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Abstract
We examine use of the likelihood ratio (LR) statistic to test for unobserved heterogeneity

in duration models, based on mixtures of exponential or Weibull distributions. We consider
both the uncensored and censored duration cases. The asymptotic null distribution of the LR
test statistic is not the standard chi-square, as the standard regularity conditions do not hold.
Instead, there is a nuisance parameter identified only under the alternative, and a null parameter
value on the boundary of the parameter space, as in Cho and White (2007a). We accommodate
these and provide methods delivering consistent asymptotic critical values. We conduct a
number of Monte Carlo simulations, comparing the level and power of the LR test statistic to
an information matrix (IM) test due to Chesher (1984) and Lagrange multiplier (LM) tests of
Kiefer (1985) and Sharma (1987). Our simulations show that the LR test statistic generally
outperforms the IM and LM tests. We also revisit the work of van den Berg and Ridder (1998)
on unemployment durations and of Ghysels, Gourieroux, and Jasiak (2004) on interarrival
times between stock trades, and, as it turns out, affirm their original informal inferences.
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1 Introduction

Econometric specifications for duration data are often based on exponential or Weibull distribu-

tions. In labor economics, Lancaster (1979) exploits these distributions to analyze unemployment

spells. In financial econometrics, Engle and Russell (1998) and Engle (2000) exploit exponential

and Weibull distributions to model interarrival times of stock transactions based upon market mi-

crostructure theory of Easley and O’Hara (1992) and O’Hara (1995). The properties and analyses

of various duration models in economics are well reviewed in Kiefer (1988), Lancaster (1992), and

Hong and Liu (2007). The popularity of the exponential and Weibull distributions is not restricted

solely to economics. They are also widely applied in epidemiology, and especially clinical trials,

to model the time to occurrence of significant milestones, such as death or recovery.

The presence of unobserved heterogeneity creates serious challenges for duration models. As

Heckman and Singer (1984) point out, estimated parameters can be quite sensitive to the pres-

ence of unobserved heterogeneity. Thus, testing for unobserved heterogeneity often accompanies

parameter estimation. For this, Lancaster (1979) and Kalbfleisch and Prentice (1980) assume a

conventional gamma distribution for the unobserved heterogeneity and test for its presence by

measuring the variance of the gamma distribution. Chesher (1984) and Lancaster (1985) propose

an information matrix (IM) test (White, 1982; 1994, ch.11), as the information matrix equality

holds in the absence of unobserved heterogeneity. Kiefer (1985), Sharma (1987), and Prieger

(2000, 2003) propose Lagrange multiplier (LM) tests exploiting the fact that the exponential and

Weibull distributions can be represented using Laguerre polynomials.

In order to obtain estimates less sensitive to unobserved heterogeneity, researchers have devel-

oped a variety of flexible specifications. Heckman and Singer (1984) exploit a discrete mixture

distribution for heterogeneity and estimate parameters using nonparametric maximum-likelihood

estimation. Honoré (1990) assumes a Weibull distribution for the durations but does not impose a

specific distribution on the heterogeneity, obtaining consistent parameter estimates. Meyer (1990)

develops an estimation theory without specifying the baseline hazard, but, for convenience, retains

the gamma distribution for heterogeneity. For the most part, however, the theories in this litera-

ture specify hazard or conditional mean functions in which the unknown coefficients multiply the

explanatory variables, implementing a form of linearity. As yet, it is unknown how these theories

may need to be modified when specifying general nonlinear models for the conditional mean. As
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we see in our empirical time-series application, a conditional mean equation embodying linearity

can easily be misspecified. On the other hand, Horowitz (1999) provides a non-parametric estima-

tion procedure under the condition that the distribution of heterogeneity is highly smooth; but if

the associated heterogeneity is a discrete mixture, then this procedure may not work. There thus

remains a need for tests of unobserved heterogeneity, whether continuous or discrete, applicable

when the hazard function or conditional mean does not necessarily embody linearity.

The main goal of this paper is therefore to develop convenient test statistics having power

comparable to or better than standard test statistics for unobserved heterogeneity and applicable

to flexibly specified models. To achieve our goal, we develop log-likelihood ratio (LR) test sta-

tistics based upon a discrete mixture of exponential or Weibull distributions. We consider both

the uncensored and censored duration cases. To develop our tests, we apply results of Cho and

White (2007a), who build on work of Andrews (1999, 2001). Cho and White (2007a) use discrete

mixtures to develop a test for regime-switching in a time series context and derive the asymptotic

distribution of the LR statistic under the null hypothesis of a single regime. Here, we obtain the

asymptotic null distributions of our LR statistics under the hypothesis of no heterogeneity. As

pointed out in the literature, the null distribution of the LR statistic in such situations is model

dependent (e.g., Hartigan, 1985; Chernoff and Lander, 1995; Cho and White, 2007a). Thus, the

null distributions derived for the discrete mixtures of binomials in Chernoff and Lander (1995) or

normals in Cho and White (2007a) cannot be applied either to the discrete mixture of exponen-

tials or the mixture of Weibulls. We separately derive the null distributions for these two cases.

In particular, we find that the censored case differs substantially from the uncensored case. We

provide procedures to obtain consistent asymptotic critical values for our LR test statistics, and we

conduct large scale Monte Carlo simulations under various heterogeneity assumptions, including

continuous distributions for heterogeneity. As we see, our LR test statistics have well behaved

levels, and they appear to be consistent not only for discrete forms of heterogeneity, but also for

many continuous heterogeneous alternatives.

Another goal of this paper is to revisit the empirical analyses of van den Berg and Ridder (1998)

and Ghysels, Gourieroux, and Jasiak (2004). Search theory predicts that unemployment durations

follow an exponential distribution for each segmented labor market (see Yoon, 1981; van den Berg

and Ridder, 1998; and the references therein). Nevertheless, most empirical papers in the literature

admit that, due to unobserved heterogeneity, exponential distributions are hard to verify empiri-
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cally. van den Berg and Ridder (1998) estimate reduced form equations for labor markets in the

Netherlands and identify unobserved heterogeneity using LR statistics based on mixtures of expo-

nential and Weibull distributions. Nevertheless, van den Berg and Ridder (1998) use an informal

procedure to test for unobserved heterogeneity. Here we provide a formal testing procedure valid

under their assumptions; as it turns out, we affirm their original inferences. Ghysels, Gourieroux,

and Jasiak (2004) note that an accurate analysis of financial market liquidity needs to accommodate

both conditional mean and variance at the same time; for this they propose the stochastic volatility

duration (SVD) model, which extends the exponential duration model with gamma heterogeneity

to the time-series context. We examine their data using the methods proposed here, and affirm the

presence of unobserved heterogeneity, motivating use of the SVD model. As we discuss, correct

specification of the conditional mean equation plays a key role for inference in this context.

The plan of this paper is as follows. In Section 2, we derive asymptotic null distributions for

our LR statistics under the null hypothesis of no unobserved heterogeneity. We first treat the un-

censored case. As we show, discrete mixtures of the exponential or Weibull distributions have

different asymptotic null distributions. In particular, we represent the limiting behaviors of the LR

statistic as functions of different Gaussian processes. We provide alternate representations of these

processes; these yield consistent asymptotic critical values. We next discuss the censored case.

As we see, the censored case differs substantially from the uncensored case. In particular, more

involved methods based on those of Hansen (1996) are required to obtain consistent asymptotic

critical values. In Section 3, we conduct Monte Carlo simulations comparing the performance of

LR-based tests with IM and LM tests for both uncensored and censored cases. These experiments

corroborate the results of Section 2 and provide useful insight into specifying key aspects of the

parameter space. Section 4 contains our analysis of van den Berg and Ridder’s (1998) and of Ghy-

sels, Gourieroux, and Jasiak’s (2004) data on Netherlands unemployment durations and interarrival

durations of stock transactions, respectively. We provide a summary and conclusions in Section 5.

The Appendix contains formal statements of the relevant assumptions and a link to proofs of our

results.
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2 Modeling Durations with Weibull Distributions

2.1 The Data Generating Process

Let {(Yt, X
′
t)
′} be a strictly stationary geometric β–mixing stochastic process, where Yt is scalar-

valued and Xt is Rk− valued , k ∈ N. Yt represents a duration and must thus be non-negative.

In the time-series context, for example, in the study of interarrival times for stock transactions, Xt

can contain lagged values of Yt. The β-mixing condition permits Xt to be a function of the entire

history of Yt, as is true for autoregressive conditional duration (ACD) models. (See Carrasco and

Chen (2002).) As a special case, {(Yt, X
′
t)
′} can be an independent identically distributed (IID)

process, as is suitable for cross-section data. In this case, t indexes individuals in the sample, and

the elements of Xt are duration-invariant. For either time-series or cross-section data, we assume

without loss of generality that Xt does not contain a constant term, as explained below.

Throughout, we assume that our interest focuses on the conditional distribution of Yt given

Xt. For the uncensored case and in the absence of unobserved heterogeneity, we suppose that the

conditional probability density function (PDF) of the durations is defined by the Weibull density

f(y | Xt; δ
∗, β∗, γ∗) = δ∗γ∗g(Xt; β

∗)yγ∗−1 exp(−δ∗g(Xt; β
∗)yγ∗

),

for some (π∗, δ∗, β∗′, γ∗) ∈ [0, 1]×D×B×Γ ⊂ [0, 1]×R+×Rd×R+, where g(Xt; · ) satisfies

the differentiability condition given in the Appendix. We leave the functional form of g(Xt; β
∗)

unspecified, as this form differs from application to application. In labor economics, g(Xt; β
∗) is

often Cox’s (1972) proportional hazard function, and in many cases, g(Xt; β
∗) = exp(X ′

tβ
∗) is

the chosen specification. In finance, g(Xt; β
∗) is often associated with the conditional mean of

Yt | Xt. In particular, ACD models specify autoregressive functions for the conditional mean of

Yt | Xt; Engle and Russell (1998) provide details. The explanatory variables Xt are assumed not

to contain a constant, as an intercept can be captured by δ∗ or one of the β∗’s. For example, if

we let g(Xt; β
∗) = exp(X ′

tβ
∗) as in Cox’s (1972) proportional hazard model, then δ∗g(Xt; β

∗) =

exp(ln(δ∗) + X ′
tβ

∗). Thus, ln(δ∗) is now the coefficient of the constant term. Alternatively, if δ∗

cannot be moved into g(Xt; β
∗), then we may define g(Xt; β

∗) as, e.g., g̃(X ′
tκ

∗ + λ∗) by letting

β∗ = (κ∗
′
, λ∗)′, say, so that one of the β∗’s is now the intercept. Thus, there is no loss of generality

in assuming that Xt does not contain a constant. The conditional Weibull distribution reduces to
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a conditional exponential distribution when the duration dependence parameter γ∗ is one. Engle

and Russell (1998) assume this and estimate the conditional mean duration by quasi-maximum

likelihood methods.

Lancaster (1979) and Ghysels, Gourieroux, and Jasiak (2004), among others, are concerned

with the presence of unobserved heterogeneity in δ∗, because this results in a negative bias for the

estimate of γ∗ (Lancaster, 1979) and overdispersion of duration data. To deal with unobserved

heterogeneity, it is standard in the literature to assume that the durations are distributed according

to the density defined by ∫
f(y | Xt; δ, β

∗, γ∗)h(δ)dµ(δ),

where µ is a σ−finite measure absolutely continuous with respect to the distribution H of δ∗, so

that h ≡ dH/dµ is its Radon-Nikodým density. In the case of no heterogeneity, µ is counting

measure and h has a point mass at the single point, δ∗. Thus, testing the hypothesis that h has zero

variance is one way to test for unobserved heterogeneity. Lancaster (1979) and Kalbfleisch and

Prentice (1980) specify h to be the gamma density with unit mean. (Here, heterogeneity is con-

tinuously distributed, so µ is Lebesgue measure.) Also, Ghysels, Gourieroux, and Jasiak (2004)

extend the ACD models of Engle and Russell (1998) to various stochastic volatility duration (SVD)

models, treating the gamma heterogeneous duration model as a special case of the SVD model for

interarrival times of stock transactions. As they show, it is important to associate the dispersion

of the heterogeneously generated duration with its conditional mean for accurate financial market

liquidity analysis. Heckman and Singer (1984) note that although the gamma distribution is con-

venient, it is somewhat ad hoc; on the other hand, Abbring and van den Berg (2007) show that a

large class of mixed proportional hazard models have heterogeneity distributions whose tails can

be well approximated by a gamma distribution.

Here, we follow Nickell (1979), Heckman and Singer (1984) and van den Berg and Ridder

(1998) by considering alternatives with unobserved heterogeneity generated as a discrete mixture,

with point masses at δ∗1 and δ∗2, say. In this case, the PDF of Yt given Xt can be written as the

mixture of conditional Weibull PDFs, defined by

π∗f(y | Xt; δ
∗
1, β

∗, γ∗) + (1− π∗)f(y | Xt; δ
∗
2, β

∗, γ∗),

with (π∗, δ∗1, δ
∗
2, β

∗′, γ∗) ∈ [0, 1]×D×D×B×Γ ⊂ [0, 1]×R+×R+×Rd×R+. Heterogeneity
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is absent when π∗ = 0, π∗ = 1, or δ∗1 = δ∗2. We develop a likelihood ratio test for this hypothesis.

The main motivations for choosing this discrete mixture alternative are: its simplicity and the

computational convenience of its associated inference; its prominence in the literature (e.g., Heck-

man and Singer, 1984; van den Berg and Ridder, 1998); and its previously demonstrated ability to

yield tests detecting a broad range of heterogeneous alternatives. As to computational convenience,

we show that under the null of no unobserved heterogeneity, the LR statistic weakly converges to

a function of a Gaussian process whose covariance structure is relatively simple, so that we can

straightforwardly simulate the null distribution to obtain asymptotic critical values. As to power,

results of Stinchcombe and White (1998) suggest that discrete mixture models may be comprehen-

sively revealing1, in which case arbitrary heterogeneous alternatives would be consistently detected

with a sufficient number of discrete mixtures. In many cases, even a two-point mixture may be ex-

pected to have good power. (See also Ferguson, 1983.) Thus, we expect that the mixture alternative

may well deliver tests with good power even when the alternative is misspecified. Essentially, this

alternative acts as an approximation to an unknown heterogeneity distribution, yielding tests ca-

pable of detecting a wide range of heterogeneous alternatives. Our Monte Carlo simulations of

Section 3 verify this.

2.2 Discrete Mixtures

Continuing with our consideration of the uncensored case, we specify a model M as a collection

of data generating processes, represented using their conditional PDFs, as in White (1994). The

homogeneous null model is

Mo ≡ {f(· | ·; δ, β, γ) : δ, β, γ ∈ D ×B × Γ}.

Let ζ∗ be the probability limit of the quasi-maximum likelihood estimator of δ∗ based on Mo.

Under mild regularity conditions and in the absence of unobserved heterogeneity, ζ∗ = δ∗, the true

1Stinchcombe and White (1998) define a comprehensively revealing set of functions for testing correct specification
of a conditional mean: When H ⊂ Lq(X) with X ∈ Rk, if for any e ∈ Lp(X), 1/p + 1/q = 1, there is an h ∈ H
such that

∫
e · h dP 6= 0 then we say that H is totally revealing, where Lp(X) is the space of functions f such that

|f |p is integrable. H ⊂ Mb(B) is said to be comprehensively revealing if it is totally revealing for Lp(µ) for every
q ∈ [1,∞] and every finite signed measure µ supported on B, where Mb(B) and Lp(µ) denote the set of bounded
measurable functions on B and real-valued functions f such that [

∫
|f(r)|pdvµ]1/p < ∞, respectively. Here, vµ is

the variation of µ, and µ(A) ≡ P (X−1(A)) for any A ∈ Bk, the Borel σ-algebra on Rk.
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value. Under the heterogeneous mixture, ζ∗ = δ∗o,a, say; this is determined by δ∗1, δ
∗
2, β

∗, γ∗, and the

distribution of the Xt’s. The analysis becomes especially straightforward by defining α∗1 ≡ δ∗1/ζ
∗

and α∗2 ≡ δ∗2/ζ
∗ (necessarily ζ∗ 6= 0) and writing the heterogeneous PDF as

π∗f(y | Xt;α
∗
1ζ

∗, β∗, γ∗) + (1− π∗)f(y | Xt;α
∗
2ζ

∗, β∗, γ∗).

