1S(m0)′MS(m0) + oP(n2m0). (2)
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With these results in hand, (1) and (2) imply that

1

n
QLRn =

σ̂2
n,0 − σ̂2

n,A

σ̂2
n,0

= sup
γ∈Γ

{n−1S(γ)′MS(m0)}2

(n−1S(γ)′MS(γ))(n−1S(m0)′MS(m0))
+ oP(1)

= sup
γ∈Γ

σ̃2(γ,m0)

{σ̃2(γ, γ)}1/2{σ̃2(m0,m0)}1/2
+ oP(1),

by noting that σ̃2(·, ·) is the almost sure limit of n−1σ̂2
n,0S(·)′MS(·).

Parts (ii, iii, and iv): In our context, we can let σ2
∗g(γ, γ̃) and K of theorem 6 in BCP be σ̃(γ, γ̃) and

1, respectively. The desired results then follow from theorem 6(ii.a, ii.b, v). �

3 Proofs of the Main Claims

Proof of Lemma 1: (i) To show the stated claim, we first derive the first-order derivative of Ln(γ;αc) with

respect to γ. Note that

L(1)
n (γ;αc) = 2Pc(αc)

′Qc(γ)(Qc(γ)′Qc(γ))−1
[
(d/dγ)Qc(γ)′Pc(αc)

]
+ Pc(αc)

′Qc(γ){(d/dγ)(Qc(γ)′Qc(γ))−1}Qc(γ)′Pc(αc),

Qc(c) = Z from Qc(γ) := [X(0), . . . , X(c− 1), X(γ), X(c+ 1), . . . , X(m), D] and (d/dγ)Qc(γ) = Ec.

Next, Pc(αc) = Y − αcX(c) = Z[α0∗, . . . , αc−1, (αc∗ − αc), αc+1, . . . , αm∗, η
′
∗]
′ + Z ′U = Zκc + U , so

that Pc(αc) = Zκc + U , where κc := [α0∗, . . . , α(c−1)∗, (αc∗ − αc), α(c+1)∗, . . . , αm∗, η
′
∗]
′. Finally, we

obtain that

(d/dγ)(Qc(γ)′Qc(γ))−1
γ=c = −(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1 (3)

and collect all these separate derivations in (d/dγ)Ln(γ;αc). This yields that

L(1)
n (c;αc) = 2(Zκc + U)′Z(Z ′Z)−1E′c(Zκc + U)

− (Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′(Zκc + U).

We further rearrange the terms on the right side. The first component is the sum of four other components :

(a) 2κ′cZ
′Z(Z ′Z)−1E′cZκc = 2κ′cE

′
cZκc; (b) 2κ′cE

′
cU ; (c) 2U ′Z(Z ′Z)−1E′cZκcy = 2κ′cZ

′Ec(Z
′Z)−1Z ′

U ; and (d) 2U ′Z(Z ′Z)−1E′cU . Next, the second component is the sum of four components: (a)−κ′cZ ′Ecκc

−κ′cE′cZκc = −2κ′cE
′
cZ κc; (b)−U ′Z(Z ′Z)−1Z ′Ec κc−κ′cE′cZ(Z ′Z)−1Z ′U = −2κ′cE

′
cZ(Z ′Z)−1Z ′ U ;

(c)−U ′Z(Z ′Z)−1E′cZκc−κ′cZ ′ Ec(Z ′Z)−1Z ′U = −2κ′cZ
′Ec(Z

′Z)−1Z ′U ; and (d)−U ′Z(Z ′Z)−1(Z ′Ec
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+E′cZ)(Z ′Z)−1Z ′U . If we collect these eight different components according to their order of convergence,

they can be classified into the following three different terms:

• (a) 2κ′cE
′
cZκc − 2κ′cE

′
cZκc = 0;

• (b, c) 2κ′c{E′c + Z ′Ec(Z
′Z)−1Z ′ − E′cZ(Z ′Z)−1Z ′ − Z ′Ec(Z ′Z)−1Z ′}U = 2(αc∗ − αc)A′cMU

because Z ′Ec = A′c;

• (d) 2U ′Z(Z ′Z)−1E′cU − U ′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U ,

so that the first-order derivative is now obtained as

L(1)
n (c;αc) = 2(αc∗ − αc)A′cMU + 2U ′Ec(Z

′Z)−1Z ′U − U ′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U,

and this is the desired first-order derivative. Given this derivative, Lemma A1(i and ii) implies that the

second and third terms in the right side are oP(n), so that the desired result follows from this.

