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Abstract

We illustrate the need to use higher-order (specifically sixth-order) expansions in order

to properly determine the asymptotic distribution of a standard artificial neural network

test for neglected nonlinearity. The test statistic is a Quasi-Likelihood Ratio (QLR)

statistic designed to test whether the mean square prediction error improves by in-

cluding an additional hidden unit with an activation function violating the “no-zero”

condition in Cho, Ishida, and White (2011). This statistic is also shown to be asymptot-

ically equivalent under the null to the Lagrange multiplier (LM) statistic of Luukkenon,

Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994). In addition, we compare the

power properties of our QLR test to one satisfying the no-zero condition and find that



the latter is not consistent for detecting a DGP with neglected nonlinearity violating an

analogous no-zero condition, whereas our QLR test is consistent.

1 Introduction

In analyzing the first-order asymptotic behavior of likelihood-based test statistics such

as the Wald, Lagrange multiplier, or (quasi-) likelihood ratio (QLR) statistics, it is

usually adequate to work with second-order (quadratic) approximations to the log-

likelihood function. As Phillips (2011) recently notes in a related context, however,

such approximations are not always adequate for first-order asymptotics, and schol-

ars going back at least to Cramér (1946) have given careful attention to cases where

higher-order approximations are required. For example, Bartlett (1953a, 1953b) ana-

lyzes models requiring higher-order approximation, and McCullagh (1984, 1987) pro-

vides a framework for this using tensor analysis. McCullagh (1986), Carrasco, Hu, and

Ploberger (2004), and Cho and White (2007) also apply higher-order expansions to a

variety of interesting models to obtain first-order asymptotics.

Recently, Cho, Ishida, and White (2011) showed that QLR tests for neglected non-

linearity based on artificial neural networks (ANNs) cannot be analyzed using quadratic

approximation, and they provide conditions under which a quartic (fourth-order) ap-

proximation yields the desired first-order asymptotics. Nevertheless, they also discuss

the fact that cases violating their assumption A7 (“no zero”) require the use of even

higher-order approximations to obtain the first-order asymptotics for the QLR statistic.

In particular, they show how constructing the test using a hidden unit with logistic ac-

tivation function – a standard choice in the ANN literature – violates A7. At present,

the conditions yielding first-order asymptotics for the QLR statistic with this standard

choice are unknown. Nor is it satisfactory simply to rule out such cases.

The goal of this study is to gain a deeper understanding of the asymptotic behavior

of ANN-based QLR tests for neglected nonlinearity when Cho, Ishida, and White’s

(2011) no-zero assumption is violated. In doing so, we illustrate the use of higher-

order, specifically sixth-order, expansions to obtain first-order asymptotics. Although

Cho, Ishida, and White (2011) obtain the asymptotic distribution of their QLR statistic

by explicitly treating the two-fold identification problem that arises in this approach to
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testing neglected nonlinearity, for conciseness we restrict our focus here to analyzing

the QLR statistic when there is only a single source of identification failure under the

null. We leave the two-fold identification problem to other work.

The plan of this paper is as follows. In Section 2, we introduce a simple ANN model

employing a single hidden unit violating the “no-zero” condition, and we analyze a QLR

statistic designed to test neglected nonlinearity using this model. Section 3 contains

Monte Carlo simulations; these corroborate the results of Section 2 and provide insight

into hidden unit selection. Section 4 contains a summary and concluding remarks

2 A QLR test for neglected nonlinearity

We begin by specifying the same data generating process (DGP) assumed by Cho,

Ishida, and White (2011).

Assumption 1 (DGP) Let (Ω,F ,P) be a complete probability space on which is de-

fined the strictly stationary and absolutely regular process {(Yt,X′t)′ ∈ R1+k : t =

1, 2, · · · } with mixing coefficients βτ such that for some ρ > 1,
∑∞

τ=1 τ
1/(ρ−1)βτ < ∞.

Further, E(Yt) <∞.

We note that Xt may contain lagged values of Yt, as well as nonlinear transformations

of these lags or of other underlying variables.

Next, we specify a model for E[Yt|Xt]. For this, we let Xt,1 denote the first element

of Xt.