We parameterize the heterogeneous PDF as

fa(y | Xt; π, α1, α2, β, γ) = πf(y | Xt;α1ζ
∗, β, γ) + (1− π)f(y | Xt;α2ζ

∗, β, γ), (1)

so that the heterogeneous alternative model is

Ma ≡ {fa(· | ·; π, α1, α2, β, γ) : (π, α1, α2, β, γ) ∈ [0, 1]× A× A×B × Γ},

where A ≡ {α : αζ∗ ∈ D}. In what follows, we assume that A is convex and compact.

2.3 The Likelihood Ratio Statistic

For the null and alternative models the expected log-likelihoods are

Lo(δ, β, γ) ≡ E[ln f(Yt | Xt; δ, β, γ)] and

La(π, α1, α2, β, γ) ≡ E[ln fa(Yt | Xt; π, α1, α2, β, γ)].

Under the null of homogeneity, Lo(ζ
∗, β∗, γ∗) = La(π

∗, α∗1, α
∗
2, β

∗, γ∗), whereas under the hetero-

geneous alternative, Lo(ζ
∗, β∗o,a, γ

∗
o,a) < La(π

∗, α∗1, α
∗
2, β

∗, γ∗), where ζ∗, β∗o,a, γ
∗
o,a solve

max
(δ,β,γ)∈D×B×Γ

Lo(δ, β, γ).

This suggests testing the null of homogeneity based on an estimate ofLo(ζ
∗, β∗o,a, γ

∗
o,a)−La(π

∗, α∗1,

α∗2, β
∗, γ∗), as the properties of the Kullback-Leibler information criterion ensure that this differ-

ence is zero if and only if the DGP is homogeneous. We thus consider tests based on the LR
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statistic:

LRn ≡ 2

{
n∑

t=1

ln[fa(Yt | Xt; π̂n, α̂1n, α̂2n, β̂an, γ̂an)]−
n∑

t=1

ln[f(Yt | Xt; δ̂n, β̂n, γ̂n)]

}
,

where n is the sample size, and (δ̂n, β̂n, γ̂n) and (π̂n, α̂1n, α̂2n, β̂an, γ̂an) are the maximum-likelihood

estimators (MLEs) obtained under the null and alternative hypotheses respectively. That is, (δ̂n, β̂n,

γ̂n) solves

max
(δ,β,γ)∈D×B×Γ

n∑
t=1

ln[f(Yt | Xt; δ, β, γ)],

(π̂n, δ̂1n, δ̂2n, β̂an, γ̂an) solves

max
(π,δ1,δ2,β,γ)∈[0,1]×D×D×B×Γ

n∑
t=1

ln[fa(Yt | Xt; π, δ1/δ̂n, δ2/δ̂n, β, γ)],

and α̂1n ≡ δ̂1n/δ̂n, α̂2n ≡ δ̂2n/δ̂n. The latter are maximum likelihood estimators as a consequence

of the invariance property of maximum likelihood.

The null hypothesis of homogeneity encompasses three distinct possibilities:

Ho : π∗ = 1 and α∗1 = 1;α∗1 = α∗2 = 1; or π∗ = 0 and α∗2 = 1.

The heterogeneous alternative is

Ha : π∗ ∈ (0, 1) and α∗1 6= α∗2.

2.3.1 Asymptotic Null Distribution

Tests of Ho based on LRn are non-standard. If π∗ = 1 (resp. π∗ = 0), then α∗2 (resp. α∗1) is

not identified, so that there is a nuisance parameter present only under the alternative (see Davies,

1977; 1987). Further, π∗ = 1 (resp. π∗ = 0) is on the boundary of its parameter space, violating the

standard interiority condition. Alternatively, if α∗1 = α∗2, then π∗ is not identified. Consequently,

the LR statistic does not have the standard chi-square distribution under the null.

Instead, as we show, the LR statistic converges weakly under the null to a function of a Gaussian
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process. Specifically, under the null

LRn ⇒ LR ≡ sup
α∈A

(max[0,G(α)])2 , (2)

where G denotes a standard mean zero Gaussian process, that is, it has mean zero and variance one

for every α, but its covariance structure may differ from case to case. Here, different models imply

different covariance structures.

This situation is also discussed by Cho and White (2007a), who test for the presence of two

regimes in a regime-switching process against a single regime, using the LR test. They assume

that the transition probability matrix of a regime-switching process has identical rows, so that the

associated likelihood function can be viewed as a mixture probability. Their null model is nested

in the mixture model, implying that their LR test also has the identical structure for Ho as above.

A result similar to (2) follows from their analysis, as well; in this sense, the current paper exploits

the methodology in Cho and White (2007a) in the framework of unobserved heterogeneity. For

further details, see Cho and White (2007a).

To state our results, we adopt the convention that when β = 0, then g(Xt; β) = const, the case

of no regressors. To analyze important special cases, we consider certain restricted versions ofMo

and Ma, with their corresponding constrained maximum likelihood estimators. For example, we

refer to the models

Mo|β=0,γ=1 ≡ {f(· | ·; δ, β, γ) : (δ, β, γ) ∈ D × {0} × {1}},

Ma|β=0,γ=1 ≡ {fa(· | ·; π, α1, α2, β, γ) : (π, α1, α2, β, γ) ∈ [0, 1]× A× A× {0} × {1}}

as discrete mixtures of exponentials with no regressors and to

Mo|β=0 ≡ {f(· | ·; δ, β, γ) : (δ, β, γ) ∈ D × {0} × Γ}

Ma|β=0 ≡ {fa(· | · ; π, α1, α2, β, γ) : (π, α1, α2, β, γ) ∈ [0, 1]× A× A× {0} × Γ}

as discrete mixtures of Weibulls with no regressors. When these are specified, the LR statistic is

computed with the indicated constraint(s) imposed. When the DGP is an element of a given model,

we say that model is correctly specified, following White (1994).
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We state our first formal results as follows; for conciseness, formal assumptions appear in the

Appendix.

THEOREM 1: Suppose Assumptions A1 to A4 and Ho hold, and inf A > 1/2. Further, (i) if

Mo|β=0,γ=1 is correctly specified, then LRn ⇒ LR1 ≡ supα∈A (max[0,G1(α)])2, where G1 is a

standard Gaussian process with

E[G1(α)G1(α
′)] =

(2α− 1)1/2(2α′ − 1)1/2

α+ α′ − 1
; (3)

(ii) if Mo|γ=1 is correctly specified, then LRn ⇒ LR1;

(iii) if Mo|β=0 is correctly specified, then LRn ⇒ LR2 ≡ supα∈A (max[0,G2(α)])2 , where G2 is

a standard Gaussian process with

E[G2(α)G2(α
′)] =

(α− 1)(α′ − 1){(α− 1)(α′ − 1)/(α+ α′ − 1)− (6/π2) ln(α) ln(α′)}/αα′[
(1−α)2

α2

{
(α−1)2

(2α−1)
− 6

π2 ln(α)2
}]1/2 [

(1−α′)2

α′2

{
(α′−1)2

(2α′−1)
− 6

π2 ln(α′)2
}]1/2

;

(4)

(iv) if Mo is correctly specified, then LRn ⇒ LR3 ≡ supα∈A (max[0,G3(α)])2 , where G3 is a

standard Gaussian process with

E[G3(α)G3(α
′)] =

(α− 1)(α′ − 1){(α− 1)(α′ − 1)/(α+ α′ − 1)− (ξ∗/γ∗2) ln(α) ln(α′)}/αα′[
(1−α)2

α2

{
(α−1)2

(2α−1)
− ξ∗

γ∗2 ln(α)2
}]1/2 [

(1−α′)2

α′2

{
(α′−1)2

(2α′−1)
− ξ∗

γ∗2 ln(α′)2
}]1/2

,

(5)

where

ξ∗ ≡
[
π2

6γ∗2
+ var[φ∗t ]− cov[φ∗t , d

∗
t ]
′(var[d∗t ])

−1cov[φ∗t , d
∗
t ]

]−1

,

φ∗t ≡ −{ln(ζ∗) + γ̃ − 1 + ln[g(Xt; β
∗)]}/γ∗,

d∗t ≡ ∇β ln[g(Xt; β
∗)],

and γ̃ ≈ 0.57721 is Euler’s constant (see formula 1.20 in Spiegel, 1968).

Theorem 1 is straightforwardly proved by verifying the regularity conditions given in theorem

6(a) of Cho and White (2007a), which builds on work of Andrews (1999, 2001). The weak limits

in Theorem 1 involve the ‘max’ operator, whereas the ‘min’ operator is used in Cho and White

(2007a). The symmetry of Gaussian processes ensures that this does not matter. Also, the results
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of Theorem 1 are derived under the null π∗ = 0, whereas Cho and White (2007a) impose π∗ = 1.

By the symmetry of the mixture, either null yields the same result.

The condition inf A > 1/2 is key to obtaining the given covariance structures. Without this, the

given integrations yielding eqs. (3), (4), and (5) cannot be verified. In a related (but non-duration)

context, Liu, Pasarica, and Shao (2003) consider a mixture of gamma distributions without ex-

planatory variables and test the same hypothesis as ours (homogeneity vs. two-point mixture),

obtaining the same covariance structure as given in Theorem 1(i). Nevertheless, they suppose that

inf A > 1, restricting the scope of possible alternatives. Theorem 1 suggests that their covariance

structure is still obtainable even when inf A > 1/2, under mild regularity conditions.

The covariance structures in Theorem 1 deserve further comment, as estimating additional nui-

sance parameters in general yields Gaussian processes with more complicated covariance struc-

tures. First, estimating the power coefficient γ∗ yields parameter estimation errors that substan-

tially modify the covariance structure. The covariance structure (3) cannot easily be viewed as a

special case of (4) and (5). Unless the terms 6 ln(α)2/π2 and ξ∗ ln(α)2/γ∗2 in (4) and (5) respec-

tively disappear, there is no way for (4) and (5) to equal (3); nor can these terms be avoided as

long as γ∗ is estimated. On the other had, estimating β∗ does not modify the covariance structure

nearly as much. Note that with the exponential distribution, we obtain the same Gaussian process

whether or not we estimate β∗. Also, for the Weibull distribution, estimating β∗ only modifies the

coefficient of ln(α)2, from 6/π2 to ξ∗/γ∗2. As detailed in Corollary 1 below, these two values may

be identical if some special but not too stringent conditions hold.

Note that the given Gaussian processes are obtained when π∗ = 0 (or, symmetrically, π∗ = 1),

which accounts for the α index. These processes are also relevant to the weak limit of the LR

statistic obtained when α∗1 = α∗2. By applying Cho and White (2007a), we find that when α

approaches 1, the probability limit of (max[0,Gj(α)])2, j = 1, 2, 3, is the weak limit of the LR

statistic obtained when α∗1 = α∗2. Thus, Theorem 1 takes account of all elements of the null

hypothesis.

We obtain the given Gaussian processes G with their particular covariance structures as a con-

sequence of our choice of discrete mixture alternative. If a different heterogeneity distribution is

assumed, then different and potentially much more complicated limiting distributions may obtain.

The convenient forms for G found here are a particular benefit of using the two-point discrete

mixture for unobserved heterogeneity.
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The particular form of g(Xt; β
∗) does not affect the conclusions of Theorem 1(i)-(iii). For any

function satisfying the conditions given in the Appendix, the same covariance structure is obtained.

Thus, the same asymptotic null distribution holds for DGPs with different conditional means and

different model specifications. Only the conditional distribution of Yt | Xt and the fact that ζ∗

appears as the coefficient of g(Xt; β
∗) determine the covariance structures (3) and (4).

Nevertheless, as pointed out by one of the referees, the condition in A2(i) that g(Xt; ·) is four

times continuously differentiable might be thought restrictive. As long as the alternative model

contains elements near the null model with α∗1 = α∗2 = 1, this smoothness is necessary. Cho and

White (2007a, section 2.3) explain why: essentially, second-order Taylor series analysis breaks

down in this neighborhood; instead, fourth-order analysis is required. Consequently, if g(Xt; ·) is

only two times continuously differentiable, then testing for unobserved heterogeneity should focus

on a modified alternative to the null model. Specifically, one can restrict the parameter space A in

Assumption A2(ii) toA◦(δ) ≡ A\Nδ(1), whereNδ(1) ≡ {α ∈ A : |α−1| < δ} and δ ∈ (0, 1/2).

Subtracting the neighborhood Nδ(1) from A to obtain A◦(δ) is equivalent to eliminating from the

original alternative model Ma the alternative PDFs near the null model with α∗1 = α∗2 = 1. Liu,

Pasarica, and Shao (2003) avoid the identification problem associated with α∗1 = α∗2 = 1 by

assuming inf A > 1.

We note that in Theorem 1(iv), φ∗t is computed as

φ∗t = E

{
∂

∂δ
ln[f(Yt | Xt; δ

∗, β∗, γ∗)]
∂

∂γ
ln[f(Yt | Xt; δ

∗, β∗, γ∗)] | Xt

}
.

This is one of the off-diagonal elements of the outer product of the gradient (OPG) representation

of the information matrix associated with Mo; numerous elements of this matrix contain this

factor, as can be seen in the proof of Theorem 1(iv). This plays an important role in the covariance

structure of the Gaussian process.

Examining the proof of Theorem 1, we see that the covariance structure is a function of α and

α′ in which only the ratio between the null and alternative intercepts matters in determining the

asymptotic null distribution of the LR statistic. This is the main reason for parameterizing our

alternative model as we do in (1). Other noteworthy technical aspects of Theorem 1 are similar to

Theorem 6(a) of Cho and White (2007a). We therefore do not repeat these explanations here.

Note that the covariance structures given in eq.(3) for the mixture of exponentials is the same
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whether or not regressors are present. In contrast, for the mixture of Weibulls, different asymptotic

null distributions are generally obtained with and without regressors. The covariance structure (4)

is a special case of (5). That is, if ξ∗ = 6γ∗2/π2, then the covariance structure (5) simplifies to

(4), so that the distributions of G2 and G3 coincide, in which case we write G3
d
= G2. A sufficient

condition for this is that φ∗t = 0, implying that g(Xt; β
∗) = exp(1 − γ̃)/ζ∗ by the definition of

φ∗t in Theorem 1(iv). A much weaker sufficient condition holds for several cases popular in the

literature, in particular for Cox’s (1972) proportional hazards model, as Corollary 1 now verifies.

COROLLARY 1: Suppose the conditions of Theorem 1(iv) hold. If in addition g(Xt; β
∗) =

exp(X ′
tβ

∗) then G3
d
= G2.

This is easily proved by showing that

var[φ∗t ]− cov[φ∗t , d
∗
t ]
′(var[d∗t ])

−1cov[φ∗t , d
∗
t ] = 0,

which implies ξ∗ = 6γ∗2/π2.

