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Abstract

Tests for regression neglected nonlinearity based on artificial neural networks (ANNs)

have so far been studied by separately analyzing the two ways in which the null of

regression linearity can hold. This implies that the asymptotic behavior of general

ANN-based tests for neglected nonlinearity is still an open question. Here we analyze

a convenient ANN-based quasi-likelihood ratio (QLR) statistic for testing neglected



nonlinearity, paying careful attention to both components of the null. We derive the

asymptotic null distribution under each component separately and analyze their inter-

action. Somewhat remarkably, it turns out that the previously known asymptotic null

distribution for the “type 1” case still applies, but under somewhat stronger conditions

than previously recognized. We present Monte Carlo experiments corroborating our

theoretical results and showing that standard methods can yield misleading inference

when our new, stronger regularity conditions are violated.

1 Introduction

Artificial neural networks (ANNs) have become increasingly of interest in a wide range

of applied disciplines. For example, in economics, ANNs now have their own Journal

of Economic Literature classification number, C45. This widespread interest in ANNs is

due to their many useful properties. In particular, single hidden layer feedforward per-

ceptrons permit arbitrarily accurate approximation to broad classes of functions (see,

e.g., Hornik, Stinchcombe and White (1989, 1990)), supporting parametric or nonpara-

metric estimation of conditional mean, quantile, or density functions (see, e.g., White

(1990, 1992), Gallant and White (1992), Kuan and White (1994), White (1996), and

Chen and White (1999)). In what follows, we focus on these specific ANNs, and it

should be understood that although for convenience we refer to “ANNs,” we always

have in mind this particular architecture.

This universal approximation property can also be exploited to test for neglected

nonlinearity in regression analysis, as in White (1989a) and Lee, White, and Granger

(1993). When suitably constructed, such tests can be consistent against arbitrary non-

linearity. Closely related methods can be found in the work of Bierens (1987, 1990),

Bierens and Hartog (1988), and Hansen (1996). As has been well recognized in this

literature, using ANNs can lead to nonstandard tests, falling into the category of tests

with nuisance parameters identified only under the alternative (Davies (1977, 1987)).

Although attempts have been made to accommodate the nonstandard nature of such

tests, the previous work has not satisfactorily examined their asymptotic null distribu-

tion. This is because a correct linear ANN specification can arise in two different ways.

First, the “hidden-to-output unit” coefficient, say λ∗, can be zero. Alternatively, δ∗, the
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“input-to-hidden unit” coefficients on the explanatory variables, which determine the

hidden unit output, can be zero. We refer to these as “type 1” and “type 2” hypotheses,

respectively. The previous literature has focused separately on the type 1 and type 2

hypotheses in obtaining asymptotic null distributions. For type 1, these distributions

have a representation as a function of a Gaussian process indexed by the parameters

unidentified under the type 1 null, as shown by Bierens (1990) and Hansen (1996),

among others, using Wald- and Lagrange multiplier (LM)-type test statistics. For type

2, Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta, Lin, and Granger (1993),

Teräsvirta (1994), and Granger and Teräsvirta (chapter 6, 1993) have proposed LM-

type tests for specific hidden unit activations. These tests have convenient chi-squared

asymptotic null distributions. So far, however, it is unknown how the type 1 and 2 hy-

potheses interact to determine the null distribution in the general case. This omission

means that the properties of general ANN tests for neglected nonlinearity are still an

open question.

Several possibilities arise when treating type 1 and type 2 hypotheses jointly: (i)

the regularity conditions for type 1 do not suffice for type 2, or vice versa; (ii) the

asymptotic distribution for type 2 differs from that for type 1; (iii) both (i) and (ii)

hold; or (iv) neither (i) nor (ii) hold. It is not at all obvious a priori which of these

possibilities obtains. Our goal here, therefore, is to address these issues by carefully

analyzing the asymptotic null distribution of a convenient ANN-based quasi-likelihood

ratio (QLR) statistic designed to test for neglected nonlinearity. We first examine the

asymptotic behaviors of the QLR statistic under type 1 and type 2 nulls separately; we

then examine their stochastic interrelation.

Somewhat remarkably and rather fortunately, it turns out that suitably constructed

ANN tests for neglected nonlinearity fall into category (i): we require stronger regu-

larity conditions than previously recognized, but the asymptotic null distribution that

properly accounts for both type 1 and type 2 nulls and their interaction coincides with

that previously obtained by neglecting type 2. That is, the previous type 1 literature ob-

tained essentially the right answer for the general case, but without a proper foundation.

We say “suitably constructed” tests, as we also find that certain choices of the hidden

unit activation function (denoted Ψ) can lead to test statistics that fall into category (iii),

which is much less convenient, both analytically and computationally. In fact, as our
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simulations show, choices that violate our conditions but are otherwise standard can

lead to misleading inference using standard methods.

The plan of this paper is as follows. In Section 2, we separately derive the asymp-

totic distributions of the QLR statistic under type 1 and type 2 nulls. The type 1 results

are essentially known; we apply results of Hansen (1996). The type 2 results turn out

to require use of a fourth-order Taylor approximation. Such approximations have been

studied in other contexts (Bartlett (1953a, 1953b); McCullagh (1987)), but their use in

the ANN context appears to be novel. Our methods are particularly straightforward, in

that we are able to avoid using the tensors employed by McCullagh (1987). Section

2 completes the analysis by deriving the stochastic interrelationship of the type 1 and

type 2 weak limits. Section 3 presents some Monte Carlo experiments using a first-order

autoregressive process, affirming the theoretical results of Section 2 and showing that

misleading inference can result from specifications that violate our new, stronger reg-

ularity conditions. Section 4 contains a summary and concluding remarks; we collect

formal mathematical proofs into the Appendix.

2 The DGP and Artificial Neural Network Model

We work with the following data generating process (DGP).

Assumption A1 (DGP): {(Yt,X′t)′ ∈ R1+k(k ∈ N) : t = 1, 2, · · · } is a strictly

stationary and absolutely regular process defined on the complete probability space

(Ω,F ,P), with E(Yt) < ∞ and mixing coefficient βτ such that for some ρ > 1,∑∞
τ=1 τ

1/(ρ−1)βτ <∞.

Here, Yt and Xt are target and predictor variables, respectively. For convenience, Xt

omits the constant. The mixing coefficients βτ are

βτ := sup
s∈N

E[ sup
A∈F∞s+τ

|P(A | F s−∞)− P(A)|]

where F st is the σ−field (“information set”) generated by (Yt,Xt, ..., Yt+s,Xt+s). The

βτ ’s measure the time-series dependence in the data. For more on absolutely regular

(β-mixing) processes, see Doukhan, Massart, and Rio (1995, DMR hereafter).
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A1 is appropriate for analyzing weakly dependent time-series data, such as non-

trending data arising in economic or biological systems. It has been adopted, among

others, by Hansen (1996, 2006) and Cho and White (2007). In particular, A1 helps

ensure the tightness used to guarantee that our main test statistic weakly converges to a

function of a Gaussian process. For this, we rely on results of DMR.

When interest focuses on forecasting Yt using the information in Xt, it is common

to forecast using an approximation to E[Yt|Xt], the conditional expectation (“regres-

sion”) of Yt given Xt. This conditional expectation gives the mean-squared-error opti-

mal forecast of Yt given Xt. Here, we approximate E[Yt|Xt] using a single hidden layer

feedforward network with the following structure:

Assumption A2 (Model): Let Ψ : R 7→ R be such that Ψ( · ) is a non-polynomial

analytic function such that Ψ(0) 6= 0. Let A ⊂ R, B ⊂ Rk, Λ ⊂ R, and ∆ ⊂

Rk be non-empty compact and convex sets, with 0 ∈ int(Λ) and 0 ∈ int(∆). Let

f(Xt ;α,β, λ, δ) := α + X′tβ + λΨ(X′tδ), and define the modelM as

M := {f( · ;α,β, λ, δ) : (α,β, λ, δ) ∈ A×B×Λ×∆}.

Note that f is a feedforward network with direct linear input-output connections and

just one hidden unit. Our interest here is in testing whether a simple linear network

(no hidden units) provides an adequate approximation to E[Yt|Xt] or whether there

is neglected nonlinearity, so that using hidden units can improve the approximation.

By choosing Ψ to be analytic (i.e., locally given by a convergent power series) and

non-polynomial, we ensure that Ψ is generically comprehensively revealing (GCR; see

Stinchcombe and White, 1998). This then guarantees that a single hidden unit suffices to

detect arbitrary neglected nonlinearity (but also see Escanciano, 2009). Standard GCR

choices for Ψ are Ψ = exp (as in Bierens, 1990), the logistic cumulative distribution

function (CDF) originally used by White (1989a), or the ridgelets of Candès (2003).

Below, we impose additional conditions on Ψ.

Note that because Xt omits the constant, Ψ(X′tδ) does not contain an adjustable

input-to-hidden bias. Instead, we permit a fixed or “hard-wired” bias. This can be

arbitrarily set without any adverse effect on the test’s ability to detect arbitrary nonlin-
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earity.1

Our null hypothesis is that E[Yt|Xt] is linear. Formally, we test

H0 : For some (α,β) ∈ A×B, P[E(Yt|Xt) = α + X′tβ ] = 1 versus

H1 : For all (α,β) ∈ A×B, P[E(Yt|Xt) = α + X′tβ ] < 1.

UnderH0, the model is correctly specified as in White (1994).

Testing H0 using ANNs is not standard, as has often been noted. For example,

White (1989b) and Bierens (1990) note that under H0, Davies’s (1977, 1987) iden-

tification problem arises, in which nuisance parameters are not identified under the

null. Davies (1977, 1987) proposes statistics whose asymptotic null distributions are

functions of Gaussian processes. White (1989a) and Lee, White, and Granger (1993)

consider statistics that avoid the need to work with functions of a Gaussian process,

essentially by selecting nuisance parameters at random. Bierens (1990) and Hansen

(1996) consider optimal choice of nuisance parameters, directly confronting the nui-

sance parameter problem. Hansen (1996) provides general regularity conditions.

Nevertheless, the literature does not take into account the twofold nature of the

identification problem arising here. Let (α∗,β∗, λ∗, δ∗) be parameter values satisfying

f(Xt ;α∗,β∗, λ∗, δ∗) = E[Yt|Xt] under H0. Then H0 consists of two sub-hypotheses:

H0 = H01 ∪H02, where

H01 : λ∗ = 0 and H02 : δ∗ = 0. (1)

H01 and H02 are the type 1 and 2 hypotheses mentioned above. Under H01, δ
∗ is

not identified; that is, the representation for E[Yt|Xt] has many possible values for δ∗.

Under H02, only α∗ + λ∗Ψ(0) is identified, and there are many combinations of α∗

and λ∗ such that α∗ + λ∗Ψ(0) is identical to the intercept in E[Yt|Xt]. Thus, Davies’s

(1977, 1987) identification problem arises in two different ways, each of which requires

its own analysis. We therefore call this the twofold identification problem.

There are many examples of the twofold identification problem in the statistics lit-

1For learning, it can be useful to permit input-to-hidden biases to adapt. Because
our interest here is not learning but inference (testing), there is no loss to fixing the
input-to-hidden bias. This also greatly simplifies the analysis.
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erature. The first that we have been able to find is the mixture model of Neyman and

Scott (1965, 1966), where they illustrate use of the locally asymptotically optimal C(α)

statistic, also advocated by Lindsay (1995). But their test of the mixture hypothesis us-

ing C(α) only focuses on one of two hypotheses yielding their null. Another early

example is the conditional heteroskedasticity model of Rosenberg (1973); here also,

only one of the hypotheses comprising the homoskedasticity null is tested. There are

many other examples of models having twofold identification problems. Nevertheless,

almost all test just one component of the null.

Neglect of the twofold null is also common in the ANN context. The LM statistic in

White (1989a) and Lee, White, and Granger (1993) is designed specifically to test H01

only. They do not consider H02. Nor does Hansen (1996) accommodate the possibility

ofH02. His regularity conditions may therefore not suffice underH02. The same is also

true for the specification test of Bierens (1990). In the ANN context, there is, to the best

of our knowledge, no analysis examining the linearity hypothesis under both H01 and

H02 simultaneously.

Accordingly, we consider a test statistic that properly takes into account both H01

and H02 to test H0 versus H1. Specifically, the quasi-likelihood ratio (QLR) statistic

can serve for this purpose. In determining its asymptotic null distribution, we explicitly

accommodate the stochastic dependence between the weak limits obtained under H01

andH02.

Our discussion follows the conventions in the literature. Specifically, Bierens (1990)

estimates the model of A2 by nonlinear least squares (NLS), which maximizes the

quasi-log-likelihood (QL):

Ln(α,β, λ, δ) := −
n∑
t=1

{Yt − α−X′tβ − λΨ(X′tδ)}2,

where n is the the sample size. The QLR test is then defined as

QLRn := n(1− σ̂2
n,A/σ̂

2
n,0),

where

σ̂2
n,0 := min

α,β
n−1

n∑
t=1

{Yt − α−X′tβ}2, and
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σ̂2
n,A := min

α,β,δ,λ
n−1

n∑
t=1

{Yt − α−X′tβ − λΨ(X′tδ)}2.

The analysis of the QLR statistic differs betweenH01 andH02. For this, it is conve-

nient to consider three different representations for QLR:

QLR(1)
n :=

{
n−min

δ
min
λ

min
α,β

1

σ̂2
n,0

n∑
t=1

{Yt − α−X′tβ − λΨ(X′tδ)}2

}
,

QLR(2)
n :=

{
n−min

λ
min
δ

min
α,β

1

σ̂2
n,0

n∑
t=1

{Yt − α−X′tβ − λΨ(X′tδ)}2

}
, and

QLR(3)
n :=

{
n−min

α
min
δ

min
λ,β

1

σ̂2
n,0

n∑
t=1

{Yt − α−X′tβ − λΨ(X′tδ)}2

}
.

QLR
(1)
n is obtained by minimizing with respect to λ before minimizing with respect

δ; this makes it convenient for analysis under H01. Under H01, δ∗ is not identified, but

this can be addressed by following the approach of Hansen (1996).

In QLR(2)
n and QLR(3)

n , the order of minimization is reversed. This makes it con-

venient for analysis under H02. We first apply a Taylor expansion to QL with respect

to δ; we then minimize the approximation with respect to λ and α respectively. We

let QLR
(2)

n and QLR
(3)

n denote the corresponding approximations. Here, we separately

considerQLR
(2)

n andQLR
(3)

n to accommodate the fact that there is a continuum of com-

binations of α∗ and λ∗ such that α∗ + λ∗Ψ(0) is identical to the intercept of E[Yt|Xt].

We overcome this difficulty by first fixing λ∗. This enables us to identify the other pa-

rameters (α∗, δ∗,β∗) and apply a Taylor approximation to QL. We then optimize with

respect to λ∗. This approximation is denoted as QLR
(2)

n . We then interchange the roles

of α∗ and λ∗ to obtain QLR
(3)

n . Nevertheless, as it turns out, the asymptotic null behav-

iors of QLR
(2)

n and QLR
(3)

n are equivalent, so that only one of them is relevant to the

null asymptotic behavior of the QLR test.

We note the following simple fact that

QLRn = max[QLR(1)
n , QLR(2)

n , QLR(3)
n ] = max[QLR(1)

n , QLR
(2)

n , QLR
(3)

n ] + oP(1).

(2)

The asymptotic distribution of QLRn is thus determined by the weak limits of QLR(1)
n ,
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QLR
(2)

n , and QLR
(3)

n . We examine these limits and their relationship in detail in the

remainder of this section.

2.1 Asymptotic Null Distribution of the QLR Test underH01

The asymptotic null distribution of QLRn under H01 is already available in the litera-

ture. We sketch its derivation to fix notation and motivate the assumptions. Concentrat-

ing QL with respect to (α,β′)′ gives

L(1)
n (λ; δ) := max

α,β
Ln(α,β, λ, δ) = −{Y − λΨ(δ)}′M{Y − λΨ(δ)}, (3)

where M := In − Z(Z′Z)−1Z′; Z := [ι,X], with X the n × k regressor matrix with

rows X′t and ι the n × 1 vector of ones; Ψ(δ) := [Ψ(X′1δ),Ψ(X′2δ), · · · ,Ψ(X′nδ)]′;

and Y = (Y1, Y2, · · · , Yn)′. For now, we assume (Z′Z)−1 exists. We ensure this below.