Assumption 2 (Model) Let f(Xt ;α, β, λ, δ) := α+ X′tβ +λΨ(Xt,1δ), and define the

modelM as

M := {f( · ;α,β, λ, δ) : (α,β, λ, δ) ∈ A×B× Λ×∆},

where A ⊂ R, B ⊂ Rk, Λ ⊂ R, and ∆ ⊂ R are non-empty compact sets, with

0 ∈ ∆, and Ψ : R 7→ R is an analytic function with c2 = 0 and c3 6= 0, where

cj := ∂j

∂xj
Ψ(x)|(x=0) j = 2, 3, . . . .

This model provides a natural framework in which to test for neglected nonlinearity

with respect to Xt,1. We consider only a single element of Xt appearing inside Ψ for
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simplicity. It is straightforward to treat the case where Ψ(Xt,1δ) is replaced by Ψ(X′tδ),

but the notation required to handle this case becomes extremely cumbersome. Many

hidden unit functions satisfy the conditions in Assumption 2. For example, if Ψ( · ) is

the logistic function, so that Ψ(x) := {1 + exp(x)}−1, then c2 = 0 but c3 6= 0. In

addition, sin(x), arctan(x), sin[arctan(x)], etc., satisfy Assumption 2.

Now consider testing the linearity of conditional expectation: for some α∗ ∈ A and

β∗ ∈ B, E[Yt|Xt] = α∗ + X′tβ∗. When linearity of E[Yt|Xt] holds, the pseudo-true

values λ∗ and δ∗ satisfy λ∗ = 0 or δ∗ = 0, implying the presence of parameters not

identified under the null.

Letting Ψt(δ) = Ψ(Xt,1δ), we define the QLR statistic for neglected nonlinearity

using the quasi-log likelihood (QL):

Ln(α,β, λ, δ) := −
n∑
t=1

{Yt − α−X′tβ − λΨt(δ)}2.

As Cho, Ishida, and White (2011) show, different orders of expansion are required

when testing λ∗ = 0 than when testing δ∗ = 0. A quadratic expansion is sufficient for

testing λ∗ = 0 when δ 6= 0 (e.g., Hansen (1996)), whereas a quartic approximation

is needed for testing δ∗ = 0, under regularity conditions provided by Cho, Ishida, and

White (2011). The most critical condition is the no-zero condition (assumption A7),

which states that c2 6= 0. Without this, the quartic expansion fails. The model of

Assumption 2 violates this condition, so Cho, Ishida, and White’s (2011) results do not

apply. Further, as their simulations show, the asymptotic distribution obtained when

the no-zero condition holds does not provide a useful approximation to the required

distribution when the no-zero condition fails.

We analyze the QLR statistic under H0 : δ∗ = 0 by adapting the approach in Cho,

Ishida, and White (2011). As it turns out, a sixth-order Taylor expansion suffices. To

verify this, we first concentrate the QL with respect to α and β, obtaining

Ln(δ;λ) := −[Y − λΨ(δ)]′M[Y − λΨ(δ)], (1)

where Y := [Y1, Y2, . . . , Yn]′, Ψ(δ) := [Ψ1(δ),Ψ2(δ), . . . ,Ψn(δ)]′, M := I−Z(Z′Z)−1

Z′, Z :=(ι,X) with ι the n× 1 vector of ones, and X := [X1,X2, . . . ,Xn]′. The QLR
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statistic for testing δ∗ = 0 is then

QLRn := sup
λ∈Λ

QLRn(λ) := sup
λ∈Λ

n

{
Ln(0;λ)− supδ∈∆ Ln(δ;λ)

Ln(0;λ)

}
.

Approximating the concentrated QL, eq.(1), by a Taylor expansion around δ∗ = 0 re-

quires the following partial derivatives at δ∗ = 0:

• L(1)
n (0;λ) := ∂

∂δ
Ln(0;λ) = 0;

• L(2)
n (0;λ) := ∂2

∂δ2
Ln(0;λ) = 0;

• L(3)
n (0;λ) := ∂3

∂δ3
Ln(0;λ) = 1

4
λι′D3MU;

• L(4)
n (0;λ) := ∂4

∂δ4
Ln(0;λ) = 0;