(iii) We next examine the second-order derivative. In the same way, we obtain that

L(2)
n (c;αc) =2(Pc(αc)

′Ec)(Z
′Z)−1(E′cPc(αc)) + 4(Pc(αc)

′Z){(d/dγ)[Qcc
′Qcc]

−1}E′cPc(αc)

+ 2(Pc(αc)
′Z)(Z ′Z)−1F ′cPc(αc) + (Pc(αc)

′Z){(d2/dγ2)[Qcc
′Qcc]

−1}Z ′Pc(αc).

We note that (3) already provides the form of (d/dγ)[Q(γ)′Q(γ)]−1
γ=c, and

(d2/dγ2)[Q(γ)′Q(γ)]−1
γ=c =2Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′

− (Z ′Z)−1(2E′cEc + Z ′Fc + F ′cZ)(Z ′Z)−1.

Using these and the previous definitions, the second-order derivative is obtained as

L(2)
n (c;αc) = 2(Zκc + U)′{Ec(Z ′Z)−1E′c + Z(Z ′Z)−1F ′c}(Zκc + U)

− 4(Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1E′c(Zκc + U)

− (Zκc + U)′Z(Z ′Z)−1(2E′cEc + Z ′Fc + F ′cZ)(Z ′Z)−1Z ′(Zκc + U)

+ 2(Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′(Zκc + U).

Finally, we rearrange the right side according to their order of convergence and obtain that

6



• 2κ′c{Z ′E′c(Z ′Z)−1E′c+F ′c}Zκc−4κ′c(Z
′Ec+E′cZ)(Z ′Z)−1E′cZκc+2κ′c(Z

′Ec+E′cZ)(Z ′Z)−1Z ′

Ec+E′cZ)κc−κ′c(2E′cEc+Z ′Fc+F ′cZ) κc = 2κ′cE
′
cZ(Z ′Z)−1Z ′Ecκc−2κ′cE

′
cEcκc = −2(αc∗−

αc)
2A′cM Ac;

• 4κ′cZ
′Ec(Z

′Z)−1E′cU−4κ′c(Z
′Ec+E

′
cZ)(Z ′Z)−1E′cU−4κ′cZ

′Ec(Z
′Z)−1(Z ′Ec+E

′
cZ)(Z ′Z)−1Z ′

U + 2κ′cF
′
cU + 2κ′cZ

′Fc(Z
′Z)−1Z ′U + 4κ′c(Z

′Ec + E′cZ)(Z ′ Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U −

2κ′c(2E
′
cEc+Z

′Fc+F
′
cZ)(Z ′Z)−1Z ′ U = 2(αc∗−αc)[B′cMU−2A′cMEc(Z

′Z)−1Z ′U−2A′cZ(Z ′

Z)−1E′cMU ]; and

• 2[U ′Ec(Z
′Z)−1E′cU+U ′Fc(Z

′Z)−1Z ′U−2U ′Ec(Z
′Z)−1(Z ′Ec+E′cZ)(Z ′Z)−1Z ′ U ]+2U ′Z(Z ′

Z)−1[(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)− E′cEc − Z ′Fc](Z ′Z)−1Z ′ U .

We now apply Lemma A1 to each of these terms. First, Lemma A1(ii and iii) imply that A′cMAc =

A′cAc − AcZ(Z ′Z)−1Z ′Ac = OP(n). Second, B′cMU = B′cU − B′cZ(Z ′Z)−1Z ′U , and Lemma A1

(ii and iii) implies that B′cMU = OP(n). Furthermore, Lemma A1(iv) implies that B′cMU = oP(n).