We provide two further remarks relevant to Theorem 1 and Corollary 1. First, there is con-

siderable prior literature on discrete mixtures. Hartigan (1985) examines the LR statistic for the

discrete mixture of normals without unknown parameters under the null. Chernoff and Lander

(1995) analyze the LR statistic for the discrete mixture of binomials and show that the covariance

structure of the limiting Gaussian process converges to that given by Hartigan (1985) as the num-

ber of points with positive mass tends to infinity. Chen and Chen (2001) examine both discrete

mixtures of normals with known variance and discrete mixtures of Poissons. All of these studies

consider only unconditional distributions for scalar random variables. Dacunha-Castelle and Gas-

siat (1999) generalize these analyses by studying mixtures of conditional distributions, and Cho

and White (2007a) further extend the scope of mixture models. For example, as Cho and White

(2007a) demonstrate, the discrete mixture of normals with unknown means and variances cannot

be analyzed in the framework of Dacunha-Castelle and Gassiat (1999), although it falls into the

framework of Cho and White (2007a).

Second, the parameter space A affects the asymptotic null distribution, similar to Hartigan

(1985). If A is replaced by a larger set, say Ã ⊃ A, then the asymptotic null distribution associated

with Ã is first-order stochastically dominated by that associated with A. This implies that the rele-
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vant parameter space needs to be carefully specified prior to testing for unobserved heterogeneity.

If the duration model is implied by a structural equation specifying A, then that A should be used

for inference on unobserved heterogeneity. Otherwise, A should be determined by considerations

of size and power. We discuss this in detail in Section 3, where we conduct our Monte Carlo

experiments.

It is not an easy task to compute the analytical distribution for the maximum of an arbitrary

Gaussian process. Davies (1977, 1987) provides tail lower bounds for the distribution of the max-

imum when the underlying processes are Gaussian and chi-square respectively. Cho and White

(2007a) apply Davies’s method, as well as the so-called comparison method of Piterbarg (1996) to

obtain another lower bound. These methods are effective for obtaining conservative critical values.

Hansen (1996) provides a procedure similar to the wild bootstrap that can yield consistent p-values.

For the cases of Theorem 1, however, consistent asymptotic critical values can be straightforwardly

obtained using orthonormal bases, as in Chernoff and Lander (1995) and Cho and White (2007a,

b). We provide these in Theorem 2.

THEOREM 2: Let {Zk : k = 0, 1, 2, · · · } be an IID sequence of N(0, 1) random variables. (i) Let

G1 be as in Theorem 1(i). Then G1
d
= Ḡ1, where for each α ∈ A, Ḡ1(α) ≡

∑∞
k=2 ak(α)Zk, and

ak(α) ≡
[

(α− 1)4

α2(2α− 1)

]−1/2(
α− 1

α

)k

.

(ii) Let G2 be as in Theorem 1(iii). When inf A > 1/2, G2
d
= Ḡ2, where for each α ∈ A, Ḡ2(α) ≡∑∞

k=1 bk(α)Zk, and

bk(α) ≡
[
(α− 1)2

α2

{
(α− 1)2

(2α− 1)
− 6

π2
ln(α)2

}]−1/2
{(

α− 1

α

)k

− 6

π2k
ln(α)

}(
α− 1

α

)
.

(iii) (a) Let G3 be as in Theorem 1(iv). Let θ∗ ≡ (δ∗, β∗′, γ∗)′. When inf A > 1/2, G3
d
= Ḡ∗3 , where

for each α ∈ A, Ḡ∗3(α) ≡
∑∞

k=0 ck(α, θ
∗)Zk,

c0(α, θ
∗) ≡

[
(α− 1)2

α2

{
(α− 1)2

(2α− 1)
− ξ∗

γ∗2
ln(α)2

}]−1/2{
6

π2
− ξ∗

γ∗2

}1/2(
α− 1

α

)
ln(α),
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and for k = 1, 2, ...,

ck(α, θ
∗) ≡

[
(α− 1)2

α2

{
(α− 1)2

(2α− 1)
− ξ∗

γ∗2
ln(α)2

}]−1/2
{(

α− 1

α

)k

− 6

π2k
ln(α)

}(
α− 1

α

)
.

(b) Further, let θ̂n ≡ (δ̂n, β̂
′
n, γ̂n)′ be such that θ̂n = θ∗ + op(1) and let ξ̂n ≡ ξ(θ̂n), where ξ(·) is

a continuous function of θ such that ξ̂n = ξ∗ + op(1). Then supα∈A |Ĝ3,n(α) − Ḡ∗3(α)| = op(1),

where Ĝ3,n(α) ≡
∑∞

k=0 ck(α, θ̂n)Zk,

c0(α, θ̂n) ≡

[
(α− 1)2

α2

{
(α− 1)2

(2α− 1)
− ξ̂n

γ̂2
n

ln(α)2

}]−1/2{
6

π2
− ξ̂n

γ̂2
n

}1/2(
α− 1

α

)
ln(α),

and for k = 1, 2, ...,

ck(α, θ̂n) ≡

[
(α− 1)2

α2

{
(α− 1)2

(2α− 1)
− ξ̂n

γ̂2
n

ln(α)2

}]−1/2{(
α− 1

α

)k

− 6

π2k
ln(α)

}(
α− 1

α

)
.

Several remarks are relevant for Theorem 2. First, we prove Theorem 2 by showing that the co-

variance structures of G1, G2, and G3 can be represented as
∑∞

k=2 ak(α)ak(α
′),
∑∞

k=1 bk(α)bk(α
′),

and
∑∞

k=0 ck(α, θ
∗)ck(α

′, θ∗) respectively. Second, in Theorem 2 (ii) and (iii), we specifically im-

pose inf A > 1/2. The orthonormal expansion in Theorem 2(ii) can be effectively obtained when2

inf A ≥ 1/2. Nevertheless,
∑∞

k=1(α − 1)2k/α2 is not defined when α = 1/2, so inf A > 1/2 is

necessary. Third, (6/π2− ξ∗/γ∗2) ≥ 0 as shown in the Appendix, so that c0( · , θ∗) is well-defined.

Fourth, we do not specify the specific form of ξ( · ), as there are numerous possibilities yielding

the same result. For example, ξ( · ) can be specified by replacing cov[φ∗t , d
∗
t ] and var[d∗t ] appearing

in ξ∗ with their sample analogs based on estimators (γ̂n, β̂
′
n)′. Fifth, although the critical values

obtained from Theorem 2 (i, ii, iii.a) are asymptotically precise, they may be imprecise when the

sample size n is too small, as usual. Moreover, these critical values are not sample dependent,

in contrast to those generated by Hansen’s (1996) procedure. The critical value bounds in Davies

(1977) and Piterbarg (1996) are asymptotically valid, but they are conservative and may therefore

be imprecise, even asymptotically. Nevertheless, if tests are constructed using mixtures other than

those specified here, then orthonormal bases similar to those in Theorem 2 may not be available. In

2Formula 20.20 in Spiegel (1968) states that
∑∞

k=1[(α− 1)/α]k/k = ln(α) if α ≥ 1/2.

15



such cases, these alternative procedures can be usefully exploited. Finally, it is well known that the

exponential distribution kernel can be expanded as an infinite sum involving the Laguerre polyno-

mials (Kiefer, 1985). We note that the representation Ḡ1 can alternatively be obtained by applying a

central limit theorem to these Laguerre polynomials. Essentially, the orthogonality property of the

Laguerre polynomials yields the independent normal sequence of the Zk’s. Theorem 2 shows how

the orthogonality conditions of the Laguerre polynomials are associated with the mixture model

under the null hypothesis.

The Gaussian processes Ḡ1, Ḡ2, and Ḡ∗3 are weighted averages of IID standard normals, with

weights tending to zero as k tends to infinity. Thus, these can be easily and well approximated by

Ḡ1,m, Ḡ2,m, and Ḡ∗3,m, where m is a sufficiently large integer3 and for each α,

Ḡ1,m(α) ≡
m∑

k=2

ak(α)Zk, Ḡ2,m(α) ≡
m∑

k=1

bk(α)Zk, and Ḡ∗3,m(α) ≡
m∑

k=0

ck(α, θ
∗)Zk.

Thus, simulating the empirical distributions of

LR1,m ≡ sup
α∈A

max[0, Ḡ1,m(α)]2, LR2,m ≡ sup
α∈A

max[0, Ḡ2,m(α)]2, and

LR3,m ≡ sup
α∈A

max[0, Ḡ∗3,m(α)]2

can also closely approximate the asymptotic null distributions of the LR test statistics. Further,

Theorem 2(iii.b) ensures that

LR3,m = L̂R3,n,m + op(1),

where

L̂R3,n,m ≡ sup
α∈A

max[0, Ĝ3,n,m(α)]2 and Ĝ3,n,m(α) ≡
m∑

k=0

ck(α, θ̂n)Zk,

implying that simulating L̂R3,n,m can consistently estimate the distribution of LR3,m, based on the

approximation Ĝ3,n,m to G3.

In the literature on mixture distributions, Monte Carlo simulation of the LR statistic is of-

3Our experience suggests that m does not have to be too large, because the coefficients of Zk decrease geometri-
cally, uniformly in α.
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ten used in attempts to obtain an asymptotic null distribution. For this, the EM (expectation-

maximization) algorithm is often used. Nevertheless, as Mosler and Seidel (2001), among others,

point out, this method is not quite successful. In particular, it is difficult to ensure convergence

of the Monte Carlo distributions, even for large sample sizes. We emphasize that the main reason

for this is the neglect of the impact of the parameter space A. As shown by Hartigan (1985), the

asymptotic distribution of the LR statistic depends crucially on the size of the parameter space. In-

deed, the LR statistic becomes unbounded in probability when the parameter space is unbounded.

We thus explicitly constrain the parameter space A to be compact and obtain critical values using

simulation to compute the empirical distributions of LR1,m, LR2,m, LR3,m, and L̂R3,n,m. We

denote these LR1,m(A), LR2,m(A), LR3,m(A), and L̂R3,n,m(A), respectively, to emphasize their

dependence on the parameter space.

2.3.2 Asymptotic Power of the Test

As we assume that the model is correctly specified under the alternative, the consistency of the LR

test statistic straightforwardly follows. The following theorem states this result.

THEOREM 3: Suppose Assumptions A1 to A4 and Ha hold, and inf A > 1/2. Further, if Ma

is correctly specified, then for any sequence {cn} such that cn = o(n), P (LRn ≥ cn) → 1 as

n→∞.

This follows straightforwardly by applying the Kullback-Leibler information criterion (KLIC).

Nevertheless, there are several caveats to Theorem 3. First, the consistency of the LR test

statistic requires careful interpretation. Rejection may be due to the violation of any of the given

regularity conditions, not least of which is the correct specification assumption. For example, the

correct specification of Ma is violated if the functional form of g(Xt; · ) in the mixture model is

misspecified, leading to the consistent rejection of Ho. Thus, testing for the correct specification

of E[Yt|Xt] may be necessary to draw proper conclusions from the LR test. Specifically, if the

functional form of g(Xt; · ) is correctly specified under the alternative, then we have

E[Yt|Xt] = Γ(1 + 1/γ∗)/{ψ∗g(Xt; β
∗)}(1/γ∗), (6)

where ψ∗ ≡ [π∗/δ∗1
(1/γ∗) + (1 − π∗)/δ∗2

(1/γ∗)]−γ∗
. Thus, if one or more specification tests (e.g.,
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Bierens, 1990; Stinchcombe and White, 1998; Cho, Huang, and White, 2008) cannot reject the

hypothesis in (6), then rejectingHo using the LR test is plausibly due to unobserved heterogeneity,

rather than misspecification under Ha. Alternatively, if one fails to reject Ho, and

Γ(1 + 1/γ∗)[1/{δ∗g(Xt; β
∗)}(1/γ∗)],

obtained by letting π∗ = 1 and δ∗1 = δ∗ in (6), turns out to be misspecified for E[Yt|Xt], then

there are model specification problems not signalled by the LR test, part of the “implicit null”

hypothesis of the test. There is a variety of other test statistics useful for empirically examining the

maintained regularity conditions for the present LR test. We recommend their use as complements

to the present LR test, whenever possible.

Provided the mixture decreases entropy, a consistent test generally results even under misspec-

ified alternatives. Nevertheless, forming a mixture with a misspecified alternative need not strictly

reduce entropy (increase likelihood) when the scope of the alternative is too narrow. Although

increasing the number of components in the mixture will eventually decrease entropy under mild

regularity conditions, as implied by Stinchcombe and White (1998) and Ferguson (1983), it need

not decrease strictly as the number of components in the mixture increases. In such cases, the

LR statistic can even be degenerate under the null. For example, the LR statistic is degenerate

if a normal distribution is tested against a mixture of two normals, when data follow a uniform

distribution. This happens because the null parameter values are on the boundary of the parameter

space. In essence, if the first-order condition on the null parameter space is non-zero when the null

and alternative models have the same entropy, then the LR statistic is degenerate. Such cases can

arise when models are misspecified and the model scope afforded by the parameter space or the

assumed distributional conditions is too narrow to exploit the flexibility otherwise provided by the

mixture.

Cho and White (2008) provide conditions for the LR statistic to be non-degenerate when the

null and alternative models have the same levels of entropy for misspecified mixture models. These

cases provide a class of alternatives against which the LR statistic based on exponential or Weibull

mixtures does have power. Otherwise, the LR test need not have power. By verifying these condi-

tions when the mixture model is possibly misspecified, one can gain further support for the indi-

cated inference. We explore this further in Section 3, where we conduct Monte Carlo experiments
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under a wide range of DGP assumptions, including misspecified mixture models.

On the other hand, more powerful tests for unobserved heterogeneity might be obtained by

enlarging the scope of the alternative model. For example, the researcher may increase the size

of the parameter space A or compare likelihoods using multiple mixture alternatives. We examine

the first option in our Monte Carlo experiments. The second possibility presents a significant

challenge, however, as there are more unidentified nuisance parameters under the null and more

than two ways to generate the null model from the alternative. To obtain the asymptotic null

distribution, one must interrelate the asymptotic null distributions obtained for each case. As there

is no theory in the literature addressing this, and as developing this theory is beyond the scope of

this paper, we do not pursue this here.

2.3.3 The Censored Duration Case

Many duration datasets involve censoring, mainly due to incomplete sampling designs, especially

in cross-section data. We now consider modified LR statistics suitable for testing unobserved

heterogeneity with censored data and discuss their properties. As we show, these properties differ

considerably from the uncensored case.

There are many possible censoring schemes, but for simplicity and conciseness, we restrict

attention here either to (i) Type I (fixed) censoring, where for a given constant c <∞, the observed

duration is Y c
t = min[Yt, c] or to (ii) random censoring, in which case Y c

t = min[Yt, Ct], where

Ct and (Yt, Xt) are independent. In either case, we observe {(Y c
t , Dt, X

′
t)
′}, where Dt = 1 if

Y c
t = Yt, and Dt = 0 otherwise.

The simplest situation is Type I censoring. Here, the conditional density of (Y c
t , Dt)|Xt is

defined by

f c(yc, d | Xt; δ
∗, β∗, γ∗) ≡ f(yc | Xt; δ

∗, β∗, γ∗)d[1− F (c|Xt; δ
∗, β∗, γ∗)]1−d,

where F (c|Xt; δ
∗, β∗, γ∗) is the CDF of Yt given Xt evaluated at c. If we parameterize the hetero-

geneous PDF as

f c
a(y

c, d|Xt; π, α1, α2, β, γ) = πf c(yc, d|Xt;α1ζ
∗, β, γ) + (1− π)f c(yc, d|Xt;α2ζ

∗, β, γ) (7)
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as before, then the LR statistic can be constructed as

LRc
n ≡ 2

{
n∑

t=1

ln[f c
a(Yt, Dt | Xt; π̂

c
n, α̂

c
1n, α̂

c
2n, β̂

c

an, γ̂
c
an)]−

n∑
t=1

ln[f c(Yt, Dt | Xt; δ̂
c

n, β̂
c

n, γ̂
c
n)]

}
,

where (δ̂
c

n, β̂
c

n, γ̂
c
n) and (π̂c

n, α̂
c
1n, α̂

c
2n, β̂

c

an, γ̂
c
an) are the censored MLEs obtained under the null and

alternative hypotheses respectively as before, and α̂c
1n ≡ δ̂

c

1n/δ̂
c

n, α̂
c
2n ≡ δ̂

c

2n/δ̂
c

n.

