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1. Introduction

Many econometric models are differentiable, and they play a central role in analyzing the

asymptotic behaviors of many important statistics. On the other hand, there are a number

of non-differentiable models. For example, the conditional heteroskedasticity model of King

and Shively (1993) is not differentiable under the null of conditional homoskedasticity. In

addition, the stochastic frontier production function models of Aigner, Lovell, and Schmidt

(1977), further extended by Stevenson (1980), are not differentiable if outputs are efficiently

produced. They are only directionally differentiable.

Cho and White (2012) introduce the so-called direction and distance (DD) method to han-

dle directionally differentiable models. When models are only directionally differentiable, the

DD method can treat the conventional analysis assuming differentiability as a special case of

their approach.

Further aspects of differentiable models can be provided by the DD method. Although

Cho and White (2012) examine differentiable models using the DD method, their discussions

do not cover genuine aspects of differentiable models, which we can additionally obtain by

applying the DD method to differentiability. When the DD method is applied, we can view

differentiable models in a different perspective, and this can be further exploited for developing

a theory for new statistics.

Therefore, the goal of this paper is in finding new aspects of differentiable models hidden

by the conventional analysis. Our specific achievements are providing new classes of statistics

testing for regular hypotheses and a unified theory for this provision. In addition, we also pro-

vide new properties of differentiable models, which are not present in the previous literature.

Our specific details and plans for this goal are as follows. We focus our discussions on the

quasi-maximum likelihood (QML) estimation and related test statistics using the DD method:

the quasi-likelihood ratio (QLR), Wald, and Lagrange multiplier (LM) test statistics. By this,
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we demonstrate that the DD method has the capability of generalizing the analysis of the con-

ventional tests in a unified framework, so that new classes of test statistics can be provided in

a way that the three test statistics are elements of each class. Given that the QLR, Wald, and

LM tests are not asymptotically most efficient test statistics in the context of model misspec-

ification, this provision can be thought of as natural extensions for having better performing

test statistics. In addition, we explore the DD method in a couple of ways to provide new as-

pects of differentiable models. First, we apply the DD method by assuming that the unknown

parameter value is known. Second, we iterate the same process but by replacing the unknown

parameter value with the QML estimator constrained by the null hypothesis. Each method

yields its own distance and direction estimator, and they are asymptotically interrelated. We

detail this interrelationship below.

This paper is organized as follows. We review the conventional assumptions and results

of the QML estimation in Section 2. The main goal of this is twofold. This lets our paper

be self-contained; and the well-known properties of the QML estimation will be exploited in

obtaining further insights of the DD method. Section 3 briefly reviews the DD method and

applies this to the QML estimation. This section aims to sharpen the analysis of the QML

estimation. Section 4 examines the asymptotic null behaviors of the QLR, Wald, and LM tests

by the DD method, and Section 5 further examines the same test statistics using the DD method

in a different perspective. Concluding remarks are provided in Section 6, and mathematical

proofs are collected in the Appendix.

Before proceeding, some mathematical notations are provided to avoid possible confu-

sions. We denote f ′( · )|x∗ by f ′(x∗) and let ∂xf(x) and ∂2x,yf(x, y) denote (∂/∂x)f(x) and

(∂2/∂x∂y)f(x, y) for the sake of brevity. Also, for a set B in a Euclidean space, ∂B denotes

the bolder of B.
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2. Standard Analysis of the QML Statistics

We first fix our ideas by stating the conventional assumptions and results of standard econo-

metric models assuming differentiability. The goal of this is twofold: this lets our paper be

self-contained, and we use them for deriving the main results of this paper. Because of this,

we do not prove the theorems given in this section.

The following assumptions are our benchmark assumptions.

Assumption 1 (i) A sequence of random variables {Xt ∈ Rm}nt=1 (m ∈ N) defined on a

complete probability space (Ω,F ,P) is a ϕ-mixing process of size −r/(2(r − 1)) with r ≥ 2

or an α-mixing process of size −r/(r − 2) with r > 2;

(ii) A sum of functions of θ ∈ Θ, Ln(θ) :=
∑n

t=1 `t(θ; Xt) is the quasi-likelihood function

such that for each t, `t( · ; Xt) ∈ C(2)(Θ) almost surely–P (a.s.–P), and for each θ ∈ Θ,

`t(θ; · ) is measurable–Ft, where for each t, we let Xt be (X′1, · · · ,X′t)′, C(2)(Θ) is a space

of twice continuously differentiable functions defined on Θ, Θ is a compact and convex set in

Rs with s ∈ N, and Ft is the Borel σ-field generated by the open sets of Rmt;

(iii) For each θ ∈ Θ and n ∈ N, nE[Ln(θ)] exists in R and is finite, where Ln( · ) :=

n−1Ln( · );

(iv) For each n ∈ N, there is a unique θ∗ ∈ Θ such that E[Ln] has a global maximum at

θ∗;

(v) For j = 1, 2, . . . , s and each t ∈ N, there is Mt such that |∂j`t(θ∗; Xt)|r ≤ Mt and

E[Mt] <∞, where ∂j`t(θ∗; Xt) := (∂/∂θj)`t(θ; Xt)|θ=θ∗;

(vi) For i, j = 1, 2, . . . , s, {`t : Θ× Ω 7→ R} and {∂ij`t : Θ× Ω 7→ R} are Lipschitz–L1

a.s–P on Θ, where ∂ij`t := (∂2/∂θi∂θj)`t(·; Xt);

(vii) For i, j = 1, 2, . . . , s, {`t,Ft} and {∂ij`t,Ft} are L1–mixingales on (Θ, ‖ · ‖), where

‖ · ‖ is the Euclidean norm;

(viii) For each in n ∈ N, B := acov{n−1/2∇θLn (θ∗)} is positive definite and finite, where
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‘acov’ denotes the asymptotic covariance of a given argument; and

(ix) For each θ and n ∈ N, A(θ) := E[∇2
θLn(θ)] is negative definite.

These assumptions are standard assumptions for the QML estimator, and they are mostly used

to estimate conditional mean equations by nesting models in the quasi-likelihood function. In

addition, when conditional mean equations are correctly specified with the linear exponential

family distributions assumed, the conditional mean equations can be consistently estimated.

That is, distributional misspecification does not matter. White (1994), Gourieroux, Monfort,

and Trognon (1984), Levine (1983), Engle and Russell (1998) among others provide meaning-

ful implications of this. Further explanations of these conditions can also be found from nu-

merous sources. White (1982), Andrews (1987), Andrews (1988), Gallant and White (1988),

Andrews (1992), White (1994), White (2000) among others provide the roles of the relevant

assumptions.

We provide the asymptotic behavior of the QML estimator, and for this we specifically let

the QML estimator be defined as θ̂n := arg maxθ∈Θ Ln(θ). We state the asymptotic properties

of this QML estimator for our future reference.

Theorem 1 Given Assumption 1,

(i) θ̂n → θ∗ a.s.–P; and

(ii) B−1/2A
√
n(θ̂ − θ∗)

A∼ N(0, I), where A := A(θ∗).

One of our interests is in exploiting the QML estimator for testing regular hypotheses.