Third, A′cMEc = A′cEc − A′cZ(Z ′Z)−1Z ′Ec. Assumption 2 and Lemma A1(ii, iii, and iv) imply that

A′cMEc(Z
′Z)−1Z ′U = oP(n). Fourth, E′cMU = EcU − EcZ(Z ′Z)−1Z ′U = oP(n) by Lemma A1(i and

iv), so that A′cZ(Z ′Z)−1E′cMU = oP(n). Therefore, B′cMU −2A′cMEc(Z
′Z)−1Z ′U −2A′cZ(Z ′Z)−1E′c

MU = oP(n). Finally, we combine all terms in Lemma A1 and obtain that

2[U ′Ec(Z
′Z)−1E′cU + U ′Fc(Z

′Z)−1Z ′U − 2U ′Ec(Z
′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U ]

+ 2U ′Z(Z ′Z)−1[(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)− E′cEc − Z ′Fc](Z ′Z)−1Z ′U = oP(n).

All of these facts imply that L(2)
n (c;αc) = −2(αc∗ − αc)2A′cMAc + oP(n). �

Proof of Lemma 2: It is proved in the text. �

Proof of Lemma 3: Given Lemma 2, the proof is almost identical to the proof of theorem 1 of BCP. �

Proof of Theorem 1: In fact, the inequality just above Theorem 1 implies that QLRn = QLR
(β=0)
n under

H0,m, and Lemma 3(ii) implies that QLR(β=0)
n ⇒ supγ∈ΓZ(γ)2. The desired result follows. �

Proof of Theorem 2: Before proving the claim, we let γ and γ̄ be the lower and upper limit of Γ such that

Γj := [γj , γj+1] such that γ0 := γ, γm̄+1 := γ̄, and for j = 1, 2, . . . , m̄, γj := j.

We now prove the stated claim. First, limn→∞ P(m̂n > m∗) = limn→∞αn = 0 by virtue of the size

decay condition (ii). Second, the asymptotic Lemma A2(i) implies that if cn = o(n), for any j < m∗,
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limn→∞ P(QLR
(c+1)
n > cn) = 1. This implies that if αn is selected to yield cn = o(n), the desired result

follows. We note the following six properties (i to vi): (i) supγ∈Γj
Z(γ)2 = supγ∈Γj

{max[0,Z(γ)]2 +

max[0,Z(γ)]2} ≤ supγ∈Γj
max[0,Z(γ)]2 + supγ∈Γj

max[0,Z(γ)]2}, so that for any u > 0,

P

(
sup
γ∈Γj

Z(γ)2 ≥ u2

)
≤ P

(
sup
γ∈Γj

max[0,Z(γ)]2 ≥ u2

2

)
+ P

(
sup
γ∈Γj

min[0,Z(γ)]2 ≥ u2

2

)

= P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
+ P

(
inf
γ∈Γj

Z(γ) ≤ − u√
2

)
= 2P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)

by the fact that P(infγ∈Γj Z(γ) ≤ −u/
√

2) = P(supγ∈Γj
Z(γ) ≥ u/

√
2), where the last equality holds

from the symmetry of Gaussian process distribution. Therefore, for any u > 0,

P

(
sup
γ∈Γ
Z(γ)2 ≥ u2

)
≤ 2

m̄+1∑
j=1

P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
. (4)

(ii) Given the conditions, if we let σ∗ := supγ∈Γ var[Z(γ)]1/2, for any γ, |Z(γ)/σ∗| ≤ |Z(γ)/σ0(γ)| =

|Z0(γ)|, so that for any u > 0,

P

(
sup
γ∈Γj

Z(γ)

σ∗
≥ u

)
≤ P

(
sup
γ∈Γj

Z0(γ) ≥ u

)
. (5)

(iii) Lemma 7.1 of Piterbarg (1996) implies that as u→∞,

P

(
sup
γ∈Γj

BS(γ) ≥ u

)
= Hδµ(Γj)u

2/δ(1− Φ(u))(1 + o(1)), (6)

where Φ(·) is the distribution function of the standard normal random variable, µ(·) is the Lebesgue measure

of the given argument, Hδ := limγ̄→∞H(γ̄)/γ̄, and H(γ̄) := E[exp(maxγ∈[0,γ̄] BF (γ))]. Here, BF (·) is a

fractional Brownian motion with mean −|γ|δ and cov(BF (γ),BF (γ′)) = |γ|δ + |γ′|δ − |γ − γ′|δ on Γ.

