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Abstract
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the asymptotic critical values. Further, the finite sample properties of the LR test are evaluated
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1 Introduction

Use of mixtures of geometric distributions is popular for data analysis. For example, early lit-

erature such as Daniels (1961) advocates geometric mixtures to approximate discrete probability

distributions. As another example, van den Berg and Ridder (1998) specify mixtures of exponen-

tial distributions for unemployment duration data. If observed data were grouped at integer levels,

then their model would have been a mixture of geometric distributions.

This popularity is not restricted only to economics. In demographic literature, fecundability

studies, risk managements, wireless communication studies and etc., whenever inter-arrival times

of the events of interests are discretely grouped, mixture of geometric distributions becomes one

of the most popular candidate models for data (see Heckman and Walker, 1990; Ecochard and

Clayton, 2000; Crowder, 2001; and Ji, Liu, Towsley, and Kurose, 2004).

Challenges arise when specifying mixtures. Probability laws of discrete variables may be ap-

proximated too poorly if no mixture is specified, or redundant approximation can result from al-

lowing for too many components for the mixture. Similarly to what Lancaster (1979) points out

for continuous duration models, specifying a geometric distribution can result in biased parameter

estimates if two or more component based mixtures are correct specifications. Conversely, if a

geometric model is already a correct model, then two or more component based mixtures contain

unidentified parameters. Thus, inference method should be different from the standard ones.

The main goal of the current study is therefore in selecting a proper mixing distribution for

a finite geometric mixture. Specifically, we focus on testing for two component based geometric

mixtures against a geometric distribution by the likelihood ratio (LR) statistic.

The LR statistic does not asymptotically follow a standard chi-square distribution under the null

in the present context. As pointed out by Cho and White (2007, 2008), it has a nuisance parameter

present only under the alternative (Davies, 1977; 1987) and also the boundary parameter problem.

We overcome these and obtain the asymptotic null distribution as a function of Gaussian process

by applying the methodology in Andrews (1999, 2001). Also, a simulation method is provided,

which can deliver asymptotic critical values systematically.

Another goal of the present study is to conduct a formal testing procedure for Kennan’s (1985)

strike data. Kennan (1985) specifies a mixture based upon beta distributions in order to model
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unobserved heterogeneity after assuming its existence. We affirm the existence by our formal

testing procedure so that his attempt to model unobserved heterogeneity can be justified. This

application also illustrates appropriate use of LR statistic in the mixture model context.

The literature on testing the mixture hypothesis is expanding. Hartigan (1985) and Ghosh and

Sen (1985) first show that the LR statistic weakly converges to a function of a Gaussian process

under the null after assuming a null model without any unknown parameter. Chernoff and Lander

(1995) focus on the mixture of binomials and obtain a function of Gaussian process as the weak

limit of the LR statistic under the null. They also provide another Gaussian process which has

the same covariance structure as the one obtained under the null, and which can be easily gener-

ated by a simulation method. Nevertheless, the Gaussian processes contained therein cannot be

used for other mixtures because the LR statistic is not distribution-free. Cho and White (2007,

2008) consider the mixtures of normals, exponentials, and Weibulls and show that the asymptotic

null distributions are determined by Gaussian processes with different covariance structures. They

also provide simulation methods to obtain the asymptotic critical values as in Chernoff and Lan-

der (1995). Further, Chen and Chen (2001) consider the mixtures of Poissons and normals with

known variance and obtain similar conclusions, though they do not discuss any method to obtain

the asymptotic critical values. Finally, Dacunha-Castelle and Gassiat (1999) examine the mixture

of two regular conditional distributions and derive results similar to the mixture of marginal dis-

tributions. To our best knowledge, testing for the geometric mixture has not yet been examined in

the literature.