We consider the following hypotheses: H0 : Rθ∗ = r versus H1 : Rθ∗ 6= r, where R

is a q × s vector. In handling the hypotheses, three test statistics are most commonly used:

quasi-likelihood ratio, Wald, and Lagrange multiplier test statistics, defined as

QLRn := 2n{Ln(θ̂n)− Ln(θ̃n)},

Wn := n(Rθ̂n − r)′{RÂ−1n B̂nÂ
−1
n R′}−1(Rθ̂n − r), and
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LMn := n∇′θLn(θ̃n){∇2
θLn(θ̃n)}−1R′{RÃ−1n B̃nÃ

−1
n R′}−1R{∇2

θLn(θ̃n)}−1∇θLn(θ̃n),

where θ̃n is the QML estimator constrained byH0: θ̃n := arg maxθ∈Θ Ln(θ) such that Rθ =

r. The properties of the test statistics and the constrained QML (CQML) estimator are well

known. We provide them for the use of analyzing the DD method given below.

Theorem 1 (Continued) Given Assumption 1 andH0,

(iii) θ̃n → θ∗ a.s.−P;

(iv)
√
n(θ̃n − θ∗)

A∼ N(0,DA−1BA−1D′), where D := Is −A−1R′(RA−1 R′)−1R;

(v)
√
n(θ̂n − θ̃n)

A∼ N(0,A−1PBP′A−1), where P := R′(RA−1R′)−1RA−1;

(vi)
√
nLn(θ̃n) = P

√
nLn(θ∗) + oP(1).

On the other hand, underH1,

(vii) θ̃n → θo, where θo = arg maxθ∈ΘE[n−1Ln(θ)] such that Rθ = r; and

(viii) if Ā is strictly negative definite and finite, for some θ between θ∗ and θo,
√
n[(θ̃n −

θo) + Ā−1R′(RĀ−1R′)−1(Rθ∗ − r)]
A∼ N(0, D̄Ā−1B Ā−1D̄′), where Ā := A(θ) and

D̄ := Is − Ā−1R′(RĀ−1R′ )−1R.

We now examine the asymptotic behaviors of the test statistics under the null and alterna-

tive hypotheses. For this, the following condition is assumed.

Assumption 2 (i) rank(R) = q ≤ s;

(ii) Ãn −A
a.s.→ 0; B̃n −B

a.s.→ 0; Ân −A
a.s.→ 0; and B̂n −B

a.s.→ 0.

We also let N2(µ,Σ; K) denote Z ′KZ for notational simplicity, where Z ∼ N(µ,Σ). The

following theorem contains the asymptotic behaviors of the test statistics.

Theorem 2 Given Assumptions 1, 2,

(i)QLRn
A∼ N2(0,RA−1BA−1R′;−[RA−1R′]−1) underH0, and for any sequence {cn}

such that cn = o(n), P[QLRn ≥ cn]→ 1 underH1;

(ii)Wn
A∼ X 2

q underH0, and P[Wn ≥ cn]→ 1 underH1;
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(iii) LMn
A∼ X 2

q underH0, and P[LMn ≥ cn]→ 1 underH1;

(iv) for any ε > 0, P[|Wn − LMn| ≥ ε]→ 0 underH0; and

(v) for any ε > 0, P[|Wn −QLRn| ≥ ε]→ 0 underH0, if further A + B = 0.

Theorem 2 states that the most common test statistics are consistent. Also, the QLR, Wald,

and LM test statistics are asymptotically equivalent under the null if the information matrix

equality holds. This is often called the trinity in the literature (e.g. Hayashi (2000)).

3. Analysis of the QML Estimator Using the DD Method

We now examine the QML estimation using the DD method in Cho and White (2012). The

goal of this re-examination is not in finding out the same results but examining the questions

from a different angle and developing other meaningful statistics from this. We do not even

hesitate to exploit the consequences in Section 2 to obtain efficient insights of differentiable

models. In this section, we focus on the asymptotic behavior of the QML estimator and quasi-

likelihood.

The essence of the DD method is in decomposing parameter values using distance (d) and

direction (s). More specifically, for a particular parameter θ and a reference point θ∗, we can

find a (d, s) such that

θ ≡ θ∗ + d · s, (1)

where s ∈ Ss−1 := {s ∈ Rs : s′s = 1} and d ∈ D(s) := {d ∈ R+ : θ∗ + ds ∈ Θ}. Note

that D(s) represents a set of positive real numbers bounded by the distance between θ∗ and

θ ∈ ∂Θ in the direction of s. As Θ is a convex set with θ∗ being an interior element, D(s) is

a non-empty and convex set for each s. Also, there is a one-to-one mapping between θ (6= θ∗)

and (d, s). That is, θ is different from θ̃ if and only if (d, s) is different from (d̃, s̃), where

(d, s) and (d̃, s̃) are distances and directions associated with θ and θ̃, respectively. Thus,

inferring the unknown parameter θ∗ can be also delivered through (d, s).
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We specifically implement the DD method to the QML estimation. For this, we now rewrite

the quasi-likelihood function as a function of (d, s). That is, for each θ, there is a unique (d, s)

satisfying eq. (1) and from this, Ln(θ) ≡ Ln(θ∗ + d · s). Note that the left-hand side (LHS)

is now rephrased into another function of (d, s), and Ln( · ) can be maximized instead with

respect to (d, s). For this, we first apply the mean-value theorem around 0 with respect to d:

for each s and for some d between d and 0,

Ln(θ∗ + d · s) = Ln(θ∗) +∇′θLn(θ∗)s · d+
1

2
s′∇2

θLn(θ∗ + d · s)s · d2. (2)

Here, 0 is the reference point corresponding to θ∗ because if d = 0, θ∗ + d · s = θ∗. We fur-

ther note that we can apply the central limit theorem (CLT) and uniform law of large numbers

(ULLN) to each element in the right-hand side (RHS) of eq. (2): {n1/2∇θLn(θ∗),∇2
θLn( · )} ⇒

{Z,A( · )}, where Z ∼ N(0,B). Note that A(θ∗) ≡ A by definition. We now apply the con-

tinuous mapping theorem to eq. (2) and obtain that

n{Ln(θ∗ + d · s)− Ln(θ∗)} ⇒ Z ′s · δ +
1

2
s′A(θ∗ + d̄ · s)s · δ2, (3)

where δ captures the asymptotic behavior of
√
nd.

We can obtain the asymptotic behavior of the QML estimator from this asymptotic behav-

ior. Given that the QML estimator is obtained by maximizing the LHS of eq. (2) with respect

to θ, it is now equivalent to maximizing eq. (3) with respect to (d, s). Thus,

sup
s∈Ss−1

sup
d∈D(s)

n{Ln(θ∗+ d · s)−Ln(θ∗)} ⇒ sup
s∈Ss−1

sup
δ∈R+

Z ′s · δ+
1

2
s′A(θ∗+ d̄ · s)s · δ2. (4)

Here, the space D(s) is replaced by R+ because the space for
√
nd is R+ at the limit. Also,

Theorem 1(i) states that the QML estimator is consistent for θ∗, implying that d̂n(s) :=

arg maxd∈D(s) Ln(θ∗ + d · s) is consistent for 0 uniformly on Ss−1. This is mainly because
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0 ∈ D(s) for every s, so that the asymptotic limit of the QML estimator, which is θ∗, can be

also generated from θ∗ + d · s by letting d = 0.