(iv) The Slepian inequality implies that for any v, P(supγ Z0(γ) ≥ v) ≤ P(supγ BS(γ) ≥ v) (e.g.,

Piterbarg, 1996, p.6). Therefore, the Slepian inequality, (5), and (6) imply that as u→∞,

P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
≤ Hδµ(Γj)

(
u√
2σ∗

)2/δ (
1− Φ

(
u√
2σ∗

))
(1 + o(1)), (7)
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so that it follows that

P

(
sup
γ∈Γ
Z(γ)2 ≥ u2

)
≤ 2Hδµ∗

(
u√
2σ∗

)2/δ (
1− Φ

(
u√
2σ∗

))
(1 + o(1))

by (4), where µ∗ := µ(Γ).

(v) We further note that 1 − Φ(·) = 1
2erfc((·)/

√
2) ≤ 1

2 exp(−(·)2/2). Hence, if u → ∞, it follows

from

P

(
sup
γ∈Γ
Z(γ)2 ≥ u2

)
≤ Hδµ∗

(
u2

2σ2
∗

)1/δ

exp

(
− u2

4σ2
∗

)
(1 + o(1)). (8)

(vi) Finally, if we let the left side of (8) and u2 be the significance level αn and its associated critical

value cn, respectively, then

− log(αn)

n
≥ −1

δ

log(cn)

n
+

1

4σ2
∗

cn
n

+ o(1)

by noting that
{

log (Hδµ∗)− 1
δ log(2σ2

∗)
}

= O(1). We now note that

−1

δ

log(cn)

n
+

1

4σ2
∗

cn
n

=
1

4σ2
∗

cn
n

(
1− 4σ2

∗
δ

log(cn)

cn

)
=

1

4σ2
∗

cn
n

(1 + o(1))

as cn → ∞. Therefore, if log(αn) = o(n), as is assumed in condition (iii), it follows that cn = o(n). This

completes the proof. �

Proof of Theorem 3: Weak convergence of the quasi-likelihood ratio (QLR) test statistic is proved in the

same way as that of Theorem 1, so we only derive the covariance kernel of Z̃(·).

First, note that applying Theorem 1 implies that QLRn = supγ∈Γ {S(γ)′MU}2 /{σ̂2
n,0S(γ)′MS(γ)}

under H̃0. Next, applying the uniform law of large numbers (ULLN) to n−1S(·)′MS(·) shows that supγ∈Γ

|n−1σ̂2
n,0S(γ)′MS(γ)− σ̃2(γ, γ)| a.s.→ 0, where for each γ,

σ̃2(γ, γ) := σ2
∗{Ã4,4(γ)− Ã3,1(γ)(Ã1,1)−1Ã1,3(γ)} =

σ2
∗
∏m
i=0(γ − i)2

(2γ + 1)
∏m
i=0(γ + i+ 1)2

.

Also note that for each γ,

1√
n

(S(γ)′MU) =
1√
n

∑
uts

γ
n,t − Ã3,1(γ)(Ã1,1)−1 1√

n

∑
utzn,t + oP(1),
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so that, if we let G̃(·) be the weak limit of n−1/2S(γ)′MU , we have

E[G̃(γ)G̃(γ′)] = B̃4,4(γ, γ′)− Ã3,1(γ)(Ã1,1)−1B̃1,3(γ′)

− Ã3,1(γ′)(Ã1,1)−1B̃1,3(γ) + Ã3,1(γ)(Ã1,1)−1B̃1,1(Ã1,1)−1Ã1,3(γ′)

=
σ2
∗
∏m
i=0(γ − i)(γ′ − i)

(γ + γ′ + 1)
∏m
i=0(γ + i+ 1)(γ′ + i+ 1)

.