As in the previous case, the asymptotic distribution of the LR statistic converges to a standard

Gaussian process under the null of no unobserved heterogeneity. That is,

LRc
n ⇒ LRc ≡ sup

α∈A
(max[0,Gc(α)])2,

and Gc denotes a particular standard Gaussian process with covariance kernel depending on the

specifics of the case at hand (exponential or Weibull, with or without regressors).

For example, applying theorem 6(a) of Cho and White (2007) to the mixture of censored ex-

ponentials with regressors,

Mc
a|γ=1 ≡ {f c

a(· | ·; π, α1, α2, β, γ) : (π, α1, α2, β, γ) ∈ [0, 1]× A× A×B × {1}},

we find that LRc
n ⇒ LRc ≡ supα∈A(max[0,Gc

1(α)])2, where Gc
1( · ) is a standard Gaussian process

with

E[Gc
1(α)Gc

1(α
′)] =

ρc(α, α′)√
ρc(α, α)

√
ρc(α′, α′)

,

where

ρc(α, α′) ≡ κ(α)κ(α′)

[
1− τ(α)τ(α′)

1− κ(α)κ(α′)
− {1− τ̃(α)}{1− τ̃(α′)}

1− τ̃(1)

]
with κ(α) ≡ (α− 1)/α,

τ(α) ≡ E[exp{−(α− 1/2)cγ
∗
ζ∗g(Xt; β

∗)}], and τ̃(α) ≡ E[exp{−αcγ∗
ζ∗g(Xt; β

∗)}].

Observe that if, for given α, c tends to infinity, then τ(α), τ̃(α), and τ̃(1) tend to zero, and we

obtain the covariance structure in (3) in the limit as censoring vanishes.

Nevertheless, the different covariance structures arising with censoring present new challenges

for obtaining consistent critical values. One obvious difference is that, unless g(Xt; β
∗) ≡ const,
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the functional form of ρc( · , · ) now generally depends on the unconditional distribution of Xt,

through τ and τ̃ . Although these functions can be consistently estimated (replace unknown co-

efficients with consistent estimates and expectations with sample averages), these estimates are

required for all grid points α. Even more challenging, however, is the fact that ρc( · , · ) has a form

that does not readily lend itself to representation as an infinite sum of orthonormal bases.

Consequently, testing for unobserved heterogeneity with censored data must be conducted in

a way that does not require explicit handling of the covariance structure. Fortunately, Hansen’s

(1996) weighted bootstrap is ideally suited for this purpose. In particular, this method can deliver

valid asymptotic p-values without having to compute the associated covariance structure, support-

ing tests of unobserved heterogeneity for the censored case. Note, however, that use of Hansen’s

bootstrap is much more computationally demanding than the use of orthogonal bases possible in

the uncensored case. Further, each model requires custom programming, and the complexity of

the programming task is so great that just producing error-free computer code is a true logistical

challenge. Cho, Cheong, and White provide detail.

For the case of random censoring, the joint conditional PDF of (Y c
t , Dt)|Xt is defined by

f c(yc, d|Xt; δ
∗, β∗, γ∗) ≡ {f(yc|Xt; δ

∗, β∗, γ∗)}d{1−F (yc|Xt; δ
∗, β∗, γ∗)}1−d{1−G(yc)}d{g(yc)}1−d,

where g( · ) and G( · ) are the PDF and CDF of Ct, respectively. We note that 1 − G( · ) and

g( · ) enter multiplicatively, so that we can drop these terms when parameterizing the model for

estimation (see, e.g., White (1994, p. 144)).

We construct the alternative model as a parameterized mixture, as above. Specifically, the

alternative model is

Mc
a ≡ {f c

a( · , · | · ; π, α1, α2, β, γ) : (π, α1, α2, β, γ) ∈ [0, 1]× A× A×B × Γ},

where

f c
a(y

c, d|Xt; π, α1, α2, β, γ) ≡ π · f c(yc, d|Xt;α1ζ
∗, β, γ) + (1− π) · f c(yc, d|Xt;α2ζ

∗, β, γ).

The LR statistic LRc
n is computed analogously to that for the fixed censoring case. Once again,
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we have that under the null of no unobserved heterogeneity

LRc
n ⇒ LRc ≡ sup

α∈A
(max[0,Gc(α)])2,

where Gc denotes a particular standard Gaussian process depending on the specifics of the case

at hand. As above, the covariance structures in the various cases depend on the distribution of

(Xt, Ct) and do not readily permit orthogonal representations, requiring use of Hansen’s (1996)

bootstrap. For brevity and because we do not rely on the covariance structure to compute critical

values, we omit analysis of these covariance structures here. We do, however, examine the perfor-

mance of LRc
n with random censoring using critical values based on Hansen’s (1996) bootstrap in

our Monte Carlo experiments of Section 3.2.

3 Monte Carlo Experiments

3.1 Uncensored Duration Data

In this section, we conduct Monte Carlo simulations to examine level and power properties of the

LR test, comparing these to the properties of Chesher’s (1984) IM test and Kiefer’s (1985) and

Sharma’s (1987) LM tests.

To examine level properties, we consider the following DGPs:

• Yt ∼ IID Exp(1);

• Yt ∼ IID Weibull(1, 1);

• Yt | Xt ∼ IID Exp(exp(Xt));

• Yt | Xt ∼ IID Weibull(exp(Xt), 1),

where Exp(δ∗) denotes the exponential distribution with coefficient δ∗ and Weibull( · , · ) similarly

denotes the Weibull distribution with the specified coefficients. For the third and fourth DGPs,

Xt ∼ IID N(0, 1). Here, we assume the standard normal distribution for Xt because of its famil-

iarity and regularity, ensuring that the conditions of the Appendix hold. The finite sample results

given below may be different if Xt follows a different distribution. We obtain parameter estimates

from the corresponding correctly specified models, defined using the parameterizations
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• Yt ∼ IID Exp(δ);

• Yt ∼ IID Weibull(δ, γ);

• Yt | Xt ∼ IID Exp(δ exp(Xtβ));

• Yt | Xt ∼ IID Weibull(δ exp(Xtβ), γ).

To investigate the effects of specifying different parameter spaces A for α, we consider nine

different possibilities: A1 ≡ [7/9, 2.0], A2 ≡ [7/9, 3.0], A3 ≡ [7/9, 4.0], A4 ≡ [2/3, 2.0],

A5 ≡ [2/3, 3.0], and A6 ≡ [2/3, 4.0], A7 ≡ [5/9, 2.0], A8 ≡ [5/9, 3.0], and A9 ≡ [5/9, 4.0].

The choice of the other parameter spaces has no impact on the null distribution, so we leave these

unspecified.

Table 1 provides critical values for the various parameter spaces. These are computed by

simulating Ḡ1,m and Ḡ2,m 100,000 times form = 500. The maxima of these functions are computed

by grid search with grid distance 0.01. Corollary 1 implies that it is not necessary to simulate

Ĝ3,n,m for the present experiments. We see that Table 1 exhibits critical values increasing as the

parameter space expands, as Theorem 1 implies. To enforce the infimum condition in Theorem 2,

we set inf A = 7/9, inf A = 2/3 and inf A = 5/9 respectively.

The other test statistics are defined as follows. First, we let IMn denote Lancaster’s (1984)

IM test statistic. A variety of IM test statistics can be devised by combining off-diagonal elements

of the IM equality with diagonal elements. For simplicity in our simulations, we focus solely on

the diagonal element associated with δ, so that IMn converges in distribution to χ2
1 under the null.

Specifically,

IMn = ι′W(W′W)−1W′ι,

where ι is an n× 1 vector of ones, and W is the n× 4 matrix


∇′

(δ,β,γ) ln f(Y1|X1; δ̂n, β̂n, γ̂n)
[

∂
∂δ

ln f(Y1|X1; δ̂n, β̂n, γ̂n)
]2

+ ∂2

∂δ2 ln f(Y1|X1; δ̂n, β̂n, γ̂n)

...
...

∇′
(δ,β,γ) ln f(Yn|Xn; δ̂n, β̂n, γ̂n)

[
∂
∂δ

ln f(Yn|Xn; δ̂n, β̂n, γ̂n)
]2

+ ∂2

∂δ2 ln f(Yn | Xn; δ̂n, β̂n, γ̂n)


if γ∗ is estimated. When γ∗ is known, the first-order derivative with respect to γ is omitted, so that

W is n× 3.

Next, we define Kiefer’s (1985) and Sharma’s (1987) LM test statistics. These statistics have
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the form

LMd,n ≡ nL̄′d,n{V̂d,n}−1L̄d,n,

where the subscript d indicates the order of the Laguerre polynomials underlying the LM test

statistic, L̄d,n ≡ n−1
∑n

t=1 L̂d,n,t,

L̂d,n,t ≡ [L2({δ̂ng(Xt; β̂n)}1/γ̂nYt; γ̂n), · · · , Ld({δ̂ng(Xt; β̂n)}1/γ̂nYt; γ̂n)]′

V̂d,n ≡ n−1

n∑
t=1

{L̂d,n,t − L̄d,n}{L̂d,n,t − L̄d,n}′,

and for j = 2, 3, ..., Lj( · ; γ) is jth Laguerre polynomial with parameter γ. The first few Laguerre

polynomials are

L1(x; γ) ≡ 1− xγ, L2(x; γ) ≡
1

2
(x2γ − 4xγ + 2), and

L3(x, γ) ≡
1

6
(−x3γ + 9x2γ − 18xγ + 6).

When γ = 1, we have Kiefer’s (1985) exponential distribution case. Sharma (1987) considers the

Weibull distribution, in which the estimator γ̂n appears.

Prieger (2000) points out that the asymptotic distributions of Weibull-based LM statistics are

affected by parameter estimation error, whereas those of the exponential-based LM statistics are

not. To accommodate parameter estimation in the Weibull case, we replace V̂d,n with Ŵd,n, so that

LMn ≡ nL̄′d,n{Ŵd,n}−1L̄d,n,

where Ŵd,n ≡ V̂d,n − Ĥd,nB̂
−1
n Ĥ ′

d,n,

Ĥd,n ≡ n−1

n∑
t=1

L̂d,n,t Ŝ
′
n,t, and B̂n ≡ n−1

n∑
t=1

Ŝn,t Ŝ
′
n,t,
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where for t = 1, 2, ...,

Ŝn,t ≡


∂
∂δ

ln f(Yt | Xt; δ̂n, β̂n, γ̂n)

∂
∂β

ln f(Yt | Xt; δ̂n, β̂n, γ̂n)

∂
∂γ

ln f(Yt | Xt; δ̂n, β̂n, γ̂n)

 .
Under the null, the LM statistic is distributed asymptotically as χ2

d−1. For our simulations, we

consider two cases, d = 2 and d = 3.

Table 2 contains our level simulation results. The number of replications is 10, 000. All statis-

tics converge weakly to the claimed null distributions.4 In particular, the empirical distributions of

the LR statistics converge to the null distribution from above, so that rejection rates are smaller than

the nominal level when the sample sizes are small. Also, the farther inf A is from 1/2, the closer

empirical rejection rates are to the nominal level for smaller n, as suggested by Theorem 2. Note

that for each k, the denominators of ak(α), ak(α), and ck(α, θ∗) diverge to∞ as α converges to 1/2

from above. Thus, obtaining critical values by simulating Ḡ1,m( · ), Ḡ2,m( · ), and Ĝ3,n,m( · ) requires

m to be very large when inf A is close to 1/2. Even with m = 500, this can cause noticeable level

distortions, as is evident in Table 2.

This behavior can also be seen in Figures 1 and 2, where we compare empirical with asymptotic

distributions for n = 100, 500, and 5, 000, with A = [7/9, 2], [2/3, 2], and [5/3, 2]. Figures 1 and

2 show the empirical distributions and estimated density functions for the exponential and Weibull

cases, respectively. The empirical distributions and density functions are displayed in the first and

second columns, respectively. In particular, as the LR test statistics have probability masses at

zero, we estimate their density functions only for positive arguments using the kernel estimation

with a standard normal kernel. Note that for given n, when inf A approaches 1/2, the empirical

distribution of the LR statistic diverges from its asymptotic counterpart. This discrepancy has two

possible sources: the selected m could be too small; and/or n is not sufficiently large.

We also note that level distortion is influenced by supA, but not as much. This is evident from

Figures 3 and 4. Note that as the level α increases, the empirical distributions of the LR statistics

diverge from their asymptotic counterparts, but not as much as in Figures 1 and 2.

This behavior implies that inf A is more important for level distortions than supA. Thus,

selecting inf A to be about 2/3 appears to be reasonable, whereas supA can be selected to be

moderately large.

4See the footnotes to Table 2.
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In contrast, the distributions of the IM and LM tests converge from below, leading to rejection

rates greater than the nominal level. For small and moderate size samples, we observe the well-

known level distortions of the IM test (e.g. Horowitz, 1994). The LM test levels converge relatively

slowly. We note also that convergence with d = 3 is slower than that with d = 2. Interestingly, the

level distortion for the LM statistic with d = 3 is more extreme than that of the IM statistic.

For power comparisons, we consider two families of DGPs, respectively generating data as

• Yt | (δt, Xt) ∼ IID Exp(δt exp(Xt));

• Yt | (δt, Xt) ∼ IID Weibull(δt exp(Xt), 1).

As above, Xt ∼ IID N(0, 1). Within each family, we investigate the following mixture distribu-

tions for δt :

• Discrete mixture: δt ∼ IID DM(0.7370, 1.9296; 0.5);

• Gamma mixture: δt ∼ IID Gamma(5, 5);

• Log-normal mixture: δt ∼ IID Log-normal(− ln(1.2)/2, ln(1.2));

• Uniform mixture I: δt ∼ IID Uniform[0.30053, 2.3661];

• Uniform mixture II: δt ∼ IID Uniform[1, 5/3],

where DM(a, b; p) yields a discrete mixture such that P [δt = a] = p and P [δt = b] = 1 − p. The

first four DGPs generate heterogeneity distributions with variation factor (the ratio of the variance

to the square of the population mean) 0.2. This factor is of particular interest in the literature (e.g.,

Lancaster, 1979). The final DGP is intended to examine how the LR, the IM, and LM tests behave

for a smaller variation factor; this value is about 0.02.

Note that only the first mixture distribution above is a two-component discrete mixture. The rest

are more general alternatives; as noted above, we expect our statistics to have good power against

these. We also note that the mixture models with A = [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3],

and [5/9, 4] are correctly specified when unobserved heterogeneity follows the two-component

discrete mixture. For the other distributions, the mixture models are misspecified.

For the first family, we estimate parameters using the exponential specification; for the second

family, we use the Weibull specification.

Power simulation results are presented in Tables 3 and 4. The number of replications is 2, 000.

We apply level-adjusted critical values, obtained from the simulations under the null, to accommo-
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date small-sample level distortions. These level adjustments are typically not feasible in practice,

but we use them neverthless, as meaningful power comparisons cannot be performed otherwise.

As we see in Tables 3 and 4, for the DGPs considered here, the LR tests have better power

than the IM and LM tests. As expected, the LR test has power against all alternatives, not just the

discrete mixture.