• L(5)
n (0;λ) := ∂5

∂δ5
Ln(0;λ) = −1

2
λι′D5MU; and

• L(6)
n (0;λ) := ∂6

∂δ6
Ln(0;λ) = − 5

16
λ2ι′D3MD3ι,

where U := [U1, U2, . . . , Un]′ with Ut := Yt − E[Yt|Xt], and Dm, the “power matrix”

of order m, is Dm := diag{Xm
1,1, X

m
2,1, ..., X

m
n,1} for m = 3, 5. Here, L(1)

n (0;λ) = 0

and L(2)
n (0;λ) = 0, whereas Cho, Ishida, and White’s (2011) no-zero condition gives

L
(1)
n (0;λ) = 0 and L(2)

n (0;λ) 6= 0. This permits them to use L(2)
n (0;λ) as the key term

determining the asymptotic distribution, but this is not possible here. Instead, L(3)
n (0;λ)

now plays the key role, mainly because c3 6= 0. The sixth-order Taylor expansion at

δ∗ = 0 is then

Ln(δ;λ)− Ln(0;λ) =
1

3!
L(3)
n (0;λ) δ3 +

1

5!
L(5)
n (0;λ) δ5 +

1

6!
L(6)
n (0;λ) δ6 + oP(1).

Before examining the asymptotic behavior of the terms on the right, we impose the

following regularity conditions:

Assumption 3 (Moments)E|U2
t X

6
t,1| <∞,E|U2

t X
10
t,1| <∞, and for j > 1,E|U2

t X
2
t,j|

<∞.

Assumption 4 (MDS) E[Ut|Xt, Ut−1,Xt−1, ...] = 0.

Assumption 5 (Covariance) det[E[U2
t Z̃tZ̃

′
t]] > 0 and det[E[Z̃tZ̃

′
t]] > 0, where Z̃t :=

(Z′t, X
3
t,1)′ and Zt := (1,X′t)

′.
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These conditions ensure the regular asymptotic behavior of each derivative term.

In particular, Assumption 3 holds by the Cauchy-Schwarz inequality if E|Ut|4 < ∞,

E|Xt,1|20 < ∞, and for j > 1, E|Xt,j|4 < ∞. Also, the ergodic theorem and the

central limit theorem for martingale difference sequences ensure that

• n−1Ln(0;λ)
a.s.→ −σ2

∗;

• Zn,3 := n−1/2ι′D3MU⇒ Z3 ∼ N(0, τ ∗3 );

• Zn,5 := n−1/2ι′D5MU⇒ Z5 ∼ N(0, τ ∗5 ); and

•Wn,6 := n−1ι′D3MD3ι
a.s.→ ξ∗3 ,

where σ2
∗ := E[U2

t ]; for m = 3 and 5,

τ ∗m := E[U2
t X

2m
t,1 ]− 2E[U2

t X
m
t,1Z

′
t]E[ZtZ

′
t]
−1E[Xm

t,1Zt]

+ E[Xm
t,1Z

′
t]E[ZtZ

′
t]
−1E[U2

t ZtZ
′
t]E[ZtZ

′
t]
−1E[Xm

t,1Zt];

and ξ∗m := E[X2m
t,1 ] − E[Xm

t,1Z
′
t]E[ZtZ

′
t]
−1E[Xm

t,1Zt]. As these results are elementary,

we do not prove them.

Substituting appropriately gives

Ln(δ;λ)− Ln(0;λ)

=
λ

3!4
Zn,3 {n1/6δ}3 − λ

5!2
· Zn,5
n1/3
{n1/6δ}5 − 5λ2

6!16
Wn,6 {n1/6δ}6 + oP(1).

The numerator of the QLR statistic is the opposite of supδ∈∆{Ln(δ;λ) − Ln(0;λ)}.

Letting Dn := n1/6δ and maximizing the non-vanishing expression on the right above

gives first order conditions

3
λ

3!4
Zn,3D2

n − 5
λ

5!2
· Zn,5
n1/3
D4
n − 6

5λ2

6!16
Wn,6D5

n = 0.

The solution Dn = 0 gives the minimum, so we have D2
n > 0, and we can divide both

sides by D2
n to obtain

3
λ

3!4
Zn,3 − 5

λ

5!2
· Zn,5
n1/3
D2
n − 6

5λ2

6!16
Wn,6D3

n = 0.