This implies that

E[Z̃(γ)Z̃(γ′)] =
{
∏m
i=0(γ − i)(γ′ − 1)}(2γ + 1)1/2(2γ′ + 1)1/2

{
∏m
i=0 |γ − i| · |γ′ − i|}(γ + γ′ + 1)

= cm(γ, γ′)
(2γ + 1)1/2(2γ′ + 1)1/2

(γ + γ′ + 1)

by the definition of cm(γ, γ′) :=
∏m
i=0(γ − i)(γ′ − i)/|

∏m
i=0(γ − i)(γ′ − i)|, as desired. �

4 Additional Useful Properties

4.1 Theoretical Part

In this subsection, we provide some additional properties that are not contained in the paper but useful in

obtaining the null limit distribution of the QLR test statistic in Section 3 of Cho and Phillips (2017).

First, for each γ, the almost sure limit of n−1
∑
G̃t(γ)G̃t(γ)′ that is denoted as Ã(γ) can be provided

as follows:

Ã(γ) :=


Ã1,1 Ã1,2 Ã1,3(γ)

Ã2,1 Ã3,3 Ã3,4(γ)

Ã3,1(γ) Ã4,3(γ) Ã4,4(γ)

 :=


Ã1,1 Ã1,2 Ã1,3 Ã1,4(γ)

Ã2,1 Ã2,2 Ã2,3 Ã2,4(γ)

Ã3,1 Ã3,2 Ã3,3 Ã3,4(γ)

Ã4,1(γ) Ã4,2(γ) Ã4,3(γ) Ã4,4(γ)

 ,

where G̃t(γ) := [ st(m)′, d′t, st(m)′ log(sn,t), s
γ
n,t]
′, and the submatrices are defined as follows: for i, j =

1, 2, . . . ,m+ 1,

Ã1,1
(m+1)×(m+1)

:=

[
1

i+ j − 1

]
, Ã1,2

(m+1)×k
:=

[
E[d′t]

j

]
, Ã1,3

(m+1)×(m+1)

:=

[
−1

(i+ j − 1)2

]
,

Ã1,4(γ)
(m+1)×1

:=

[
1

γ + j

]
, Ã2,2

k×k
:= E[dtd

′
t], Ã2,3

k×(m+1)

:=

[
−E[dt]

j2

]
, Ã2,4(γ)

k×1

:=

[
E[dt]

γ + 1

]
,
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Ã3,3
(m+1)×(m+1)

:=

[
2

(i+ j − 1)3

]
, Ã3,4(γ)

(m+1)×1

:=

[
−1

(γ + j)2

]
, and Ã4,4(γ)

1×1

:=
1

2γ + 1
.

Since Ã(γ) is supposed to be symmetric, we let Ã2,1 := Ã′1,2, Ã3,1 := Ã′1,3, Ã4,1(γ) := Ã1,4(γ)′, Ã2,3 :=

Ã′3,2, Ã2,4(γ) := Ã4,2(γ)′, and Ã4,3 := Ã′3,4. Observe that Ã(γ) corresponds to A(γ) in Section 2 of Cho

and Phillips (2017). Note that some of the elements are obtained by using the fact that st(m) is not a random

covariate.

Second, for each γ and γ′, the almost sure limit of n−1
∑
u2
t G̃t(γ)G̃t(γ

′)′ that is denoted as B̃(γ, γ′) is

provided as follows:

B̃(γ, γ′) :=


B̃1,1 B̃1,2 B̃1,3(γ′)

B̃2,1 B̃3,3 B̃3,4(γ′)

B̃3,1(γ) B̃4,3(γ) B̃4,4(γ, γ′)

 :=


B̃1,1 B̃1,2 B̃1,3 B̃1,4(γ′)

B̃2,1 B̃2,2 B̃2,3 B̃2,4(γ′)

B̃3,1 B̃3,2 B̃3,3 B̃3,4(γ′)