We define Ψt(δ) := Ψ(X′tδ), Ut := Yt − E[Yt|Xt] and U := [U1, U2, · · · , Un]′.

Since MY = MU underH0, it is standard that

sup
λ
{L(1)

n (λ; δ)− L(1)
n (0; δ)} = sup

λ
2λΨ(δ)′MU− λ2Ψ(δ)′MΨ(δ) (4)

=
{Ψ(δ)′MU}2

Ψ(δ)′MΨ(δ)
.

Thus,

QLR(1)
n = sup

δ

{Ψ(δ)′MU}2

σ̂2
n,0Ψ(δ)′MΨ(δ)

. (5)

The asymptotic null behavior of QLR(1)
n is determined by that of n−1/2Ψ(·)′MU and

n−1σ̂2
n,0Ψ( · )′ MΨ( · ) under some regularity conditions. Theorem 1 of Hansen (1996)

derives the asymptotic null distribution of an LM statistic; his regularity conditions also

apply to QLR(1)
n . For this, we impose:

Assumption A3 (Moments): There exists a sequence of stationary ergodic random

variables {Mt} such that |Ut| ≤ Mt, |Xt,j| ≤ Mt, j = 1, 2, · · · , k, and for some

κ ≥ 2(ρ− 1), E[M4+2κ
t ] <∞.

Assumption A4 (Martingale Difference): (i) E[Ut | Xt, Ut−1,Xt−1, · · · ] = 0; (ii)

E[U2
t | Xt] = σ2

∗.
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A3 and A4 ensure that σ2
∗, E[U4

t ], and E[X4
t,j], j = 1, 2, · · · , k, are finite.

A4 is not strictly necessary to obtain the asymptotic null distribution ofQLR(1)
n . Nor

does Theorem 1 of Hansen (1996) require this. Nevertheless, the martingale difference

assumption of A4(i) can often be plausibly ensured by including sufficient lags of Yt and

other variables in Xt, and it greatly simplifies the covariance structure of the Gaussian

processes relevant for our tests. The conditional homoskedasticity (constant conditional

variance) assumption in A4(ii) yields further simplifications.

Next, we impose some bounds.

Assumption A5 (Bounds): (i) supδ∈∆ |Ψt(δ)| ≤ Mt; and (ii) supδ∈∆ | ∂∂δj Ψt(δ)| ≤

Mt, j = 1, ..., k + 1.

Assumption A5 is used to show that the numerator of (5) is tight, as a direct consequence

of DMR. Assumption 2 of Hansen (1996) pertains here. By our A2, Ψ is analytic in

each of its arguments, so both Ψt and (∂/∂δj)Ψt are analytic for each Xt. This ensures

that Ψt and (∂/∂δj)Ψt are also Lipschitz continuous on ∆ and therefore bounded for

each Xt. A5 places moment conditions on these bounds. In particular, A5(ii) imposes

the moment condition for the Lipschitz constant as in assumption 2 of Hansen (1996).

Conveniently, we can assume that Ψ and its derivatives are uniformly bounded without

losing the GCR property that gives the ANN test its power.

The analysis of QLR(1)
n requires care, since for every n, the numerator of (5) con-

verges to zero a.s.(−P) as δ tends to 0 :

lim
δ→0

Ψ(δ)′MU = Ψ(0)ι′MU = 0 a.s.

Because ι is a column of Z, the denominator behaves similarly:

lim
δ→0

Ψ(δ)′MΨ(δ) = Ψ(0)2ι′Mι = 0 a.s.

This creates difficulties in obtaining the asymptotic null distribution of QLR(1)
n near

δ = 0. For now, we avoid these by restricting the parameter space. For given ε > 0,

define

∆(ε) :=

{
δ ∈∆ :

k∑
j=1

|δj| ≥ ε

}
.
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We let ε → 0 below. To ensure asymptotic non-degeneracy, we write Zt := (1,X′t)
′

and impose

Assumption A6 (Covariance): For each ε > 0 and δ ∈ ∆(ε), det V1(δ) > 0 and

det V2(δ) > 0, where

V1(δ) :=

 E[U2
t Ψt(δ)2] E[U2

t Ψt(δ)Z′t]

E[U2
t ZtΨt(δ)] E[U2

t ZtZ
′
t]

 and

V2(δ) :=

 E[Ψt(δ)2] E[Ψt(δ)Z′t]

E[ZtΨt(δ)] E[ZtZ
′
t]

 .
Our first formal result describes the null behavior of the numerator and denominator

in (5). This is a corollary of Hansen (1996, theorem 1), and it states the weak conver-

gence in continuous function space. We write Ψ∗t (δ) := Ψt(δ)− E[Ψt(δ)Z′t]{E[ZtZ
′
t]

}−1Zt.

Lemma 1. Given A1 to A3, A4(i), A5, A6, and H01,

(i) σ̂2
n,0

P→ σ2
∗ := E[U2

t ];

(ii) for each ε > 0, {n−1/2Ψ( · )′MU, σ̂2
n,0n

−1Ψ( · )′MΨ( · )} ⇒ {G0(·),J (·, ·)}

on ∆(ε), where G0 is a zero-mean continuous Gaussian process such thatE[G0(δ)G0(δ̃)]

= T (δ, δ̃), where for each δ, δ̃,

T (δ, δ̃) := E[U2
t Ψ∗t (δ)Ψ∗t (δ̃)] and J (δ, δ̃) := σ2

∗ E[Ψ∗t (δ)Ψ∗t (δ̃)];

(iii) if A4(ii) also holds, then T (δ, δ̃) = J (δ, δ̃).

Applying the continuous mapping theorem and Lemma 1 delivers the asymptotic

null behavior of

QLR(1)
n (ε) := sup

δ∈∆(ε)

{Ψ(δ)′MU}2

σ̂2
n,0Ψ(δ)′MΨ(δ)

.

To state the result, let J (δ) = J (δ, δ) and G1(δ) := J (δ)−1/2G0(δ), so that for each

δ and δ̃,

E[G1(δ)G1(δ̃)] = ρ1(δ, δ̃) :=
T (δ, δ̃)

{J (δ, δ)}1/2{J (δ̃, δ̃)}1/2
.
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Theorem 1. Given A1 to A3, A4(i), A5, A6, and H01, for each ε > 0,

(i) QLR(1)
n (ε)⇒ supδ∈∆(ε) G1(δ)2;

(ii) if A4(ii) also holds, then

ρ1(δ, δ̃) =
J (δ, δ̃)

{J (δ, δ)}1/2{J (δ̃, δ̃)}1/2
.

Note that for each δ, G1(δ) generally is not standard normal, although when A4(ii)

holds, we do have G1(δ) ∼ N(0, 1). Assuming conditional homoskedasticity (A4(ii))

may restrict the application of the QLR test, as data often exhibit conditional het-

eroskedasticity. Thus, we will not demand that A4(ii) holds. Nevertheless, this sim-

plifies the analysis and yields more intuitive results, so we will record these.

2.2 Asymptotic Null Distribution of the QLR Test underH02

2.1 Case 1: λ given

We now examine the asymptotic null distribution of the QLR statistic under the type 2

hypothesis. Concentrating QL with given λ yields

L(2)
n (δ;λ) := max

α,β
Ln(α,β, λ, δ) = −{Y − λΨ(δ)}′M{Y − λΨ(δ)}. (6)

Note that L(2)
n ( · ;λ) in (6) is a function of δ, whereas L(1)

n ( · ; δ) in (3) is a function of

λ.

We derive the desired type 2 asymptotic behavior of the QLR statistic using a Taylor

series expansion in δ. In standard situations, a second-order Taylor expansion suffices.

This fails here, because∇δL(2)
n (0;λ) ≡ 0. Specifically, whenH02 holds (δ∗ = 0),

∂

∂δi
L(2)
n (0;λ) = −2λc1X

′
iM[Y − λc0ι] = −2λc1X

′
iMU ≡ 0,

with cj := DjΨ(0), j = 0, 1, 2, · · · , whereDj is the jth derivative operator with respect

to the argument of Ψ; and Xi := [X1,i, X2,i, · · · , Xn,i]
′ is the ith column of X. We have

X′iM ≡ 0, as M is an idempotent matrix of the form In − Z(Z′Z)−1Z′, where Xi is a

column of Z.

As it turns out, a fourth-order Taylor approximation suffices. The next lemma
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collects together the relevant higher-order derivatives under H02. For this, let Di :=

diag{Xi}, Dij := DiDj , Dij` := DiDjD`, and Dij`m := DiDjD`Dm, i, j, `,m =

1, 2, · · · , k.

Lemma 2. Given A1 and A2, for i, j, `,m = 1, 2, · · · , k,

(i) ∂
∂δi
L

(2)
n (0;λ) = 0;

(ii) ∂2

∂δi∂δj
L

(2)
n (0;λ) = 2λc2ι

′DijMU;

(iii) ∂3

∂δi∂δj∂δ`
L

(2)
n (0;λ) = 2λc3ι

′Dij`MU; and

(iv) ∂4

∂δi∂δj∂δ`∂δm
L

(2)
n (0;λ) = 2λc4ι

′Dij`mMU−2λ2c2
2ι
′[DijMD`m+Di`MDjm+

DimMDj`]ι.

As these results are easily derived, we omit the proof from the Appendix.

We can apply the law of large numbers and central limit theorem (CLT) to the

second-, third-, and fourth-order derivatives above. For this, we strengthen A3 to ac-

commodate the higher order terms of the quartic expansion.

Assumption A3? (Moments): E|Ut|8 < ∞ and E|Xt,i|8 < ∞; or E|Ut|4 < ∞ and

E|Xt,i|16 <∞, i = 1, 2, · · · , k.

Lemma 3. Given A1, A2, A3?, A4(i), A6, and H02, for i, j, `,m = 1, 2, · · · , k,

(i) ι′DijMU = OP(n1/2);

(ii) ι′Dij`MU = oP(n3/4);

(iii) ι′Dij`mMU = oP(n); and

(iv) ι′DijMD`mι = OP(n).

Lemma 3 also implies that the other terms in Lemma 2(iv) are OP(n), allowing us to

write

L(2)
n (δ;λ)− L(2)

n (0;λ) = λc2

k∑
i=1

k∑
j=1

(ι′DijMU)δiδj (7)

− 1

4
λ2c2

2

k∑
i=1

k∑
j=1

k∑
`=1

k∑
m=1

(ι′DijMD`mι)δiδjδ`δm +OP(n−1/4).

We see that the second- and fourth-order terms are the main factors driving QLR asymp-

totically under H02, provided c2 6= 0. (Note that when λ = 0, the left hand side of (7)
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vanishes, so λ and c2 play different roles here.) To avoid the complexities introduced

when c2 can be zero, we impose

Assumption A7 (No Zero): c2 6= 0.

This rules out choosing Ψ to be the logistic CDF or a ridgelet with zero input-to-hidden

bias. But one can simply “bias-shift” X′tδ to c + X′tδ, where c is chosen explicitly to

ensure c2 6= 0. For this, we can replace Ψ(X′tδ) with Ψc(X
′
tδ) := Ψ(c+X′tδ). We leave

such shifts implicit in what follows. Alternatively, exp(·) or antiderivatives of CDFs

are convenient admissible choices. The latter are appealing, as A3 often suffices to

ensure that A5 holds for these. Further, closed form expressions exist for useful classes

of antiderivatives; see, for example, Giacomini, et al. (2008), who give convenient

expressions for antiderivatives of the Student t−distribution CDF.

Assumption A7 can be relaxed, but at a material cost. Specifically, when c2 = 0,

sixth- or even higher order Taylor expansions are required. This requires additional

moment and other regularity conditions, and the resulting asymptotic distributions in-

conveniently differ from those under A7.

The quadruple sums can be simplified using matrix notation. For i, j, `,m = 1, 2, · · · ,

k, let

M̃ := [ι′DijMU] , W := [Wij] , Wij = [ι′DijMD`mι] .

Note that W is a k2 × k2 matrix. Then eq. (7) becomes

L(2)
n (δ;λ)−L(2)

n (0;λ) = λc2δ
′M̃δ− λ

2

4
c2

2{δ′(Ik⊗δ)′W(Ik⊗δ)δ}+OP(n−1/4). (8)

The first two terms on the right survive asymptotically, and the third vanishes. We thus

write

Q̃LR
(2)

n (δ;λ) =
1

σ̂2
n,0

{
λc2(δ′M̃δ)− 1

4
λ2c2

2{δ′(Ik ⊗ δ)′W(Ik ⊗ δ)δ}
}
. (9)

As in the standard case, the asymptotic distribution of the QLR statistic under H02

obtains by maximizing (9) with respect to δ. Nevertheless, maximizing a quartic with

respect to δ is much more cumbersome than maximizing a quadratic. We simplify by
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decomposing δ − δ∗ into a direction d and a distance h:

δ = δ∗ + hd, (10)

where h ∈ R+ and d ∈ Sk−1:= {δ ∈ Rk : δ′δ = 1}. Under H02, δ = hd; then

maximizing Q̃LR
(2)

n ( · ;λ) with respect to δ can be written as a two-stage problem:

QLR
(2)

n (λ) := sup
δ
Q̃LR

(2)

n (δ;λ) = sup
d∈Sk−1

sup
h∈R+

Q̃LR
(2)

n (hd;λ). (11)

Combining (9) and (11) gives

QLR
(2)

n (λ) = sup
d∈Sk−1

sup
h∈R+

1

σ̂2
n,0

{
λc2(d′M̃d)h2 − 1

4
λ2c2

2{d′(Ik ⊗ d)′W(Ik ⊗ d)d}h4

}
(12)

= sup
d∈Sk−1

max[d′M̃d, 0]2

σ̂2
n,0{d′(Ik ⊗ d)′W(Ik ⊗ d)d}

= sup
d∈Sk−1

max

[
d′M̃d

σ∗{d′(Ik ⊗ d)′W(Ik ⊗ d)d}1/2
, 0

]2

+ oP(1),

where the max operator accommodates h ≥ 0. If d′M̃d ≤ 0, then maximizing with

respect to h gives h = 0, which implies thatQLR
(2)

n (λ) = 0, as when λ = 0.Otherwise,

h2 =
2(d′M̃d)

λc2{d′(Ik ⊗ d)′W(Ik ⊗ d)d}
.

Thus, QLR
(2)

n (λ) has mass at zero under H02. Also, the factors λ and c2 cancel in the

maximization, so theH02 asymptotic distribution is nuisance parameter-free. Thus, we

write QLR
(2)

n = QLR
(2)

n (λ). This and eq. (7) also imply QLR(2)
n = QLR

(2)

n + oP(1).

The quartic structure of eq. (12) is similar to the conventional quadratic approx-

imation. That is, the second-order derivatives determine the asymptotic distribution,

whereas the fourth-order derivatives converge to a deterministic matrix. This cor-

responds to the standard quadratic approximation, where the first- and second-order

derivatives determine the asymptotic distribution and converge to a deterministic ma-

trix, respectively. Further, the fourth-order derivatives are closely related to the asymp-

totic covariance of the second-order derivatives. This is similar to the quadratic ap-
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proximation, where the second-order derivatives are closely related to the asymptotic

covariance of the first-order derivatives. This can be clearly demonstrated by noting

that d′M̃d =vec(dd′)′vec(M̃), d′(Ik ⊗ d)′W(Ik ⊗ d)d = vec(dd′)′Wvec(dd′), and

vec(dd′)′ vec(dd′) = 1. Letting b :=vec(dd′) ∈ Sk2−1
c := {b ∈ Sk2−1 : b = vec(dd′),

d ∈ Sk−1}, we can write QLR
(2)

n more compactly as

QLR
(2)

n = sup
b∈Sk2−1

c

max

[
b′vec(M̃)

{σ̂2
n,0b

′Wb}1/2
, 0

]2

.

It is not hard to show that the variance of n−1/2b′vec M̃ is asymptotically equivalent to

n−1σ̂2
n,0b

′Wb under conditional homoskedasticity, as we see below.

