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Abstract

We revisit Theorem 1 of Cho and White (2007, “CW”) in light of Carter and Steigerwald (2010) and

give a set of sufficient conditions for CW’s quasi-likelihood ratio (QLR) statistic to yield a consistent

test.
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As Carter and Steigerwald (2010) correctly point out, Theorem 1(b) of Cho and White (2007,“CW”),

which was intended to provide conditions ensuring the consistency of the quasi-maximum likelihood estima-

tor (QMLE) for the parameters of a regime-switching process, requires further assumptions for its validity.

Since the null distribution of CW’s quasi-likelihood ratio (QLR) test statistic is unaffected by this omis-

sion and since the QLR test generally will have power even when the QMLE is not consistent for the true

regime-switching parameters, this deficiency does not have disastrous consequences for CW’s central goal,

testing for regime switching, Nevertheless, it is important to accurately delineate conditions under which

the QLR test is consistent. Carter and Steigerwald’s further condition, that1 Xt|Ft−1 ∼ F (·; θ∗0, θ∗k) when

St = k (k ∈ {1, 2}) ensures the consistency of the QMLE for the regime-switching parameters. This then

implies the consistency of the QLR test.

There are, however, other conditions ensuring the consistency of the QLR test; consistency of the QMLE

for the true regime-switching parameters is sufficient but not necessary for this. Consistency of the test

occurs whenever the pseudo-true parameters for the (misspecified) regime switching process differ. Ac-

cordingly, we state a modified version of CW’s theorem 1 that provides several such sufficient conditions,

including, for completeness, those of Carter and Steigerwald (2010) (Theorem 1 (b′)).

1Notation and references to assumptions are as in Cho and White (2007), unless otherwise specified.
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Theorem 1 (b′) Given Assumptions A.1, A.2(i,ii), A.3, A.4, A.5(i), suppose Xt|Ft−1 ∼ F (·; θ∗0, θ∗k) when

St = k, k ∈ {1, 2}. Under H1, (π̂qn, θ̂
q
0,n, θ̂

q
1,n, θ̂

q
2,n)→ (π∗, θ∗0, θ

∗
1, θ
∗
2) a.s.

(c) Given Assumptions A.1, A.2(i,ii), A.3, A.4, A.5(ii), suppose {St} is an independent sequence. Under

H1, (π̂qn, θ̂
q
0,n, θ̂

q
1,n, θ̂

q
2,n)→ (π∗, θ∗0, θ

∗
1, θ
∗
2) a.s.

(d) Given Assumptions A.1, A.2(i,ii), A.3, A.4, A.5(ii), suppose that for any (θ0, θ1) ∈ Θ̃, there is θ† ∈ Θ∗

such that E[f(Xt|Xt−1; θ0, θ†)/f(Xt|Xt−1; θ0, θ1)] > 1. Then (π̂qn, θ̂
q
0,n, θ̂

q
1,n, θ̂

q
2,n)→ (π†, θ†0, θ

†
1, θ
†
2) a.s.,

where π† ∈ (0, 1) and θ†1 6= θ†2.

Theorem 1(c) is elementary, so we just sketch its proof: As {St} is an independent process, the con-

ditional PDF of Xt|Ft−1 is π∗f(·|Xt−1; θ1∗) + (1 − π∗)f(·|Xt−1; θ2∗), so that E[`t(·, ·)] is maximized at

(π∗, θ∗0, θ
∗
1, θ
∗
2). Lemma A1(a) of CW then gives Theorem 1(c).

Theorem 1(d) provides other sufficient conditions for the consistency of the QLR test. We prove The-

orem 1(d) by showing that the first-order condition for maximization does not hold on the parameter space

given by CW’s H ′0. Moreover, the key condition in Theorem 1(d) holds for many popular regime-switching

models. We now illustrate this.

First, suppose Xt = θ∗11{St=1} + θ∗21{St=2} + ut, with ut ∼ IID N(0, 1). Then Xt|Ft−1 has the

same conditional distribution as Xt|σ(St), so E[f(Xt; θ†)/f(Xt; θ1)] = π∗ exp[(θ1− θ†)(θ1− θ∗1)] + (1−

π∗) exp[(θ1 − θ†)(θ1 − θ∗2)]. We view this as a function of (θ†, θ1) for given (π∗, θ∗1, θ
∗
2), say g(θ†, θ1),

where we suppress (π∗, θ∗1, θ
∗
2) for simplicity. We now show that this example satisfies the additional re-

quirement in Theorem 1(d) by contradiction. For this, we suppose that for some θ1, g(·, θ1) ≤ 1, so that
∂
∂θ†
g(θ†, θ1)|θ†=θ1 = 0 and ∂2

∂θ2†
g(θ†, θ1)|θ†=θ1 ≤ 0, because for each θ1, g(θ1, θ1) ≡ 1 by the definition

of function g. That is, g(·, θ1) must be at least weakly concave at θ1. Nevertheless, ∂2

∂θ2†
g(θ†, θ1)|θ†=θ1 =

π∗(θ1− θ∗1)2 + (1− π∗)(θ1− θ∗2)2 > 0, so it is a convex function of θ† at θ1. This is a contradiction caused

by the supposition that for some θ1, g(·, θ1) ≤ 1, so that for each θ1, there is θ† such that g(θ†, θ1) > 1.