This is a cubic equation in Dn.
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Inspecting the cubic discriminant and noting that n−1/3Zn,5 = oP(1), we find that

with probability approaching one, this equation has one real root. This root, say D̂n, is

a continuous function of Zn,3 and Wn,6, both of which converge in distribution and are

thus OP(1). It follows that D̂n ⇒ D∗, say, and that D̂n = OP(1). We therefore have

sup
δ∈∆
{Ln(δ;λ)− Ln(0;λ)} ⇒ λ

3!4
Z3D3

∗ −
5λ2

6!16
ξ∗3 D6

∗ = sup
D

λ

3!4
Z3D3 − 5λ2

6!16
ξ∗3 D6.

From the final equality, it is straightforward to verify that

D3
∗ :=

(
48

ξ∗3λ

)
Z3 ∼ N

[
0, τ ∗3

(
48

ξ∗3λ

)2
]
.

Thus, it follows that

sup
δ∈∆
{Ln(δ;λ)− Ln(0;λ)} =

Z2
n,3

Wn,6

+ oP(1)⇒ λ

3!4
Z3D3

∗ −
5λ2

6!16
ξ∗3D6

∗ =
Z2

3

ξ∗3
.

Observe that the unidentified parameter λ cancels out, so the asymptotic null distribu-

tion is free of λ, implying that Davies’s (1977, 1987) identification problem does not

arise.

We offer the following remarks. First, by the definition of the QLR statistic, its

asymptotic null behavior is given by

QLRn := sup
λ∈Λ

QLRn(λ)⇒
(
Z2

3

σ2
∗ξ
∗
3

)
.

In contrast, under their no-zero condition, Cho, Ishida, and White (2011) obtain the

square of the half-normal distribution as the limiting distribution, implying that the QLR

statistic has a probability mass at zero. Our result is different from theirs, because D∗
captures the asymptotic behavior of n1/6δ̂n under the null, where δ̂n is the nonlinear least

squares (NLS) estimator. This enables the QLR test to have a continuous distribution

under the null. When the no-zero condition of Cho, Ishida, and White (2011) holds,

the NLS estimator is squared, leading to the square of the half-normal distribution.

Second, we see that under the null, the convergence speed of the NLS estimator is quite

slow; specifically, it is n1/6. This does not necessarily imply that testing for neglected

nonlinearity using the model considered here is inferior to the c2 6= 0 case. Although
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we have a slower convergence rate than the n1/4 rate in Cho, Ishida, and White (2011),

if the neglected nonlinearity has c2 = 0 and c3 6= 0, the QLR test constructed using

an activation function with c2 6= 0 may not have power, because such tests neglect the

higher order terms needed to detect c3 6= 0 alternatives. On the other hand, if a QLR test

constructed using an activation function with c2 = 0 and c3 6= 0 is applied to a c2 6= 0

nonlinearity, we expect its power to be less than a c2 6= 0 QLR test, although it may still

have some power. We examine these features in our Monte Carlo simulations in the next

section. Third, our analysis here relies on c2 = 0 and c3 6= 0. If the activation function

has both c2 = 0 and c3 = 0, then our analysis no longer applies. Instead, further higher-

order approximations are required. For example, if c4 6= 0, an eighth-order expansion

may be useful. Fourth, a Lagrange multiplier (LM) statistic can be equivalently defined:

LMn :=
Z2
n,3

σ̂0
nWn,3

=
(ι′D3Û0)2

σ̂0
n(ι′D3MD3ι)

,

where Û0 := Y − Z(Z′Z)−1Z′Y and σ̂0
n := −n−1Ln(0;λ). In particular, Û0 :=

U− Z(Z′Z)−1Z′U under the null, and it easily follows that under the null,

LMn ⇒
(
Z2

3

σ2
∗ξ
∗
3

)
.

This LM test differs from the standard LM test statistic, as it is defined using the third-

order derivative. Luukkonen, Saikkonen, and Teräsvirta’s (1988) LM test for the linear

autoregressive model versus a smooth transition alternative is derived similarly. Finally,

the availability of the LM test is useful in corroborating our theory, as our Monte Carlo

experiments of the next section show.