The limiting distribution of QLR
(2)

n is driven mainly by the terms in Lemma 3(i),

with typical element

1√
n
ι′DijMU =

1√
n

n∑
t=1

Xt,iXt,jUt

−

(
1

n

n∑
t=1

Xt,iXt,jZ
′
t

)(
1

n

n∑
t=1

ZtZ
′
t

)−1(
1√
n

n∑
t=1

ZtUt

)
,

where n−1/2
∑n

t=1 Xt,iXt,jUt and n−1/2
∑n

t=1 ZtUt are scores from the second- and

first-order derivatives respectively. The joint asymptotic normality of these terms holds

by the multivariate CLT. No further terms contribute, due essentially to the degeneracy

of third-order derivatives underH02.

To ensure the non-degeneracy of the relevant limiting distribution, we impose

Assumption A6? (Covariance): Let Ct := vech(XtX
′
t). Suppose det Ṽ1 > 0 and

det Ṽ2 > 0, where

Ṽ1 :=

 E[U2
t ZtZ

′
t] E[U2

t ZtC
′
t]

E[U2
t CtZ

′
t] E[U2

t CtC
′
t]

 and Ṽ2 :=

 E[ZtZ
′
t] E[ZtC

′
t]

E[CtZ
′
t] E[CtC

′
t]

 .

We use the vech operator to avoid entering the common elements of XtX
′
t twice.

We can now obtain the limiting behavior of the components of QLR
(2)

n . For this, we

let C∗t,ij := Xt,iXt,j − E[Xt,iXt,jZ
′
t]{E[ZtZ

′
t]}−1Zt, and C∗t := [C∗t,ij], a k × k matrix
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with C∗t,ij as its i-th row and j-th column element.

Lemma 4. Given A1, A2, A3?, A4(i), A6?, and H02, for each b ∈ Sk2−1
c ,

(i) n−1/2b′vec(M̃) ⇒ b′vec(M), whereM := [Mij] is a k × k symmetric matrix

of jointly normal random variables such that for i, j, `,m = 1, 2, · · · , k, E(Mij) = 0

and E(MijM`m) = E(U2
t C
∗
t,ijC

∗
t,`m);

(ii) n−1b′Wb → b′W∗b a.s., where W∗ := [W∗
ij] and W∗

ij := [τij`m], where

τij`m :=E(C∗t,ijC
∗
t,`m);

(iii) if A4(ii) also holds, for i, j, `,m = 1, 2, · · · , k, E(MijM`m) = σ2
∗E(C∗t,ij

C∗t,`m).

We use Lemma 4 to obtain the asymptotic behavior of (11) underH02, as

sup
δ

1

σ̂2
n,0

{L(2)
n (δ;λ)− L(2)

n (0;λ)} = QLR
(2)

n + oP(1)

⇒ sup
b∈Sk2−1

c

max

[
b′vec(M)

{σ2
∗b
′W∗b}1/2

, 0

]2

.

Formally, we have

Theorem 2. Given A1, A2, A3?, A4(i), A6?, A7, and H02,

(i) QLR
(2)

n ⇒ sup
b∈Sk2−1

c
max[G2(b), 0]2, where G2 is a Gaussian process defined

on Sk2−1
c such that for each b and b̃, E[G2(b)] = 0 and

E[G2(b)G2(b̃)] = ρ2(b, b̃) :=
K(b, b̃)

I(b, b)1/2I(b̃, b̃)1/2
, (13)

where K(b, b̃) := b′E[U2
t vec(C∗t )vec(C∗t )

′]b̃, and I(b, b̃) := σ2
∗b
′W∗b̃;

(ii) if A4(ii) also holds,

ρ2(b, b̃) =
I(b, b̃)

I(b, b)1/2I(b̃, b̃)1/2
.

Note that the Gaussian process in Theorem 2 is defined simply by

G2(b) :=
b′vec(M)

{σ2
∗b
′W∗b}1/2

.
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We offer several remarks before proceeding. First, note that G2 is indexed by a di-

rection d from the origin (through b) rather than by the parameter λ unidentified under

H02. QLR is thus nuisance parameter-free under H02, a remarkable fact. As we show

in the next subsection, G2, indexed by d, is a special case of G1, indexed by δ. This

implies that under H02, the asymptotic distribution of QLR is essentially governed by

H01, justifying the use of G1 previously employed for hypothesis testing in this con-

text. We provide further details in Section 2.3 below. Second, the fourth-order Taylor

expansion has previously been found helpful. Bartlett (1953a, b) first examines quartic

approximations of statistical models. McCullagh (1987) also considers quartic approx-

imations using tensors. Here, using h and d, we can avoid the more cumbersome use

of tensors, permitting us to apply the methods of Cho and White (2009) and enabling

us to readily associate the asymptotic distributions under H02 and H01. Third, the ap-

proximation is especially straightforward if k = 1. Then Sk−1 = {−1, 1}, so for each

d ∈ Sk−1, b = 1, implying that G2 is free of b and QLR
(2)

n ⇒ max[Z, 0]2, where

Z is normal with mean zero under H02. Under conditional homoskedasticity (A4(ii)),

Z ∼ N(0, 1). Further, under A4(ii), the moment conditions in A3 can be relaxed to

require only E|Xt,i|6 < ∞, without adverse consequences for Lemma 2(iii) or Theo-

rem 2(ii). Finally, similar approaches are those of Dacunha-Castelle and Gassiat (1999)

and Cho and White (2007). These authors treat a one-dimensional version of this case

in obtaining the asymptotic null distribution of a likelihood ratio statistic for testing a

mixture hypothesis. The current results extend this to the multi-dimensional case and

resolve the associated difficulties by use of h and d.

2.2 Case 2: α given

We continue our analysis of the QLR statistic under the type 2 hypothesis, but now we

suppose that α is given and concentrate QL with respect to λ and β. Then

L(3)
n (δ;α) := max

λ,β
Ln(α,β, λ, δ) = −(Y − αι)′P(δ)(Y − αι), (14)

where P(δ) := I −Q(δ)[Q(δ)′Q(δ)]−1Q(δ)′, and Q(δ) := [X,Ψ(δ)]. Note that the

concentrated QL here corresponds to L(2)
n ( · ;λ) in eq. (6). L(3)

n (·;α) is a function of δ,

but α is now given, unlike eq. (6), where λ is given.
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This separate approach is needed, as fixing α could, in general, yield an asymptotic

null distribution different from that of Theorem 2. For example, if the hidden unit

activation is generalized to Ψ(Xt, δ), so that δ can interact arbitrarily with Xt, we

can show that a different asymptotic null distribution is obtained. This motivates us

to separately consider the fixed-α case. As we now show, however, the asymptotic

null distribution does turn out to be the same for our specific case. The intuition is

straightforward. As one of the referees points out, we could reparameterize the model

in A2 as

f̃(Xt;α,β, λ, δ) := α + X′tβ + λ[Ψ(X′tδ)−Ψ(0)]

and test H02. In this case, λ∗ is not identified but (α∗,β∗) is identified; further, we

can obtain the same conclusion as in Theorem 2 by the invariance principle. This also

implies that the fixed-α case should yield the same conclusion as in Theorem 2. We

now confirm this intuition under A2.

We first examine the derivatives of L(3)
n , as we again require a quartic expansion.

We also exploit the direction and distance method of Section 2.2.1, imposing H02 and

letting δ = hd as in eq. (10).

Lemma 5. Given A1 and A2,

(i) ∂
∂h
L

(3)
n (0;α) = 0;

(ii) ∂2

∂h2
L

(3)
n (0;α) = 4γ∗′J2MU + 2U′J0H

−1
0 J′2MU, where γ∗ := [β∗′∗−α)/c0]′,

Jj := ∂j

∂hj
Q(hd)|h=0, Hj := ∂j

∂hj
Q(hd)′Q(hd)|h=0, j = 0, 1, 2, · · · ;

(iii) ∂3

∂h3
L

(3)
n (0;α) = γ∗′J′0[ ∂

3

∂h3
P(hd)|h=0]J0γ

∗ + oP(n3/4);

(iv) ∂4

∂h4
L

(3)
n (0;α) = −6γ∗′J′2MJ2γ

∗ + oP(n).

Here, γ∗, Jj , Hj are in fact functions of α and/or d. We suppress this dependence

for notational simplicity. Also, the given derivatives are well defined, as the associated

parameters cj’s are well defined under our assumptions. In particular, A2 ensures that

c0 6= 0, so that c−1
0 is also well defined.

The derivatives in Lemma 5 are not identical to those in Lemma 2, but they are

asymptotically equivalent, as the following lemma shows.

Lemma 6. Given A1, A2, A3?, A4(i), A6, and H02,

(i) ∂2

∂h2
L

(3)
n (0;α) = 2(α∗ − α)(c2/c0)d′M̃d+ oP(n1/2);
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(ii) ∂3

∂h3
L

(3)
n (0;α) = oP(n3/4); and

(iii) ∂4

∂h4
L

(3)
n (0;α) = −6(α∗ − α)2(c2/c0)2d′(Ik ⊗ d)′W(Ik ⊗ d)d+ oP(n).

By Lemma 6, all but the second and fourth-order derivatives vanish in probability. We

can therefore proceed in a manner parallel to Section 2.2.1. That is, if we let

Q̃LR
(3)

n (hd;α) :=
1

σ̂2
n,0

(
c2

c0

)
(α∗ − α) d′M̃d h2

− 1

4

1

σ̂2
n,0

(
c2

c0

)2

(α∗ − α)2{d′(Ik ⊗ d)′W(Ik ⊗ d)d}h4

and

QLR
(3)

n (α) := sup
d∈Sk−1

sup
h∈R+

Q̃LR
(3)

n (hd;α),

then it follows that

QLR
(3)

n (α) = sup
d∈Sk−1

max[d′M̃d, 0]2

σ̂2
n,0{d′(Ik ⊗ d)′W(Ik ⊗ d)d}

, (15)

and we can write QLR
(3)

n = QLR
(3)

n (α), as α does not appear on the RHS of (15).

Further, the RHS of (15) is identical to that of (12), and this implies that the asymptotic

distribution of QLR
(3)

n coincides with that given in Theorem 2. We summarize with the

following corollary.

Corollary 1. Given A1, A2, A3?, A4(i), A6?, A7, and H02,

(i) QLR
(3)

n ⇒ sup
b∈Sk2−1

c
max[G2(b), 0]2; and

(ii) QLR
(2)

n −QLR
(3)

n = oP(1).

The proof of Corollary 1(i) is identical to that of Theorem 2. Corollary 1(ii) immedi-

ately follows from the fact that the RHS of (15) is identical to that of (12). We thus do

not prove Corollary 1 in the Appendix.

Since the weak limits are the same for both cases of H02, it now suffices just to

relate the weak limit of Theorem 2 to that of Theorem 1 to obtain the asymptotic null

distribution underH0.
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2.3 Asymptotic Null Distribution of the QLR Statistic underH0

The behaviors of QLR(1)
n and QLR

(2)

n (equivalently QLR
(3)

n ) are related under H0.

Specifically, we show that QLR(1)
n converges to QLR

(2)

n as δ converges to 0. For this,

let δ = hd as above, and define

Nn(h,d) = Nn(δ) := {Ψ(δ)′MU}2 and Dn(h,d) = Dn(δ) := Ψ(δ)′MΨ(δ).

Then we can write supλ{Ln(λ; δ)− Ln(0; δ)} in eq. (4) as

Nn(h,d)

Dn(h,d)
=
{Ψ(δ)′MU}2

Ψ(δ)′MΨ(δ)
.

Our next result describes the behavior of this ratio as h converges to zero.

Lemma 7. Given A1 and A2, for each n and d,

(i) for ` = 0, 1, 2, 3, limh↓0N
(`)
n (h,d) = 0 a.s. and limh↓0D

(`)
n (h,d) = 0 a.s., where

N
(`)
n (h,d) := (∂`/∂h`)Nn(h,d), and D(`)

n (h,d) := (∂`/∂h`)Dn(h,d);

(ii) limh↓0N
(4)
n (h,d) = 6c2

2{
∑k

i=1

∑k
j=1 ι

′DijMUdidj}2 a.s.; and

(iii) limh↓0D
(4)
n (h,d) = 6c2

2{
∑k

i=1

∑k
j=1

∑k
`=1

∑k
m=1 ι

′DijMD`mι didjd`dm} a.s.

As Lemma 7(i) trivially holds, we prove only Lemma 7(ii and iii) in the Appendix.

Given Lemma 7, L’Hôspital’s rule gives

lim
h↓0

Nn(h,d)

σ̂2
n,0Dn(h,d)

=
limh↓0N

(4)
n (h,d)

limh↓0 σ̂2
n,0D

(4)
n (h,d)

=
{b′vec(M̃)}2

σ̂2
n,0b

′Wb
a.s. (16)

This implies QLR(1)
n ≥ QLR

(2)

n , as

QLR(1)
n = sup

h,d

{Ψ(h,d)′MU}2

σ̂2
n,0Ψ(h,d)′MΨ(h,d)

≥ sup
d∈Sk−1

lim
h↓0

{Ψ(h,d)′MU}2

σ̂2
n,0Ψ(h,d)′MΨ(h,d)

= sup
b∈Sk2−1

c

{b′vec(M̃)}2

σ̂2
n,0 b

′Wb
≥ sup
b∈Sk2−1

c

max

[
b′vec(M̃)

{σ̂2
n,0b

′Wb}1/2
, 0

]2

= QLR
(2)

n . (17)
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Because QLR(2)
n = QLR

(2)

n + oP(1) = QLR(3)
n = QLR

(3)

n + oP(1), this gives

QLRn = max[QLR(1)
n , QLR(2)

n , QLR(3)
n ]

= max[QLR(1)
n , QLR

(2)

n , QLR
(3)

n ] + oP(1) = QLR(1)
n + oP(1)

and shows that the limiting behavior of QLRn is determined by that of QLR(1)
n .

So far, however, we have only established the asymptotic behavior of QLR(1)
n (ε),

not that of QLR(1)
n . Recall that QLR(1)

n (ε) is based on eliminating 0 from ∆, whereas

0 ∈ int(∆) is explicitly assumed for QLR(1)
n . Thus, QLR(1)

n (ε) does not immediately

provide the desired asymptotic distribution. This also implies that the asymptotic null

distribution in Hansen (1996, theorem 1) cannot be literally regarded as the asymptotic

null distribution of the QLR test because his regularity condition assumption 1 does not

hold when 0 ∈ int(∆). This necessitates a further analysis of the QLR test treating 0

as an element of int(∆). Interestingly, it turns out that the asymptotic null distribution

we obtained in Section 2.2.1 is closely related to that of QLR(1)
n .

We proceed by examining how the asymptotic null behavior of QLR(1)
n (ε) varies as

ε tends to zero. It turns out that QLR
(2)

n plays a key role here. To provide sufficient

conditions for this, we combine the moment conditions of A3 and A3? and similarly

combine the covariance conditions A6 and A6?.

Assumption A3?? (Moments): E|Ut|8 < ∞ and E|Xt,i|8 < ∞; or for some κ >

2(ρ− 1), E|Ut|4+2κ <∞ and E|Xt,i|16 <∞, i = 1, 2, · · · , k.

Assumption A6?? (Covariance): For each ε > 0 and δ ∈ ∆(ε), det V̄1(δ) > 0 and

det V̄2(δ) > 0, where

V̄1(δ) :=


E[U2

t Ψt(δ)2] E[U2
t Ψt(δ)Z′t] E[U2

t Ψt(δ)C′t]

E[U2
t ZtΨt(δ)] E[U2

t ZtZ
′
t] E[U2

t ZtC
′
t]

E[U2
t CtΨt(δ)] E[U2

t CtZ
′
t] E[U2

t CtC
′
t]

 , and

V̄2(δ) :=


E[Ψt(δ)2] E[Ψt(δ)Z′t] E[Ψt(δ)C′t]

E[ZtΨt(δ)] E[ZtZ
′
t] E[ZtC

′
t]

E[CtΨt(δ)] E[CtZ
′
t] E[CtC

′
t]

 .
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These new conditions accommodate the fact that the score of the QL function under

H01 turns out to be identical to the score obtained underH02 when direction d is given,

and δ goes to zero in the direction d by sending h to zero. Our next result involves the

joint asymptotic behavior of the random functions G1 and G2 separately derived above:

Theorem 3. Given A1, A2, A3??, A4(i), A5, A6??, A7, and H0,

(i) QLRn = QLR
(1)
n + oP(1); and

(ii) QLRn ⇒ supδ G(δ)2, where

G(δ) :=

 G1(δ), if h 6= 0;

G2(b), otherwise.
(18)

In previous works, the asymptotic null distribution of QLRn has been given as supδ G1

(δ)2, but this neglects the twofold identification problem. The true asymptotic null

distribution may differ from supδ G1(δ)2, because this does not properly handle the

asymptotic null distribution under H02, mainly due to the regularity conditions needed

for the quartic approximation. Properly accounting for H02 shows that this distribution

is actually supδ G(δ)2, which depends on both G1 and G2. The stronger conditions A3??,

A6??, and A7 are not required forH01 but are key to ensuring the validity of the quartic

approximation. These conditions and the reparameterization in (10) permit Theorem 2

to extend Theorem 1 to hold on all of ∆, including 0. Theorem 3 then holds as an easy

corollary, exploiting (16) and (17). We thus do not provide a proof of Theorem 3 in the

Appendix.