This implies several further consequences. First, for every s, when d̄ is supposed to be

between 0 and d̂n(s), it is also dependent upon the value of s but consistent for 0 uniformly

on Ss−1, because d̂n(s) is consistent for 0 uniformly in s. Thus, eq. (4) can be also written as

sup
s∈Ss−1

sup
d∈D(s)

n{Ln(θ∗ + d · s)− Ln(θ∗)} ⇒ sup
s∈Ss−1

sup
δ∈R+

Z ′s · δ +
1

2
s′As · δ2. (5)

Second, if we let δ̂(s) capture the asymptotic behavior of
√
nd̂n(s), its asymptotic version

is now obtained as

δ̂(s) := −{s′As}−1max[0,Z ′s], (6)

where the ‘max’ operator is used to accommodate Kuhn-Tucker’s theorem. That is, for every

s, δ̂(s) has to be greater than 0, so that we cannot simply obtain the optimal estimator δ̂(s) as

if it is an interior element: the boundary parameter problem has to be taken into account. Thus,

applying Kuhn-Tucker’s theorem yields the optimal solution in eq. (6). Here, we also multiply

−1 to the RHS as A is negative definite uniformly in n, so that δ̂(s) cannot be negative.

The pointwise weak convergence in eq. (6) can be further strengthened. More specifi-

cally, we can state the result in eq. (6) by functional weak convergence:
√
nd̂n( · ) ⇒ δ̂( · ).

This trivially follows by the functional CLT (FCLT) that for each s, maximizing the RHS of

eq. (2) with respect to
√
nd̂n(s) yields that

√
nd̂n( · ) =

√
nḋn( · ) + oP(1), where ḋn(s) :=

−{s′∇2
θLn(θ∗)s}−1max[0,∇′θLn(θ∗)s]. Here, the distance between

√
nd̂n( · ) and

√
nḋn( · )

is oP(1) uniformly on Ss−1. Their difference is mainly due to d̄, which is set to be zero when

defining ḋn, and it converges to zero uniformly on Ss−1 as discussed above. Their difference

therefore becomes negligible in probability uniformly on Ss−1. Thus, we can instead focus on

ḋn( · ) to derive the weak convergence of d̂n( · ). Also, the tightness of {n−1/2∇′θLn(θ∗)s} as

a function of s trivially holds because s is linearly multiplied to the object obeying the CLT.
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Furthermore, n−1∇2
θLn( · ) obeys the ULLN, so that n−1∇2

θLn( · ) − A( · ) → 0 −P. From

these,
√
nd̂n( · )⇒ δ̂( · ).

Third, the asymptotic behavior of the quasi-likelihood can also be examined by the DD

method. Note that the quasi-likelihood is obtained by substituting eq. (6) into eq. (5). That is,

sup
s∈Ss−1

sup
d∈D(s)

n{Ln(θ∗ + d · s)− Ln(θ∗)}

⇒ sup
s∈Ss−1

1

2
(−s′As)δ̂(s)2 = sup

s∈Ss−1

−1

2

(
max[0,Z ′s]2

s′As

)
, (7)

so that

sup
s∈Ss−1

sup
d∈D(s)

2n{Ln(θ∗ + d · s)− Ln(θ∗)}

⇒ sup
s∈Ss−1

(−s′As)δ̂(s)2 = sup
s∈Ss−1

−
(

max[0,Z ′s]2

s′As

)
, (8)

which has a form similar to the likelihood ratio statistic testing the unknown parameter θ∗.

In addition, we used the identity: Ln(θ̂n) ≡ sups∈Ss−1 supd∈D(s) Ln(θ∗ + d · s) to obtain the

above result. Here, we note that the RHS of eq. (8) is a function of a Gaussian process indexed

by s. Thus, if we let G(·) be a Gaussian process such that for each s, s̃ ∈ Ss−1, E[G(s)] = 0

and

E[G(s)G(s̃)] =
s′Bs̃

√
−s′As

√
−s̃′As̃

,

then eq. (8) can alternatively be reformulated into

sup
s∈Ss−1

sup
d∈D(s)

2n{Ln(θ∗ + d · s)− Ln(θ∗)} ⇒ sup
s∈Ss−1

max[0,G(s)]2. (9)

That is, the asymptotic behavior can be written as a function a Gaussian process. This is a

different view from that of the conventional method, as it associates the asymptotic behavior

in terms of a Gaussian process combined with ‘sup’ and ‘max’ operators.
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This also lets the distance estimator be represented as a function of a Gaussian process at

the limit. More specifically, if we let Y( · ) be a Gaussian process such that for every s, s̃ ∈

Ss−1, E[Y(s)] = 0 and

E[Y(s)Y(s̃)] =
s′Bs̃

{−s′As}{−s̃′As̃}
, (10)

we can let δ̂( · ) be max[0,Y( · )], so that the Gaussian process Y( · ) is also associated with

G( · ). That is, for each s ∈ Ss−1, Y(s) ≡ (−s′As)−1/2G(s).

The previous literature observes a number of instances in which the asymptotic null be-

haviors of statistics are represented by functions of Gaussian processes. This includes Davies

(1977; 1987), Bierens (1990), Bierens and Ploberger (1997), Andrews (2001), Cho and White

(2007; 2009; 2010; 2011a; 2011b; 2012), Cho and Ishida (2010), Cho, Cheong, and White

(2011), and Cho, Ishida, and White (2011) among others. They are mostly associated with test

statistics not identified under the hypothesis of their interest.

Fourth, the QML estimator can be also associated with the DD estimator. If we let ŝn :=

arg maxs∈Ss−1 Ln(θ∗+d̂n(s)·s), θ̂n ≡ θ∗+d̂n(ŝn)·ŝn, so that
√
n(θ̂n−θ∗) ≡

√
nd̂n(ŝn)·ŝn.

Also,
√
n(θ̂n − θ∗)

A∼ N(0,A−1BA−1) by Theorem 1(ii), implying that
√
nd̂n(ŝn) · ŝn

A∼

N(0,A−1BA−1). From this, a couple of implications can be deduced. The first implication

is that
√
nd̂n(ŝn) has asymptotically zero probability mass at zero. More precisely, if we let

ŝn := arg maxs∈Ss−1 max[0,G(s)]2, ŝ becomes the asymptotic weak limit of ŝ, and
√
n(θ̂n −

θ∗) =
√
nd̂n(ŝn) · ŝn ⇒ δ̂n(ŝ) · ŝ ≡ max[0,Y(ŝ)] · ŝ, which has to follow N(0,A−1BA−1)

in distribution by Theorem 1(ii). This implies that P(max[0,Y(ŝ)] = 0) = 0. There-

fore,
√
nd̂n(ŝn) ⇒ Y(ŝ). The second implication is that d̂n(ŝn) · ŝn = {−∇2

θLn(θ∗)}−1

∇θLn(θ∗) + oP(1) because
√
nd̂n(ŝn) · ŝn =

√
n(θ̂n − θ∗) = {−∇2

θLn(θ∗)}−1∇θLn(θ∗) +

oP(1) by the conventional approximation. Thus, we can also obtain that

δ̂(ŝ) · ŝ = Y(ŝ) · ŝ = {−ŝ′Aŝ}−1Z ′ŝ · ŝ = −A−1Z, (11)
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and ŝ satisfying the last equality in eq. (11) is obtained as −ĉA−1Z , where ĉ is a scaler such

that ŝ′ŝ = 1. That is,

ĉ := {Z ′(−A)−2Z}−1/2 and δ̂(ŝ) = ĉ−1. (12)

Eq. (11) has an interesting interpretation which cannot be delivered by the conventional ap-

proach. When Y( · )( · ) is viewed as a Gaussian random function defined on Ss−1, we could

have a random variable following a multivariate normal distribution by substituting the ran-

domly chosen ŝ into the Gaussian random process. That is, the QML estimator selects direc-

tion ŝ so that Y(ŝ)· ŝ becomes a multivariate normal random variable. If direction s is selected

in a different way, the consequence can be different.