3 Simulations

We divide this section into two subsections. First, we examine the relationship between

the QLR and LM tests. This serves to corroborate the theory developed in Section

2. Second, we examine the level and power of the QLR and LM tests in different

environments and compare their performances.
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3.1 Comparison of the QLR and LM Tests

We consider the following simulation environment for the first goal stated above:

• (Xt, Ut) is identically and independently distributed;

• Yt ≡ Xt + Ut; and

• (Xt, Ut)
′ ∼ N(0, I2).

Using this DGP, we examine the asymptotic null behavior of the QLR test based on a

logistic activation function. We denote the QLR and LM tests as QLR(L)
n and LM(L)

n ,

respectively, and let the parameter spaces be A = [−2.0, 2.0], B = [−2.0, 2.0], Λ =

[0.5, 1.5], and ∆ = [−2.0, 2.0]. The alternative model is denoted as “L” (for logistic) to

distinguish it from the models considered below. That is,

• L := {f(·;α, β, λ, δ) : f(x;α, β, λ, δ) = α+ βx+ λ{1 + exp(δx)}−1 : α, β, δ ∈

[−2.0, 2.0], λ ∈ [0.5, 1.5]}.

Here, Λ does not contain 0, so the QLR statistic is not affected by the two-fold identifi-

cation problem arising when λ∗ = 0. The results of Section 2 and the independence of

Xt and Ut ensure that QLR(L)
n

A∼ X 2
1 and LM(L)

n
A∼ X 2

1 under the null. We also have

QLR(L)
n = LM(L)

n + oP(1) under the null, so we expect that their correlation should

converge to one as the sample size increases.

INSERT Figure 1 AROUND HERE.

We proceed with our simulations as follows. First, we obtain the empirical distribu-

tions of the QLR and LM tests for a sample size of 50, 000. This rather large sample size

is chosen to accommodate the slow convergence of δ̂n. Figure 1 shows these empirical

distributions. There are four lines in Figure 1, obtained by repeating the experiments

5,000 times. The solid and dashed lines are reference lines, respectively the distribution

functions of the chi-square random variable with one degree of freedom and the squared

half standard normal random variable, max[0, Z]2, where Z ∼ N(0, 1). The other two

lines (dotted and small-dashed lines) are the empirical distributions of the QLR and LM

tests, respectively. We see that they closely match the chi-square distribution with one

degree of freedom. They do not match the squared half-normal distribution applicable

when the no-zero condition holds.

INSERT Figure 2 AROUND HERE.
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To examine the role of the no-zero condition further, suppose that we modify the

logistic hidden unit activation function to Ψ̃(x) := {1 + exp(1 + x)}−1 so that c2 6=

0. The other assumptions are the same as before. Our modified QLR test, which we

denote as QLR(M)
n , is expected to weakly converge to max[0, Z]2 by theorem 2 of

Cho, Ishida, and White (2011). This is affirmed by Figure 2. That is, the empirical

distribution of the QLR test (dotted line) is essentially identical to that of max[0, Z]2,

and we can conclude from this that the order of expansion required when c2 = 0 is

different from that required when c2 6= 0. On the other hand, the LM statistic still has

the X 2
1 distribution. This illustrates the fact that when the no-zero condition holds, the

QLR and LM statistics are no longer asymptotically equivalent under the null.

INSERT Table 1 AROUND HERE.

Finally, we examine the relation between the QLR and LM statistics when c2 = 0.

According to our theory, these are asymptotically equivalent under the null. To check

this empirically, we tabulate the correlation coefficients between the QLR and LM tests

for various sample sizes, n, using 1,000 replications for each n. Table 1 presents these

results. As expected, the correlation coefficient approaches one as n increases, cor-

roborating our theoretical results and confirming that a sixth-order expansion is indeed

necessary to analyze the QLR statistic.

3.2 Level and Power of the QLR and LM Tests

Next, we compare the QLR and LM tests for a variety of cases. The main goal of this

comparison is to investigate circumstances under which the performances of the tests

may be poor.

We define two different QLR tests by specifying two different models, “S” for

”sine” and “C” for ”cosine”:

• S := {f(·;α, β, λ, δ) : f(x;α, β, λ, δ) = α + βx + λ sin(δx) : α, β, δ ∈

[−5.0, 5.0], λ ∈ [1.0, 5.0]};

• C := {f(·;α, β, λ, δ) : f(x;α, β, λ, δ) = α + βx + λ cos(δx) : α, β, δ ∈

[−5.0, 5.0], λ ∈ [1.0, 5.0]}.