The covariance structure of G necessarily accommodates the covariance of G1 and

G2. Specifically, for each δ = (h,d) and δ̃ = (h̃, d̃), E[G(δ)G(δ̃)] = ρ(δ, δ̃), where

ρ(δ, δ̃) :=


ρ1(δ, δ̃), if h 6= 0 and h̃ 6= 0;

ρ2(b, b̃), if h = 0 and h̃ = 0;

ρ3(b, δ̃), if h = 0 and h̃ 6= 0,

with

ρ3(b, δ̃) :=
H(b, δ̃)

{I(b, b)}1/2{J (δ̃, δ̃)}1/2
, and H(b, δ̃) := E[U2

t b
′vec(C∗t )Ψ

∗
t (δ̃)].
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Thus, H(b, δ̃) represents the covariance between the scores for H01 and H02. If A4(ii)

also holds, thenH(b, δ̃) = σ2
∗b
′E[vec(C∗t )Ψ

∗
t (δ̃)]. In this case,

ρ3(b, δ̃) =
b′E[vec(C∗t )Ψ

∗
t (δ̃)]

{b′E[vec(C∗t )vec(C∗t )
′]b}1/2{E[Ψ∗t (δ̃)2]}1/2

.

The covariance structures ρ2(b, b̃) and ρ3(b, δ̃) are related to ρ1(δ, δ̃). Specifically,

they essentially represent the limits of ρ1(δ, δ̃) as h and h̃ tend to zero, respectively. To

show this, we define

Φt(δ, δ̃) := Ψt(δ)Ψt(δ̃) and Υt,j(δ) := Ψt(δ)Zt,j, j = 1, 2, · · · , k + 1.

We ensure the applicability of the Lebesgue dominated convergence theorem by impos-

ing the following:

Assumption A8 (Domination): (i) For ` = 0, 1, · · · , 4, and each j, E[supδ |(∂`/∂h`)

Υt,j(δ)|2] <∞; and

(ii) for `,m = 0, 1, · · · , 4 such that `+m ≤ 4,E[supδ,δ̃ |(∂`+m/∂h`∂h̃m)Φt(δ, δ̃)|2]

<∞.

We have the following formal result:

Lemma 8. Given A1, A2, A3??, A4(i), A5, A6??, A7, A8, and H0,

(i) limh↓0 ρ1(δ, δ̃) = sgn[c2]ρ3(b, δ̃); and

(ii) limh↓0 limh̃↓0 ρ1(δ, δ̃) = ρ2(b, b̃).

Note that sgn[c2] appears in Lemma 8(i), so that we do not necessarily have G1
d
=

G, where d
= denotes equality in distribution. Nevertheless, squaring these Gaussian

processes makes this sign irrelevant, so that G2
1

d
= G2, and QLRn ⇒ supδ G1(δ)2 by

Theorem 3(ii). The following states this formally.

Corollary 2. Given A1, A2, A3??, A4, A5, A6??, A7, A8, andH0,QLRn ⇒ supδ G1(δ)2.

This follows directly from Lemma 8 and our earlier discussion, so we do not prove this

in the Appendix.

Under the further conditions of Corollary 2, the asymptotic null distribution G1

previously derived in the literature for QLRn by neglecting the twofold identification
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problem is indeed correct. Nevertheless, properly accounting for H02 introduces reg-

ularity conditions stronger than previously recognized. The given conditions have the

advantage of permitting a straightforward treatment of the twofold identification prob-

lem. Although it may be possible to find weaker conditions ensuring the conclusion of

Corollary 2, A7 is crucial, as different null distributions may pertain when c2 = 0. We

demonstrate this in our Monte Carlo experiments below.

A practical implication of Corollary 2 is that the QLR test can test H01 and H02

simultaneously under the given regularity conditions. This is an improvement, in the

sense that previous statistics in the literature have been designed to test H01 and H02

separately. But applying different tests sensitive to different alternatives can lead to size

distortion when the null hypothesis is arbitrary neglected nonlinearity. On the other

hand, the QLR test studied here obviates this problem.

The most crucial condition for the success of the QLR test is A7, as we emphasize

above. If A7 is violated, but the researcher ignores this, the size of the test may not

be properly controlled. Indeed, methods for constructing proper critical values for this

case are unknown, as higher order approximations are required to derive these, and this

is a topic requiring further research.

3 A Modeling Exercise and Monte Carlo Experiments

3.1 An AR(1) Example

In this section, we illustrate our theory using a Gaussian AR(1) process with DGP

Yt = θ∗ + β∗Yt−1 + Ut, t = 1, 2, · · · ,

where |β∗| < 1 and {Ut} ∼ IID N(0, σ2
∗), so that k = 1 and

E[Yt|Yt−1, Yt−2, Yt−3, · · · ] = θ∗ + β∗Yt−1.

To testH0, we take Ψ̃ = exp and specify the alternative model with

f(Yt−1 ;α, β, λ, δ) = α + βYt−1 + λ exp(δYt−1).
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We take δ ∈ ∆ := [δ, δ], where −∞ < δ < 0 < δ <∞.

First, we examine the behavior of QLR under H01: λ∗ = 0. Letting Ψ(δ) :=

[exp(δY0), exp(δY1), · · · , exp(δYn−1)]′, Theorem 1 gives

QLR(1)
n (ε) = sup

δ∈[δ,−ε]∪[ε,δ]

{U′MΨ(δ)}2

σ̂2
n,0Ψ(δ)′MΨ(δ)

⇒ sup
δ∈[δ,−ε]∪[ε,δ]

G1(δ)2,

with mean zero Gaussian process G1 such that

E[G1(δ)G1(δ̃)] =
J (δ, δ̃)

{J (δ, δ)}1/2{J (δ̃, δ̃)}1/2
,

and, for each non-zero δ and δ̃,

J (δ, δ̃) :=σ2
∗E[exp(Yt(δ + δ̃))]

− σ2
∗

 E[exp(Ytδ)]

E[Yt exp(Ytδ)]

 1 E[Yt]

E[Yt] E[Y 2
t ]

−1  E[exp(Ytδ̃)]

E[Yt exp(Ytδ̃)]

 .
Defining

M(δ):= exp

{
θ∗

1− β∗
δ +

σ2
∗

2(1− β2
∗)
δ2

}
and

J(δ, δ̃):={exp[var(Yt)δδ̃]− 1− var(Yt)δδ̃},

we have

J (δ, δ̃) = σ2
∗M(δ)M(δ̃)J(δ, δ̃).

Note that M(δ) = E[exp(δYt)] is the moment generating function of Yt ∼ N [θ∗/(1 −

β∗), σ
2
∗/(1− β2

∗)]. It follows easily that

ρ1(δ, δ̃) :=
J (δ, δ̃)

{J (δ, δ)}1/2{J (δ̃, δ̃)}1/2
=

J(δ, δ̃)

{J(δ, δ)}1/2{J(δ̃, δ̃)}1/2
.

Now G1 is indexed by δ. We also have δ = hd, with distance h ∈ R+ and direction

d = ±1.
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Next, consider the behavior of QLR underH02: δ∗ = 0. Theorem 2 gives

QLR
(2)

n =
max[ι′D11MU, 0]2

σ̂2
n,0ι

′D11MD11ι
+ oP(1),

where D11 := diag{Y 2
0 , Y

2
1 , · · · , Y 2

n−1},

ι′D11MU =
n∑
t=1

Y 2
t−1Ut

−

 ∑n
t=1 Y

2
t−1∑n

t=1 Y
3
t−1

′  n
∑n

t=1 Yt−1∑n
t=1 Yt−1

∑n
t=1 Y

2
t−1

−1  ∑n
t=1 Ut∑n

t=1 Yt−1Ut

 ,
and

ι′D11MD11ι =
n∑
t=1

Y 4
t−1

−

 ∑n
t=1 Y

2
t−1∑n

t=1 Y
3
t−1

′  n
∑n

t=1 Yt−1∑n
t=1 Yt−1

∑n
t=1 Y

2
t−1

−1  ∑n
t=1 Y

2
t−1∑n

t=1 Y
3
t−1

 .
As mentioned at the end of Section 2.2, the fact that k = 1 makes the role of d in

Theorem 2 trivial, because d ∈ {−1, 1}. Thus, Theorem 2 implies

QLR
(2)

n ⇒ max[0,G2]2,

where G2 ∼ N(0, 1). This holds because

n−1σ̂2
n,0ι

′D11MD11ι

→ I := σ2
∗

{
E[Y 4

t ]− 1

var(Yt)
{E[Y 2

t ]3 − 2E[Yt]E[Y 2
t ]E[Y 3

t ] + E[Y 3
t ]2}

}
a.s.

Further, Yt ∼ N [θ∗/(1 − β∗), σ
2
∗/(1 − β2

∗)] implies I = 2σ2
∗ var(Yt)2, as well as

n−1/2ι′D11MU
A∼ N [0, 2σ2

∗ var(Yt)2], so G2 obtains as the weak limit of

n−1/2ι′D11MU

{σ2
∗n
−1ι′D11MD11ι}1/2

.

Finally, we combine these separate results. By Theorem 3, we have QLRn ⇒
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supδ∈∆ G(δ)2, where

G(δ) =

 G1(δ), if δ 6= 0;

G2, otherwise,

with

E[G(δ)G(δ̃)] =


ρ1(δ, δ̃), if δ 6= 0 and δ̃ 6= 0;

1, if δ = 0 and δ̃ = 0;

ρ3(δ), if δ̃ = 0 and δ 6= 0,

where

ρ3(δ) =
H(δ)

{J (δ, δ)}1/2{I}1/2
=

H(δ)

{σ2
∗M(δ)M(δ)J(δ, δ)}1/2{I}1/2

,

with

H(δ) := σ2
∗ E[Y 2

t exp(Ytδ)]−
σ2
∗

var(Yt)
{

(E[Y 2
t ]2 − E[Yt]E[Y 3

t ])E[exp(δYt)]
}

− σ2
∗

var(Yt)
{

(E[Y 3
t ]− E[Yt]E[Y 2

t ])E[Yt exp(δYt)]
}
.

Using the normality of Yt and its moment generating function M(δ), it is straightfor-

ward to show that H(δ) = σ2
∗ var(Yt)2M(δ)δ2. Using the definition of J (δ, δ̃) and the

fact that I = 2σ2
∗ var(Yt)2, we have

ρ3(δ) =
var(Yt)δ2

{2[exp[var(Yt)δ2]− 1− var(Yt)δ2]}1/2
.

Finally, we find that the covariance kernel of G is just ρ1(δ, δ̃). This follows because

lim
δ→0

lim
δ̃→0

ρ1(δ, δ̃) = lim
δ̃→0

lim
δ→0

ρ1(δ, δ̃) = 1 and lim
δ→0

ρ1(δ, δ̃) = ρ3(δ̃).

These represent E[G(δ)G(0)] and E[G(0)2] respectively.

Thus, G d
= G1, so that QLRn ⇒ supδ∈∆ G1(δ)2 underH0.

3.2 Monte Carlo Experiments

In this subsection, we present the results of Monte Carlo experiments designed to in-

vestigate how well our asymptotic results approximate the finite-sample null behavior
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of our QLR statistic. We continue to study the AR(1) example. For conciseness, we

restrict attention to behavior under the null, as the power of such tests under this dis-

tribution has already been well studied, both theoretically in the context of contiguity

(e.g., Le Cam (1960), Hájek and Šidák (1967), and van der Vaart (1998)), and via Monte

Carlo experiments (e.g., Bierens (1990) and Hansen (1996)). We first discuss a method

for obtaining the asymptotic null distribution alternative to that of Hansen (1996), and

we show how this embodies the features of the QLR statistic developed in Section 2.

We then examine the performance of Hansen’s weighted bootstrap, paying particular

attention to what happens when A7 holds or is violated.

3.1 Simulating the Asymptotic Null Distribution

Hansen (1996) proposes a bootstrap procedure for constructing critical values for tests

of the sort considered here; we discuss this in the next section. Because this procedure is

computationally very intensive, we first discuss a less demanding procedure, available

in particular cases. This method directly constructs and simulates a Gaussian process

equivalent to that obeyed asymptotically by the statistic of interest. This approach has

been taken by Phillips (1998), Andrews (2001), and Cho and White (2007, 2009, 2010),

among others. This method is feasible for our AR(1) example, due to the assumed

normality and conditional homoskedasticity. For other distributions or with conditional

heteroskedasticity, this approach may not be possible; Hansen’s method is especially

useful in such cases.

Specifically, a process identical in distribution to G d
= G1 of Section 3.1 is

G̃(δ) :=

∑∞
k=2{var(Yt)}k/2δkZk/

√
k!

{exp(var(Yt)δ2)− 1− var(Yt)δ2}1/2
,

with {Zk} ∼ IID N(0, 1). To show this, we note that for any δ and δ̃ in ∆, E[G(δ)] =

E[G̃(δ)] andE[G(δ)G(δ̃)] = E[G̃(δ)G̃(δ̃)]. Thus, G d
= G1

d
= G̃ by a well known property

of Gaussian processes. Further, limδ→0 G̃(δ) = Z2 a.s. and

E[Z2G̃(δ)] =
var(Yt)δ2

{2[exp[var(Yt)δ2]− 1− var(Yt)δ2]}1/2
= ρ3(δ).

This verifies that Z2 has the same stochastic properties as G2.
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For any given δ,

lim
k→∞

var
[

1√
k!
{var(Yt)δ2}k/2Zk

]
= lim

k→∞

1

k!
{var(Yt)}kδ2k = 0.

Thus, if K is sufficiently large, simulating G̃(δ;K) can yield a useful approximation to

G d
= G1

d
= G̃, where

G̃(δ;K) :=

∑K
k=2{var(Yt)}k/2δkZk/

√
k!

{exp(var(Yt)δ2)− 1− var(Yt)δ2}1/2
.

Because var(Yt) is unknown, we replace it with a sample estimator, say,

v̂arn(Yt) :=
1

n

n∑
t=1

Y 2
t −

{
1

n

n∑
t=1

Yt

}2

,

and obtain critical values for QLR by simulating supδ∈∆ Ĝn(δ;K)2, where

Ĝn(δ;K) :=

∑K
k=2{v̂arn(Yt)}k/2δkZk/

√
k!

{exp(v̂arn(Yt)δ2)− 1− v̂arn(Yt)δ2}1/2
.

Because supδ∈∆ Gn(δ;K)2 and supδ∈∆ Ĝn(δ;K)2 depend on K and ∆, we empha-

size this by writing

Q̂LRn(∆;K):= sup
δ∈∆
Ĝn(δ;K)2, and

QLRn(∆;K):= sup
δ∈∆
G̃(δ;K)2.

We examine the properties of the QLR statistic under the null for a variety of rel-

evant cases. We let K = 150 and consider four choices for ∆: ∆0.5 := [−0.5, 0.5],

∆1.0 := [−1.0, 1.0], ∆1.5 := [−1.5, 1.5], and ∆2.0 := [−2.0, 2.0]. We also let (θ∗, β∗,

σ2
∗) = (0, 0.5, 1), so that var(Yt) = 4/3. The distribution of Q̂LRn(∆;K) is obtained

by grid search for the maximum over ∆. The grid distances for ∆0.5, ∆1.0, ∆1.5, and

∆2.0 are 1/101, 2/201, 3/301, and 4/401, respectively. This avoids the zero grid point,

where Q̂LRn(∆;K) = QLRn(∆;K) = 0.

INSERT Table 1 AROUND HERE.
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Table 1 presents the asymptotic critical values obtained for QLRn(∆;K). We see

immediately that these depend on ∆. As ∆ gets larger, the asymptotic critical values

increase, as the definition of QLRn(∆;K) implies.