Finally, the quasi-likelihood ratio statistic testing the unknown parameter θ∗ can also be

associated with direction s. That is,

2n{Ln(θ̂n)− Ln(θ∗)} ⇒ sup
s∈Ss−1

max[0,G(s)]2

= G(ŝ)2 = −ŝ′Aŝδ̂(ŝ)2 = Z ′(−A)−1Z, (13)

where the second last equality follows from eq. (12) and the fact that ŝ = −ĉA−1Z . This

also implies that sups∈Ss−1 max[0,G(s)]2 ∼ N2(0,A
−1BA−1;−A), which is a consistent

result to Theorem 2(iii). Once again, the important aspect of this derivation is that we now

understand the asymptotic behavior as a function of a Gaussian process. We formally state

these consequences in the following theorem.

Theorem 3 Given Assumption 1,

(i)
√
nd̂n( · ) =

√
nḋn( · ) + oP(1)⇒ δ̂( · );

(ii)
√
n(θ̂n − θ∗) ≡

√
nd̂n(ŝn) · ŝn ⇒ δ̂(ŝ) · ŝ = Y(ŝ) · ŝ ∼ N(0,A−1BA−1);

(iii) ŝ = ĉA−1Z and δ̂(ŝ) = ĉ−1; and
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(iv) 2{Ln(θ̂n)− Ln(θ∗)} ⇒ G(ŝ)2 ∼ N2(0,A
−1BA−1;−A).

The main contents of Theorem 3 are already proved while associating the DD method with the

conventional approach. We therefore omit the proofs. Also, Theorem 3 provides additional

insights of the DD method which Cho and White (2012) do not discuss.

4. Analysis of the QML Test Statistics Using the DD Method

We now move our interests to inferencing and seek other insights of differentiable models

using the DD method. Indeed, Theorem 3 enables us to look at the three most popular test

statistics as special tests which we can define using the DD method.

We consider two different DD methods by letting two different parameters be our reference

parameters. In this section, we let our reference parameter be the unknown parameter θ∗ as

before and examine the three most popular test statistics. In the next section, we choose the

CQML estimator be our reference parameter and explore the DD methods from a different

angle.

4.1. Examination of the CQML Estimator

We first examine the asymptotic behavior of the CQML estimator by the DD method. The

CQML estimator plays a central role in analyzing the test statistics. First, we represent the

hypotheses using distance and direction. That is, we let (d0, s0) be such that θo ≡ θ∗+do ·so.

Note that θo maximizes E[Ln( · )] subject to Rθ = r, so that Rθo ≡ r by its definition. This

implies that Rθ∗ = r − do · Rso. Also, for any s ∈ Ss−1, do = 0 if and only if θo = θ∗.

Also, θo = θ∗ under H0. Therefore, we can state that Rθ∗ = r under Ho. On the other hand,

θo 6= θ∗ under H1, so that for some do > 0 and so ∈ Ss−1, Rθ∗ = r − doRso. Thus, the
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original hypotheses can be also reformulated into the following:

H′0 : ∀ s ∈ Ss−1, do = 0 versus H′1 : ∃(so, do) ∈ Ss−1×R+ such that Rθ∗ = r−doRso.

Second, we reparameterize the null condition Rθ = r using distance and direction. For

any θ, we can find (d, s) such that θ = θ∗+ d · s by eq. (1), so that the null condition can also

be written as N := {(d, s) ∈ R+ × Ss−1 : R(θ∗ + d · s) = r}. We note that the elements in

N are different underH0 andH1. IfH0 holds, Rθ∗ = r, and this implies that dR · s = 0. As

d ∈ R+, this can be also rewritten as R · s = 0. That is, the null condition combined withH0

yields a set of directions orthogonal to R. Here, any positive distance d > 0 satisfies the null

condition. Thus, a subset of N satisfyingH0 is now No := {(d, s) ∈ R+ × s : R · s = 0}.

Third, we now consider the asymptotic behavior of the CQML estimator. We focus on

its null behavior as it determines the asymptotic null distributions of the tests. The CQML

estimator is obtained by maximizing the quasi-likelihood (QL) function subject to the null

condition: sups∈Ss−1
o

supd∈D(s) Ln(θ∗ + d · s), where Ss−1o := {s ∈ Ss−1 : Rs = 0}. Note

that this maximization process satisfies the null condition by letting s be an element in Ss−1o .

Given that d is not constrained by No, maximizing the QL function with respect to d does not

have to be constrained by the null condition. Thus, maximizing the QL function with respect

to d is an unconstrained maximization process, implying that for each s ∈ Ss−1o , d̂n(s) is the

argument maximizing Ln(θ∗ + d · s). On the other hand, s has to be orthogonal to R, and eq.

(9) is now converted into

sup
s∈Ss−1

o

sup
d∈D(s)

2n{Ln(θ∗ + d · s)− Ln(θ∗)} ⇒ sup
s∈Ss−1

o

max[0,G(s)]2. (14)

The only difference of this from eq. (9) is that the space for s is given by Ss−1o . The others

are identical to the previous case. Thus, if we let s̃n := arg maxs∈Ss−1
o

Ln(θ∗ + d̂n(s) · s),

θ̃n ≡ θ∗ + d̂n(s̃n) · s̃n. On the other hand, Theorem 1(iv) implies that
√
nd̂n(s̃n) · s̃n ≡

13



√
n(θ̃n − θ∗)

A∼ N(0,DA−1BA−1D′), which means that
√
nd̂n(s̃n) · s̃n does not have a

probability mass at zero, either. In addition, Theorem 3(i) implies that
√
nd̂n( · ) ⇒ δ̂( · ) =

max[0,Y( · )] by the definition of δ̂( · ), so that if we let s̃ := arg maxs∈Ss−1
o

max[0,G(s)]2,

max[0,Y(s̃)] = Y(s̃) with probability 1. Therefore, it now follows that

δ̂(s̃) · s̃ = Y(s̃) · s̃ = {−s̃′As̃}−1Z ′s̃ · s̃ = D(−A)−1Z, (15)

and s̃ satisfying the final equality is obtained when s̃ = −c̃DA−1Z , where c̃ is a scaler such

that s̃′s̃ = 1. That is, c̃ = {Z ′A−1D′DA−1Z}−1/2 and δ̂(s̃) = c̃−1. In particular, eqs. (11)

and (15) imply that

δ̂(s̃) · s̃ = Dδ̂(ŝ) · ŝ. (16)

This fact and eq. (14) further imply that

2n{Ln(θ̃n)− Ln(θ∗)} ⇒ sup
s∈Ss−1

o

max[0,G(s)]2 = G(s̃)2 = −s̃′As̃δ̂(s̃)2

= Z ′[A−1 −A−1R′(RA−1R′)−1RA−1]Z,

where the last equality is obtained by the definition of D := Is −A−1R′(RA−1R′)−1R and

eq. (15). Thus, sups∈Ss−1
o

max[0,G(s)]2 ∼ N2(0,B; A−1 −A−1R′(RA−1R′)−1RA−1), and

constraining the null condition modifies the asymptotic distribution of the parameter estimates.