The only difference between models S and C is that the activation functions differ.

Nevertheless, their properties are quite different. Model S satisfies Assumption 2, but
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model C doesn’t. On the other hand, model C satisfies the no-zero condition in Cho,

Ishida, and White (2011), but model S doesn’t. This implies that the null behaviors of

the QLR tests based on models S and C need to be approximated by sixth - and fourth-

order expansions, respectively. We denote the QLR tests constructed from models S

and C as QLR(S)
n and QLR(C)

n , respectively.

In addition to the QLR tests, we also consider LM test statistics. The first LM

statistic is constructed as in Section 2 and denoted LM(S)
n . This notation recognizes its

correspondence to QLR(S)
n in the sense that a sixth-order expansion is exploited, as in

Section 2. We also consider an LM statistic defined as

LM(C)
n :=

max[0, ι′D2Û0]2

σ̂0
nι
′D2MD2ι

.

Note that this LM(C)
n is defined using the score function used for QLR(C)

n , which is

based upon the quartic expansion as in theorem 2 of Cho, Ishida, and White (2011).

Thus, both LM(C)
n and QLR(C)

n are asymptotically equivalent under the null, and their

asymptotic null distribution is max[0, Z]2.

INSERT Table 2 AROUND HERE.

We compare the level and power of these test statistics. First, we apply the four test

statistics to the same data sets as in the previous subsection and examine their empirical

levels. Simulation results are presented in Table 2. We compare these four test statistics

at three different levels of significance: 1%, 5%, and 10%. The overall performances of

the four test statistics are very satisfactory. Even when the sample size is as small as 50,

the empirical levels are well recovered by the asymptotic critical values. Further, when

the sample size is greater than or equal to 100, the differences between the nominal

levels and empirical rejection rates are less than 1 percentage point for every case. This

suggests that we can trust the QLR and LM test statistics in terms of levels even when

the sample size is not so large. On the other hand, if only the n = 50 case is considered,

we see that the QLR and LM tests indexed by C are better than those indexed by S

overall. This finite sample property is not surprising, given that QLR(C)
n and LM(C)

n

have a faster convergence rate than QLR(S)
n and LM(S)

n . Nevertheless, this is a minor

difference.
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Second, we apply the four test statistics to data sets generated as follows:

• (Xt, Ut) is identically and independently distributed;

• Yt ≡ Xt + exp(Xt) + Ut; and

• (Xt, Ut)
′ ∼ N(0, I2).

This DGP satisfies the alternative; it enables us to compare the power properties of the

QLR and LM test statistics. In particular, the neglected nonlinearity is exponential,

which satisfies the no-zero condition. Although both models S and C are misspecified

for this DGP, we expect that the QLR test statistic will perform better if it is constructed

using an activation function satisfying the no-zero condition. Thus,QLR(C)
n is expected

to perform better than QLR(S)
n . Also, we should expect similar patterns from the LM

tests, as they are constructed using the scores used for QLR(C)
n and QLR(S)

n , respec-

tively.

INSERT Table 3 AROUND HERE.

This expectation is affirmed by our simulation results, presented in Table 3. Note

that the powers of QLR(C)
n and LM(C)

n are much higher than QLR(S)
n and LM(S)

n ,

respectively. Even when the sample size is as small as 50, more than 98% of the repli-

cations reject the null hypothesis at the 5% level, whereas the empirical rejection rates

are only around 50% for QLR(S)
n and LM(S)

n . This demonstrates the importance of

properly choosing the activation function for the test. Note, however, that QLR(S)
n and

LM(S)
n still appear to be consistent. Also, we observe that the LM tests perform better

than the QLR tests.

Finally, we apply the four test statistics to the following alternative DGP:

• (Xt, Ut) is identically and independently distributed;

• Yt ≡ Xt + {1 + exp(Xt)}−1 + Ut; and

• (Xt, Ut)
′ ∼ N(0, I2).