The plan of this paper is as follows. Section 2 considers data, mixture models, and the LR

statistic together with the asymptotic null distribution. We conduct Monte Carlo experiments and

empirical data analyses on Kennan’s (1985) data in Sections 3 and 4 respectively. Conclusion is

given in Section 5, and mathematical proofs are collected in the Appendix.
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2 The Mixture of Geometric Distributions

2.1 The Data Generating Process

Let {Yt} be a sequence of identically and independently distributed (IID) random variables. We

consider an economic hypothesis associated with {Yt}, which suggests a geometric distribution

function as its marginal probability density function (PDF). That is, for y = 1, 2, 3, . . ., and un-

known p∗ ∈ (0, 1),

f(y; p∗) = p∗(1− p∗)
y−1 (1)

is suggested as the marginal PDF of Yt. Given this environment, we further suppose that the

researcher wishes to test the geometric distribution hypothesis.

Daniels (1961) considers representing many discrete PDFs as a weighted mixture of geometric

distributions by assuming that the marginal PDF of Yt can be written as

∫
f(y; p)dH(p), (2)

where dH is a density function on (0, 1). In this framework, the hypothesis in (1) corresponds to

the case in which dH has a unit mass at p∗. In other cases, the structure in (2) is often interpreted

as the presence of unobserved heterogeneity in the literature.

Here, we follow Daniels’ (1961) advocation and particularly pay attention to a finite geometric

mixture. Specifically, we consider the two component mixture whose marginal PDF is given as

π∗f(y; p1∗) + (1− π∗)f(y; p2∗), (3)

for y = 1, 2, 3, . . . and (π∗, p1∗, p2∗) ∈ [0, 1]× (0, 1)× (0, 1).

The model in (3) has useful aspects for applications. First, economic theory may directly

indicate geometric distribution as a data generating process (DGP) for economic data. As an

example, van den Berg and Ridder (1998) postulate a finite mixture of exponentials as a DGP

for unemployment duration, so that a geometric mixture turns out to be a DGP corresponding to

discretely (e.g., daily or weekly) grouped duration data. Second, we can even exploit the simple

structure in (3) to distinguish the DGPs in (1) and (2). As Ferguson (1983) suggests, discrete
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mixtures can approximate arbitral distributions to the level of desired precision by adding more

components under certain regularity conditions. Thus, the model in (3) may be understood as an

approximation to (2). This aspect is also considered by Stinchcombe and White (1998) in terms of

artificial neural networks.

2.2 Discrete Mixtures and the Log-Likelihood Ratio Statistic

We specify a model M as a collection of DGPs as in White (1994). Our null model is

Mo ≡ {f( · ; p) : p ∈ P},

where f is given in (2), and P is a convex subset of [0, 1] containing p∗ as an interior element. The

unrestricted model is specified as a collection of DGPs:

Mu ≡ {fu( · ; π, p1, p2) : (π, p1, p2) ∈ [0, 1]× P× P},

where for y = 1, 2, . . . ,

fu(y; π, p1, p2) ≡ πf(y; p1) + (1− π)f(y; p2). (4)

Given these models, for each p, we denote the expected log-likelihoods as

Lo(p) ≡ E[log f(Yt; p)] and Lu(π, p1, p2) ≡ E[log fu(Yt; π, p1, p2)] (5)

respectively. Under the null, Lo(p∗) = Lu(π∗, p1∗, p2∗), whereas Lo(p∗) < Lu(π∗, p1∗, p2∗) under

the alternative stated bwlow. Here, p∗ and (π∗, p1∗, p2∗) maximize L0 and Lu respectively. From

this, we can relate the difference between Lu(π∗, p1∗, p2∗) and Lo(p∗) to testing the null hypothesis

by Kullback-Leibler information criterion, as it ensures that Lu(π∗, p1∗, p2∗) = L0(p∗) if and only if

the DGP is indeed identical to (1). We thus consider the asymptotic null behavior of the following

LR statistic:

LRn ≡ 2

{
n∑

t=1

log[fu(Yt; π̂n, p̂1n, p̂2n)]−
n∑

t=1

log[f(Yt; p̂on)]

}
,
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where n is the sample size, and p̂on and (π̂n, p̂1n, p̂2n) are the maximum-likelihood estimators

(MLEs) obtained under the null and unrestricted model assumptions respectively.