INSERT Table 2 AROUND HERE.

Table 2 presents the finite-sample properties of the QLR statistic. As Corollary 2

implies, for every ∆, the finite-sample distribution of the QLR statistic approaches the

asymptotic distribution of QLRn(∆;K) as n increases. We also see that the empir-

ical rejection rates for nominal levels 1%, 5%, and 10% approach these levels from

below. Figures 1 and 2 respectively show the empirical distribution and estimated den-

sity function of the QLR statistic for each ∆. The density functions are obtained by

kernel density estimation method using the standard normal density function as kernel.

As can be seen from Figures 1 and 2, the empirical distributions uniformly approach

the asymptotic null distribution as the sample size increases. We also see that the QLR

statistics have better finite sample properties when the associated parameter space ∆

is smaller. The nominal rejection rates are closest to the asymptotic distribution for

QLRn(∆;K) when ∆ = ∆0.5. If ∆ = ∆2.0, the finite sample distribution for QLR is

still quite far from that of QLRn(∆2.0;K), even when the sample size is 5,000.

INSERT Figures 1 and 2 AROUND HERE.

Table 3 presents simulation results for the case in which var(Yt) is estimated. Simu-

lating Q̂LRn(∆;K) for every realized estimate of var(Yt) requires an immense amount

of computation time. Consequently, we obtain critical values by interpolating values ob-

tained from Table 2. Specifically, in Table 2, we analyze seven sample sizes (50, 100,

· · · , and 5,000), each of which is replicated 10,000 times for each choice of ∆. We col-

lect the minimum and maximum values of the estimates of var(Yt) from the replications

for each sample size, giving 14 estimated values that we denote v̂ar(Yt). Using these,

we put K = 150 as before and generate null distributions of Q̂LRn(∆;K), simulating

50,000 times to obtain precise critical values. Denote the critical values for a nominal

level α and choice of ∆ obtained in this way by cv(v̂ar(Yt),∆,α). From this simu-

lation, we observe that, for each α and ∆, cv(v̂ar(Yt),∆,α) monotonically increases

as v̂ar(Yt) increases. Thus, if the sample QLR statistic is less than cv(v̂ar(Yt),∆,α)
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and its associated variance estimate is less than v̂ar(Yt), then the null shouldn’t re-

jected. On the other hand, we reject the null if the QLR statistic is strictly greater than

cv(v̂ar(Yt),∆,α) and the estimated variance is less than v̂ar(Yt). We find that for each

∆ and α, better than 99% of the 10,000 replications of Table 2 can be handled by this

rule. For those replications that cannot be handled in this way, we obtain the critical

values by interpolating the 14 combinations of (v̂ar(Yt), cv(v̂ar(Yt),∆,α)) and apply

the standard decision rule.

INSERT Table 3 AROUND HERE.

Table 3 presents the empirical rejection rates obtained in this way; the results are

almost identical to those of Table 2. As the sample size increases, the nominal levels

are more closely matched. Also as before, the levels are better when the associated

parameter space is smaller. Thus, the findings of Table 2 are preserved, even when

var(Yt) is estimated.

3.2 Hansen’s Weighted Bootstrap

In this section, we apply Hansen’s (1996) weighted bootstrap to estimate the asymp-

totic null distribution and to examine how the weighted bootstrap behaves when our

regularity conditions are or are not met. For this, we continue to study the AR(1) DGP

of Section 3.2.1 and the choice Ψ = exp (“Model 1”). We also consider the choice Ψ =

logistic CDF, so that Ψ(δ) = 1/{1+exp(δYt−1)} (“Model 2”). Further, we let δ ∈ ∆0.5

for Models 1 and 2. Note that for Model 2 we have c2 = 0, violating A7.

The specific procedure for applying Hansen’s weighted bootstrap is as follows:

First, for each grid point δ ∈∆, we compute the scores Ŝnt(δ) := {D̂nt(δ)}− 1
2 Ŵnt(δ),

where

D̂nt(δ) :=
1

n

n∑
t=1

[ÛntΨt(δ)]2

−

[
1

n

n∑
t=1

Û2
ntΨt(δ)Z′t

][
1

n

n∑
t=1

Û2
ntZtZ

′
t

]−1 [
1

n

n∑
t=1

Û2
ntZtΨt(δ)

]
,

Ŵnt(δ) := Ψt(δ)Ûnt −

[
1

n

n∑
t=1

Û2
ntΨt(δ)Z′t

][
1

n

n∑
t=1

Û2
ntZtZ

′
t

]−1

ZtÛnt,
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Ûnt := Yt − Z′t(α̂n, β̂n)′, and (α̂n, β̂n) is the least squares estimator obtained using the

null model. Grid points with grid distance 1/101 are selected from ∆ as before. Thus,

there are 102 grid points for Models 1 and 2.

Second, for j = 1, · · · , J , we generate Zjt ∼ IID N(0, 1), t = 1, 2, · · · , n, and

simulate the asymptotic distribution of the QLR statistic by computing the empirical

distribution of

QLRjn := sup
δ∈∆

(
1√
n

n∑
t=1

Ŝnt(δ)Zjt

)2

.

We let J = 500, as the computational burden is immense. Although J is not large

enough for highly precise estimates, Hansen (1996) suggests that simulation results

with this choice should generate solid results.

Third, we compute the proportion of simulated outcomes exceeding the QLR statis-

tic. That is, we compute the empirical level p̂n ≡ J−1
∑J

j=1 I[QLRn < QLRjn],

where I[ · ] denotes the indicator function.

Finally, we repeat the entire exercise 4, 000 times, generating p̂(i)
n , i = 1, · · · , 4, 000,

and we compute the proportion of outcomes whose p̂(i)
n is less than the specified nominal

level (e.g., α = 5%). That is, we compute 1
4000

∑4000
i=1 I[p̂

(i)
n < α]. Under the null, this

converges to the significance level corresponding to the specified nominal level, α.

Plotted as a function of α, this should converge to a 45-degree line on the unit interval,

if the weighted bootstrap is successful.

INSERT Table 4 AROUND HERE.

We present these estimates in Table 4 and Figure 3. The first panel of Table 4 in-

dicates the obtained empirical levels for α = 1%, 5%, 10%, 30%, 50%, 80%, 90%,

and 95%, when the exponential function is used for the activation function. This model

satisfies all of our regularity conditions. We see that the empirical rejection rates con-

verge to the specified nominal levels as the sample size increases. This shows that

even if Hansen’s (1996) regularity condition A1 is not met (i.e., limδ→0 T (δ, δ) = 0),

his weighted bootstrap still consistently delivers the specified nominal levels. This is

mainly because the numerator and denominator of the QLR statistic converge to zero at

the same rate, so that applying L’Hôspital’s rule delivers the asymptotic distribution of

the QLR statistic as δ converges to zero. The same result is especially obvious from Fig-

ure 3. The first panel of Figure 3 shows the estimated value of 1
4000

∑4000
i=1 I[p̂

(i)
n < α]
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for each α ∈ [0, 1]. As the sample size increases, the estimated relation uniformly

approaches the 45-degree line, affirming that Hansen’s (1996) weighted bootstrap is

successful when our regularity conditions hold.

INSERT Figure 3 AROUND HERE.

The second panel of Table 4 shows what happens when the logistic CDF is used. As

mentioned above, this violates A7. Indeed, we observe that the weighted bootstrap does

not work for this case and that large sample sizes are required to achieve asymptotic

behavior. The empirical rejection rates differ substantially from the nominal levels

when n = 6, 000, and this difference does not vanish with increasing sample size. In

particular, although the right-hand tail probability is relatively well approximated by

the weighted bootstrap, the difference is persistent for the left-hand tail probability:

when n = 40, 000, the empirical rejection rate for the left-hand tail probability does

not converge to the nominal size. Essentially, the quartic approximation is insufficient.

The second panel of Figure 3 also shows the value of 1
4000

∑4000
i=1 I[p̂

(i)
n < α] for each

α ∈ [0, 1]. This exhibits the same behavior. The relation does not converge to a 45-

degree line as the sample size increases, even for n = 40, 000. Use of the weighted

bootstrap does not deliver reliable inference when A7 is violated.

4 Conclusion

This study revisits testing for neglected nonlinearity in regression using ANNs, moti-

vated by the fact that the literature so far has not accommodated the twofold identifi-

cation problem: using ANNs, the linear null can be generated in two different ways.

Previously, the possibilities under the null have only been analyzed separately, and this

is not enough to obtain the desired asymptotic null distribution of ANN-based nonlin-

earity tests.

This asymptotic behavior is therefore still an open question. Here we analyze a

convenient ANN-based quasi-likelihood ratio (QLR) statistic for testing neglected non-

linearity, paying careful attention to both components of the null. We derive the asymp-

totic null distribution under each component separately and analyze their interaction.

Somewhat remarkably, we find that the previously known asymptotic null distribution
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for the type 1 case still applies, but under somewhat stronger conditions than previ-

ously recognized. We present Monte Carlo experiments corroborating our theoretical

results, and showing that standard methods can yield misleading inference when our

new, stronger regularity conditions are violated.
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Appendix: Proofs

Proof of Lemma 1: (i) Given Conditions A1, A3, and A4, we have

σ̂2
n,0 =n−1

n∑
t=1

U2
t − (n−1

n∑
t=1

UtZ
′
t)(n

−1

n∑
t=1

ZtZ
′
t)
−1(n−1

n∑
t=1

ZtU)

→ σ2
∗ − 0′(E[ZtZ

′
t])
−10 = σ2

∗

in probability by the ergodic theorem.

(ii) We separate our proof into two parts. First in (a), we show the weak convergence

of n−1/2Ψ( · )′MU. In (b), we show that n−1σ̂2
n,0Ψ( · )′MΨ( · ) → J ( · ) uniformly

on ∆(ε) in probability. Given these, the desired result follows from the converging-

together lemma (Billingsley (1999, p. 151)).

(a) To show the weak convergence of n−1/2Ψ( · )′MU, we note that

n−1/2Ψ(δ)′MU = n−1/2

n∑
t=1

Ψt(δ)Ut − (
n∑
t=1

Ψt(δ)Z′t)(
n∑
t=1

ZtZ
′
t)
−1n−1/2

n∑
t=1

ZtUt.
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For each δ ∈∆(ε), let Ψ̂n,t(δ) be defined as

Ψ̂n,t(δ) := Ψt(δ)Ut − (
n∑
t=1

Ψt(δ)Z′t)(
n∑
t=1

ZtZ
′
t)
−1ZtUt,

and let Ψ̃t(δ) be defined as

Ψ̃t(δ) := Ψt(δ)Ut − E(Ψt(δ)Z′t)(E[ZtZ
′
t])
−1ZtUt.

We show that

sup
δ∈∆(ε)

∣∣∣∣∣n−1/2

n∑
t=1

[Ψ̂n,t(δ)− Ψ̃t(δ)]

∣∣∣∣∣ = oP(1) (19)

and then show the weak convergence of {n−1/2
∑n

t=1 Ψ̃t( · )} on ∆(ε). First, we note

that

sup
δ∈∆(ε)

∣∣∣∣∣n−1/2

n∑
t=1

[Ψ̂n,t(δ)− Ψ̃t(δ)]

∣∣∣∣∣
≤ sup
δ∈∆(ε)

∣∣∣∣∣(n−1

n∑
t=1

Ψt(δ)Z′t)

{
(n−1

n∑
t=1

ZtZ
′
t)
−1 − (E[ZtZ

′
t])
−1

}
1√
n

n∑
t=1

ZtUt

∣∣∣∣∣
+ sup
δ∈∆(ε)

∣∣∣∣∣
{

(n−1

n∑
t=1

Ψt(δ)Z′t)− E(Ψt(δ)Z′t)

}
(E[ZtZ

′
t])
−1 1√

n

n∑
t=1

ZtUt

∣∣∣∣∣ .
We note that {ZtUt,Ft} is a martingale difference sequence (MDS) so that E[ZtUt] =

0, with E[|Xt,iUt|2] = E[U4
t ]1/2E[|Xt,i|4]1/2 ≤ E[M4

t ]1/2E[X4
t,i]

1/2 < ∞; also, E[U2
t

ZtZ
′
t] is positive definite by A6, where Ft−1 := σ(Xt, Ut−1,Xt−1, Ut−2, · · · ). This

implies that n−1/2
∑

ZtUt is asymptotically normal by, e.g., theorem 5.25 of White

(2001). Therefore,
∑n

t=1 ZtUt = OP(n1/2). Further,

sup
δ∈∆

∥∥∥∥∥n−1

n∑
t=1

Ψt(δ)Zt − E[Ψt(δ)Zt]

∥∥∥∥∥
1

= oP(1),

as shown in (b), by applying Ranga Rao’s uniform law of large numbers (ULLN), where

‖[aij]‖1 = (
∑

j

∑
i |aij|). Therefore,

sup
δ∈∆(ε)

∣∣∣∣∣
{

(n−1

n∑
t=1

Ψt(δ)Z′t)− E(Ψt(δ)Z′t)

}
(E[ZtZ

′
t])
−1 1√

n

n∑
t=1

ZtUt

∣∣∣∣∣ = oP(1).
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Also, |n−1
∑n

t=1 ZtZ
′
t−E[ZtZ

′
t]| = oP(1) and for each i = 1, 2, · · · , k, supδ∈∆ |

∑n
t=1

Ψt(δ)Xt,i| ≤
∑n

t=1Mt|Xt,i| = OP(n) by applying A5 and the ergodic theorem. This

implies that

sup
δ∈∆(ε)

∣∣∣∣∣(n−1

n∑
t=1

Ψt(δ)Z′t)

{
(n−1

n∑
t=1

ZtZ
′
t)
−1 − (E[ZtZ

′
t])
−1

}
1√
n

n∑
t=1

ZtUt

∣∣∣∣∣ = oP(1).

Thus, (19) follows.

Next, we verify that the two terms on the RHS of Ψ̃t(δ) satisfy the sufficiency

conditions for weak convergence. First, we note that |Ψt(δ)Ut−Ψt(δ̃)Ut| ≤Mt · |Ut| ·

‖δ − δ̃‖ from the differentiability and bound conditions in A2 and A5 respectively, so

that for κ > 0 as in A3, it follows that

sup
‖δ−δ̃‖<η

|Ψt(δ)Ut −Ψt(δ̃)Ut|2+κ ≤M2+κ
t |Ut|2+κη2+κ ≤M4+2κ

t η2+κ,

implying that

E

[
sup

‖δ−δ̃‖<η
|Ψt(δ)Ut −Ψt(δ̃)Ut|2+κ

] 1
2+κ

≤ E[M4+2κ
t ]

1
2+κη. (20)

Likewise, by the moment condition in A3, there is some C such that

|E(Ψt(δ)Z′t)(E[ZtZ
′
t])
−1 ZtUt − E(Ψt(δ̃)Z′t)(E[ZtZ

′
t])
−1 ZtUt|

= |E[{Ψt(δ)−Ψt(δ̃)}Z′t] (E[ZtZ
′
t])
−1 ZtUt|

≤ CM2
t ‖(E[ZtZ

′
t])
−1‖1 · ‖E[{Ψt(δ)−Ψt(δ̃)}Zt]}‖1.

Then

|E(Ψt(δ)Z′t)(E[ZtZ
′
t])
−1 ZtUt − E(Ψt(δ̃)Z′t)(E[ZtZ

′
t])
−1 ZtUt|

≤ C ·M2
t · ‖{E[ZtZ

′
t]}−1‖1 · ‖E[ZtΨt(δ)]− E[ZtΨt(δ̃)]‖1

≤ k · C ·M2
t · ‖{E[ZtZ

′
t]}−1‖1 · E[M2

t ] · ‖δ − δ̃‖,

where the last inequality follows from the Lipschitz continuity condition implied by
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A5. That is, for j = 1, 2, · · · , k + 1, |Zj,t[Ψt(δ)−Ψt(δ̃)]| ≤M2
t ‖δ − δ̃‖. Hence,

E

[
sup

‖δ−δ̃‖<η
|E[(Ψt(δ)−Ψt(δ̃))Z′t)](E[ZtZ

′
t])
−1 ZtUt|2+κ

] 1
2+κ

≤ C · E[M4+2κ
t ]

1
2+κ · ‖{E[ZtZ

′
t]}−1‖1 · E[M2

t ] · η. (21)

Given (20) and (21), it follows that that for someB <∞, E[sup‖δ−δ‖≤η |Ψ̃t(δ)−Ψ̃t(δ̃)

|2+κ] ≤ Bη, implying that Ossiander’sL2+κ entropy is finite. Thus, {n−1/2
∑n

t=1 Ψ̃t( · )}

is tight by Theorem 1 of DMR (1995). This and (19) imply that {n−1/2
∑n

t=1 Ψ̂n,t( · )}

is tight, and the multivariate CLT gives the finite-dimensional weak convergence, which

we do not prove, as this is straightforward. These two facts ensure the weak conver-

gence of {n−1/2
∑n

t=1 Ψ̂n,t( · )} on ∆(ε).