We formally state these results as follows.

Theorem 4 Given Assumption 1 andH0,

(i)
√
n(θ̃n − θ∗) ≡

√
nd̂n(s̃n) · s̃n ⇒ δ̂(s̃) · s̃ = Y(s̃) · s̃ ∼ N(0,DA−1BA−1D′);

(ii) s̃ = −c̃DA−1Z and δ̂(s̃) = c̃−1; and

(iii) 2{Ln(θ̃n)− Ln(θ∗)} ⇒ G(s̃)2 ∼ N2(0,B; A−1 −A−1R′(RA−1R′)−1RA−1).

As most proofs are already stated, we do not reiterate the same proof in the Appendix.

14



4.2. Examination of the Test Statistics

As mentioned above, the asymptotic behavior of the CQML estimator is crucial in analyzing

the three most popular test statistics by the DD method. In particular, Theorem 4 contains the

essential properties of the CQML estimator. We investigate their asymptotic null behaviors

using these properties.

First, we show that the asymptotic null distribution of the QLR statistic can be obtained

straightforwardly by combining Theorems 3 and 4. That is, we note thatQLRn = 2n{Ln(θ̂n)−

Ln(θ̃n)} = 2n{Ln(θ̂n) − Ln(θ∗)} − 2{Ln(θ̃n) − Ln(θ∗)}, and the asymptotic behaviors of

the curly brackets are already given in Theorems 3 and 4. If we combine them,

QLRn = 2n{Ln(θ∗ + d̂n(ŝn) · ŝn)− Ln(θ∗ + d̂n(s̃n) · s̃n)}

⇒ sup
s∈Ss−1

max[0,G(s)]2 − sup
s∈Ss−1

o

max[0,G(s)]2 = G(ŝ)2 − G(s̃)2

= −ŝ′Aŝδ̂(ŝ)2 + s̃
′
As̃δ̂(s̃)2 = −ŝ′AŝY(ŝ)2 + s̃

′
As̃Y(s̃)2

= −Z ′A−1Z + Z ′[A−1 −A−1R′(RA−1R′)RA−1]Z

= −Z ′A−1R′(RA−1R′)−1RA−1Z ∼ N2(0,RA−1BA−1R′;−[RAR′]−1).

That is, the asymptotic null distribution of the QLR test can be represented by the asymptotic

behaviors of the distance and direction estimators (Y( · ), ŝ, s̃). The final term is the result

obtained by combining it with Theorem 2(i).

We can view this in a different angle from the conventional approach. As ŝ and s̃ are

selected to maximize max[0,G(s)]2 from Ss−1 and Ss−1o respectively, the asymptotic null dis-

tribution of the QLR test is given as N2(0,A
−1BA−1;−(RAR′)−1). If other different rules

apply, the same distribution is not necessarily obtained as we can see from the occasions of

the Wald and LM tests.

We next examine the Wald test. The asymptotic null behavior of the Wald test is also
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easily obtained by Theorems 3 and 4. We note that
√
n(θ̂n− θ̃n) =

√
n(θ̂n−θ∗)−

√
n(θ̂n−

θ∗) =
√
n[d̂n(ŝn) · ŝn − d̂n(s̃n) · s̃n], so that

√
n(Rθ̂n − Rθ̃n) =

√
n(d̂n(ŝn)R · ŝn −

d̂n(s̃n)R · s̃n) =
√
nd̂n(ŝn)R · ŝn, where the last equality holds by the fact that R · s̃n ≡

0 given by the null condition No. This also implies that
√
n(Rθ̂n − r) =

√
nd̂n(ŝn)R ·

ŝn ⇒ δ̂(ŝ)R · ŝ = RY(ŝ) · ŝ ∼ N(0,RA−1BA−1R′) under H0 by Theorem 3(i). Thus, if

Assumption 2 and H0 further hold, Wn = nd̂n(ŝn)ŝ′nR
′[RÂ−1n B̂nÂ

−1
n R′]−1Rŝnd̂n(ŝn) ⇒

Y(ŝ)ŝ′R′(RA−1BA−1R′)−1RŝY(ŝ) ∼ X 2
q . That is, we can represent the asymptotic null

distribution of the Wald test using the asymptotic null distributions of (Y( · ), ŝ).

As for the QLR test, we can endow the asymptotic null behavior with a different per-

spective. When Y( · )( · )′R′[RA−1 BA−1R′]−1R( · )Y( · ) is viewed as a chi-square process,

the conventional Wald test chooses ŝ so that the asymptotic null distribution of Y(ŝ)ŝ′R′[R

A−1BA−1R′]−1RŝY(ŝ) is a chi-square distribution. If a different s is selected, the same

chi-square distribution may not be obtained.

The LM test can be also analyzed in a similar manner. In particular, its asymptotic null

behavior turns out to have the same structure as the Wald test. For this, we consider another

direction estimator śn slightly different from both ŝn and s̃n. We let

śn := ćn{−∇2
θLn(θ̃)}−1

√
n∇θLn(θ̃n), (17)

where ćn := {n∇′θLn(θ̃n)[−∇2
θLn(θ̃n)]−1[−∇2

θLn(θ̃n)]−1∇θLn(θ̃n)}−1/2 > 0. Note that śn

is defined following the structure of ŝ. Here, the last inequality holds because Assumption

1(ix) implies that [−∇2
θLn(θ̃n)]−1[−∇2

θLn(θ̃n)]−1 is positive definite. Also, ćn is defined to

have ś′nśn = 1. For each s, we further let d́n(s) := −{s′∇2
θLn(θ̃n)s}−1 max[0,∇′θLn(θ̃n)s]

by following the structure of ḋn(s). The only difference between ḋn(s) and d́n(s) is that the

unknown parameter θ∗ is now replaced by θ̃n. All these are defined to denote the LM test by
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the distance and direction estimators. That is,

LMn = nd́n(śn)ś′nR
′{RÃ−1n B̃nÃ

−1
n R′}−1Rśnd́n(śn), (18)

and that

d́n(śn) = −
max

[
0, ćn∇′θLn(θ̃)[−∇2

θLn(θ̃n)]−1∇θLn(θ̃)
]

ć2n∇′θLn(θ̃)[−∇2
θLn(θ̃n)]−1∇θLn(θ̃)

= ć−1n ,

where the last equality holds by Assumption 1(ix). Note that the distance and direction estima-

tors (d́n( · ), śn) are not necessarily identical to the previous distance and direction estimators

(d̂n( · ), ŝn) or (d̂n( · ), s̃n). Nevertheless, their asymptotic behaviors are interrelated underH0.