The null hypothesis of no-mixture encompasses three distinct null hypotheses:

Ho : π∗ = 1 and p1∗ = p∗; p1∗ = p2∗; or π∗ = 0 and p2∗ = p∗,

whereas the alternative can be rephrased as

Hu : π∗ ∈ (0, 1) and p1∗ 6= p2∗.

Analyzing the LR statistic is not standard as pointed out many times in the literature. If π∗ = 1

(resp. π∗ = 0), then p2∗ (resp. p1∗) is not identified, so that there is a nuisance parameter present

only under the alternative (Davies, 1977; 1987). Further, π∗ = 1 (resp. π∗ = 0) is on the boundary

of the parameter space, violating the interior parameter condition for standard asymptotic analysis.

Alternatively, if p1∗ = p2∗, then π∗ is not identified. From these, it follows that the asymptotic null

distribution of the LR statistic is not a standard chi-square.

Cho and White (2007, 2008) consider the same problem in the context of mixtures of normals,

exponentials, and Weibull distributions. Applying the methodology in Andrews (1999, 2001), they

show that for the same hypothesis, the LR test weakly converges to a function of a Gaussian process

under the null. This is still effective even for the geometric mixtures as confirmed in Theorem 1.

THEOREM 1: If we let p ≡ inf P and p̄ ≡ sup P be such that (1 − p)2(1 − p∗)/(1 − p̄)2 < 1 and

0 < p < p∗ < p̄ < 1, then

LRn ⇒ LR ≡ sup
p∈P

(max[0,G(p)])2 (6)

under Ho, where G is a Gaussian process such that for each p and p′ ∈ P,

E[G(p)G(p′)] =
[(1− p∗)− (1− p)2]1/2[(1− p∗)− (1− p′)2]1/2

(1− p∗)− (1− p)(1− p′)
. (7)

The consequence of Theorem 1 is coherent with other results in the literature. Chernoff and

Lander (1995) analyze the LR statistic for the finite mixture of binomials and obtain the results

similar to (6), but their limit Gaussian process has covariance structure different from (7). Chen
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and Chen (2001) examine both discrete mixtures of normals with known variance and discrete

mixtures of Poissons and also obtain the results similar to (6) using different Gaussian processes.

Dacunha-Castelle and Gassiat (1999) further generalize these analyses by studying the mixtures

of conditional distributions and show that the LR statistic weakly converges to the squared max

function of a different Gaussian process.

In general, the limit Gaussian process associated with the LR statistic has a different distribu-

tion if different models and DGPs are assumed. This implies that the LR statistic is not distribution-

free, thus we need to compute different asymptotic critical values for different models and DGPs.

In general, it is hard to obtain the analytical formula for the distribution of the maximum of a

Gaussian process. However, the limit Gaussian process in Theorem 1 can be easily simulated by

the orthonormal bases stated in Theorem 2.

THEOREM 2: Let {Zk : k = 0, 1, 2, · · · } be an IID sequence of N(0, 1) random variables. Then

G d
= Ḡ∞, where for each p ∈ P ≡ [p, p̄] such that p > 1−

√
1− p∗,

Ḡm(p) ≡
{

(1− p∗)− (1− p)2

1− p∗

}1/2 m∑
k=0

{
1− p√
1− p∗

}k

Zk (8)

for m = 1, 2, . . ..

Note that the Gaussian process Ḡ∞ is the sum of an infinite number of functions defined on P.

Each function is multiplied by IID standard normal coefficient and converges to zero uniformly in

p as k gets large. Thus, for each p, the difference between Ḡm(p) and G(p) can be controlled at the

level of desired precision by letting m be large enough, and we can use the simulated empirical

distribution of Ḡm as an approximation of Ḡ.