Note that this DGP has neglected nonlinearity driven by the logistic function, which

violates c2 6= 0, but instead satisfies c2 = 0 and c3 6= 0. Again, models S and C are

misspecified. Using this DGP, we expect thatQLR(S)
N will perform better thanQLR(C)

n ,

for the reasons discussed earlier. In fact, given thatQLR(C)
n is designed to test c2 6= 0−

type nonlinearities, but here we have a c2 = 0 nonlinearity, and because QLR(C)
n treats
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higher-order terms associated with c3, c4, ..., as negligible in probability, we expect that

QLR(C)
n may have very little power.

INSERT Table 4 AROUND HERE.

Table 4 presents the simulation results. As we can see, QLR(S)
n has power almost

identical to LM(S)
n , and both are consistent. As the sample size increases, the empirical

rejection rates converge to one, as expected. Although their convergence speed is not as

fast as seen in Table 3, they are still consistent for detecting the neglected nonlinearity.

This slow convergence is due to the use of a sixth-order expansion. On the other hand,

QLR(C)
n and LM(C)

n have no power for any sample size. Indeed, power is always close

to the nominal levels, and the empirical rejection rates don’t improve even for n =

30, 000.

In addition to the DGPs we report here, we conducted other experiments using

QLR(C)
n , LM(C)

n , and alternative DGPs also exhibiting c2 = 0− type nonlinearities.

Specifically, we considered the arctan and sin[arctan] functions as sources of neglected

nonlinearity. Our findings are substantially the same. Although the empirical distribu-

tions of QLR(C)
n and LM(C)

n are not identical to their asymptotic null distributions, the

differences are slight, and the empirical distributions remain stable as the sample size

increases. From this, we again see that QLR(C)
n and LM(C)

n are not consistent against

c2 = 0− type neglected nonlinearities.

4 Conclusion

We illustrate the need to use higher-order expansions in order to properly determine the

asymptotic distribution of a standard artificial neural network statistic designed to test

for neglected nonlinearity. The test statistic is a Quasi-Likelihood Ratio (QLR) statistic

for an ANN model that uses a hidden unit with a logistic activation function. This

model violates Cho, Ishida, and White’s (2011) no-zero condition, for which a fourth

order expansion suffices. Instead, a sixth-order expansion delivers the desired first-order

asymptotics. We also show that when the no-zero condition fails, the QLR statistic

is asymptotically equivalent under the null to the Lagrange multiplier (LM) statistic

of Luukkonen, Saikkonen, and Teräsvirta (1988), and Teräsvirta (1994). Finally, we
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compare the level and power of QLR tests satisfying and violating the no-zero condition

in Cho, Ishida, and White (2011). This shows that when the neglected nonlinearity has

c2 = 0 and c3 6= 0, the QLR test constructed by a hidden layer with c2 6= 0 does not

have power, whereas the QLR test with c2 = 0 and c3 6= 0 does.
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Table 1: CORRELATION COEFFICIENT BETWEEN QLR AND LM STATISTICS

Number of Replications: 1,000
DGP: Yt = Xt + Ut, (Xt, Ut) ∼ IID N(0, I2)

MODEL L: α + βXt + λ{1 + exp(δXt)}−1, α, β, δ ∈ [−2.0, 2.0], AND λ ∈ [0.5, 1.5]

Sample Size Correlation Coefficient
50 0.7929

100 0.8513
500 0.8725

1, 000 0.8890
5, 000 0.9349

10, 000 0.9585
50, 000 0.9829

100, 000 0.9884
200, 000 0.9932
300, 000 0.9964

Table 2: LEVELS OF THE QLR AND LM TEST STATISTICS

NUMBER OF REPLICATIONS: 5,000
DGP: Yt = Xt + Ut, (Xt, Ut) ∼ IID N(0, I2)

MODEL S : α + βXt + λ sin(δXt), α, β, δ ∈ [−5.0, 5.0], AND λ ∈ [1.0, 5.0]
MODEL C: α + βXt + λ cos(δXt), α, β, δ ∈ [−5.0, 5.0], AND λ ∈ [1.0, 5.0]