We verify this by examining the key components constituting śn:

∇θLn(θ̃n) = ∇θLn(θ∗ + d̂n(s̃n) · s̃n) = ∇θLn(θ∗) + Ad̂n(s̃n) · s̃n + oP(
√
n) (19)

underH0. Here, A is the asymptotic limit of∇2
θLn(θ∗). Also,∇θLn(θ∗) = −Ad̂n(ŝn) · ŝn +

oP(
√
n) and d̂n(s̃n) · s̃n = Dd̂n(ŝn) · ŝn + oP(

√
n) by constructing the sample analogs of eqs.

(11) and (16), respectively. Now, plugging these into eq. (19) yields that∇θLn(θ̃n) = A[−I+

D]d̂n(ŝn) · ŝn + oP(
√
n) = −d̂n(ŝn)R′(RA−1R′)−1R · ŝn + oP(

√
n), where the last equality

follows by the definition of D := Is − A−1R′(RA−1R′)−1R. Therefore, it now follows

that śn = ćnd̂n(ŝn)A−1R′(RA−1R′)−1R · ŝn + oP(
√
n), and letting n tend to infinity after

plugging this into eq. (18) yields that LMn ⇒ Y(ŝ)ŝ′R′(RA−1BA−1R′)−1RŝY(ŝ) ∼ X 2
q

under H0. This consequence is identical to the Wald test. That is, the asymptotic distribution

is now represented by the asymptotic behaviors of distance and direction estimators (Y( · ), ŝ),

and they are selected to have a test statistic asymptotically following X 2
q under H0. We can

therefore say that the LM test is a different test yielding the same asymptotic null distribution

as the Wald test. We formally state our derivations in the following theorem.

Theorem 5 Given Assumptions 1, 2, andH0, if we let s̃ := arg maxs∈Ss−1
o

max[0,G(s)]2,
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(i) QLRn ⇒ −ŝ′AŝY(ŝ)2 + s̃
′
As̃Y(s̃)2 ∼ N2(0,RA−1BA−1R′;−(RAR′)−1);

(ii)Wn ⇒ Y(ŝ)ŝ′R′(RA−1BA−1R′)−1RŝY(ŝ) ∼ X 2
q ; and

(iii) LMn ⇒ Y(ŝ)ŝ′R′(RA−1BA−1R′)−1RŝY(ŝ) ∼ X 2
q .

The biggest message of Theorem 5 is that for a Gaussian process Y( · ) with the covariance

eq. (10), QLR, Wald, and LM tests choose (ŝ, s̃) or ŝ so that they have the standard null

distributions, which we can easily tabulate.

5. Constructing New Tests and Reinvestigation of the Tests

We showed in the previous section that the asymptotic null distributions of the three most

common tests can be represented by the asymptotic behaviors of the distance and direction

estimators (Y( · ), ŝ) or (Y( · ), ŝ, s̃). Although this interpretation is useful and insightful,

its application is practically infeasible, as the sample version of (Y( · ), ŝ, s̃) is defined by

assuming that θ∗ is known. That is, (d̂n( · ), ŝn, s̃n) cannot be defined by unknown θ∗, and in

this sense we may call it an infeasible DD estimator. In this section, we modify our reference

parameter into θ̃n and call the DD estimator defined by this as a feasible DD estimator. As

the reference parameter is now known, the relevant DD estimator can be obtained without

difficulty. We reinforce the relevant theory in this section.

We analyze the QML estimator by the DD method with our reference parameter being

the CQML estimator. For this, we consider the following maximization processes: for each

s ∈ Ss−1, we let

d̈n(s) := arg max
d∈D̈(s)

Ln(θ̃n + d · s), and s̈n := arg max
s∈Ss−1

Ln(θ̃n + d̈n(s) · s), (20)

where D̈(s) := {d ∈ R+ : θ̃n+ds ∈ Θ}. Note that (d̈n( · ), s̈n) is defined in a parallel manner

to (d̂n( · ), ŝn). The only difference is that the reference parameter is now modified from θ∗ to
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θ̃n, and it trivially follows that

θ̂n − θ̃n ≡ d̈n(s̈n) · s̈n (21)

a.s.−P by their definitions. Thus, (d̈n( · ), s̈n) and (d̂n( · ), ŝn) are not identical estimators

unless θ̃n = θ∗.

Nevertheless, their analyses are almost identical. We show specifically how to obtain the

asymptotic behaviors of (d̈n( · ), s̈n). First, for given s ∈ Ss−1, we apply the mean-value

theorem as in eq. (2): for some d̄ between 0 and d,

Ln(θ̃n + d · s) = Ln(θ̃n) +∇′θLn(θ̃n)s · d+
1

2
s′∇2

θLn(θ̃n + d̄ · s)s · d2. (22)

This expansion also implies that for each s ∈ Ss−1 and d̄n(s) between 0 and d̈n(s),

d̈n(s) = − max[0,∇′θLn(θ̃n)s]

s′∇2
θLn(θ̃n + d̄n(s)s)s

. (23)

Second, we let δ̈( · ) capture the asymptotic behavior of
√
nd̈n( · ). Then,

sup
d∈D̈(s)

n{Ln(θ̃n + d · s)− Ln(θ̃n)} ⇒ 1

2
(−s′As)δ̈(s)2 = −1

2

(
max[0, Z̈ ′s]2

s′As

)
, (24)

as n tends to infinity, where D̈(s) := {d ∈ R+ : θ̃n + ds ∈ Θ}, and Z̈ is the asymptotic

weak limit of
√
nLn(θ̃n). That is, Z̈ := PZ by Theorem 1 (vi). Here, we obtained the final

equality by letting δ̈(s) := max[0, Ÿ(s)] and Ÿ(s) := {−s′As}−1Z̈ ′s. As before, Ÿ( · ) can

be viewed as a Gaussian process: for each s, s̃ ∈ Ss−1, E[Ÿ(s)] = 0 and

E[Ÿ(s)Ÿ(s̃)] =
s′P′BPs̃

{−s′As}{−s̃′As̃}
.
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Third, we further apply the continuous mapping theorem to this asymptotic consequence:

sup
s∈Ss−1

sup
d∈D̈(s)

n{Ln(θ̃n + d · s)− Ln(θ̃n)}

⇒ sup
s∈Ss−1

−1

2

(
max[0, Z̈ ′s]2

s′As

)
= −1

2

(
max[0, Z̈ ′s̈]2

s̈′As̈

)
, (25)

where we let s̈ := arg maxs∈Ss−1 max[0, G̈(s)]2 and G̈(s) := {−s′As}−1/2Z̈ ′s. That is, G̈( · )

is a Gaussian process: for each s, s̃ ∈ Ss−1, E[G̈(s)] = 0 and

E[G̈(s)G̈(s̃)] =
s′P′BPs̃

√
−s′As

√
−s̃′As̃

.

Fourth, we also note that

max[0, Z̈ ′s̈] = Z̈ ′s̈, (26)

because n{Ln(θ̂n)− Ln(θ̃n)} does have zero probability mass at zero by Theorem 2(i) and

sup
s∈Ss−1

sup
d∈D̈(s)

n{Ln(θ̃n + d · s)− Ln(θ̃n)} = n{Ln(θ̂n)− Ln(θ̃n)}. (27)

Thus, δ̈(s̈) · s̈ = Ÿ(s̈) · s̈ = {−s̈′As̈}−1Z̈ ′s̈ · s̈ = (−A)−1Z̈ , where the last equality holds

by Theorem 1(v). Further, the last equality implies that s̈ = c̈(−A)−1Z̈ , where c̈ is such that

s̈′s̈ = 1. That is,

c̈ = {Z̈ ′(−A)−1(−A)−1Z̈}−1/2 and δ̈(s̈) = c̈−1. (28)

We summarize the essential results of these steps in the following theorem.