There are a couple of remarks relevant to Theorem 2. First, the simulation method has been

used in the previous literature. See Chernoff and Lander (1995) and Cho and White (2007, 2008)

among others. If no Gaussian process like Ḡ∞ is available, then conservative critical values can

be applied. Davies (1977) provides a formula for this using the probability law of up-crossings.

Piterbarg (1996) also suggests to obtain conservative critical values by the comparison method.

These values may not be as precise as those obtained by our simulation method. Second, different

parameter space P leads to different critical values, as pointed out by Cho and White (2007, 2008).
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Table 1: ASYMPTOTIC CRITICAL VALUES OF THE LR TEST STATISTICS

NUMBER OF REPETITIONS: 10,000
DGP: Yt ∼ IID G(1/2)

MODEL: Yt ∼ IID πG(p1) + (1− π)G(p2)
Nominal Level \ P P1 ≡ [0.3965, 0.5732] P2 ≡ [0.4000, 0.5500]

1.00 % 6.1010 5.9416
2.50 % 4.4735 4.4145
5.00 % 3.3128 3.2366
7.50 % 2.6194 2.5720
10.0 % 2.1164 2.0974

For example, if P2 is a proper subset of P1, then the LR statistic assuming P2 cannot be greater

than the LR statistic assuming P1, so that their asymptotic null distributions cannot be identical.

We also note that the condition on the parameter space in Theorem 2 is implied by Theorem 1.

That is,

if p∗ < p̄ and (1− p)2(1− p∗)/(1− p̄)2 < 1, then p > 1−
√

1− p∗. (9)

See the Appendix for the proof of this. Therefore, if P is selected to satisfy the condition in Theo-

rem 1, then G can be generated without too much concern on the conditions in Theorem 2. From

now, the LR test and its asymptotic limit will be denoted by LRn(P) and LRm(P) respectively to

accommodate the influence of parameter space and the finite number m of standard normal random

variables.

In practice, as p∗ is usually unknown, the asymptotic null distribution should be simulated

using Theorem 2 with p̂on instead of p∗. The proof of this is identical to Theorem 2 in Cho and

White (2008). We thus omit it for the brevity.

3 Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments to examine the level and power properties of

the LR test statistic. For the level property, we consider the DGP: Yt ∼ IID G(1/2), where G(p∗)

denotes the geometric distribution with parameter p∗. We obtain the null parameter estimate by

specifying two different models: Yt ∼ IID G(p), where p is an element of P1 ≡ [0.3965, 0.5732]

and P2 ≡ [0.4000, 0.5500] respectively. These spaces are selected to satisfy the parameter space

condition in Theorem 1.
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Table 2: LEVELS OF THE LR TEST

NUMBER OF REPETITIONS: 2,000
DGP: Yt ∼ IID G(1/2)

MODEL: Yt ∼ IID πG(p1) + (1− π)G(p2)
Statistics Levels \ n 100 500 1,000 5,000
LRn(P1) 5% 0.25 2.15 2.85 4.00

10% 1.40 5.50 6.35 8.15
LRn(P̂1) 5% 0.25 2.15 2.90 3.75

10% 1.40 5.40 6.10 7.80
LR∗

n(P1) 5% 6.30 5.05 4.75 4.71
10% 12.25 9.15 9.35 9.40

LRn(P2) 5% 0.20 1.20 2.60 4.00
10% 0.50 4.75 6.80 7.75

LRn(P̂2) 5% 0.20 1.30 2.55 4.00
10% 0.50 4.55 6.50 7.40

LR∗
n(P2) 5% 8.10 5.60 5.70 5.55

10% 13.75 10.85 10.10 9.95
Notes: 1. When n = 50,000 and the level = 5%, the empirical levels are 4.95, 4.75, 4.70,
and 4.65 for LRn(P1), LRn(P̂1), LRn(P2), and LRn(P̂2) respectively.
2. When n = 50,000 and the level = 10%, the empirical levels are 9.70, 9.50, 9.90, and
9.70 for LRn(P1), LRn(P̂1), LRn(P2), and LRn(P̂2) respectively.