Finally, the given covariance structure follows by the finite moment conditions.

(b) Next, for each δ,

n−1Ψ(δ)′MΨ(δ) =n−1

n∑
t=1

Ψt(δ)2

− {n−1

n∑
t=1

Ψt(δ)Z′t}{n−1

n∑
t=1

ZtZ
′
t}−1{n−1

n∑
t=1

Ψt(δ)Zt}.

It easily follows that supδ |n−1
∑n

t=1 Ψt(δ)2 − E[Ψt(δ)2]| → 0 in probability and

supδ ‖n−1
∑n

t=1 Ψt(δ) Zt − E[Ψt(δ)Zt]‖1 → 0 in probability given A1, A2, A3, and

A5 by Ranga Rao’s (1962) ULLN. Therefore, from this and the weak law of large

numbers (WLLN) applied to n−1
∑n

t=1 ZtZ
′
t,

sup
δ
|n−1Ψ(δ)′MΨ(δ)− {E[Ψt(δ)2]− E[Ψt(δ)Z′t]{E[ZtZ

′
t]}−1E[Ψt(δ)Zt]}|→0

in probability. Therefore, Lemma 1(i) proves the desired result.

(iii) A4(ii) immediately implies

T (δ, δ̃) := E[U2
t Ψ∗t (δ)Ψ∗t (δ̃)] = E[E[U2

t |Xt]Ψ
∗
t (δ)Ψ∗t (δ̃)] = σ2

∗E[Ψ∗t (δ)Ψ∗t (δ̃)].

�

Proof of Theorem 1: (i) Given Lemma 1(i and ii), the continuous mapping theorem
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completes the proof.

(ii) We use Lemma 1(iii) and the definition of ρ1(δ, δ̃) to obtain the desired result.

�

Proof of Lemma 3: (i) By the definitions of Dij and M,

ι′DijMU =
n∑
t=1

Xt,iXt,jUt −
n∑
t=1

Xt,iXt,jZ
′
t(

n∑
t=1

ZtZ
′
t)
−1

n∑
t=1

ZtUt.

We note that n−1
∑
Xt,iXt,jZ

′
t and n−1

∑
ZtZ

′
t obey the WLLN by the ergodic theo-

rem and A3? and further show that n−1/2
∑
Xt,iXt,jUt satisfies the CLT. We already

showed that n−1/2
∑

ZtUt obeys the asymptotic normality in the proof of Lemma 1(i),

which also holds under the conditions of Lemma 3. For n−1/2
∑
Xt,iXt,jUt, we verify

the conditions of theorem 5.25 of White (2001). First, we note that {Xt,iXt,jUt,Ft} is

an MDS under the null, so that E[Xt,iXt,jUt|Ft−1] = 0. Second, E[|Xt,iXt,jUt|2] <∞

by A3?. This follows from the fact that

E[|Xt,iXt,jUt|2] ≤ E[U4
t ]1/2E[|Xt,iXt,j|4]1/2

≤ E[M4
t ]1/2E[|Xt,i|8]1/4E[|Xt,j|8]1/4 <∞,

where the first two inequalities and the last inequality follow from Cauchy-Schwarz

inequality and A3?, respectively. This implies that n−1/2
∑
Xt,iXt,jUt is asymptotically

normal by theorem 5.25 of White (2001). Thus, ι′DijMU = OP(n1/2).

(ii) The proof is almost identical to (i). We note that

ι′Dij`MU =
n∑
t=1

Xt,iXt,jXt,`Ut −
n∑
t=1

Xt,iXt,jXt,`Z
′
t(

n∑
t=1

ZtZ
′
t)
−1

n∑
t=1

ZtUt,

and that n−1
∑n

t=1 Xt,iXt,jXt,`Zt obeys the WLLN. Also, {Xt,iXt,jXt,`Ut,Ft} is a

MDS, implying that E[Xt,iXt,jXt,`Ut|Ft−1] = 0. Cauchy-Schwarz inequality yields

E[|Xt,iXt,jXt,`Ut|2] ≤ E[|Xt,iXt,j|4]1/2E[|Xt,`Ut|4]1/2

≤ E[|Xt,i|8]1/4E[|Xt,j|8]1/4E[|Xt,`|8]1/4E[|Ut|8]1/4 <∞;
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alternatively, we have

E[|Xt,iXt,jXt,`Ut|2] ≤ E[|Xt,iXt,jXt,`|4]1/2E[|Ut|4]1/2

≤ E[|Xt,iXt,j|8]1/4E[|Xt,`|8]1/4E[|Ut|4]1/2

≤ E[|Xt,i|16]1/8E[|Xt,j|16]1/8E[|Xt,`|8]1/4E[|Ut|4]1/2 <∞

by A3?. Finally, E[X2
t,iX

2
t,jX

2
t,`U

2
t ] > 0. Thus, n−1/2

∑n
t=1 Xt,iXt,jXt,`Ut is asymptot-

ically normal by theorem 5.25 of White (2001). Hence, ι′Dij`MU = OP(n1/2), so that

ι′Dij`MU = oP(n3/4).

(iii) We have

ι′Dij`mMU =
n∑
t=1

Xt,iXt,jXt,`Xt,mUt−
n∑
t=1

Xt,iXt,jXt,`Xt,mZ′t(
n∑
t=1

ZtZ
′
t)
−1

n∑
t=1

ZtUt.

By the ergodic theorem and A3?, n−1
∑
Xt,iXt,jXt,`Xt,mZt and n−1

∑
ZtUt respec-

tively converge toE[Xt,iXt,jXt,`Xt,mZt] and 0 in probability. Also,E[Xt,iXt,jXt,`Xt,m

Ut|Zt] = 0, so that the desired result follows by the ergodic theorem if E[|Xt,iXt,jXt,`

Xt,mUt|] <∞. For this, we note that

E[|Xt,iXt,jXt,`Xt,mUt|] ≤ E[|Xt,iXt,jXt,`Xt,m|2]1/2E[|Ut|2]1/2

≤ E[|Xt,i|8]1/8E[|Xt,j|8]1/8E[|Xt,`|8]1/8E|Xt,m|8]1/8E[|Ut|2]1/2 <∞,

by A3?.

(iv) By our definitions, ι′DijMD`mι is identical to

ι′DijMD`mι =
n∑
t=1

Xt,iXt,jXt,`Xt,m −
n∑
t=1

Xt,iXt,jZ
′
t(

n∑
t=1

ZtZ
′
t)
−1

n∑
t=1

ZtXt,`Xt,m.

We can apply the ergodic theorem to each element, so that n−1ι′DijMD`mι → τij`m

a.s., where

τij`m := E[C∗t,ijC
∗
t,`m]

= E[Xt,iXt,jXt,`Xt,m]− E[Xt,iXt,jZt]
′{E[ZtZ

′
t]}−1E[ZtXt,`Xt,m],
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which is finite by Conditions A3? and A6. This yields the desired result. �

Proof of Lemma 4: (i) First, we note that

vech(n−1/2M̃) = n−1/2

n∑
t=1

CtUt − (n−1

n∑
t=1

CtZ
′
t)(n

−1

n∑
t

ZtZ
′
t)
−1(n−1/2

n∑
t=1

ZtUt).

Second, the MDS CLT ensures that under our conditions, and, in particular, A6?,

n−1/2

n∑
t=1

[Z′t,C
′
t]
′Ut

A∼ N(0, Ṽ1).

Third, n−1
∑

CtZ
′
t and n−1

∑
ZtZ

′
t respectively converge to E[CtZ

′
t] and E[ZtZt] in

probability by the WLLN. Therefore,

vech(n−1/2M̃)
A∼ N(0, E[U2

t [Ct−E[CtZ
′
t]E[ZtZ

′
t]
−1Zt][Ct−E[CtZ

′
t]E[ZtZ

′
t]
−1Zt]

′]).

Note that the typical element of the covariance matrix is E[U2
t C
∗
t,ijC

∗
t,`m]. Thus, it

follows that n−1/2M̃ ⇒M from the symmetry of M̃ and the fact that n−1/2d′M̃d ⇒

d′Md = vec(dd′)′vec(M) for any d ∈ Sk−1 by the continuous mapping theorem.

Therefore, n−1/2d′M̃d⇒ b′vec(M) by the definition of b.

(ii) The desired result trivially follows from the fact that n−1b′Wb =
∑k

i=1

∑k
j=1∑k

`=1

∑k
m=1 n

−1(ι′DijMD`mι)didjd`dm and that n−1ι′DijMD`mι → τij`m a.s., as

shown in the proof of Lemma 3(iv). Thus, n−1b′Wb→ b′W∗b a.s.

(iii) For each i, j, `,m = 1, 2, · · · , k, E[MijM`m] = E[U2
t C
∗
t,ijC

∗
t,`m] = E[E[U2

t

|Xt]C
∗
t,ijC

∗
t,`m] = σ2

∗E[C∗t,ijC
∗
t,`m] under A4(ii). This completes the proof. �

Proof of Theorem 2: (i) We separate the proof into three parts: (a), (b), and (c). In (a),

we prove the weak convergence of n−1/2d′M̃d as a function of d. In (b), we show that

b′Wb obeys the ULLN as a function of b . Finally, the covariance structure of G2 is

derived in (c).

(a) Given that n−1/2M̃ ⇒ M, the tightness of {n−1/2d′M̃d} as a function of d

follows easily. For this, we first show that

sup
d∈Sk−1

n−1/2d′(M̃−M∗)d = oP(1),
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where M∗ := [ι′DijU−PijZ
′U] and Pij := (E[Xt,iXt,jZ

′
t])(E[ZtZ

′
t])
−1; and we then

show that {n−1/2d′M∗d} is tight as a function of d.

First, we note that M̃ = [ι′DijMU] and

ι′DijMU−
n∑
t=1

C∗t,ijUt =

[
(
n∑
t=1

Xt,iXt,jZ
′
t)(

n∑
t=1

ZtZ
′
t)
−1 −Pij

]
n∑
t=1

ZtUt,

which is oP(n1/2), because
∑n

t=1 ZtUt = OP(n1/2), and n−1
∑n

t=1 Xt,iXt,jZ
′
t and n−1∑n

t=1 ZtZ
′
t obey the WLLN, as we saw in the proof of Lemma 3(i). Thus, n−1/2(M̃−

M∗) = oP(1). This implies that supd∈Sk−1 n−1/2d′(M̃−M∗)d = oP(1), because Sk−1

is bounded. Next, for any ε > 0,

P

[
sup

‖d−d̃‖<δ

1√
n
|d′M∗d− d̃

′
M∗d̃| > ε

]
≤P

[
sup

‖d−d̃‖<δ

1√
n
|d′M∗d− d′M∗d̃| > ε

2

]

+P

[
sup

‖d−d̃‖<δ

1√
n
|d′M∗d̃− d̃

′
M∗d̃| > ε

2

]
.

(22)

We have

sup
‖d−d̃‖<δ

|d′M∗d− d′M∗d̃| ≤ sup
‖d−d̃‖<δ

k∑
i=1

k∑
j=1

|{ι′DijU−PijZ
′U}di(dj − d̃j)|

≤ δ
k∑
i=1

k∑
j=1

|{ι′DijU−PijZ
′U}|.

Therefore,

P

[
sup

‖d−d̃‖<δ

1√
n
|d′M∗d− d′M∗d̃| > ε

2

]
≤ P

[
δ

k∑
i=1

k∑
j=1

1√
n
|ι′DijU−PijZ

′U| > ε

2

]

≤
k∑
i=1

k∑
j=1

P
[

1√
n
|ι′DijU−PijZ

′U| > ε

2δk2

]

≤
k∑
i=1

k∑
j=1

4δ2k4

ε2
σijij

using Markov’s inequality, where i, j, `,m = 1, 2, · · · , k, σi,j,`,m := E[U2
t C
∗
t,ijC

∗
t,`m].

42



Thus,

lim sup
n→∞

P

[
sup

‖d−d̃‖<δ

1√
n
|d′M∗d− d̃

′
M∗d̃| > ε

]
≤ 8δ2k4

ε2

k∑
i=1

k∑
j=1

σijij (23)

using the same method applied to the second component in the RHS of (22). We

can make the RHS of (23) as small as we wish by letting δ be small. It follows that

{n−1/2d′M∗d} is tight. Its finite-dimensional distribution also follows from the mul-

tivariate CLT, which ensures n−1/2M̃ ⇒ M. As this is straightforward, we leave the

details aside here. Therefore, n−1/2d′M̃d weakly converges to d′Md as a function of

d.

(b) Since b′Wb = vec(dd′)′Wvec(dd′) and

k∑
i=1

k∑
j=1

k∑
`=1

k∑
m=1

τij`mdidjd`dm = vec(dd′)′W∗vec(dd′),

it follows that

sup
d∈Sk−1

∣∣∣∣∣n−1vec(dd′)′Wvec(dd′)−
k∑
i=1

k∑
j=1

k∑
`=1

k∑
m=1

τij`mdidjd`dm

∣∣∣∣∣
≤ sup
d∈Sk−1

k∑
i=1

k∑
j=1

k∑
`=1

k∑
m=1

∣∣n−1(ι′DijMD`mι)− τij`m
∣∣× |didjd`dm| .

We already saw that n−1ι′DijMD`mι→ τij`m a.s. in the proof of Lemma 3(ii). There-

fore,

sup
d∈Sk−1

∣∣n−1vec(dd′)′Wvec(dd′)− vec(dd′)′W∗vec(dd′)
∣∣→ 0 a.s.

This implies that n−1b′Wb = n−1vec(dd′)′Wvec(dd′) obeys the ULLN as a function

of d.

(c) Further, {n−1/2d′M̃d, n−1vec(dd′)′Wvec(dd′), σ̂2
n,0} ⇒ {d′Md, vec(dd′)′W∗

vec(dd′), σ2
∗} as functions of d by (a), (b), and the fact that σ̂2

n,0 → σ2
∗ a.s. Therefore,

as a function of d, {σ̂2
n,0b

′Wb}−1/2d′M̃d = {σ̂2
n,0b

′Wb}−1/2b′vec(M̃) ⇒ G2(b) :=

{σ2
∗b
′W∗b}−1/2b′vec(M) = {I(b, b)}−1/2b′vec(M) by the converging together lemma

(theorem 3.9 of Billingsley (1999, p. 37)) and the definition of I(b, b).
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As the final step, we derive the covariance structure of G2 from the asymptotic co-

variance between n−1/2d′M̃d and n−1/2d̃
′
M̃d̃. We already proved in (a) that n−1/2(M̃−

M∗) = oP(1). Further, we note that

n−1E[d′M∗d d̃
′
M∗d̃] =

k∑
i=1

k∑
j=1

k∑
`=1

k∑
m=1

E[U2
t C
∗
t,ijC

∗
t,`m]didj d̃`d̃m

= b′E[vec(M)vec(M)′]b̃.

This shows that n−1E[d′M̃d d̃
′
M̃d̃] → b′E[vec(M)vec(M)′]b̃ in probability, which

is K(b, b̃) from the fact that E[U2
t C
∗
t,ijC

∗
t,`m] = E[MijM`m]. Therefore, it follows that

E[G2(b)G2(b̃)] = ρ2(b, b̃). This is the desired covariance structure.

The desired result now follows from (a), (b), and (c).

(ii) By Lemma 4(iii), K(b, b̃) = I(b, b̃), so that ρ2(b, b̃) = I(b, b)−1/2I(b, b̃)

I(b̃, b̃)−1/2. This completes the proof. �

Before proving Lemmas 5 and 6, we provide some supplementary lemmas.