Our experience regarding A in terms of power can be summarized as follows. First, if the mix-

ture model is correctly specified, selecting the smallest parameter space yields the most powerful

tests. That is, for the two-component discrete mixture case, LRn([2/3, 2]) yields the most powerful

results for the correctly specified models. Second, however, if the mixture models are misspeci-

fied, then the simulation results are mixed. This behavior can be related to inf A and supA, as in

our level studies. If inf A is too close to 1, it may lead to an inconsistent LR test. For example,

when the heterogeneity follows the gamma distribution and inf A = 8/9, the LR statistic has no

power for supA = 2, 3, and 4. This is mainly because inf A is too close to 1 for the MLE to be in

the interior of A even asymptotically, as anticipated by Cho and White (2008). Nevertheless, when

inf A is 7/9, 2/3, or 5/9, the LR tests are consistent for every misspecified mixture model. Further,

they have better power as inf A or supA gets smaller. These results suggest that choosing inf A

to be about 2/3 gives reasonable power, at least against the popular alternatives in the literature,

whereas supA can be selected without too much constraint.

This is the same lesson we learn from our study of level distortion, so this appears to be a

reasonable recommendation when the heterogeneity distribution is unknown under the alternative.

Accordingly, we apply this choice for our empirical applications.

Observe that in only a few cases does LM2,n have power different from that of the IM tests;

they are similar in most cases. This is mainly because LM2,n is based on Ln,2, which is virtually

the same as the second-order derivative of the likelihood function exploited by the IM test. This

helps explain the inferior power of the LM tests relative to the LR tests. Nearly identical results

obtain when regressors are absent, but we do not report these for brevity.

Despite the lower power of the IM and LM tests, these still have utility. As mentioned above,

the asymptotic null distributions of the LR statistics are model dependent, whereas those of the IM

and LM tests are not.
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3.2 Censored Duration Data

To examine level properties for our LR statistic under censoring, we consider the following DGP

with random censoring:

• Y c
t ≡ min[Yt, Ct], Yt|Xt ∼ IID Weibull(exp(Xt), 1), and Ct ∼ IID Exp(1),

where Ct and (Yt, Xt) are independent. As noted above, we need not model the distribution of Ct

in constructing our LR statistic.

We restrict attention to this censored Weibull (C-Weibull) DGP for several reasons. First, we

do not consider the censored exponential distribution case, as it is essentially a special case of the

censored Weibull case. Second, we do not consider Type I (fixed) censoring as this is a special

case of the randomly censored case. As the C-Weibull DGP contains the other cases in this sense,

we view the C-Weibull DGP as both representative and most salient. Third, and most significantly,

the extreme computational burden associated with simulating the weighted bootstrap forces us to

focus attention strictly on the most salient case.

The specific procedure for conducting Hansen’s (1996) weighted bootstrap is as follows. First,

we compute the score for each grid point α ∈ A as Ŝnt(α) := {D̂nt(α)}− 1
2 Ŵnt(α), where

D̂nt(α) ≡ 1

n

n∑
t=1

[1− R̂nt(α)]2− 1

n

n∑
t=1

[1− R̂nt(α)]Û ′
nt

[
1

n

n∑
t=1

ÛntÛ
′
nt

]−1
1

n

n∑
t=1

Ûnt[1− R̂nt(α)],

Ŵnt(α) ≡ [1− R̂nt(α)]− Û ′
nt

[
n−1

n∑
t=1

ÛntÛ
′
nt

]−1 [
n−1

n∑
t=1

Ûnt[1− R̂nt(α)]

]
,

R̂nt(α) ≡ f c(Yt, Dt|Xt;αδ̂n, β̂n, γ̂n)/f c(Yt, Dt|Xt; δ̂n, β̂n, γ̂n),

Ûnt ≡ ∇(δ,β,γ) ln[f c(Yt, Dt|Xt; δ̂n, β̂n, γ̂n)],

and we consider nine parameter spaces for A as before. That is, A = [7/9, 2], [7/9, 3], [7/9, 4],

[2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and [5/9, 4]. The grid distance is 0.01, as well.

Second, we generate Zjt ∼ IIDN(0, 1), t = 1, 2, . . . , n, and j = 1, 2, . . . , J , and simulate

the asymptotic distribution of the LR statistic by computing the empirical distribution of

LRjn(A) ≡ sup
α∈A

(
max

[
0,

1√
n

n∑
t=1

Ŝnt(α)Zjt

])2

.
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Due to the immense computational burden involved, we let J = 500, following Hansen’s (1996)

recommendations. Although J is not large enough for highly precise estimates, Hansen’s (1996)

simulation experience suggests that this will yield solid results at relatively modest cost.

Third, we compare the LR test statistic to this empirical distribution by computing the propor-

tion of simulated outcomes exceeding the LR test statistic value. That is, the empirical level is

p̂n ≡ J−1
∑J

j=1 I[LR
c
n(A) < LRjn(A)], where I[ · ] is the usual indicator function. Finally, we

repeat this process N = 5, 000 times, generating p̂(i)
n , i = 1, ..., N, and we compute the propor-

tion of outcomes whose p̂(i)
n is less than the specified level (e.g., α = 5%). That is, we compute

N−1
∑N

i=1 I[p̂
(i)
n < α]. Under the null, this converges to the significance level corresponding to

the specified nominal level, α, because p̂n weakly converges to U[0, 1] in distribution by theorem

2 of Hansen (1996). On the other hand, under the alternative, p̂n converges to zero in probability

because LRc
n(A) is not bounded in probability by the same argument as in Theorem 3, whereas

LRjn(A) is bounded in probability. This holds because LRjn(A) is constructed from a zero mean

process involving multiples of Zjt.

We present these estimates in Table 5, where we let the level of significance be 5%. We see

that the estimated empirical rejection rates are below 5% but approach 5% as the sample size n

increases. This is also what Hansen (1996) finds. In contrast to other choices of A, we observe that

when A is [2/3, 2], [2/3, 3], [2/3, 4], or [5/9, 2] the empirical rejection rates are relatively stable

and are relatively close to 5%, even for modest sample sizes,

For power comparisons, we slightly modify the previous considered alternative DGPs. In par-

ticular we consider

• Y c
t ≡ min[Yt, Ct], Yt, | (δt, Xt) ∼ IID Weibull(δt exp(Xt), 1), and Ct ∼ IID Exp(1).

As above, Xt ∼ IID N(0, 1). We thus investigate the same mixture distributions for δt as for

the uncensored case. Specifically, we consider the same mixture models for δt as in Section 3.1:

discrete, gamma, log-normal, uniform I, and uniform II. We call these five DGPs the C-discrete

mixture, C-gamma mixture, C-log-normal mixture, C-uniform mixture I, and C-uniform mixture

II respectively.

The simulation procedure is identical to the level case. The only difference is that the null

DGPs are replaced by these five alternatives.

Simulation results are presented in Table 6. The number of repetitions is now N = 2, 000, so
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that the empirical rejection rates are computed by N−1
∑N

i=1 I[p̂
(i)
n < 0.05]. Under the alternative,

this estimate should converge to 100%. The LR test statistic is indeed consistent against these

alternative DGPs, as can be seen in Table 6.

For censored data, our experience regarding selecting A in terms of power can be summarized

as follows. First, even if the mixture model is correctly specified, selecting the smallest parameter

space does not necessarily yield the most powerful test. This result differs from the uncensored

case. Here, all parameter spaces yielded more or less similar power results, and there is no apparent

obvious order for the parameter spaces in terms of power. Second, if the mixture models are

misspecified, then the most powerful tests are obtained when inf A and supA are smallest; this

also differs from the uncensored case. These results suggest that when durations are censored,

letting inf A be close to 1/2 can yield better power and that supA needs to be smaller than in the

uncensored case. Specifically, for all alternative DGPs considered here, the most powerful results

are obtained by letting A = [5/9, 2].

We also conduct IM and LM heterogeneity tests for censored data, analogous to those for the

uncensored case, denoted by IM c
n, LM

c
2,n, and LM c

3,n. The results appear in Tables 5 and 6. As

before, we see serious level distortions for these statistics. In comparing power, we therefore again

use level-adjusted crticial values. For the most part, the LR tests dominate the IM test and LM c
3,n.

On the other hand, LM c
2,n outperforms most of the LR tests. Because of the level distortions, this

advantage cannot be practically exploited in samples less than 1,000 or 2,000. Nevertheless, in

larger samples, LM c
2,n may have a practically useful modest power advantage.

To close this section, we note that Cho, Cheong, and White (2010) perform further simula-

tions comparing LR tests based on asymptotic and weighted bootstrap critical values. They study

the same environments as here, considering only the uncensored case; they find that the weighted

bootstrap outperforms the asymptotic approach in terms of both level and power. In particular,

the weighted bootstrap level is relatively less sensitive to the choice of A. Cho, Cheong, and

White (2010) also document the greater computational costs associated with the weighted boot-

strap. Comparing their results to those presented here for the censored case, we see that results for

the uncensored case are superior to those for the censored case. This should not be surprising, as

the uncensored case preserves information absent from the censored case.
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4 Applications

4.1 Re-examination of van den Berg and Ridder (1998)

van den Berg and Ridder (1998) estimate reduced form equations for Netherlands unemployment

durations and test for unobserved heterogeneity using a LR statistic. The data are the OSA labor

supply data collected by the Netherlands Organization for Strategic Labour Market Research. van

den Berg and Ridder (1998) estimate three models: the exponential, the mixture of exponentials,

and the mixture of Weibulls using 366 observations:

Yt | Xt ∼ IID Exp(δ exp(X ′
tβ)), (8)

Yt | Xt ∼ IID πExp(α1ζ
∗ exp(X ′

tβ)) + (1− π)Exp(α2ζ
∗ exp(X ′

tβ)), (9)

Yt | Xt ∼ IID πWeibull(α1ζ
∗ exp(X ′

tβ), γ) + (1− π)Weibull(α2ζ
∗ exp(X ′

tβ), γ), (10)

respectively. The regressors Xt are ‘age,’ ‘education,’ and ‘occupation level dummy’ variables.

To identify these mixture models, they let α1 = 0.28 and 0.13 in the mixture of exponentials

and Weibull distributions respectively and estimate the other parameters by maximum likelihood,

including ζ∗. This differs somewhat from our approach using δ̂n. Nevertheless, the LR statistics

obtained are numerically identical by the invariance principle, and our estimators can be easily

obtained from theirs. Note that each model is recursively nested in the latter, so that comparing the

log-likelihoods is equivalent to testing the following hypotheses:

• (8) versus (9): testing for unobserved heterogeneity;

• (8) versus (10): testing for unobserved heterogeneity and γ∗ = 1;

• (9) versus (10): testing γ∗ = 1.

van den Berg and Ridder (1998) identify unobserved heterogeneity by rejecting the first hypothesis,

presumably using asymptotic critical values from the chi-square distribution5; they do not reject

5van den Berg and Ridder (1998) reject the null and infer the presence of significant heterogeneity without explicitly
describing their procedure. Also, they (implicitly) assume correct specification for the conditional mean equation.
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the exponential distribution in the third hypothesis. Nevertheless, these results are ambiguous, as

the standard chi-square critical values for the LR test statistic do not apply, as discussed above. For

their first hypothesis, the LR statistic value is about 10.28. If we cast the parameter estimate given

in van den Berg and Ridder (1998, Table III) into the present context, the global maxima must

have been achieved by δ̂n = 0.2787 and (ζ̂n, α1, α̂2n) = (0.0773, 0.2800, 1.630) for the null and

alternative models respectively. They let α1 = 0.2800 to avoid the identification problem instead

of fixing ζ as in our analysis, but this does not matter, as it can be easily rephrased. For this,

we fix ζ at δ̂n and conversely estimate α1 and α2 of the current study by α1ζ̂n/δ̂n and α̂2nζ̂n/δ̂n

respectively. These are respectively 0.7764 and 4.5200, implying that the smallest parameter space

yielding this global maximum in terms of A of current paper is A = [0.7764, 4.5200]. Although

we can compute the associated critical value from this estimated parameter space, we choose a

somewhat larger parameter space, A = [2/3, 5], in order to accommodate parameter estimation

error residing in δ̂n and the lessons of the previous section. The associated p-value is 0.00205,

which is quite small. Thus, we affirm van den Berg and Ridder’s (1998) original inference.

4.2 Re-examination of Ghysels, Gourieroux, and Jasiak (2004)

Ghysels, Gourieroux, and Jasiak (2004) (GGJ) argue that an accurate liquidity analysis of financial

markets must accommodate both the conditional mean and dispersion of interarrival durations of

stock transactions. As the conditional mean and variance of intertrade durations are indicators for

market liquidity and risk respectively, data analysis simultaneously accommodating these becomes

more accurate than analysis focusing only on one of these.

GGJ specify a model for interarrival durations of stock transactions driven by two unobserved

factors, Ft = (F1t, F2t)
′. Their stochastic volatility duration (SVD) model is specified by the para-

meterization

Yt =
1

a

H(1, F1t)

H(b, F2t)
where (11)

Ft =

p∑
j=1

ΦjFt−j + εt, (12)

where Yt is the interarrival duration of stock transactions; a, b, and Φj, j = 1, ..., p are model

parameters; H(b, F2t) is such that H(b, F2t) = G(b,Φ(F2t)), where G(b, ·) is the quantile function
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of the γ(b, b) distribution, with Φ the standard normal CDF; and εt is a Gaussian white noise of

dimension two.

The SVD model extends the exponential model with gamma heterogeneity in Kalbfleisch and

Prentice (1990) and Lancaster (1990). Note that H(b, F2t) is a gamma variable with conditional

mean 1 and and variance 1/b respectively, given Ft := σ(Ft, Ft−1, . . .), so that if b = 1, H(1, F1t)

is a conditionally exponential random variable. Thus, if εt ∼ IIDN(0, I2) and Φj = 0 for

j = 1, 2, . . . , p, then the model in (11) reduces to the exponential model with gamma heterogene-

ity popularly specified for duration data in labor economics. Here, F1t and F2t jointly determine

E[Yt|Ft] and var[Yt|Ft]. In particular, unobserved heterogeneity is determined by H(b, F2t). If the

variance of H(b, F2t) is zero, then the conditional distribution of Yt given F must be the exponen-

tial distribution, and unobserved heterogeneity is absent. The SVD model has the same motivation

as do stochastic volatility models, in the sense that the two unobserved Gaussian components

(F1t, F2t) determine the conditional mean and variance of Yt.

GGJ (2004) estimate their SVD model using the duration between stock trades of Alcatel in

July 1996. Their data represent 5, 000 observations extracted from the Paris Stock Exchange, and

they specify the following linear ACD (LACD) model for E[Yt|Ft]:

Ψt = ω + αYt−1 + ρ1Ψt−1 + ρ2Ψt−2, (13)

where Ψt := E[Yt|Ft]. They estimate their SVD model by the simulated method of moments,

and they graphically compare the implied properties of this model with the ACD model without

unobserved heterogeneity. They conclude that the SVD model provides a better description of

the data than the ACD model without unobserved heterogeneity based on an evaluation of their

graphical results. See GGJ for more information on their data and their empirical analysis.

Here, we revisit their data and apply the methodology of the current study. The goal of this

review is twofold. First, this illustrates application of our LR statistic in a time series context,

with particular attention paid to the correct specification of the conditional mean. Second, this

illustrates the empirical motivation for a model of the conditional variance of duration, based on

the apparent presence or absence of unobserved heterogeneity. For this, we apply the LR test based

upon the mixture of conditional exponential distributions nested within the SVD model. We view

this application of our tests as complementing GGJ’s graphical testing procedures for the SVD.
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Our testing procedure is as follows. First, we test whether or not the linear ACD (LACD) model

given in (13) is correctly specified for E[Yt|Ft]. Thus, the hypotheses of interest can be stated as

follows:

HLACD
o : LACD is correct for E[Yt|Ft]; vs. HLACD

a : LACD is misspecified for E[Yt|Ft].