Theorem 6 Given Assumption 1 andH0,

(i)
√
n(θ̂n − θ̃n) ≡

√
nd̈n(s̈n) · s̈n ⇒ δ̈(s̈) · s̈ = Ÿ(s̈) · s̈ ∼ N(0,A−1PBP′A−1); and

(ii) s̈ = c̈(−A)−1Z̈ and δ̈(s̈) = c̈−1.
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The steps above Theorem 6 can be used as intermediate steps to define new test statistics.

Note that θ∗ is not used here, and instead, θ̃n is used for Theorem 6, so that its application is

practically feasible. We illustrate their applications here, and for this, we provide the following

definitions: for each s ∈ Ss−1, we let

Ÿn(s) :=

√
n∇′θLn(θ̃n)s

{−s′∇2
θLn(θ̃n)s}

and G̈n(s) :=

√
n∇′θLn(θ̃n)s

{−s′∇2
θLn(θ̃n)s}1/2

.

Also, for each s ∈ Ss−1, we define

J̈n(s) := {s′R′{RÂ−1n B̂nÂ
−1
n R′}−1Rs}1/2Ÿn(s) and

J̃n(s) := {s′R′{RÃ−1n B̃nÃ
−1
n R′}−1Rs}1/2Ÿn(s).

Furthermore, we let F(Ss−1) := {f : C(Ss−1) 7→ R : f is continuous.}, where C(A) is a

space of continuous mappings defined on Ss−1. This space is considered to provide a family of

test statistics whose null behaviors are determined by the Gaussian processes defined above.

Specifically, we let these families be TG̈ := {f(G̈n) : f : C(Ss−1) 7→ R}, TJ̈ := {f(J̈n) : f :

C(Ss−1) 7→ R}, and TJ̃ := {f(J̃n) : f : C(Ss−1) 7→ R}, respectively. Their asymptotic null

behaviors are trivially obtained as follows.

Theorem 7 Given Assumptions 1, 2, andH0,

(i) if f(G̈n) ∈ TG̈, f(G̈n)⇒ f(G̈);

(ii) if f(J̈n) ∈ TJ̈ , f(J̈n)⇒ f(J̈ ); and

(iii) if f(J̃n) ∈ TJ̃ , f(J̃n) ⇒ f(J̈ ), where J̈ ( · ) is a Gaussian process such that for each

s, s̃ ∈ Ss−1, E[J̈ (s)] = 0 and

E[J̈ (s)J̈ (s̃)] =
{s′R′{RA−1BA−1R′}−1Rss̃′R′{RA−1BA−1R′}−1Rs̃}1/2

{−s′As}{−s̃′As̃}
s′P′BPs̃.
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There are several remarks relevant to Theorem 7. First, many test statistics can be defined

by Theorem 7 by combining functions in F(Ss−1) with the statistics tending to the Gaus-

sian processes under the null. Second, for every s ∈ Ss−1, J̈ (s) can be also defined as

{s′R′{RA−1BA−1R′}−1Rs}1/2Ÿ(s). Note that the covariance structure of J̈ ( · ) is identi-

cal to {( · )′R′{RA−1BA−1R′}−1R( · )}1/2Ÿ( · ). Third, the asymptotic null distributions of

the new tests may not be so easy to obtain. This difficulty can be easily overcome by applying

Hansen’s (1996) weighted bootstrap. Finally, we can also understand the asymptotic null be-

haviors of the three most popular test statistics as a special case of Theorem 7. To understand

this better, we first note that for each s ∈ Ss−1, d́n(s) ≡ max[0, n−1/2Ÿn(s)] and consider the

following lemma.

Lemma 1 Given Assumptions 1, 2, andH0, ‖s̈n − śn‖ = oP(1).

The proof of Lemma 1 is provided in the Appendix. Using Theorem 7 and Lemma 1 simplifies

the asymptotic null behaviors of the three most popular test statistics. We first consider them

from the QLR test. We note that

QLRn = 2n{Ln(θ̃n + d̈n(s̈n) · s̈n)− Ln(θ̃n)} = sup
s∈Ss−1

2n{Ln(θ̃n + d̈n(s) · s)− Ln(θ̃n)}

= sup
s∈Ss−1

−max[0,
√
n∇θLn(θ̃n)s]2

s′∇2
θLn(θ̃n + d̄n(s)s)s

= sup
s∈Ss−1

−max[0,
√
n∇θLn(θ̃n)s]2

s′∇2
θLn(θ̃n)s

+ oP(1)

= sup
s∈Ss−1

max[0, G̈n(s)]2 + oP(1),

where the second equality holds by the definition of s̈n, and the third equality follows by com-

bining eqs. (22) and (23). Also, the fourth equality holds by noting that sups∈Ss−1 |d̄n(s)| =

oP(1) under H0, and from this we can conclude that QLRn is a test statistic constructed by

f( · ) in Theorem 7 being sups∈Ss−1 max[0, ( · )]2 underH0.

Furthermore, we can also deduce the regular asymptotic interrelationship between distance

and direction estimators. Theorems 5 and 7 imply that QLRn = sups∈Ss−1 max[0, G̈n(s)]2 +
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oP(1) ⇒ sups∈Ss−1 max[0, G̈(s)]2 = G̈(s̈)2 = −s̈′As̈δ̈(s̈)2 = Z̈ ′(−A)−1Z̈ under H0, where

the third last equality holds by eq. (26), and the last equality holds by eq. (28) and the fact that

s̈ = c̈(−A)−1Z̈ . From this, Theorem 5(i) now implies that

s̈′As̈Ÿ(s̈)2 + s̃
′
As̃Y(s̃)2

d
= ŝ′AŝY(ŝ)2, (29)

which forms an equality similar to the Pythagorean equation. Note that Y(ŝ), Y(s̃), and Ÿ(s̈)

capture the distribution of distances between θ̂n and θ∗; between θ̃n and θ∗; and between

θ̂n and θ̃n, respectively. There is no regular interrelationship among these distances unless

additional adjustments are made. Eq. (29) shows that a regular relationship is established in

the form of Pythagoras equality if their coefficient is adjusted according to those given in eq.

(29).