B̃4,1(γ) B̃4,2(γ) B̃4,3(γ) B̃4,4(γ, γ′)

 ,

where the submatrices are defined below, for i, j = 1, 2, . . . ,m+ 1,

B̃1,1
(m+1)×(m+1)

:=

[
E[u2

t ]

i+ j − 1

]
, B̃1,2

(m+1)×k
:=

[
E[u2

td
′
t]

j

]
, B̃1,3

(m+1)×(m+1)

:=

[
−E[u2

t ]

(i+ j − 1)2

]
,

B̃1,4(γ′)
(m+1)×1

:=

[
E[u2

t ]

γ′ + j

]
, B̃2,2

k×k
:= E[u2

tdtd
′
t], B̃2,3

k×(m+1)

:=

[
−E[u2

tdt]

j2

]
, B̃2,4(γ′)

k×1

:=

[
E[u2

tdt]

γ′ + 1

]
,

B̃3,3
(m+1)×(m+1)

:=

[
2E[u2

t ]

(i+ j − 1)3

]
, B̃3,4(γ′)

(m+1)×1

:=

[
−E[u2

t ]

(γ′ + j)2

]
, B̃4,4(γ, γ′)

1×1

:=
E[u2

t ]

γ + γ′ + 1
,

where ut := yt − E[yt|dt]. As B̃(γ, γ) is symmetric, B̃2,1 := B̃′1,2, B̃3,1 := B̃′1,3, B̃4,1(γ) := B̃1,4(γ)′,

B̃2,3 := B̃′3,2, B̃2,4(γ) := B̃4,2(γ)′, and B̃4,3 := B̃′3,4. The matrix B̃(γ, γ) corresponds to B(γ) in Section

2 of Cho and Phillips (2017).

Third, we show that Ã(·) is positive definite if and only if the covariance matrix of dt is positive definite.

We reorganize Ã(·) into

 A1,1(γ) A1,2(γ)

A2,1(γ) Ã2,2

 :=


A1,1(γ)

Ã1,2

Ã3,2

Ã4,2(γ)

Ã2,1 Ã2,3 Ã2,4(γ) Ã2,2

 ,
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where

A1,1(γ) :=

 A1,1 A1,2(γ)

A2,1(γ) Ã4,4(γ)

 :=


Ã1,1 Ã1,3 Ã1,4(γ)

Ã3,1 Ã3,3 Ã3,4(γ)

Ã4,1(γ) Ã4,3(γ) Ã4,4(γ)

 ,
A1,1 is positive definite by the definitions of Ã1,1, Ã1,3, and Ã3,3. This in turn implies that A1,1(γ) is positive

definite uniformly for each γ ∈ Γ(ε) if and only if Ã4,4(γ)−A2,1(γ)A−1
1,1A1,2(γ) is positive definite. Some

algebra shows that

Ã4,4(γ)− A2,1(γ)A−1
1,1A1,2(γ) =

∏m
i=0(γ − i)4

(1 + 2γ)
∏m
i=0(γ + i+ 1)4

,

which is strictly greater than zero for each γ ∈ Γ(ε), implying that A1,1(·) is positive definite uniformly on

Γ(ε). This further implies that Ã(·) is positive definite uniformly on Γ(ε) if and only if for each γ ∈ Γ(ε),

Ã2,2 − A2,1(γ)A1,1(γ)−1A1,2(γ) is positive definite. Here, every column of A1,2(γ) is a linear transfor-

mation of the first column of A1,1(γ), so that Ã2,2 − A2,1(γ)A1,1(γ)−1A1,2(γ) = E[dtd
′
t] − E[dt]E[dt]

′

that is the covariance matrix of dt. Therefore, Ã(·) is positive definite uniformly on Γ(ε) if and only if the

covariance matrix of dt is positive definite, that is provided the elements of dt are not linearly dependent

almost surely.