For this, we exploit a specification test given by Cho, Huang, and White (2008). Their test extends

Bierens’s (1990) specification test; this involves running a functional regression of

Ĝt(γ) :=

[
1

Ψ̂t

(
Yt

Ψ̂t

− 1

)]
ψ(Yt−1γ),

on deterministic functions of γ, where ψ(x) is the logistic function, so that ψ(x) := 1/[1 +

exp(−x)];

Ψ̂t = ω̂n + α̂nYt−1 + ρ̂1nΨ̂t−1 + ρ̂2nΨ̂t−2; (14)

and (ω̂n, α̂n, ρ̂1n, ρ̂2n) is the quasi-MLE (QMLE) based on the exponential distribution. Note that

Ĝt(γ) is constructed by multiplying the logistic function by the score with respect to ω. If the

conditional mean equation is correctly specified, then the population mean of Ĝt(γ) has to be zero

for every γ. Cho, Huang, and White (2008) test this property using functional regression. Their

theoretical results and simulations show that this test can consistently detect misspecified models

by selecting functional regressors appropriately. (See Cho, Huang, and White (2008) for further

details.)

We apply their test, choosing the regressors to be the constant, γ, and γ2. That is, after mini-

mizing
1

n

n∑
t=1

∫ 0.5

−0.5

{Ĝt(γ)− ξ0 − ξ1γ − ξ2γ
2}2dγ

with respect to (ξ0, ξ1, ξ2), we test whether or not the probability limits of the estimated coefficients

(ξ∗0, ξ
∗
1, ξ

∗
2) are equal to zero using Wald statistics. If the conditional mean equation is correctly

specified, then the limits have to be zero, and the Wald test follows the chi-square distribution

under the null. Here, selecting the functional regressors to be the constant, γ, and γ2, corresponds

to selecting particular alternatives to the correct specification hypothesis.

Our inference results are given in Table 7. The first panel of Table 7 shows the specification
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testing results. W(c)
n and W(j)

n test (ξ∗0, ξ
∗
1, ξ

∗
2) = (0, 0, 0) and ξ∗j = 0 for j = 0, 1, and 2, re-

spectively. Using the Hochberg-Bonferroni (HB) bound (Hochberg, 1988) yields a p-value upper

bound6 valid for the four multiple hypothesis tests conducted here. We report these in the rows

labeled ”HB Bound” in Table 7. In the present instance, the HB bound signals a highly significant

result. We thus conclude that the LACD model is misspecified for E[Yt|Ft].

In the same panel, we also present the LR statistics for testing unobserved heterogeneity using

the mixture of exponentials. In particular, our mixture model specifies

αj

ω̂on + αYt−1 + ρ1Ψt−1 + ρ2Ψt−2

for αjδ
∗g(Xt; β

∗), where j = 1 and 2, and ω̂on is the estimate for ω∗ under the null. ω̂on is used

for model identification. We also obtain α̂1n = 1.1402 and α̂2n = 0.9650, and π̂n ≈ 0 without any

parameter space condition under the alternative, and the LR statistic value is 0.48884. We consider

three parameter spaces for the LR statistics. That is, the parameter space A for α1 and α2 is set

to [2/3, 2], [2/3, 3], and [2/3, 4]. These are selected based on our experience with the previously

reported Monte Carlo experiments. We note that the obtained α̂1n and α̂2n are feasible forA chosen

to be [2/3, 2], [2/3, 3], and [2/3, 4]. When A is set to [2/3, 4], α̂1n = 1.14 and α̂2n = 0.96. We

also present in Table 7 the associated p-values using the asymptotic distributions given by Theorem

2(i). Note that the associated p-values are much greater than 0.05, so that unobserved heterogeneity

appears to be absent.

Nevertheless, this appearance is deceptive, due to the model misspecification for conditional

mean. With the conditional mean misspecified, no valid conclusions can be drawn as to unobserved

heterogeneity.

We therefore extend the LACD model. Fernandes and Grammig (2006) consider alternative

models to LACD, obtained by applying the Box-Cox transformation. Following their motivation,

we extend their augmented ACD models from the most restricted case. First, we consider a power

ACD (PACD) model specified as

Ψλ
t = ω + αY λ

t−1 + β1Ψ
λ
t−1 + β2Ψ

λ
t−2. (15)

6Hochberg’s method involves ordering the p−values from testing r hypotheses as p(1), ..., p(r) and computing the
bound as HB = minj=1,...,r(r − j + 1)p(j)
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We view (15) as a modest extension of the LACD model, as it reduces to the linear ACD model by

letting λ = 1. We apply the same specification tests as before for the following hypotheses:

HPACD
o : PACD is correct for E[Yt|Ft]; vs. HPACD

a : PACD is misspecified for E[Yt|Ft],

and present the results in the second panel of Table 7. The HB bound signals a moderately signifi-

cant result, leading us again to reject the correct specification assumption.

Accordingly, we extend the PACD to the following flexible power ACD (FPACD) model:

Ψλ
t = ω + αY ν

t−1 + β1Ψ
λ
t−1 + β2Ψ

λ
t−2. (16)

Note that the power coefficient of Yt−1 now differs from that of Ψt; the power and linear ACD

models are thus special cases of this model. We now test the hypotheses:

HFPACD
o : FPACD is correct for E[Yt|Ft]; vs. HFPACD

a : FPACD is misspecified for E[Yt|Ft],

and present the results in the third panel of Table 7. Here, the HB bound gives a p−value far

from standard significance levels, suggesting that the FPACD model is not misspecified. If so, we

can conduct valid tests for unobserved heterogeneity using the LR test. As before, we specify our

mixture model as
αj

(ω̂on + αY ν
t−1 + ρ1Ψ

λ
t−1 + ρ2Ψ

λ
t−2)

(1/λ)

for αjδ
∗g(Xt; β

∗), where j = 1 and 2, and ω̂on is estimated using the null model. Using LR tests

based upon each of the three parameter spaces [2/3, 2], [2/3, 3], and [2/3, 4], we reject the null of

no unobserved heterogeneity. The HB bound also strongly signals rejection.

This rejection motivates the need for an adequate model for the conditional dispersion of du-

ration. Although the conditional mean equation we arrive at differs from that in GGJ, our analysis

affirms that the exponential distribution misspecifies the conditional distribution, so that the SVD

model accommodating conditional dispersion of duration becomes more appropriate than the ex-

ponential model without heterogeneity.
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5 Conclusion

Unobserved heterogeneity is an important concern in many areas of economics. In particular, unob-

served heterogeneity in duration models, especially in labor economics and financial econometrics,

can create serious difficulties for inference.

We provide tests for unobserved heterogeneity in duration models using the LR statistic, based

on mixtures of exponential or Weibull distributions. We treat both the uncensored and the censored

duration cases. The asymptotic null distributions of the LR statistics are not standard chi-square,

due to non-standard features of the null hypothesis: parameters on the boundary of the parameter

space and nuisance parameters identified only under the alternative. Nevertheless, the asymptotic

distributions of the LR statistic under the null can be represented as functions of particular Gaussian

processes. In the uncensored case, these processes can be conveniently represented using orthonor-

mal bases. In turn, these representations deliver straightforward consistent estimates of asymptotic

critical values. In the censored case, orthonormal representations are not readily available. Nev-

ertheless, a weighted bootstrap procedure of Hansen (1996) can be applied to deliver consistent

estimates of asymptotic critical values.

We conduct a range of Monte Carlo simulation experiments that provide insight into finite

sample level and power properties of the LR statistics. We find that, for the DGPs considered

in this paper, these properties are reasonable. In particular, for the uncensored case, the LR test

outperforms the IM test of Chesher (1984) and the LM tests of Kiefer (1985) and Sharma (1987).

For the censored case, we also find reasonable level and power properties. We thus recommend

using the LR tests developed here, whenever the underlying regularity conditions can be plausibly

assumed.

Finally, we apply our results to revisit the unemployment duration analysis of van den Berg

and Ridder (1998) and the stock interarrival duration analysis of Ghysels, Gourieroux, and Jasiak

(2004). As it turns out, our analysis affirms the original inferences drawn by these authors.
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6 Appendix

6.1 Assumptions

A1: (i) {(Yt, X
′
t)
′} is a strictly stationary geometric β-mixing process with β-mixing coefficients

βτ ≤ cρτ for some c > 0 and ρ ∈ [0, 1), where Yt is R+-valued, Xt is Rk−valued, k ∈ N, and Xt

does not contain a constant term.

(ii) For t = 1, 2, ..., conditional on Xt, Yt has the following conditional density:

m(y | Xt; π
∗, δ∗1, δ

∗
2, β

∗, γ∗) ≡ π∗f(y | Xt; δ
∗
1, β

∗, γ∗) + (1− π∗)f(y | Xt; δ
∗
2, β

∗, γ∗)

for some (π∗, δ∗1, δ
∗
2,β

∗′, γ∗) ∈ [0, 1]×D×D×B×Γ, where D×D×B×Γ is a convex compact

subset of R+ × R+ × Rd × R+, d ∈ N;

f(y | Xt; δ
∗, β∗, γ∗) = δ∗γ∗g(Xt; β

∗)yγ∗−1 exp(−δ∗g(Xt; β
∗)yγ∗

);

for each β ∈ B, g( · ; β) : Rk → R is a Borel measurable function; and

m(· | Xt; π
∗, δ∗1, δ

∗
2, β

∗, γ∗) = p(· | Xt, Yt−1, Xt−1, ...),

where p(· | Xt, Yt−1, Xt−1, ...) is the conditional probability density function of Yt given Xt, Yt−1,

Xt−1, ... .

A2: (i) g(Xt; · ) is four times continuously differentiable almost surely.

(ii) Suppose (ζ∗, β∗′o,a, γ
∗
o,a) ≡ arg maxδ,β,γ∈D×B×ΓE[ln f(Yt | Xt; δ, β, γ)] exists and is unique,

and that for each (π, α1, α2, β, γ) ∈ [0, 1] × A × A × B × Γ, E[`t(π, α1, α2, β, γ)] exists and is

finite, where A ≡ {α : αζ∗ ∈ D} and

`t(π, α1, α2, β, γ) ≡ ln[πf(Yt | Xt;α1ζ
∗, β, γ) + (1− π)f(Yt | Xt;α2ζ

∗, β, γ)].

A3: There exists a sequence of positive, strictly stationary, and ergodic random variables {Mt}

such that for some ε > 0,

1. E[M1+ε
t ] < ∆ <∞;

38



2. sup(π,α1,α2,β,γ) |∇j`t(π, α1, α2, β, γ)∇k`t(π, α1, α2, β, γ)| ≤Mt;

3. sup(π,α1,α2,β,γ) |∇j,k`t(π, α1, α2, β, γ)| ≤Mt;

4. |∇i1f(Yt | Xt; δ
∗, β∗, γ∗)/f(Yt | Xt; δ

∗, β∗, γ∗)|4 ≤Mt;

5. |∇i1∇i2f(Yt | Xt; δ
∗, β∗, γ∗)/f(Yt | Xt; δ

∗, β∗, γ∗)|2 ≤Mt;

6. |∇i1∇i2∇i3f(Yt | Xt; δ
∗, β∗, γ∗)/f(Yt | Xt; δ

∗, β∗, γ∗)|2 ≤Mt; and

7. sup(δ,β,γ) |∇i1∇i2∇i3∇i4f(Yt | Xt; δ, β, γ)/f(Yt | Xt; δ, β, γ)| ≤Mt,

where j, k ∈ {π, α1, α2, β1, · · · , βd, γ} and i1, · · · , i4 ∈ {δ, β1, · · · , βd, γ}.

For each α and α′ in A, we define

A(α, α′) ≡


E[rt(α)rt(α

′)]− 1 E[rt(α)ut] E[rt(α)s′t]

E[utrt(α
′)] E[u2

t ] E[uts
′
t]

E[strt(α
′)] E[stut] E[sts

′
t]

 ,

where

ut ≡ ∇2
δf(Yt | Xt; δ

∗, β∗, γ∗)/f(Yt | Xt; δ
∗, β∗, γ∗),

rt(α) ≡ f(Yt | Xt;αδ
∗, β∗, γ∗)/f(Yt | Xt; δ

∗, β∗, γ∗),

and st ≡ ∇(δ,β,γ)f(Yt | Xt; δ
∗, β∗, γ∗)/f(Yt | Xt; δ

∗, β∗, γ∗). Also, let

B(π∗, α∗1, α
∗
2, β

∗, γ∗) ≡ E[∇(π,α1,α2,β,γ)`t(π
∗, α∗1, α

∗
2, β

∗, γ∗)∇(π,α1,α2,β,γ)`t(π
∗, α∗1, α

∗
2, β

∗, γ∗)′].

We let λmin and λmax be the minimum and the maximum eigenvalues of a given matrix respectively.

A4: For every (π∗, α∗1, α
∗
2, β

∗, γ∗), λmin{B(π∗, α∗1, α
∗
2, β

∗, γ∗)} ≥ 0 such that

(a) if λmin{B(π∗, α∗1, α
∗
2, β

∗, γ∗)} > 0 then λmax{B(π∗, α∗1, α
∗
2, β

∗, γ∗)} <∞; or

(b) ifλmin{B(π∗, α∗1, α
∗
2, β

∗, γ∗)} = 0 then for every ε > 0, λmin{A(α, α)} > 0 and λmax{A(α,

α)} <∞, uniformly in α ∈ A(ε) ≡ {α ∈ A : |α− 1| ≥ ε}.