We can also identify f of Theorem 7 constituting the Wald test without difficulty. By the

fact that (Rθ̂n − r) = R(θ̂n − θ̃n) = d̈n(s̈n)Rs̈n = n−1/2 max[0, Ÿn(s̈n)]Rs̈n under H0, we

can also rewrite the Wald test statistic intoWn := n(Rθ̂n − r)′{RÂ−1n B̂nÂ
−1
n R′}−1(Rθ̂n −

r) = max[0, Ÿn(s̈n)]2s̈′nR
′{RÂ−1n B̂nÂ

−1
n R′}−1Rs̈n = max[0, J̈n(s̈n)]2. Thus, Wn can be

also understood as a test statistic constructed by function f in Theorem 7(ii) being max[0, ( · )]2

such that s is selected by (20). This is asymptotically equivalent to the argument maximizing

max[0, G̈n( · )]2 under H0. Here, we note that the Wald test chooses s in a different way from

the QLR test. More specifically, instead of choosing s maximizing the function of interests

max[0, J̈n( · )]2, the Wald test chooses s maximizing max[0, G̈n( · )]2 and plugs this back into

max[0, J̈n( · )]2. This is designed to have a trivial null distribution. If we apply Theorems 5,

6, and 7(ii),Wn ⇒ max[0, J̈ (s̈)]2 = max[0, Ÿ(s̈)]2s̈′R′{RA−1BA−1R′}−1Rs̈ ∼ X 2
q under

H0, and this distribution is easy to tabulate. We further note that

max[0,Y(ŝ)]2ŝ′R′{RA−1BA−1R′}−1Rŝ
d
= max[0, Ÿ(s̈)]2s̈′R′{RA−1BA−1R′}−1Rs̈

23



by Theorem 5(ii), and this implies that max[0,Y(ŝ)]Rŝ
d
= max[0, Ÿ(s̈)]Rs̈, given that they

both have the same weight matrix in the middle and that they follow the same chi-square

distribution.

Finally, the LM test can be understood in a similar way. For examining this, we note that

LMn = nd́n(śn)ś′nR
′{RÃ−1n B̃nÃ

−1
n R′}−1Rśnd́n(śn) = max[0, Ÿn(śn)]2ś′nR

′{RÃ−1n B̃n

Ã−1n R′}−1Rśn = max[0, J̃n(śn)]2 under H0. Thus, we can also view LMn as a test statis-

tic constructed by function f( · ) in Theorem 7(iii) being max[0, ( · )]2 such that s is selected

according to eq. (17). This is a different function from the Wald test, because J̈n( · ) is dif-

ferent from J̃n( · ) and s is selected by eq. (17). Nevertheless, their difference is asymp-

totically negligible. That is, J̈n( · ) and J̃n( · ) are asymptotically identical functions, be-

cause both (Ân, B̂n) and (Ãn, B̃n) estimate (A,B) consistently by Assumption 2, so that

sups∈Ss−1 |J̈n(s) − J̃n(s)| = oP(1). Thus, it follows that LMn = max[0, J̈n(śn)]2 + oP(1).

Further, Lemma 1 implies that ‖śn − s̈n‖ = oP(1), so that LMn = max[0, J̈n(s̈n)]2 + oP(1).

That is, LMn =Wn+oP(1). This implies that both Wald and LM tests asymptotically use the

same function for Theorem 7, although their finite versions are different. Therefore, it follows

that LMn ⇒ max[0, Ÿ(s̈)]2s̈′R′{RA−1BA−1R′}−1Rs̈ ∼ X 2
q under H0. We summarize

these results formally as follows.

Theorem 8 Given Assumptions 1, 2, andH0,

(i)QLRn ⇒ sups∈Ss−1 max[0, G̈(s)]2 = G̈(s̈)2 ∼ N2(0,RA−1BA−1R′;−(RA−1R′)−1);

(ii)Wn ⇒ max[0, J̈ (s̈)]2 = max[0, Ÿ(s̈)]2s̈′R′{RA−1BA−1R′}−1Rs̈ ∼ X 2
q ; and

(iii) LMn ⇒ max[0, J̈ (s̈)]2 = max[0, Ÿ(s̈)]2s̈′R′{RA−1BA−1R′}−1Rs̈ ∼ X 2
q .

Furthermore,

(iv) s̈′As̈Ÿ(s̈)2 + s̃
′
As̃Y(s̃)2

d
= ŝ′AŝY(ŝ)2; and

(v) max[0,Y(ŝ)]Rŝ
d
= max[0, Ÿ(s̈)]Rs̈.

Theorem 8 now implies that the asymptotic null distributions of the three most popular tests

can be obtained by Theorem 7, as they are one of the tests in TG̈, TJ̈ , and TJ̃ .
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Given that our model is possibly misspecified, the QLR, Wald, and LM tests are not the

most efficient tests. Thus, having classes of tests containing these test statistics as elements

can be thought of as a natural extension for having better performing tests. The DD methods

serves this purpose.

6. Conclusion

The current paper revisits the QML estimation and inference using the DD method introduced

by Cho and White (2012). The asymptotic behaviors of the QML estimator is examined in a

different way from the conventional approach, and also the QLR, Wald, and LM test statistics

are reexamined in the framework of the DD method. Their null behaviors are specifically

derived by the DD method, and we also explore the implications of the new framework posited

by the DD method. Furthermore, this approach treats the most common three test statistics as

special cases of new classes of tests, which we define using the DD method.

7. Appendix

Proof of Theorem 7: (i) We note that as a function of s,
√
n∇′θLn(θ̃n)s ⇒ Z̈ ′s, which is

linear with respect to s, and sups∈Ss−1 |s′∇2
θLn(θ̃)s − s′As| = oP(1) under H0. Thus, it

follows that G̈n( · ) = {−s′∇2
θLn(θ̃)s}−1

√
n∇′θLn(θ̃n)s ⇒ G̈( · ) under H0. In particular,

the tightness of {
√
n∇′θLn(θ̃n)s} as a sequence of functions of s trivially holds because it is

a sequence of linear functions. We now apply the continuous mapping theorem to obtain that

f(G̈n)⇒ f(G̈).

(ii) By the same reason as for G̈n( · ), Ÿn( · ) ⇒ Ÿ( · ). Further, Ân
a.s.→ A and B̂n

a.s.→ B

by Assumption 2. This implies that J̈n( · ) ⇒ {( · )′R′{RA−1BA−1R′}−1R( · )}1/2Ÿ( · ) by

applying the continuous mapping theorem. For each s ∈ Ss−1, we letJ (s) := {s′R′{RA−1B
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A−1R′}−1Rs}1/2Ÿ(s) and apply the continuous mapping theorem to Ÿn( · ) again to obtain

that f(Ÿn)⇒ f(Ÿ).

(iii) The only difference between J̈n( · ) and J̃n( · ) is that Ãn and B̃n replace Ân and B̂n,

respectively. Nevertheless, Ãn
a.s.→ A and B̃n

a.s.→ B by Assumption 2, so that we can claim the

same property for f(J̃n) as in (ii). This completes the proof. �

Proof of Lemma 1: By eq. (17), śn := ćn{−∇2
θLn(θ̃)}−1

√
n∇θLn(θ̃n), which is obtained as

arg max
s∈Ss−1

−max[0,
√
n∇′θLn(θ̃n)s]2

2s′∇2
θLn(θ̃n)s

.

Also, using eqs. (22) and (23) implies that

s̈n = arg max
s∈Ss−1

−max[0,
√
n∇′θLn(θ̃n)s]2

2s′∇2
θLn(θ̃n + d̄n(s)s)s

.

Here, we note that for every s ∈ Ss−1, d̄n(s) is between 0 and d̈n(s), and sups∈Ss−1 d̈n(s) =

oP(1) from eq. (23). Thus, sups∈Ss−1 d̄n(s) = oP(1), so that

s̈n = arg max
s∈Ss−1

−max[0,
√
n∇′θLn(θ̃n)s]2

2s′∇2
θLn(θ̃n)s

+ oP(1).

In other words, s̈n − śn = oP(1). The desired result follows from this. �
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