Second, supposeXt = θ∗11{St=1}+θ∗21{S2=2}+θ∗0Xt−1 +ut, with ut ∼ IIDN(0, 1). This differs from

the first example due to the included lag. Then E[f(Xt|Xt−1; θ0, θ†)/ f(Xt|Xt−1; θ0, θ1)] = E[P (St =

1|Xt−1) exp[(θ† − θ1){(θ∗1 − θ1) + (θ∗0 − θ0)Xt−1}] + P (St = 2|Xt−1) exp [(θ† − θ1){(θ∗2 − θ1) + (θ∗0 −

θ0)Xt−1}]. If we view this as a function of (θ†, θ1, θ0) for given (π∗, θ∗0, θ
∗
1, θ
∗
2), say g(θ†, θ1, θ0), then for

given (θ0, θ1), g(θ1, θ1, θ0) ≡ 1 by the definition of function g. We also note that ∂2

∂θ2†
g(θ†, θ1, θ0)|θ†=θ1 =

E[P (St = 1|Xt−1){(θ∗1 − θ1) + (θ∗0 − θ0)Xt−1}2 + P (St = 2|Xt−1){(θ∗2 − θ1) + (θ∗0 − θ0)Xt−1}2] > 0.

Thus, g(·, θ1, θ0) is convex at θ1, so the additionally required condition in Theorem 1(d) holds.

Third, suppose Xt = θ∗11{St=1} + θ∗21{S2=2} + ut, with ut ∼ IID N(0, σ∗2). This differs from the

first example, as the variance of ut is no longer fixed at 1. If we let g(θ†, θ1, σ
2
0) := E[f(Xt;σ

2
0, θ†)/f(Xt;
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σ20, θ1)], then ∂2

∂θ2†
g(θ†, θ1, σ

2
0)|θ†=θ1 = [π∗(θ1 − θ∗1)2 + (1 − π∗)(θ1 − θ∗2)2 + (σ∗4 − σ20)]/σ40 . Note that

π∗(θ1−θ∗1)2 +(1−π∗)(θ1−θ∗2)2 attains its minimum π∗(1−π∗)(θ∗1−θ∗2)2 when θ1 = π∗θ∗1 +(1−π∗)θ∗2.

From this, if σ20 < π∗(1−π∗)(θ∗1−θ∗2)2+σ∗4, then for every (θ1, σ
2
0), ∂2

∂θ2†
g(θ†, θ1, σ

2
0)|θ†=θ1 > 0, implying

that g(·, θ1, σ20) is convex at θ1, so the condition in Theorem 1(d) is satisfied.

Finally, let Xt = θ∗11{St=1} + θ∗21{S2=2} + θ∗0Xt−1 + ut, with ut ∼ IID N(0, σ∗2). We have a lagged

dependent variable and the variance of ut is not 1. If we denote E[f(Xt;σ
2
0, θ0, θ†)/f(Xt;σ

2
0, θ0, θ1)] by

g(θ†, θ1, θ0, σ
2
0), then ∂2

∂θ2†
g(θ†, θ1, θ0, σ

2
0)|θ†=θ1 =

σ2
∗−σ2

0+h(µ,δ)

σ4
0

, where h(µ, δ) := E[P (St = 1|Xt−1)(µ+

δXt−1)
2 + P (St = 2|Xt−1)(µ + γ∗ + δXt−1)

2], µ := θ1 − θ∗1, δ := θ0 − θ∗0, and γ∗ := θ∗1 − θ∗2. By

definition of h(·, ·), it is uniformly positive, and its minimum is attained when (µ, δ) = (µ̂, δ̂), where µ̂ :=

γ∗[κ∗E[Xt]− (1−π∗)E[X2
t ]]/var[Xt], δ̂ := γ∗[(1−π∗)E[Xt]−κ∗]/var[Xt], and κ∗ := E[1{St=2}Xt−1].

From this, if σ20 < h(µ̂, δ̂) + σ∗4, then for every (θ1, θ0, σ
2
0), ∂2

∂θ2†
g(θ†, θ1, θ0, σ

2
0)|θ†=θ1 > 0, implying that

g(·, θ1, θ0, σ20) is convex at θ1, and the required condition in Theorem 1(d) holds.

Appendix

Proof of Theorem 1(d) We show that the first-order condition does not hold on the null parameter space

given in CW (p. 1667). We consider the null parameter space constrained by H01: for some θ∗, {(π, θ) ∈

[0, 1]×Θ : π = 1, θ1 = θ∗} and evaluate the first derivatives of E[`t(·, ·)] on this space.

For E[`t(·, ·)] to be maximized on the the null parameter space, there must be (θ0∗, θ∗) ∈ Θ̃ such that

for every θ2 ∈ Θ∗,
∂

∂π
E[`t(π, θ)]H01 = E

[
1− ft(θ0∗, θ2)

ft(θ0∗, θ∗)

]
≥ 0; and (1)

∇θ1E[`t(π, θ)]H01 = E

[
∇θ1ft(θ0∗, θ∗)
ft(θ0∗, θ∗)

]
= 0. (2)

Here, the inequality (1) is used to accommodate the fact that π = 1 is on the boundary of [0, 1]. Also, we

do not consider ∇θ2E[`t(π, θ)]H01 , as it is identical to zero. Condition (2) is implied by condition (1) since

E[ft(θ0∗, ·)/ft(θ0∗, θ∗)] has a maximum value 1 by condition (1), implying thatE[∇θ1ft(θ0∗, θ1)/ft(θ0∗, θ∗)] =

0, provided that θ1 = θ∗. Thus, condition (2) follows if condition (1) holds. Nevertheless, from the condition

given in the theorem, this cannot hold because there is θ† ∈ Θ∗ such that E[ft(θ0∗, θ†)/ft(θ0∗, θ∗)] > 1.

This implies that E[`t(·, ·)] is not maximized on the null parameter space. Q.E.D.

References

Carter, A. and Steigerwald, D. (2010), “Testing for Regime Switching: A Comment,” Discussion Paper,

UC Santa Barbara Department of Economics.

Cho, J.S. and White, H. (2007), “Testing for Regime Switching,” Econometrica, 75, 1671–1720.

3