Remarks: Assumptions A.3 and A.4 should be interpreted as holding under Ho. Next, although

g( · ; · ) is not specified, parts of A(α, α′) can be analytically derived. For example, E[u2
t ] = 8 and

E[utst] = [−2,−2, (2E{ln[δ∗g(Xt; β
∗)]}+ 2γ̃ − 4)/γ∗]′.
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6.2 Proofs

To conserve space, the proofs are omitted. They can be found at the following website:

http://web.yonsei.ac.kr/jinseocho
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Table 1: Critical Values for the LR Test Statistics
Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ)))

Nominal Level \ A [7/9, 2.0] [7/9, 3.0] [7/9, 4.0]
1.00 % 6.6987 6.9369 6.9381
2.50 % 4.9000 5.1769 5.2959
5.00 % 3.6341 3.8242 3.9784
7.50 % 2.9129 3.0955 3.2422
10.0 % 2.4033 2.5880 2.7178

Nominal Level \ A [2/3, 2.0] [2/3, 3.0] [2/3, 4.0]
1.00 % 6.8474 7.0800 7.2518
2.50 % 5.1236 5.3180 5.4671
5.00 % 3.8559 4.0564 4.1675
7.50 % 3.1246 3.2973 3.4215
10.0 % 2.6094 2.7731 2.8934

Nominal Level \ A [5/9, 2.0] [5/9, 3.0] [5/9, 4.0]
1.00 % 7.2722 7.4972 7.6755
2.50 % 5.4961 5.7758 5.9029
5.00 % 4.2338 4.4468 4.5362
7.50 % 3.4803 3.6934 3.7536
10.0 % 2.9425 3.1359 3.2113

Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)
Nominal Level \ A [7/9, 2.0] [7/9, 3.0] [7/9, 4.0]

1.00 % 7.0850 7.7021 8.0447
2.50 % 5.3053 5.8698 6.2237
5.00 % 4.0103 4.5422 4.8646
7.50 % 3.2729 3.7725 4.0982
10.0 % 2.7606 3.2382 3.5459

Nominal Level \ A [2/3, 2.0] [2/3, 3.0] [2/3, 4.0]
1.00 % 7.2559 7.7330 8.0846
2.50 % 5.5245 5.9643 6.2995
5.00 % 4.2281 4.6775 4.9720
7.50 % 3.4693 3.9220 4.2107
10.0 % 2.9284 3.3940 3.6845

Nominal Level \ A [5/9, 2.0] [5/9, 3.0] [5/9, 4.0]
1.00 % 7.6512 8.1806 8.3686
2.50 % 5.8213 6.3973 6.6212
5.00 % 4.5385 5.0368 5.2406
7.50 % 3.7698 4.2434 4.4599
10.0 % 3.2341 3.6631 3.8993

Notes: The figures provide the critical values for the LR statistic, obtained by applying
Theorem 2. These values are obtained by generating the Gauss processes in Theorem 2
100,000 times. A grid search method is used to obtain the maximum of the Gaussian
process. The grid distance is 0.01, and m is set to 500.
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Table 2: Levels of the Tests (Nominal Level: 5%)
Number of Repetitions: 10,000

DGP: Yt ∼ IID Exp(1)
Model: Yt ∼ πExp(δ1) + (1− π)Exp(δ2)

Statistics \ Sample Size 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 1.07 1.74 3.35 3.55 4.00 3.88
LRn([7/9, 3]) 1.79 2.59 3.46 3.92 3.76 4.11
LRn([7/9, 4]) 1.77 2.32 3.43 3.62 3.78 4.17
LRn([2/3, 2]) 1.45 2.17 3.28 3.58 3.73 3.75
LRn([2/3, 3]) 1.97 2.26 3.46 3.73 4.11 4.00
LRn([2/3, 4]) 2.14 2.63 3.44 3.48 3.84 4.25
LRn([5/9, 2]) 1.30 1.89 2.79 2.74 3.48 3.73
LRn([5/9, 3]) 1.97 2.38 2.97 2.92 2.98 3.28
LRn([5/9, 4]) 2.12 2.21 2.80 2.98 3.58 3.36

IMn 18.34 14.79 8.07 6.84 6.58 5.28
LM2,n 8.63 8.48 6.96 6.78 5.62 5.44
LM3,n 4.46 6.50 15.72 15.53 12.69 10.101

DGP: Yt ∼ IID Weibull(1, 1)
Model: Yt ∼ πWeibull(δ1, γ) + (1− π)Weibull(δ2, γ)

Statistics \ Sample Size 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 0.00 0.13 1.43 2.48 3.54 4.21
LRn([7/9, 3]) 0.01 0.17 1.35 2.91 4.02 4.41
LRn([7/9, 4]) 0.10 0.17 1.57 3.39 3.96 4.02
LRn([2/3, 2]) 0.13 0.29 2.92 3.46 3.74 4.54
LRn([2/3, 3]) 0.26 0.53 3.52 3.92 3.91 4.10
LRn([2/3, 4]) 0.29 0.70 3.43 3.85 4.15 4.13
LRn([5/9, 2]) 0.43 1.17 2.91 3.26 3.18 3.31
LRn([5/9, 3]) 0.50 1.36 3.44 3.41 3.89 3.82
LRn([5/9, 4]) 0.84 1.72 3.48 2.96 4.12 4.04

IMn 19.19 14.57 8.53 7.33 6.56 5.94
LM2,n 20.65 15.37 9.50 7.58 6.18 5.66
LM3,n 59.20 46.40 25.27 20.13 15.18 11.722
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Table 2: Levels of the Tests (Nominal Level: 5%, Continued)
Number of Repetitions: 10,000
DGP: Yt | Xt ∼ IID Exp(exp(Xt))

Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ))
Statistics \ Sample Size 50 100 500 1,000 2,000 5,000

LRn([7/9, 2]) 0.68 1.62 2.93 3.32 3.83 4.35
LRn([7/9, 3]) 1.27 2.15 3.10 3.61 3.85 4.17
LRn([7/9, 4]) 1.35 1.71 2.97 3.44 3.89 4.55
LRn([2/3, 2]) 1.14 1.84 2.83 3.24 3.69 3.93
LRn([2/3, 3]) 1.53 2.33 3.33 3.53 3.64 3.74
LRn([2/3, 4]) 1.62 2.26 3.35 3.41 3.71 3.89
LRn([5/9, 2]) 1.13 1.66 2.65 2.89 3.19 3.53
LRn([5/9, 3]) 1.45 1.92 2.31 3.02 3.31 3.32
LRn([5/9, 4]) 1.44 1.99 2.31 3.20 3.31 3.48

IMn 23.01 16.86 9.40 7.60 6.52 5.83
LM2,n 11.00 10.55 7.21 6.81 5.77 5.22
LM3,n 5.29 7.77 17.24 15.04 12.50 9.813

DGP: Yt | Xt ∼ IID Weibull(exp(Xt), 1)
Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)

Statistics \ Sample Size 50 100 500 1,000 2,000 5,000
LRn([7/9, 2]) 0.04 0.03 1.25 2.60 3.79 3.80
LRn([7/9, 3]) 0.03 0.12 1.21 3.03 3.74 4.41
LRn([7/9, 4]) 0.07 0.17 1.68 2.96 4.06 4.34
LRn([2/3, 2]) 0.15 0.22 2.72 3.22 4.13 4.05
LRn([2/3, 3]) 0.23 0.46 2.86 3.88 4.20 4.29
LRn([2/3, 4]) 0.33 0.76 3.25 3.70 4.18 4.25
LRn([5/9, 2]) 0.36 1.10 2.76 3.21 3.53 3.39
LRn([5/9, 3]) 0.56 1.51 3.11 3.55 3.38 3.82
LRn([5/9, 4]) 0.86 1.57 3.44 3.50 3.78 3.68

IMn 22.36 17.36 9.30 7.59 6.68 5.76
LM2,n 25.05 17.69 9.72 7.93 6.37 5.81
LM3,n 64.26 49.28 26.70 21.38 16.28 11.684

Notes: The figures are the empirical rejection rates of the LR, IMn, LM2,n, and LM3,n statistics under
the null hypothesis. For the LR statistics, nine parameter spaces are examined for α, specifically [7/9, 2],
[7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR stat-
istics are indexed by these parameter spaces.
1: The empirical level of LM3,n is 5.62 when n = 100, 000 and repetitions = 5,000.
2: The empirical level of LM3,n is 5.88 when n = 100, 000 and repetitions = 5,000.
3: The empirical level of LM3,n is 6.14 when n = 100, 000 and repetitions = 5,000.
4: The empirical level of LM3,n is 5.82 when n = 100, 000 and repetitions = 5,000.
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Table 3: Power of the Tests (Level Distortion Adjusted to 5%)
Number of Repetitions: 2,000

Model: Yt | Xt ∼ Exp(δ exp(Xtβ))
LRn([7/9, 2])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 32.15 50.30 97.45 100.0 100.0 100.0
Gamma Mixture 17.35 26.40 87.95 98.80 100.0 100.0

Log-normal Mixture 12.90 23.75 82.70 98.80 100.0 100.0
Uniform Mixture I 47.05 73.50 100.0 100.0 100.0 100.0
Uniform Mixture II 6.90 6.85 13.15 16.75 22.50 41.95

LRn([7/9, 3])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 33.05 50.20 97.55 100.0 100.0 100.0
Gamma Mixture 17.40 27.30 88.85 98.95 100.0 100.0

Log-normal Mixture 14.10 24.40 82.60 98.70 100.0 100.0
Uniform Mixture I 46.75 72.45 100.0 100.0 100.0 100.0
Uniform Mixture II 7.20 7.15 13.15 16.20 22.20 41.70

LRn([7/9, 4])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 32.25 51.10 97.50 100.0 100.0 100.0
Gamma Mixture 17.30 28.85 88.00 98.80 100.0 100.0

Log-normal Mixture 14.45 24.95 81.90 98.50 100.0 100.0
Uniform Mixture I 44.90 72.25 100.0 100.0 100.0 100.0
Uniform Mixture II 7.00 7.75 12.85 15.50 21.35 38.50

LRn([2/3, 2])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 30.70 49.45 98.10 100.0 100.0 100.0
Gamma Mixture 28.70 48.40 98.35 100.0 100.0 100.0

Log-normal Mixture 21.00 37.40 92.70 100.0 100.0 100.0
Uniform Mixture I 48.90 74.70 99.95 100.0 100.0 100.0
Uniform Mixture II 6.35 5.60 12.30 16.65 23.95 42.25

LRn([2/3, 3])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 29.80 48.95 97.75 100.0 100.0 100.0
Gamma Mixture 27.30 45.30 98.20 100.0 100.0 100.0

Log-normal Mixture 19.05 35.40 91.85 100.0 100.0 100.0
Uniform Mixture I 46.40 73.20 99.95 100.0 100.0 100.0
Uniform Mixture II 6.30 6.10 12.10 15.40 25.00 43.10

LRn([2/3, 4])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 29.55 49.85 97.50 100.0 100.0 100.0
Gamma Mixture 26.80 45.70 98.10 100.0 100.0 100.0

Log-normal Mixture 19.15 35.75 91.50 100.0 100.0 100.0
Uniform Mixture I 45.80 73.20 99.95 100.0 100.0 100.0
Uniform Mixture II 6.35 6.70 12.05 15.35 24.95 42.90
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Table 3: Power of the Tests (Level Distortion Adjusted to 5%, Continued)
Number of Repetitions: 2,000

Model: Yt | Xt ∼ Exp(δ exp(Xtβ))
LRn([5/9, 2])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 30.95 49.70 97.05 99.95 100.0 100.0
Gamma Mixture 36.20 56.50 98.90 100.0 100.0 100.0

Log-normal Mixture 28.00 41.75 93.90 99.65 100.0 100.0
Uniform Mixture I 48.70 74.60 99.90 100.0 100.0 100.0
Uniform Mixture II 7.00 5.45 10.90 15.90 21.85 41.75

LRn([5/9, 3])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 30.60 49.45 97.05 99.95 100.0 100.0
Gamma Mixture 33.10 54.15 98.35 99.95 100.0 100.0

Log-normal Mixture 24.80 39.55 93.20 99.50 100.0 100.0
Uniform Mixture I 47.95 74.20 99.90 100.0 100.0 100.0
Uniform Mixture II 7.45 5.60 11.40 15.10 21.40 42.70

LRn([5/9, 4])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 30.10 48.40 96.95 99.95 100.0 100.0
Gamma Mixture 31.95 52.85 98.10 99.90 100.0 100.0

Log-normal Mixture 24.40 39.05 92.25 99.35 100.0 100.0
Uniform Mixture I 46.60 73.70 99.85 100.0 100.0 100.0
Uniform Mixture II 7.40 5.95 10.80 14.20 21.00 40.50

IMn

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 0.55 0.70 76.70 99.00 100.0 100.0
Gamma Mixture 0.80 2.25 76.25 98.00 100.0 100.0

Log-normal Mixture 1.35 0.90 55.80 98.00 100.0 100.0
Uniform Mixture I 1.10 5.90 96.05 100.0 100.0 100.0
Uniform Mixture II 4.90 2.95 2.40 4.30 8.50 22.50

LM2n

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 1.65 3.05 77.45 99.25 100.0 100.0
Gamma Mixture 1.65 2.05 65.05 90.20 97.90 99.45

Log-normal Mixture 1.60 1.70 49.90 90.70 99.60 99.95
Uniform Mixture I 3.00 5.60 88.40 99.20 100.0 100.0
Uniform Mixture II 4.45 2.95 3.45 3.35 8.25 24.70

LM3n

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 5.25 12.30 56.40 95.65 100.0 100.0
Gamma Mixture 4.70 10.50 49.85 92.35 99.95 100.0

Log-normal Mixture 4.35 7.10 26.75 70.70 99.95 100.0
Uniform Mixture I 9.45 21.30 86.10 99.95 100.0 100.0
Uniform Mixture II 4.50 3.55 2.75 2.75 2.40 18.55
Notes: The figures are the empirical rejection rates of the LR, IMn, LM2,n, and LM3,n statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture, uniform mixture I, and
uniform mixture II. For the LR statistics, nine parameter spaces are examined for α, specifically [7/9, 2],
[7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics
are indexed by these parameter spaces.
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Table 4: Power of the Tests (Level Distortion Adjusted to 5%)
Number of Repetitions: 2,000

Model: Yt | Xt ∼ Weibull(δ exp(Xtβ), γ)
LRn([7/9, 2])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 16.05 27.30 63.55 85.05 97.90 100.0
Gamma Mixture 5.35 7.10 27.40 63.65 96.75 100.0

Log-normal Mixture 5.40 5.90 17.30 41.70 85.35 100.0
Uniform Mixture I 24.50 44.50 94.30 99.80 100.0 100.0
Uniform Mixture II 11.30 17.60 21.15 18.35 20.75 26.05

LRn([7/9, 3])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 16.10 26.45 62.05 82.15 97.35 100.0
Gamma Mixture 3.90 4.25 16.30 47.85 94.45 99.90

Log-normal Mixture 3.80 3.60 10.80 28.10 78.00 99.95
Uniform Mixture I 22.95 35.85 92.25 99.60 100.0 100.0
Uniform Mixture II 13.65 18.90 19.55 18.00 17.40 21.65

LRn([7/9, 4])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 16.65 25.30 56.75 80.40 96.75 100.0
Gamma Mixture 3.10 3.50 10.75 41.45 92.50 99.90

Log-normal Mixture 3.80 3.40 6.50 22.50 72.75 99.95
Uniform Mixture I 20.55 31.90 89.25 99.50 100.0 100.0
Uniform Mixture II 15.10 17.15 16.75 15.25 15.20 19.25

LRn([2/3, 2])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 17.55 24.65 56.15 83.85 97.65 100.0
Gamma Mixture 8.30 16.40 62.40 93.50 99.85 100.0

Log-normal Mixture 7.25 12.05 41.30 75.60 95.10 100.0
Uniform Mixture I 24.90 44.95 94.30 99.60 100.0 100.0
Uniform Mixture II 7.45 10.55 8.15 10.10 12.20 21.55

LRn([2/3, 3])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 17.50 21.65 55.55 80.80 97.35 100.0
Gamma Mixture 5.80 8.90 53.90 90.05 99.70 100.0

Log-normal Mixture 6.25 6.80 33.40 68.05 93.75 100.0
Uniform Mixture I 21.60 36.45 92.25 99.50 100.0 100.0
Uniform Mixture II 8.15 10.40 8.65 8.70 11.70 19.40

LRn([2/3, 4])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 15.85 18.85 51.20 79.00 96.80 100.0
Gamma Mixture 4.60 5.75 45.70 88.55 99.65 100.0

Log-normal Mixture 5.05 4.60 27.85 64.75 93.15 100.0
Uniform Mixture I 19.35 31.35 90.70 99.50 100.0 100.0
Uniform Mixture II 9.25 10.00 8.00 8.65 10.25 17.90
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Table 4: Power of the Tests (Level Distortion Adjusted to 5%, Continued)
Number of Repetitions: 2,000

LRn([5/9, 2])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 14.45 20.75 54.20 82.90 97.10 100.0
Gamma Mixture 10.70 16.40 73.55 94.75 99.70 99.95

Log-normal Mixture 7.80 10.70 50.45 77.35 95.60 100.0
Uniform Mixture I 24.65 37.30 93.50 99.70 100.0 100.0
Uniform Mixture II 4.90 6.50 7.70 9.30 12.25 19.50

LRn([5/9, 3])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 14.90 21.05 52.35 79.70 96.60 100.0
Gamma Mixture 7.50 12.35 64.55 84.95 94.25 98.15

Log-normal Mixture 6.00 8.55 42.55 67.65 89.75 99.30
Uniform Mixture I 22.10 29.50 91.80 99.45 100.0 100.0
Uniform Mixture II 5.75 6.40 7.05 8.30 11.05 16.40