Table 1 provides critical values of the LR test. They are computed by simulating Ḡm 10,000

times with m = 50. The maxima of these functions are computed by grid search with equal grid

distances partitioning each of P1 and P2. In principle, the associated p∗ needs to be estimated, as

Gm depends on the value of p∗, but for simplicity the figures in Table 1 are obtained under the

assumption that it is known, and this treatment makes practically no significant difference to the

critical values.

Table 2 provides finite sample size properties. We consider three cases separately. First, we

assume that p∗ is known and apply the critical values obtained from Table 1. The results are

reported on the rows indexed by LRn(P1) and LRn(P2). Second, we estimate p∗ using the null

model and obtain the critical values by this estimate and Theorem 2. More precisely, for each

data set, we estimate p̂on by the MLE method using the null model and obtain the empirical null

distribution by generating L̂Rm ≡ supp∈P max[0, Ĝm(p)]2 many times, where

Ĝm(p) ≡
{

(1− p̂on)− (1− p)2

1− p̂on

}1/2 m∑
k=0

{
1− p√
1− p̂on

}k

Zk.
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Figure 1: EMPIRICAL AND ASYMPTOTIC DISTRIBUTION FUNCTIONS OF THE LR STATISTIC

P1 = [0.3965, 0.5732]

Under the null, as p̂on is a consistent estimator for p∗, this method can provide the asymptotic

null distribution with probability converging to 1 as n increases. The simulation results are found

in the rows indexed by LRn(P̂1) and LRn(P̂2). Finally, we also apply the parametric bootstrap,

which is justified by the fact that the weak limit of the LR test exists by Theorem 1. Specifically,

after obtaining p̂on from the observed data, we resample data points from G(p̂on) 2,000 times to

obtain the empirical distribution and compute the empirical rejection rate. The simulation results

are contained in the rows indexed by LR∗
n(P1) and LR∗

n(P2).

Table 2 shows that the sizes approach the associated nominal levels (5% and 10%) as n in-

creases. Moreover, for finite samples, the empirical rejection rates (i.e., the simulated type I er-

rors) are smaller than the nominal level. Figure 1 shows the empirical and asymptotic distributions

of the associated LR statistics when P1 is selected. As the sample size increases, the empirical

distribution of the LR statistic approaches the distribution of LRm(P1). We also obtained similar

figures for P2 but omit it for brevity. Other Monte Carlo experiments not reported here suggest that
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Table 3: POWER OF THE LR TEST (NOMINAL LEVEL: 5%)
NUMBER OF REPETITIONS: 2,000

MODEL: Yt ∼ IID πG(p1) + (1− π)G(p2)
DGP: Yt ∼ IID 0.5G(0.3) + 0.5G(0.7)

Statistics \ Sample Size 100 200 300 400 500 600
LRn(P1) 11.35 46.25 73.80 88.50 96.05 98.10
LRn(P̂1) 12.35 47.85 74.35 89.15 96.20 98.25
LR∗

n(P1) 74.25 95.25 99.05 100.0 100.0 100.0
LRn(P2) 4.70 33.75 61.30 77.20 88.90 94.35
LRn(P̂2) 5.05 35.00 62.25 78.80 89.05 94.35
LR∗

n(P2) 80.00 96.60 99.85 100.0 100.0 100.0
DGP: (Yt|Xt = x) ∼ IID G(x), Xt ≡

√
Ut, and Ut ∼ IID U(0, 1)