Statistics Levels \ n 50 100 150 200 250 300
1% 1.00 0.92 1.30 1.08 0.86 0.98

QLR(S)
n 5% 4.28 4.82 5.28 4.92 4.48 4.84

10% 8.70 9.60 9.56 9.12 8.50 9.46
1% 1.16 0.94 1.28 1.06 0.94 0.90

LM(S)
n 5% 4.94 5.02 5.58 5.32 4.86 5.16

10% 10.12 10.36 10.62 10.08 9.32 10.70
1% 1.14 1.04 0.82 1.20 1.02 1.12

QLR(C)
n 5% 5.26 4.96 4.54 5.48 4.80 5.74

10% 10.36 10.24 9.98 10.36 10.02 10.92
1% 0.98 0.94 0.78 1.18 1.04 1.10

LM(C)
n 5% 5.08 4.80 4.36 5.32 4.72 5.52

10% 9.94 9.92 9.68 10.12 9.96 10.72
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Table 3: POWERS OF THE QLR AND LM TEST STATISTICS

NUMBER OF REPLICATIONS: 5,000
DGP: Yt = Xt + exp(Xt) + Ut, (Xt, Ut) ∼ IID N(0, I2)

MODEL S : α + βXt + λ sin(δXt), α, β, δ ∈ [−5.0, 5.0], AND λ ∈ [1.0, 5.0]
MODEL C: α + βXt + λ cos(δXt), α, β, δ ∈ [−5.0, 5.0], AND λ ∈ [1.0, 5.0]

Statistics Levels \ n 50 100 150 200 250 300
1% 34.06 45.48 52.56 56.04 59.86 62.16

QLR(S)
n 5% 42.10 51.74 56.94 59.34 62.34 64.08

10% 46.52 55.02 59.20 61.00 63.46 65.04
1% 42.94 55.36 64.10 69.56 75.66 80.02

LM(S)
n 5% 53.44 64.78 72.00 76.44 81.26 84.98

10% 60.02 69.82 76.26 80.18 83.78 87.24
1% 96.90 99.50 99.68 99.84 99.84 99.88

QLR(C)
n 5% 98.86 99.70 99.78 99.84 99.90 99.90

10% 99.38 99.80 99.80 99.86 99.92 99.92
1% 96.80 99.96 100.0 100.0 100.0 100.0

LM(C)
n 5% 99.02 99.98 100.0 100.0 100.0 100.0

10% 99.58 100.0 100.0 100.0 100.0 100.0

Table 4: POWERS OF THE QLR AND LM TEST STATISTICS

NUMBER OF REPLICATIONS: 5,000
DGP: Yt = Xt + {1 + exp(Xt)}−1 + Ut, (Xt, Ut) ∼ IID N(0, I2)

MODEL S : α + βXt + λ sin(δXt), α, β, δ ∈ [−5.0, 5.0], AND λ ∈ [1.0, 5.0]
MODEL C: α + βXt + λ cos(δXt), α, β, δ ∈ [−5.0, 5.0], AND λ ∈ [1.0, 5.0]

Statistics Levels \ n 100 200 500 1,000 2,000 5,000 10,000 20,000 30,000
1% 1.08 1.72 2.44 4.28 7.96 21.66 49.34 84.88 96.74

QLR(S)
n 5% 4.86 6.50 9.30 13.10 20.82 43.54 73.14 95.00 99.36

10% 9.94 11.48 15.72 20.74 31.04 56.64 82.38 97.44 99.76
1% 1.02 1.70 2.32 4.06 7.56 20.90 48.48 84.56 96.52

LM(S)
n 5% 5.10 6.70 9.40 12.80 20.40 42.80 72.66 94.86 99.34

10% 10.86 12.34 16.10 20.76 30.56 56.34 82.18 97.34 99.76
1% 0.96 1.18 0.90 1.08 0.98 1.04 1.20 1.10 0.98

QLR(C)
n 5% 5.42 4.88 5.10 5.88 5.28 4.64 5.14 4.58 5.00

10% 10.44 10.40 10.46 11.12 9.60 10.24 10.34 10.00 10.20
1% 0.94 1.14 0.82 1.04 0.96 1.04 1.18 1.08 0.98

LM(C)
n 5% 5.32 4.74 4.92 5.82 5.20 4.68 5.16 4.56 5.00

10% 10.20 10.30 10.36 11.04 9.50 10.18 10.00 10.18 10.40

17



Figure 1: Empirical Distributions of the QLR and LM Statistics: c2 = 0
Number of Replications: 5,000

Sample Size: 50,000

Figure 2: Empirical Distributions of the QLR and LM Statistics: c2 6= 0
Number of Replications: 5,000

Sample Size: 50,000
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