Lemma A1: Given A1, A2, A3?, A4(i), A6?, and H02,

(i) for j = 0, 1, 2, 3, and 4, U′Jj = OP(n1/2);

(ii) for j = 0, 1, 2, 3, and 4, J′0Jj = OP(n);

(iii) for j = 1, 2, and 3, J′1Jj = OP(n); and

(iv) J′2J2 = OP(n).

Proof of Lemma A1: (i) First, we note that J0 := [X, c0ι] and that U′Z = OP(n1/2) as

shown in the proof of Lemma 4(i). This shows that U′J0 = OP(n1/2). Second, we note

that J1 = c1[0n×k,Gι], where G := diag{Xd}, so that U′J1 = c1[0n×k,U
′Xd].

We further note that d is bounded and U′X = OP(n1/2), implying that U′J1 =

OP(n1/2). Third, U′J2 = c2[0n×k,U
′G2ι] from the fact that J2 = c2[0n×k,G

2ι]

and that U′G2ι =
∑

i di
∑

j dj
∑n

t=1(Xt,iXt,jUt). We now note that the proof of

Lemma 3(i) shows that for each i and j,
∑
Xt,iXt,jUt = OP(n1/2). Therefore, U′J2 =

OP(n1/2). Fourth, U′J3 = c3[0n×k,U
′G3ι] because J3 = c3[0n×k,G

3ι]. The proof

of Lemma 3(ii) now shows that for each i, j and `,
∑
Xt,iXt,jXt,`Ut = OP(n1/2),

and U′G3ι =
∑

i di
∑

j dj
∑

` d`
∑n

t=1(Xt,iXt,jXt,`Ut), so that U′J3 = OP(n1/2). Fi-

nally, U′J4 = c4[0n×k,U
′G4ι] using the fact that J4 = c4[0n×k,G

4ι]. The proof of
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Lemma 3(iii) proves that for each i, j, `, and m,
∑
Xt,iXt,jXt,`Xt,mUt = OP(n1/2)

and U′G4ι =
∑

i di
∑

j dj
∑

` d`
∑

m dm
∑n

t=1(Xt,iXt,jXt,`Xt,mUt), so that U′J4 =

OP(n1/2).

(ii) First, we note that J′0J0 = H0 = OP(n) by the fact that Z′Z = OP(n) as given

in the proof of Lemma 4(i). Second, J′0J1 = c1[0(k+1)×k,Z
′Gι] = c1[0(k+1)×k,Z

′Xd].

Given that d is bounded and that for each i,
∑
Xt,iZt = OP(n), we note that Z′Xd =∑

i di
∑n

t=1Xt,iZt, so that J′0J1 = OP(n). Third, J′0J2 = c2[0(k+1)×k,Z
′G2ι]. Now,

for each i and j,
∑
Xt,iXt,jZt = OP(n) as given in the proof of Lemma 3(i), and

Z′G2ι =
∑

i di
∑

j dj
∑n

t=1Xt,iXt,jZt. Thus, J′0J2 = OP(n). Fourth, we note that

J′0J3 = c3[0(k+1)×k,Z
′G3ι]. Now, for each i, j, and `,

∑
Xt,iXt,jXt,`Zt = OP(n), as

we saw in the proof of Lemma 3(ii), and Z′G3ι =
∑

i di
∑

j dj
∑

` d`
∑n

t=1Xt,iXt,jXt,`

Zt. Thus, J′0J3 = OP(n). Finally, J′0J4 = c4[0(k+1)×k,Z
′G4ι]. Now, for each i, j, m,

and `,
∑
Xt,iXt,jXt,`Xt,mZt = OP(n), as we saw in the proof of Lemma 3(iii), and

Z′G4ι =
∑

i di
∑

j dj
∑

` d`
∑

m dm
∑n

t=1Xt,iXt,jXt,`Xt,mZt. Thus, J′0J4 = OP(n).

(iii) First, J′1J1 = c2
1ι
′G2ιξξ′, where we let ξ := [0′(k×1), 1]′. Given the defini-

tion of G := diag{Xd} and the fact that d is bounded, ι′G2ι = OP(n) because for

each i and j,
∑
Xt,iXt,j = OP(n) and ι′G2ι =

∑
i di
∑

j dj
∑n

t=1 Xt,iXt,j . Thus,

J′1J1 = OP(n). Second, we also note that J′1J2 = c1c2ι
′G3ιξξ′, so that ι′G3ι = OP(n)

because for each i, j, and `,
∑
Xt,iXt,jXt,` = OP(n) and ι′G3ι =

∑
i di
∑

j dj
∑

` d`∑n
t=1Xt,iXt,jXt,`, implying that J′1J2 = OP(n). Finally, J′1J3 = c1c3ι

′G4ιξξ′, and

for each i, j, `, and m,
∑
Xt,iXt,jXt,`Xt,m = OP(n). This implies that J′1J3 = OP(n)

because ι′G4ι =
∑

i di
∑

j dj
∑

` d`
∑

m dm
∑n

t=1 Xt,iXt,jXt,`Xt,m.

(iv) We note that J′2J2 = c2
2ι
′G4ιξξ′, and we have already seen that ι′G4ι = OP(n)

in the proof of Lemma A1(iii), so that J′2J2 = OP(n). This completes the proof. �

Lemma A2: Given A1 and A2, when V(h;d) is defined as [Q(hd)′Q(hd)]−1,

(i) ∂
∂h

V(0;d) = −H−1
0 H1H

−1
0 ;

(ii) ∂2

∂h2
V(0;d) = 2H−1

0 H1H
−1
0 H1H

−1
0 −H−1

0 H2H
−1
0 ;

(iii) ∂3

∂h3
V(0;d) = H−1

0 {−6H1H
−1
0 H1H

−1
0 H1 + 3H2H

−1
0 H1 + 3H1H

−1
0 H2 −

H3}H−1
0 ; and
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(iv)

∂4

∂h4
V(0;d) = 24H−1

0 H1H
−1
0 H1H

−1
0 H1H

−1
0 H1H

−1
0

+ 6H−1
0 {H2H

−1
0 H2 − 2H1H

−1
0 H2H

−1
0 H1 − 2H2H

−1
0 H1H

−1
0 H1}H−1

0

+ 4H−1
0 {−3H1H

−1
0 H1H

−1
0 H2 + H1H

−1
0 H3 + H3H

−1
0 H1}H−1

0 −H−1
0 H4H

−1
0 .

As proving Lemma A2 is straightforward but tedious, we omit this.

Lemma A3: Given A1, A2, A3?, A4(i), A6?, and H02,

(i) for j = 0, 1, 2, 3, and 4, ∂j

∂hj
V(h;d) = OP(n−1);

(ii) J′0(K + K′)U = oP(n3/4) and U′(K + K′)U = oP(n3/4), where

K :=J3H
−1
0 J′0 − 3J2H

−1
0 H1H

−1
0 J′0 + 6J1H

−1
0 H1H

−1
0 H1H

−1
0 J′0 − 3J1H

−1
0 H2H

−1
0 J′1

3J2H
−1
0 J′1 − 3J0H

−1
0 H1H

−1
0 H1H

−1
0 H1H

−1
0 J′0 + 3J0H

−1
0 H1H

−1
0 H2H

−1
0 J′0; and

(iii) J′0(L + L′)U = oP(n) and U′(L + L′)U = oP(n), where

L :=

{
J4V(0;d) + 4J3

∂

∂h
V(0;d) + 6J2

∂2

∂h2
V(0;d) + 4J1

∂3

∂h3
V(0;d)

}
J′0

+

{
4J3V(0;d) + 12J2

∂

∂h
V(0;d) + 6J1

∂2

∂h2
V(0;d)

}
J′1 + 3J2V(0;d)J′2 and;

(iv) J′0M = 0(k+1)×n and MJ0 = 0n×(k+1); and

(v) J′1M = 0(k+1)×n and MJ1 = 0n×(k+1).

Proof of Lemma A3: (i) First, we note that H0 = J′0J0 and Z′Z = OP(n) as proved in

the proof of Lemma 4(i), implying that V(0,d) = H−1
0 = OP(n−1). Second, we note

that H1 = J′0J1 +J′1J0. Lemma A1(ii) shows that J′0J1 = OP(n), so that H1 = OP(n).

Given that H−1
0 = OP(n−1), ∂

∂h
V(0,d) = −H−1

0 H1H
−1
0 = OP(n−1). Third, note

that H2 = J′2J0 + J′1J1 + J′0J2, so that Lemmas A1(ii and iii) imply that H2 =

OP(n). Now, Lemma A2(ii) shows that ∂2

∂h2
V(0,d) = OP(n−1). Fourth, we note

that H3 = J′3J0 + 3J′2J1 + 3J′1J2 + J′0J3, and Lemmas A1(ii and iii) imply that

H3 = OP(n). Therefore, Lemma A2(iii) shows that ∂3

∂h3
V(0,d) = OP(n−1). Finally,

H4 = J′4J0 + 4J′3J1 + 6J′2J2 + 4J′1J3 + J′0J4, and Lemmas A1(ii, iii, and iv) imply

that H4 = OP(n), so that ∂4

∂h4
V(0,d) = OP(n−1) by applying Lemma A2(iv).
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(ii) First, we note that K + K′ = K1 + K2 + K′2, where K1 := J0
∂3

∂h3
V(0;d)J′0

and

K2 :=

{
J3V(0;d) + 3J2

∂

∂h
V(0;d) + 3J1

∂2

∂h2
V(0;d)

}
J′0 + 3J2

∂

∂h
V(0;d)J′1.

Second, we prove that J′0(K + K′)U = OP(n1/2). For this, note that J′0K1U =

J′0J0
∂3

∂h3
V(0;d)J′0U, J′0J0 = OP(n), ∂3

∂h3
V(0;d) = OP(n−1), and J′0U = OP(n1/2),

implying that J′0K1U = OP(n1/2). Also, U′K1U = U′J0
∂3

∂h3
V(0;d)J′0U = OP(1).

Further, the main components constituting J′0K2U are J′0J3−j
∂j

∂hj
V(0;d)J′0U (j =

0, 1, 2) and J′0J2
∂
∂h

V(0;d)J′1U. By Lemmas A1(i ∼ iii), it follows that J′0J3−j =

OP(n), ∂j

∂hj
V(0;d) = OP(n−1), and both J′0U and J′1U are OP(n1/2). These imply

that J′0K2U = OP(n1/2). We can apply the same arguments for J′0K
′
2U to obtain that

J′0K
′
2U = OP(n1/2). This implies that J′0(K1 + K2 + K′2)U = J′0(K + K′)U =

OP(n1/2) = oP(n3/4) as desired.

Finally, we prove that U′(K + K′)U = OP(1). For this, note that U′K1U =

U′J0
∂3

∂h3
V(0;d)J′0U, ∂3

∂h3
V(0;d) = OP(n−1), and J′0U = OP(n1/2), implying that

U′K1U = OP(n1/2). Also, U′K1U = U′J0
∂3

∂h3
V(0;d)J′0U = OP(1). Further,

we note that the main components constituting U′K2U are U′J3−j
∂j

∂hj
V(0;d)J′0U

(j = 0, 1, 2) and U′J2
∂
∂h

V(0;d)J′1U. By Lemmas A1(i and iii), U′J3−j = OP(n1/2),
∂j

∂hj
V(0;d) = OP(n−1). These imply that U′K2U = OP(1). We can apply the same

arguments to U′K′2U to obtain that U′K′2U = OP(1), so that U′(K1 + K2 + K′2)U =

U′(K + K′)U = OP(1) = oP(n3/4).

(iii) First, the main components constituting J′0LU are J′0J4−j
∂j

∂hj
V(0;d)J′0U (j =

0, 1, 2, 3), J′0J3−j
∂j

∂hj
V(0;d)J′1U (j = 0, 1, 2), and J′0J2V(0;d)J′2U. Lemma A1(i)

shows that J′jU = OP(n1/2); Lemma A1(ii) shows that J′0Jj = OP(n); and Lemma

A3(i) shows that ∂j

∂hj
V(0;d) = OP(n−1). These facts imply that J′0LU = OP(n1/2) =

oP(n), and it can be easily proved that J′0L
′U = oP(n) in a similar way, so that J′0(L +

L′)U = oP(n).

Next, we note that the main components constituting U′LU are U′J4−j
∂j

∂hj
V(0;d)

J′0U (j = 0, 1, 2, 3), U′J3−j
∂j

∂hj
V(0;d)J′1U (j = 0, 1, 2), and U′J2V(0;d)J′2U. Lemma

A1(i) shows that J′jU = OP(n1/2); and Lemma A3(i) shows that ∂j

∂hj
V(0;d) = OP(n−1).

These facts imply that U′LU = OP(1) = oP(n). We can also prove in the same way
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that U′L′U = OP(1) = oP(n), implying that U′(L + L′)U = OP(1) = oP(n).

(iv) We note that M := I−Z(Z′Z)−1Z′ = I−J0(J′0J0)−1J′0, implying that MJ0 =

J0 − J0 = 0n×(k+1). This also implies that J′0M = 0(k+1)×n.

(v) We note that J1 = [0,Gι], so that MJ1 = [0,MGι] = [0,MXd] = 0n×(k+1).

This also implies that J′1M = 0(k+1)×n and completes the proof. �

Proof of Lemma 5: (i) When P(h;d) := Q(hd)V(h;d)Q(hd)′, we note that ∂
∂h

P(0;d)

= J1H
−1
0 J′0−J0H

−1
0 H1H

−1
0 J′0 +J0H

−1
0 J′1 by Lemma A2(i). Given that H1 = J′0J1 +

J′1J0, if we plug this into ∂
∂h

P(0;d), then it follows that ∂
∂h

P(0;d) = 0. Finally, the

consequence follows from the fact that ∂
∂h
Ln(0;d) = (Y − αι)′ ∂

∂h
P(0;d)(Y − αι) =

(γ∗′C′ + U′) ∂
∂h

P(0;d)(Cγ∗ + U) = 0.

(ii) Tedious algebra using Lemma A2(ii) shows that ∂2

∂h2
P(0;d) = J0H

−1
0 J′2M +

MJ2H
−1
0 J′0. Thus, ∂2

∂h2
Ln(0;d) = (γ∗′J′0+U′)(J0H

−1
0 J′2M+MJ2H

−1
0 J′0)(J0γ

∗+U).

We now note that (a) J′0
∂2

∂h2
P(0;d)J0 = 0; (b) J′0

∂2

∂h2
P(0;d)U = 4J′2MU; and (c)

U′ ∂
2

∂h2
P(0;d)U = 2U′J0H

−1
0 J2MU after using Lemma A3(v) and the facts that H1 =

J′1J0 + J′0J1 and H2 = J′2J0 + 2J′1J1 + J′0J2. The desired result now follows from (a),

(b), and (c).

(iii) Tedious algebra using Lemma A2(iii) shows that ∂3

∂h3
P(0;d) = K+K′, and we

obtain that ∂3

∂h3
Ln(0;d) = (γ∗′J′0 + U′)(K + K′)(J0γ

∗+ U) = γ∗′J′0(K + K′)J0γ
∗+

2γ∗′J′0(K + K′)U + 2U′KU. Given this, Lemma A3(ii) implies that 2γ∗′J′0(K +

K′)U + 2U′KU = oP(n3/4). Thus, ∂3

∂h3
Ln(0;d) = γ∗′J′0(K + K′)J0γ

∗ + oP(n3/4).

(iv) First, by some algebra, it follows that ∂4

∂h4
P(0;d) = L + L′ + J0

∂4

∂h4
V(0;d)J′0.