Statistics \ Sample Size 25 50 100 150 200 250
LRn(P1) 7.40 33.30 67.55 83.70 92.35 95.55
LRn(P̂1) 7.60 32.90 66.60 82.55 92.00 95.15
LR∗

n(P1) 44.15 65.10 82.25 91.25 95.95 97.80
LRn(P2) 4.75 25.50 60.90 74.70 84.00 90.60
LRn(P̂2) 4.90 26.00 60.35 74.10 83.20 90.00
LR∗

n(P2) 44.55 59.15 76.55 84.20 91.30 94.60

the finite sample size distortion becomes large as p gets close to 1−
√

1− p∗, whereas the size dis-

tortion does not sensitively respond to the selection of p̄. This is mainly because the approximation

of G(·) by (8) may not be accurate when p ' 1 −
√

1− p∗ due the fact that (1 − p)/
√

1− p∗ is

close to 1 though still less than 1. For such a case, a much larger m would be required to achieve

the approximation at the level of desired precision.

The parametric bootstrap also provides approximately correctly sized tests, but the finite-

sample type I errors are bigger than nominal levels as reported in Table 2. Thus, the parametric

bootstrap and LR test may be used as complementary devices in testing the hypotheses. We leave

specific examination of this as a future research topic.

For the power properties, we consider the following DGPs:

• DGP I: Yt ∼ IID 1
2
G(0.3) + 1

2
G(0.7);

• DGP II: (Yt|Xt = x) ∼ IID G(x), Xt ≡
√

Ut, and Ut ∼ IID U(0, 1).

Our unrestricted model is correctly specified for DGP I but not for DGP II. In particular, we con-

sider DGP II to examine the response of the LR statistic to misspecified heterogeneity. They both

are designed to have E[Yt] = 2, so that p̂on estimates 1/2 consistently. We present our simulation
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results in Table 3. For these DGPs, we conclude that first, the LR statistics are consistent; second,

the power properties of the LR test statistics are similar whether or not p∗ is estimated; and finally,

the power of the parametric bootstrap is better than the LR test. Nevertheless, obtaining empirical

null distributions by the parametric bootstrap is a time-consuming process particularly because the

unrestricted model is not identified by the resampled data drawn under the null model. In such a

case, iterative procedures such as the Newton-Ralphson method have to be tried with multiple ini-

tial values, and maxima obtained by these initial values need to be compared, which can consume

a considerable amount of time. This becomes pertinent even to the cases with moderately large

samples.

4 Empirical Application

In this section, we apply our method to the data of Kennan (1985), who aims to provide styl-

ized facts for the duration of contract strike in U.S. manufacturing industry. As an attempt to

characterize the distribution of strike duration, Kennan (1985) specifies a model for unobserved

heterogeneity as a mixture of geometric distributions weighted by beta distribution and explains

this heterogeneity by other explanatory variables such as powered strike ages sm and industrial

production level Xt. Specifically, he considers strike duration Dt and specifies its conditional

likelihood function as

log[1− qt(Dt; α, β0, · · · , βm)] +
Dt−1∑
s=0

log[qt(s; α, β0, · · · , βm)], (10)

where

qt(s) ≡
1 + αs[1 + exp(β0 + βXXt)]

(1 + αs)[1 + exp(β0 + β1s + · · ·+ βmsm + βXXt)]
.

This specification is closely related to the geometric distribution. If α = β1 = β2 = · · · = βm =

βX = 0, then (10) reduces to the log-likelihood for a simple geometric distribution. Otherwise, the

polynomials in s and Xt can serve as explanatory variables for unobserved heterogeneity.

We illustrate our methodology using Kennan’s (1985) data and affirm the presence of unob-

served heterogeneity, which justifies his attempt to model (10). Notably this result is not obtained

by Kolmogorov’s goodness-of-fit (GOF) test, as detailed below.