LRn([5/9, 4])
DGP \ Sample Size 50 100 500 1,000 2,000 5,000

Discrete Mixture 14.95 19.90 48.70 78.85 96.10 100.0
Gamma Mixture 5.80 10.55 60.65 84.15 94.05 98.15

Log-normal Mixture 5.10 7.75 39.10 66.25 89.00 99.30
Uniform Mixture I 18.30 30.20 90.80 99.30 100.0 100.0
Uniform Mixture II 5.15 6.65 5.45 7.80 9.90 14.05

IMn

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 2.60 1.95 18.10 49.70 86.95 100.0
Gamma Mixture 3.30 2.25 10.15 81.10 99.20 100.0

Log-normal Mixture 3.10 2.50 19.75 50.30 88.80 100.0
Uniform Mixture I 3.90 5.90 71.35 96.65 100.0 100.0
Uniform Mixture II 4.60 4.30 3.95 3.75 4.65 10.15

LM2n

Discrete Mixture 1.75 1.65 17.05 51.20 87.80 99.90
Gamma Mixture 3.15 5.60 41.50 81.70 99.35 100.0

Log-normal Mixture 2.95 2.85 17.80 53.25 88.55 100.0
Uniform Mixture I 2.90 5.90 68.50 97.60 100.0 100.0
Uniform Mixture II 4.60 4.25 3.50 3.60 4.95 11.60

LM3n

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 2.10 1.95 2.40 12.80 69.00 99.90
Gamma Mixture 2.70 1.00 1.25 21.75 90.60 100.0

Log-normal Mixture 2.00 1.95 0.70 4.55 47.05 99.95
Uniform Mixture I 1.35 0.50 5.75 61.80 99.75 100.0
Uniform Mixture II 4.90 4.05 3.25 2.85 2.25 10.85
Notes: The figures are the empirical rejection rates of the LR, IMn, LM2,n, and LM3,n statistics under the
five alternative hypothesis: discrete mixture, gamma mixture, log-normal mixture, uniform mixture I, and
uniform mixture II. For the LR statistics, nine parameter spaces are examined for α, specifically [7/9, 2],
[7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics
are indexed by these parameter spaces.
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Table 5: Bootstrapped Levels of the LR Tests and Other Tests (Nominal Level: 5%)
Number of Repetitions: 5,000, Number of Bootstrapping: 500

DGP: Y c
t := min[Yt, Ct]; Yt | Xt ∼ IID Weibull(exp(Xt), 1); and Ct ∼ IID Exp(1)

Model: (Y c
t , Dt) | Xt ∼ π C-Weibull(δ1 exp(Xtβ), γ) + (1− π) C-Weibull(δ2 exp(Xtβ), γ)

Statistics \ Sample Size 50 100 500 1,000 2,000
LRc

n([7/9, 2]) 0.00 0.02 0.52 1.50 2.78
LRc

n([7/9, 3]) 0.06 0.14 1.08 2.00 3.46
LRc

n([7/9, 4]) 0.04 0.10 0.92 1.98 3.42
LRc

n([2/3, 2]) 0.00 0.20 1.54 2.86 4.16
LRc

n([2/3, 3]) 0.16 0.54 2.72 3.36 4.06
LRc

n([2/3, 4]) 0.22 0.36 2.76 3.54 3.44
LRc

n([5/9, 2]) 0.20 0.78 3.24 3.82 4.10
LRc

n([5/9, 3]) 0.30 0.94 3.24 4.00 3.78
LRc

n([5/9, 4]) 0.40 1.26 3.36 3.52 3.80
IM c

n 16.33 13.11 8.45 7.05 5.93
LM c

2,n 23.77 17.32 9.39 7.70 6.78
LM c

3,n 63.21 47.92 26.24 20.40 15.94
Notes: The figures are the empirical rejection rates of the LR statistics under the null hypothesis. For
the LR statistics, nine parameter spaces are examined for α, specifically [7/9, 2], [7/9, 3], [7/9, 4],
[2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and [5/9, 4], respectively. The LR statistics are indexed
by these parameter spaces. The censored Weibull (C-Weibull) variable has the following joint
conditional density function:

fc(yc, d | Xt; δ∗, β∗, γ∗) ≡ f(yc | Xt; δ∗, β∗, γ∗)d[1− F (yc|Xt; δ∗, β∗, γ∗)]1−d,
where f( · | Xt; δ∗, β∗, γ∗) and F ( · | Xt; δ∗, β∗, γ∗) are the PDF and CDF of conditional Weibull
random variable given Xt respectively. The number of repetitions for the information matrix and the
Lagrange multiplier test is 10,000.
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Table 6: Bootstrapped Power of the LR Tests and Other Tests (Level: 5%)
Number of Repetitions: 2,000

Model: (Y c
t , Dt) | Xt ∼ π C-Weibull(δ1 exp(Xtβ), γ) + (1− π) C-Weibull(δ2 exp(Xtβ), γ)

LRc
n([7/9, 2])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.00 0.45 15.70 39.15 72.25 97.95
C-Gamma Mixture 0.00 0.05 1.25 5.50 25.70 84.85

C-Log-normal Mixture 0.00 0.00 0.95 5.05 18.65 69.15
C-Uniform Mixture I 0.00 0.65 25.80 62.05 92.15 99.95
C-Uniform Mixture II 0.00 0.15 2.20 3.65 6.80 10.00

LRc
n([7/9, 3])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.30 0.85 18.90 38.80 70.35 97.45
C-Gamma Mixture 0.00 0.10 1.10 4.00 18.20 80.00

C-Log-normal Mixture 0.00 0.15 0.95 4.35 14.85 62.30
C-Uniform Mixture I 0.20 1.30 26.35 58.95 91.30 99.90
C-Uniform Mixture II 0.10 0.30 2.75 4.30 5.60 10.55

LRc
n([7/9, 4])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.20 1.50 15.55 36.80 67.90 96.85
C-Gamma Mixture 0.15 0.10 0.70 2.75 17.20 73.30

C-Log-normal Mixture 0.05 0.20 1.00 3.15 12.40 56.85
C-Uniform Mixture I 0.35 1.15 21.60 51.20 88.25 99.90
C-Uniform Mixture II 0.20 1.20 3.80 4.70 5.55 10.00

LRc
n([2/3, 2])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.15 0.90 22.65 45.95 71.95 97.80
C-Gamma Mixture 0.15 0.35 7.65 25.50 56.70 95.50

C-Log-normal Mixture 0.05 0.05 6.65 18.80 41.40 81.50
C-Uniform Mixture I 0.30 1.70 38.55 68.80 92.45 100.0
C-Uniform Mixture II 0.15 0.85 3.75 5.60 6.55 10.45

LRc
n([2/3, 3])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.40 2.20 23.10 43.00 73.65 97.25
C-Gamma Mixture 0.10 0.30 6.70 21.90 51.20 92.10

C-Log-normal Mixture 0.10 0.45 5.60 16.90 37.30 77.30
C-Uniform Mixture I 0.45 3.15 33.80 64.70 90.65 99.95
C-Uniform Mixture II 0.70 1.15 4.75 5.05 6.15 9.35

LRc
n([2/3, 4])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.60 2.40 22.35 41.95 70.40 96.15
C-Gamma Mixture 0.10 0.50 5.50 19.95 48.15 91.65

C-Log-normal Mixture 0.25 0.35 5.45 14.45 33.30 79.20
C-Uniform Mixture I 0.75 2.85 32.25 62.35 90.20 99.90
C-Uniform Mixture II 0.55 1.50 4.25 4.80 6.70 9.00
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Table 6: Bootstrapped Power of the LR Tests and Other Tests (Level: 5%, Continued)
Number of Repetitions: 2,000

LRc
n([5/9, 2])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 0.60 3.15 25.65 42.40 70.75 97.75
C-Gamma Mixture 0.30 1.40 18.85 37.40 64.40 94.85

C-Log-normal Mixture 0.15 1.10 13.60 28.55 47.45 81.60
C-Uniform Mixture I 0.85 5.05 42.10 69.35 93.65 99.85
C-Uniform Mixture II 0.25 0.85 4.55 4.60 6.95 9.55

LRc
n([5/9, 3])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 1.45 4.25 26.35 43.20 84.00 97.10
C-Gamma Mixture 0.55 1.40 16.65 34.80 60.85 93.25

C-Log-normal Mixture 0.70 1.10 13.60 25.15 45.85 79.25
C-Uniform Mixture I 1.80 5.75 39.15 66.00 92.15 100.0
C-Uniform Mixture II 0.80 2.20 4.55 5.60 6.85 9.05

LRc
n([5/9, 4])

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
C-Discrete Mixture 1.60 4.30 23.50 41.90 68.40 96.50
C-Gamma Mixture 0.10 0.90 14.95 32.75 56.85 92.90

C-Log-normal Mixture 0.40 1.40 10.60 21.55 43.80 78.05
C-Uniform Mixture I 1.95 5.20 36.60 63.50 89.60 100.0
C-Uniform Mixture II 0.95 2.40 4.00 5.65 5.80 8.55

IM c
n

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 4.80 4.40 8.45 22.40 56.15 93.45
Gamma Mixture 4.45 3.70 8.30 18.85 46.20 88.85

Log-normal Mixture 5.10 4.05 5.05 11.75 28.90 69.00
Uniform Mixture I 5.10 4.05 19.20 46.80 84.40 99.80
Uniform Mixture II 5.75 4.75 4.60 3.70 4.65 5.80

LM c
2n

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 2.25 1.75 16.70 49.15 84.65 99.90
Gamma Mixture 3.00 4.45 43.60 83.45 99.25 100.0

Log-normal Mixture 2.60 2.65 19.00 48.65 87.30 99.95
Uniform Mixture I 3.50 5.35 68.75 97.05 100.0 100.0
Uniform Mixture II 4.35 3.85 3.00 3.60 5.50 9.65

LM c
3n

DGP \ Sample Size 50 100 500 1,000 2,000 5,000
Discrete Mixture 2.15 2.25 1.65 12.90 60.70 99.85
Gamma Mixture 2.00 1.05 1.35 19.50 87.45 100.0

Log-normal Mixture 2.40 1.50 0.45 4.00 42.55 99.15
Uniform Mixture I 1.35 0.50 4.60 57.00 99.60 100.0
Uniform Mixture II 4.40 3.65 3.05 3.15 2.35 3.40

Notes: The figures are the empirical rejection rates of the LR statistics under the alternative hypothesis:
censored discrete mixture, censored gamma mixture, censored log-normal mixture, censored uniform
mixture I, and censored uniform mixture II. For the LR statistics, nine parameter spaces are examined
for α, specifically [7/9, 2], [7/9, 3], [7/9, 4], [2/3, 2], [2/3, 3], [2/3, 4], [5/9, 2], [5/9, 3], and [5/9, 4],
respectively. The LR statistics are indexed by these parameter spaces. Information matrix and Lagrange
multiplier tests are level distortion adjusted p-values.
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Table 7: Duration Data Analysis of Alcatel
Number of Observations: 5,000

Sample period: Duration data in July, 1996
Linear ACD model

Test Statistics test values p–values
W(c)

n 32.7268 0.0000
W(1)

n 15.7176 0.0007
W(2)

n 1.4743 0.2246
W(3)

n 22.2580 0.0000
H-B bound 0.0000

LRn([2/3, 2]) 0.48841 0.3764
LRn([2/3, 3]) 0.48841 0.3984
LRn([2/3, 4]) 0.48841 0.4202

H-B bound 0.4202
Power ACD model

Test Statistics test values p–values
W(c)

n 6.3663 0.0950
W(1)

n 2.2991 0.1294
W(2)

n 4.1223 0.0423
W(3)

n 6.0097 0.0142
H-B bound 0.0568

LRn([2/3, 2]) 249.15922 0.0000
LRn([2/3, 3]) 256.77233 0.0000
LRn([2/3, 4]) 256.77233 0.0000

H-B bound 0.0000
Flexible Power ACD model

Test Statistics test values p–values
W(c)

n 4.5029 0.2120
W(1)

n 1.9705 0.1603
W(2)

n 0.0090 0.9243
W(3)

n 0.5610 0.4538
H-B bound 0.6360

LRn([2/3, 2]) 242.19642 0.0000
LRn([2/3, 3]) 248.44844 0.0000
LRn([2/3, 4]) 248.44844 0.0000

H-B bound 0.0000
Notes: The figures test correct specification assumption and unobserved heterogeneity. The Wald
tests denoted by W(j)

n (j = c, 1, 2, and 3) are the correct specification tests in Cho, Huang, and
White (2008). These are applied to the linear ACD, power ACD, and flexible power ACD models.
LR statistics test unobserved heterogeneity under various parameter space assumptions.
1: α̂1n = 1.14 and α̂2n = 0.96. This yields the same LR test values for every parameter space.
2: α̂1n = 2.00 and α̂2n = 2/3.
3: α̂1n = 2.41 and α̂2n = 2/3.
4: α̂1n = 2.38 and α̂2n = 2/3.
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Figure 1: Empirical Null Distributions and Density Functions of the LR Statistics
Number of Repetitions: 10,000

DGP: Yt | Xt ∼ IID Exp(exp(Xt))
Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ))

LRn([7/9, 2])

LRn([2/3, 2])

LRn([5/9, 2])

Notes: The empirical distributions and density functions of the LR statistics are shown for A = [7/9, 2], A =
[2/3, 2], and A = [5/9, 2]. The sample sizes are 100, 500, and 5,000. The asymptotic distribution is that given
by Theorem 2. For the density functions, the kernel density estimation method based upon the standard normal
probability density function is employed.
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Figure 2: Empirical Null Distributions and Density Functions of the LR Statistics
Number of Repetitions: 10,000

DGP: Yt | Xt ∼ IID Weibull(exp(Xt), 1)
Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)

LRn([7/9, 2])

LRn([2/3, 2])

LRn([5/9, 2])

Notes: The empirical distributions and density functions of the LR statistics are shown for A = [7/9, 2], A =
[2/3, 2], and A = [5/9, 2]. The sample sizes are 100, 500, and 5,000. The asymptotic distribution is that given
by Theorem 2. For the density functions, the kernel density estimation method based upon the standard normal
probability density function is employed.
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Figure 3: Empirical Null Distributions and Density Functions of the LR Statistics
Number of Repetitions: 10,000

DGP: Yt | Xt ∼ IID Exp(exp(Xt))
Model: Yt | Xt ∼ πExp(δ1 exp(Xtβ)) + (1− π)Exp(δ2 exp(Xtβ))

LRn([7/9, 2])

LRn([7/9, 3])

LRn([7/9, 4])

Notes: The empirical distributions and density functions of the LR statistics are shown for A = [7/9, 2], A =
[7/9, 3], and A = [7/9, 4]. The sample sizes are 100, 500, and 5,000. The asymptotic distribution is that given
by Theorem 2. For the density functions, the kernel density estimation method based upon the standard normal
probability density function is employed.
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Figure 4: Empirical Null Distributions and Density Functions of the LR Statistics
Number of Repetitions: 10,000

DGP: Yt | Xt ∼ IID Weibull(exp(Xt), 1)
Model: Yt | Xt ∼ πWeibull(δ1 exp(Xtβ), γ) + (1− π)Weibull(δ2 exp(Xtβ), γ)

LRn([7/9, 2])

LRn([7/9, 3])

LRn([7/9, 4])

Notes: The empirical distributions and density functions of the LR statistics are shown for A = [7/9, 2], A =
[7/9, 3], and A = [7/9, 4]. The sample sizes are 100, 500, and 5,000. The asymptotic distribution is that given
by Theorem 2. For the density functions, the kernel density estimation method based upon the standard normal
probability density function is employed.
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