4.2 Simulation Part

We tabulate asymptotic critical values obtained by simulating supγ∈Γ Z̄`(γ)2 for large ` and various assump-

tions on Γ, where Z̄`(·) is the truncated exponential Gaussian process. The critical values of BCP should

be used only when m = 1. Table 1 reports critical values for the QLR test for models with polynomials of

degree m = 2, 3, 4, 5, 6, 7, 8, 9, 10. With these tabulated results, users can test for neglected nonlinearity up

to a 10-th degree polynomial null model. The values reported are obtained with ` = 1000 and one million

replications. Since this methodology provides more precise critical values than those in BCP, we include the

m = 1 case in Table 1. Interested readers can also download the GAUSS program code that generates the

null limit distribution from the following URL:

http://web.yonsei.ac.kr/jinseocho/polynomial.htm.

Users can select different values of the lower and upper bounds of Γ, `, and the number of replications in

running the code.
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4.3 Empirical Part

In addition to the empirical results in Cho and Phillips (2017), we also report additional empirical findings

from Bierens and Ginther’s (2001) data set. Their original samples are drawn from males aged between 18

and 70 with annual income greater than USD 50 in 1992. For our analysis, we focus on full-time workers,

and the sample size is 25,631 by this restriction. From this analysis, we intend to ignore different cohort

effects and introduce more heterogeneity to the data. For more information on the original data set, readers

can refer to Bierens and Ginther (2001).

The test results are contained in Table 2. The table structure is identical to that in Table 3 in Cho and

Phillips (2017). We summarize the findings as follows.

First, our empirical analysis shows that the most parsimonious polynomial orders for m1 and m2 are 4

and 6 for every model and data set. If the polynomial degree of schooling years or experience is less than or

equal to 2 or 4, respectively, every null model is rejected. This finding shows that the Mincer equation does

not hold for the 1988 CPS data.

Second, a further higher-degree polynomial model is required than what Murphy and Welch (1990)

and Lemieux (2006) found from their data. Our estimated mode is quadratic with respect to the schooling

years, which is consistent with Lemieux’s (2006) observation, but our model is hexic with respect to expe-

rience. This result is consistent with what Bierens and Ginther (2001) implicitly obtained from their LAD

estimation.

Third, the quartic model is not flexible enough to detect the nonlinearity of the earnings equation for this

data set, and this weakness arises mainly from the tail levels of experience. Figure 1 is drawn in the same

way as Figure 1 in Cho and Phillips (2017). Evidently, the quartic model underestimates log earnings in the

right-tail, and this deficiency is remedied by the hexic function.

Finally, these estimations also show that the respective degrees of polynomial nonlinearity with respect

to schooling years and experience in the original Mincer equation are variant to data and/or inclusion of

other explanatory variables in the model, thereby indicating the need for some flexibility in treating potential

nonlinearity in these key variables, as is possible with flexible polynomial specifications and, more generally,

with sieve approximants.
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Levels \ Γ [−0.20, 1.50] [−0.10, 1.50] [0.00, 1.50] [0.10, 1.50]
10% 3.7336 3.5869 3.4772 3.4003
5% 5.0114 4.8423 4.7283 4.6434
1% 8.0323 7.8151 7.7430 7.6375

Levels \ Γ [−0.20, 2.50] [−0.10, 2.50] [0.00, 2.50] [0.10, 2.50]
10% 3.8966 3.7750 3.6651 3.5822
5% 5.1831 5.0589 4.9339 4.8459
1% 8.2617 8.1332 7.9663 7.8625

Levels \ Γ [−0.20, 3.50] [−0.10, 3.50] [0.00, 3.50] [0.10, 3.50]
10% 4.0125 3.8996 3.8050 3.7358
5% 5.3049 5.1925 5.0956 5.0150
1% 8.3942 8.2808 8.1330 8.0578

Levels \ Γ [−0.20, 4.50] [−0.10, 4.50] [0.00, 4.50] [0.10, 4.50]
10% 4.0975 3.9859 3.8874 3.8128
5% 5.4021 5.2884 5.1750 5.0841
1% 8.5032 8.3619 8.2586 8.1464