Second, we note that ∂4

∂h4
Ln(0;d) = (γ∗′J′0 + U′) ∂4

∂h4
P(0;d)(J0γ

∗ + U) = γ∗′J′0
∂4

∂h4

P(0;d)J0γ
∗ + 2U′ ∂

4

∂h4
P(0;d)J0γ

∗ + U′ ∂
4

∂h4
P(0;d)U. Third, further tedious algebra

shows that J′0
∂4

∂h4
P(0;d)J0 = −6J′2MJ2 using the fact that ∂4

∂h4
P(0;d) = L + L′ +

J0
∂4

∂h4
V(0;d)J′0 and Lemma A2(iv). Finally, using Lemmas A3(iii), A1(i), A3(i),

and A1(ii) shows that U′[L + L′ + J0
∂4

∂h4
V(0;d)J′0]J0 = OP(n1/2) = oP(n); and

using Lemmas A3(iii), A1(i), and A3(i) shows that U′[L + L′ + J0
∂4

∂h4
V(0;d)J′0]U =

OP(1) = oP(n). Therefore, ∂4

∂h4
Ln(0;d) = −6γ∗′J′2MJ2γ

∗ + oP(n). This completes

the proof. �

Proof of Lemma 6: (i) To show the given result, we examine each component in Lemma

5(ii) separately. First, if we let Gj := diag{Xj}, then
∑k

j=1 djGj =
∑k

j=1 diag{Xjdj}
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= diag{Xd} = G, so that

ι′G2MU = ι′
k∑
i=1

diag{Xidi}
k∑
j=1

diag{Xjdj}MU

= ι′
k∑
i=1

k∑
j=1

didjdiag{Xi}diag{Xj}MU =
k∑
i=1

k∑
j=1

didjι
′DijMU = d′M̃d

by noting that M̃ := [ι′DijMU]. Therefore, ι′G2MU = d′M̃d. Next, we note that

Lemmas A1(i ∼ iii) imply that U′J0H
−1
0 J′2MU = U′J0H

−1
0 J′2U − U′J0H

−1
0 J′2J0

H−1
0 J′0U = OP(1), because U′J0 = OP(n1/2), J′2U = OP(n1/2) by Lemma A1(i);

H−1
0 = V(0;d) = OP(n−1) by Lemma A1(iii); and J′2J0 = OP(1) by Lemma A1(ii).

From this, it trivially follows that U′J0H
−1
0 J′2MU = oP(n1/2). These two facts now

show that ∂2

∂h2
L

(3)
n (0;α) = 2(α∗ − α)(c2/c0)d′M̃d+ oP(n1/2).

(ii) We note that H−1
0 J′0J0 = J′0J0H

−1
0 = Ik and H1 = J′1J0 + J′0J1. Using these

facts, we have that

J′0KJ0 = −3[J′0H2H
−1
0 J′0J1 − J′0J1H

−1
0 H1H

−1
0 J′0J1

+ J′1J0H
−1
0 H1H

−1
0 H1 − J′1J0H

−1
0 H2 + J′1J2],

so that exploiting the fact that H1 = J′1J0 + J′0J1 and H2 = J′2J0 + J′1J1 + J′0J2 yields

that

J′0(K + K′)J0 = 6J′1J0H
−1
0 J′1MJ1 + J′1MJ1H

−1
0 J′0J1 − 3J′1MJ2 − 3J′2MJ1.

Finally, we now note that J′1M = MJ1 = 0 by Lemma A3(iv), implying that J′0(K +

K′)J0 = 0. The desired result follows from this.

(iii) We now note that γ∗′J′2MJ2γ
∗ = (α∗ − α)2(c2/c0)2ι′G2MG2ι. Thus, if

ι′G2MG2ι = d′(Ik⊗d)′W(Ik⊗d)d, then the desired result follows. We derive this.

First, we note that

d′(Ik ⊗ d)′W(Ik ⊗ d)d =
k∑
i=1

k∑
j=1

di(d
′Wijd)dj,

and that d′Wijd =
∑k

`=1

∑k
m=1 ι

′GiGjMd`dmG`Gmι = ι′GiGjM
∑k

`=1 d`G`

∑k
m=1
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dmGmι = ι′GiGjMG2ι. Next, we also note that

k∑
i=1

k∑
j=1

di(d
′Wijd)dj =

k∑
i=1

k∑
j=1

diι
′GiGjMG2ιdj

= ι′
k∑
i=1

diGi

k∑
j=1

djGjMG2ι = ι′G2MG2ι.

That is, d′(Ik ⊗ d)′W(Ik ⊗ d)d = ι′G2MG2ι. This completes the proof. �

Proof of Lemma 7: (ii) For given n, we obtain

N (4)
n (h,d) = 8U′M{(∂/∂h)Ψ(h,d)}U′M{(∂3/∂h3)Ψ(h,d)}

+ 6
{
U′M(∂2/∂h2)Ψ(h,d)

}2
+ 2U′MΨ(h,d)U′M

{
(∂4/∂h4)Ψ(h,d)

}
.

We also note that limh↓0 U′MΨ(h,d) = c0U
′Mι = 0 a.s., and limh↓0 U′M(∂/∂h)

Ψ(h,d) = c1U
′MXd = 0 a.s., so that

lim
h↓0

N (4)
n (h,d) = lim

h↓0
6
{
U′M(∂2/∂h2)Ψ(h,d)

}2

= 6c2
2

{
k∑
i=1

k∑
j=1

ι′DijMUdidj

}2

a.s.

(iii) Similarly, for given d and n, we obtain that

D(4)
n (h,d) = 6

{
(∂2/∂h2)Ψ(h,d)

}′
M
{

(∂2/∂h2)Ψ(h,d)
}

+ 8 {(∂/∂h)Ψ(h,d)}′M
{

(∂3/∂h3)Ψ(h,d)
}

+ 2Ψ(h,d)′M
{

(∂4/∂h4)Ψ(h,d)
}
.

Also, we note that limh↓0 Ψ(h,d)′M = c0ι
′M = 0 a.s., and limh↓0 {(∂/∂h)Ψ(h,d)}′

M = c1d
′X′M = 0 a.s., as we saw in the proof of Lemma 7(ii). Therefore,

lim
h↓0

D(4)
n (h,d) = lim

h↓0
6
{

(∂2/∂h2)Ψ(h,d)
}′

M
{

(∂2/∂h2)Ψ(h,d)
}

= 6c2
2

k∑
i=1

k∑
j=1

k∑
`=1

k∑
m=1

ι′DijMD`mι didjd`dm a.s.
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This completes the proof. �

Before proving Lemma 8, we simplify our notation by suppressing all function

arguments but h and h̃. That is, we let J (h) and T (h, h̃) denote J (h,d, h,d) and

T (h,d, h̃, d̃) respectively. We first provide the following supplementary lemmas. As

these results hold by the Lebesgue dominated convergence theorem and tedious algebra,

we omit the proofs for brevity.

Lemma B1: Given A1, A2, A3??, A4, A5, A6??, A7, A8, and H0,

(i) for ` = 0, 1, and each h̃ ≥ 0, limh↓0 T (`, 0)(h, h̃) = 0, where T (`,m)(h, h̃)

:= (∂m∂`/∂h̃m∂h`) T (h, h̃);

(ii) for ` = 0, 1, 2, and 3, limh↓0 J (`)(h) = 0, where J (`)(h) := (∂`/∂h`)J (h);

(iii) T (2,0)(0, h̃) = c2H(b, h̃, b̃); and

(iv) J (4)(0) = 6c2
2I(b, b).

Lemma B2: Given A1, A2, A3??, A4, A5, A6??, A7, A8, and H0,

(i) limh̃↓0 limh↓0 T (h, h̃) = 0;

(ii) for ` = 0 and 1, limh̃↓0 limh↓0 T (1, `)(h, h̃) = 0;

(iii) for ` = 0 and 1, limh̃↓0 limh↓0 T (2, `)(h, h̃) = 0;

(iv) for ` = 0 and 1, limh̃↓0 limh↓0 T (3, `)(h, h̃) = 0;

(v) limh̃↓0 limh↓0 T (4,0)(h, h̃) = 0; and

(vi) limh̃↓0 limh↓0 T (2,2)(h, h̃) = c2
2K(b, b̃).

Proof of Lemma 8: (i) Given the definition of ρ1,

ρ1(h, h̃) :=
T (h, h̃)

{J (h)}1/2{J (h̃)}1/2
,

Lemma B1(i and ii) implies that limh↓0 T (h, h̃) = 0 and limh↓0 J (h) = 0. Therefore,

we apply L’Hôspital’s rule. We note that

T (h, h̃) = T (0, h̃)+T (1,0)(0, h̃)h+
1

2
T (2,0)(0, h̃)2h2+o(h2) =

1

2
c2H(b, h̃, b̃)h2+o(h2)

(24)
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by Lemma B1(i and iii) and also that

J (h) = J (0) + J (1)(0)h+
1

2
J (2)(0)h2 +

1

3!
J (3)(0)h3 +

1

4!
J (4)(0)h4 + o(h4)

=
1

24
J (4)(0)h4 + o(h4) =

1

4
c2

2I(b, b)h4 + o(h4) (25)

by Lemma B1(ii and iv). Hence,

lim
h↓0

T (h, h̃)

{J (h)}1/2{J (h̃)}1/2
=

c2H(b, h̃, b̃, )

{c2
2I(b, b)}1/2{J (h̃, b̃)}1/2

=
sgn[c2]H(b, h̃, d̃)

{I(b, b)}1/2{J (h̃, b̃)}1/2
.

(ii) We apply Taylor’s expansion to T (h, h̃). Lemma B2 then implies that

T (h, h̃) = T (0, 0) +
4∑
i=1

i∑
j=0

1

i!

(
i
j

)
T (i−j,j)(0, 0)hi−jh̃j + o((h2 + h̃2)2)

=
1

4
c2

2K(b, b̃)h2h̃2 + o((h2 + h̃2)2),

where the first and second equalities hold by Lemmas B2(i) and B2(ii∼v), respectively.

Also,

J (h) =
1

24
J (4)(0)h4 + o(h4) =

1

4
c2

2I(b, b)h4 + o(h4)

by (25). Thus,

lim
h̃↓0

lim
h↓0

T (h, h̃)

{J (h)}1/2{J (h̃)}1/2
=

c2
2K(b, b̃)

{c2
2I(b, b)}1/2{c2

2I(b̃, b̃)}1/2

=
K(b, b̃)

{I(b, b)}1/2{I(b̃, b̃)}1/2
.

Note that this is ρ2(b, b̃), and this completes the proof. �
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Table 1: Critical Values
Number of Replications: 50,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)
Model: Yt = α + βYt−1 + λ exp(δYt−1) + Ut

∆0.5 = [−0.5, 0.5], ∆1.0 = [−1, 1], ∆1.5 = [−1.5, 1.5], ∆2.0 = [−2, 2], and K = 150

Nominal Level \ ∆ ∆0.5 ∆1.0 ∆1.5 ∆2.0

1.00 % 7.7974 8.4051 9.1206 9.7248

5.00 % 4.7399 5.4245 6.0594 6.6222

10.0 % 3.4747 4.1282 4.6833 5.2558

Table 2: Empirical Rejection Rates (in Percent)
Number of Replications: 10,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)
Model: Yt = α + βYt−1 + λ exp(δYt−1) + Ut

∆0.5 = [−0.5, 0.5], ∆1.0 = [−1, 1], ∆1.5 = [−1.5, 1.5], ∆2.0 = [−2, 2], and K = 150

Asymptotic Distribution QLR(∆0.5;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.26 0.36 0.60 0.64 0.83 0.90 0.97

5.00 % 2.38 3.00 3.53 4.57 4.80 4.70 5.05

10.0 % 6.00 6.87 8.20 9.13 9.49 9.25 9.79

Asymptotic Distribution QLR(∆1.0;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.37 0.44 0.61 0.72 0.84 0.79 0.92

5.00 % 2.45 2.82 3.31 3.66 4.12 4.01 4.49

10.0 % 5.68 6.11 7.12 8.06 8.32 8.41 8.98

Asymptotic Distribution QLR(∆1.5;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.19 0.28 0.37 0.49 0.80 0.65 0.82

5.00 % 1.64 2.19 2.59 3.08 3.82 3.78 4.09

10.0 % 4.23 5.12 5.74 6.81 7.73 8.06 8.53

Asymptotic Distribution QLR(∆2.0;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.02 0.36 0.47 0.50 0.49 0.50 0.71

5.00 % 1.48 1.64 2.21 2.67 2.50 2.79 3.56

10.0 % 3.35 3.78 4.50 5.47 5.58 5.98 7.27
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Table 3: Empirical Rejection Rates (in Percent)
Number of Replications: 10,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)
Model: Yt = α + βYt−1 + λ exp(δYt−1) + Ut

∆0.5 = [−0.5, 0.5], ∆1.0 = [−1, 1], ∆1.5 = [−1.5, 1.5], ∆2.0 = [−2, 2], and K = 150

Asymptotic Distribution Q̂LRn(∆0.5;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.71 0.39 0.60 0.71 0.89 0.93 1.01

5.00 % 2.43 2.94 3.48 4.39 4.64 4.54 4.88

10.0 % 6.06 6.90 8.17 9.04 9.33 8.93 9.49

Asymptotic Distribution Q̂LRn(∆1.0;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.30 0.50 0.74 0.71 0.67 0.80 0.99

5.00 % 2.44 2.56 3.20 3.91 4.02 4.15 5.13

10.0 % 5.39 6.00 6.71 7.97 8.34 8.88 10.30

Asymptotic Distribution Q̂LRn(∆1.5;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.12 0.18 0.23 0.37 0.54 0.48 0.59

5.00 % 1.33 1.65 1.87 2.24 2.96 2.92 3.15

10.0 % 3.13 3.89 4.11 5.05 5.96 6.11 6.43

Asymptotic Distribution Q̂LRn(∆2.0;K)

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000 5,000

1.00 % 0.15 0.24 0.40 0.39 0.39 0.37 0.54

5.00 % 1.26 1.34 1.84 2.22 2.03 2.21 2.92

10.0 % 2.73 2.95 3.47 4.31 4.47 4.74 5.68
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Table 4: Empirical Rejection Rates (in Percent)
Number of Replications: 4,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)

Model: Yt = α + βYt−1 + λ exp(δYt−1) + Ut, ∆0.5 = [−0.5, 0.5]

Nominal Level \ Sample Size 50 100 200 500 1,000 2,000

1.00 % 0.35 0.45 0.75 0.85 1.15 0.90

5.00 % 2.55 3.62 4.10 4.67 5.20 5.27

10.0 % 6.57 8.30 8.57 8.97 9.50 10.25

30.0 % 25.77 26.67 28.05 28.85 30.20 30.75

50.0 % 46.77 46.95 47.47 49.90 48.90 50.82

80.0 % 77.55 78.35 78.77 79.22 79.67 79.85

90.0 % 86.75 88.22 89.10 89.35 88.80 90.02

95.0 % 91.60 93.62 94.32 94.92 93.95 94.95

Model: Yt = α + βYt−1 + λ{1 + exp(δYt−1)}−1 + Ut, ∆0.5 = [−0.5, 0.5]

Nominal Level \ Sample Size 6,000 8,000 10,000 20,000 30,000 40,000

1.00 % 1.60 1.85 1.50 1.32 1.85 1.67

5.00 % 3.10 3.80 3.32 5.30 5.87 5.77

10.0 % 5.70 7.27 7.25 10.50 10.47 10.45

30.0 % 26.52 27.27 27.80 29.05 27.87 28.55

50.0 % 48.42 47.37 47.50 49.02 46.72 48.00

80.0 % 76.35 76.37 77.72 77.92 76.60 76.82

90.0 % 87.47 86.37 86.97 87.55 87.37 87.17

95.0 % 92.02 92.40 92.30 92.67 92.75 93.20
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Figure 1: Empirical Null Distributions of the QLR Statistics
Number of Replications: 10,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)
Model: Yt = α + βYt−1 + λ exp(δYt−1) + Ut

∆0.5 = [−0.5, 0.5], ∆1.0 = [−1, 1], ∆1.5 = [−1.5, 1.5], ∆2.0 = [−2, 2], and K = 150

QLR(∆0.5;K) QLR(∆1.0;K)

QLR(∆1.5;K) QLR(∆2.0;K)
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Figure 2: Empirical Density Functions of the QLR Statistics
Number of Replications: 10,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)
Model: Yt = α + βYt−1 + λ exp(δYt−1) + Ut

∆0.5 = [−0.5, 0.5], ∆1.0 = [−1, 1], ∆1.5 = [−1.5, 1.5], ∆2.0 = [−2, 2], and K = 150

QLR(∆0.5;K) QLR(∆1.0;K)

QLR(∆1.5;K) QLR(∆2.0;K)
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Figure 3: Empirical Distribution of Bootstrapped QLR Statistics
Number of Replications: 4,000

DGP: Yt = 0.5Yt−1 + Ut and Ut ∼ IID N(0, 1)
Model: Yt = α + βYt−1 + λΨt(δ) + Ut and ∆0.5 = [−0.5, 0.5]

Ψt(δ) = exp(δYt−1) Ψt(δ) = 1/{1 + exp(δYt−1)}
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