Levels \ Γ [−0.20, 5.50] [−0.10, 5.50] [0.00, 5.50] [0.10, 5.50]
10% 4.1702 4.0576 3.9581 3.8978
5% 5.4927 5.3664 5.2487 5.1970
1% 8.5837 8.4411 8.3105 8.2641

Levels \ Γ [−0.20, 6.50] [−0.10, 6.50] [0.00, 6.50] [0.10, 6.50]
10% 4.2150 4.1058 4.0209 3.9663
5% 5.5267 5.4220 5.3256 5.2666
1% 8.6134 8.5069 8.4181 8.3524

Levels \ Γ [−0.20, 7.50] [−0.10, 7.50] [0.00, 7.50] [0.10, 7.50]
10% 4.2587 4.1599 4.0652 4.0051
5% 5.5725 5.4723 5.3720 5.2999
1% 8.6938 8.5761 8.4599 8.3650

Levels \ Γ [−0.20, 8.50] [−0.10, 8.50] [0.00, 8.50] [0.10, 8.50]
10% 4.3033 4.1951 4.1135 4.0538
5% 5.6144 5.5156 5.4253 5.3551
1% 8.7141 8.6312 8.4897 8.4218

Levels \ Γ [−0.20, 9.50] [−0.10, 9.50] [0.00, 9.50] [0.10, 9.50]
10% 4.3351 4.2366 4.1557 4.0880
5% 5.6507 5.5505 5.4726 5.3905
1% 8.7754 8.6351 8.5425 8.4747

Levels \ Γ [−0.20, 10.50] [−0.10, 10.50] [0.00, 10.50] [0.10, 10.50]
10% 4.3652 4.2769 4.1752 4.1244
5% 5.6828 5.5892 5.4841 5.4492
1% 8.8038 8.7053 8.5877 8.5292

Table 1: ASYMPTOTIC CRITICAL VALUES OF THE QLR TEST STATISTIC. This table contains the asymp-
totic critical values obtained by generating the truncated exponential Gaussian process 1,000,000 times.
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Null Model 1: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t

m2 \m1 1 2 4 6 m2 \m1 1 2 4 6

1 2094.8 2135.2 2153.7 2146.0 1 68.36 26.28 2.76 0.11
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (17.00) (87.60)

2 404.50 372.11 380.44 372.28 2 147.70 38.84 0.72 0.12
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (58.40) (87.60)

4 62.34 51.71 42.67 52.04 4 102.74 47.84 1.08 0.04
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (43.00) (95.40)

6 0.98 2.30 2.58 2.88 6 107.97 45.59 1.06 0.00
(53.80) (28.00) (28.20) (19.80) (0.00) (0.00) (44.60) (99.20)

Null Model 2: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗bt + sm′tη2∗

m2 \m1 1 2 4 6 m2 \m1 1 2 4 6

1 2244.0 2278.5 2292.5 2283.0 1 45.29 17.51 4.53 0.10
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (5.40) (10.78)

2 429.14 399.64 400.48 396.35 2 110.66 28.37 1.05 0.11
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (43.40) (89.40)

4 67.69 56.28 48.73 58.33 4 82.47 35.79 1.44 0.02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (37.60) (96.80)

6 3.20 3.21 3.34 3.70 6 76.30 33.51 0.59 0.00
(10.40) (13.20) (12.40) (10.20) (0.00) (0.00) (66.00) (100.0)

Table 2: INFERENCES FOR THE MINCER EQUATION USING ALL OBSERVATIONS. This table shows the
QLR test statistic and its p-values that are obtained by the data set in Bierens and Ginther ( 2001). The sample size is
25,631. Boldface p-values indicate significance levels less than 0.1%. Refer to Table 3 in Cho and Phillips (2017) for
more information.

Figure 1: QUADRATIC, QUARTIC, HEXIC FITS OF CONCENTRATED LOG WAGES AGAINST EXPERI-
ENCE. This figure shows the quadratic, quartic, and hexic fits of concentrated log wages with respect to experience.
The concentrated log wages are the prediction errors obtained by regressing log wages against schooling years and the
other dummy variables in (7) in Cho and Phillips (2017): bt and smt.
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