Table 4 contains our estimation results and relevant test statistics. The associated parameter
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Table 4: STRIKE DATA ANALYSIS USING THE LR TEST
NULL MODEL: Yt ∼ IID G(p)

UNRESTRICTED MODEL: Yt ∼ IID πG(p1) + (1− π)G(p2)
Sample Size 560
Null Model

p̂on 0.0230
(0.0010)

Unrestricted Model
π̂n 0.0200
p̂1n 0.0320
p̂2n 0.6426

LR Statistics 2.6564
p-values 4.05%
Size adj. p-values by bootstrapping [0.40%, 3.65%]
Selected P [0.020, 0.032 ]
GOF Statistics 1.0869
Size adj. p-values by bootstrapping [13.93%, 14.00%]
Note: Figures in the parentheses are standard errors, and the number of repetitions for
generating the asymptotic null distribution is 10,000. The range of size distortion adj-
usted p-value is obtained by generating LR statistics using the grid parameters in 95%
confidence interval of p∗ by repeating 2,000 times. The range of p-value for the GOF
statistic is also obtained in the same way. Their number of repetitions is 10,000.

space P is selected in a way to satisfy the parameter constraint in Theorem 1. Specifically, after

estimating the null parameter p̂on, we select P so that p̂on is an interior element of P and generate

the asymptotic null distribution using the simulation method described in Section 3. We repeat

10,000 times to simulate the asymptotic distribution by (8).

The p-value assiciated with the LR test statistic is approximately 4%, so that the presence of

unobserved heterogeneity should be admitted at the 5% significance level.

This result can be further corroborated by the size-distortion adjusted p-values, which can be

obtained by applying the parametric bootstrap. For this, we first obtain fine grid points in the

95% confidence interval of p∗ and resample 560 observations from G(p) for each grid point in the

interval, where 560 is the sample size in Kennan (1985). Next, using these resampled observations,

we compute the LR test and iterate this process 2,000 times for each grid point so that an empirical

distribution function can be generated for each point. Finally, we compare the LR test from the

original data with these empirical distributions to acquire the p-value for each grid point. The

range of these p-values retrieved in this way is reported in Table 4 as [0.40%, 3.60%]. Note that
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the largest p-value obtained in this way is smaller than the p-value obtained by the asymptotic null

distribution based upon Theorem 2, which is consistent with the illustrated under-sized empirical

distributions in Figure 1. This result also affirms the presence of unobserved heterogeneity.

We also attempt to detect unobserved heterogeneity by the GOF statistic given as

GOFn ≡ sup
y

√
n|F̂n(y)− {1− (1− p̂on)y}|,

where F̂n( · ) is the empirical distribution function, and {1− (1− p̂on)y} is the asserted null distrib-

ution function influenced by p̂on. Unfortunately, we cannot apply the critical values derived for the

GOF statistic for continuous random variables, because our data are discretely distributed and the

GOF statistic is not distribution-free (see Henze, 1996). Thus, we conduct our data inference by

applying the parametric bootstrap again. As above, for each grid point p̃ in the confidence interval

of p∗, we resample 560 geometric random variables from G(p̃) and compute the GOF statistic. We

iterate this computing process 10,000 times and obtain the null distribution of the GOF statistic,

from which the p-value of the GOF test is computed for each grid point. These inference results

are presented in Table 4. Surprisingly, the minimum p-value is far greater than 5%, and the GOF

test does not identify unobserved heterogeneity, whereas the LR statistic does.

5 Conclusion

Mixture of geometric distributions is popular for empirical data analysis, as Daniels (1961) ad-

vocates approximating the distributions of discrete random variables by a mixture of geometric

distributions.

We consider testing for the mixture hypothesis of geometric distributions by the LR statistic. As

its asymptotic null distribution is not standard, we represent it as a function of a particular Gaussian

process. Also, a representative version of this process is provided to simulate its asymptotic null

distribution. Our Monte Carlo experiments affirm the theories on the LR statistic in the text.

Finally, we conduct a formal testing procedure to capture unobserved heterogeneity in Kennan’s

(1985) strike duration data. From this, we justify his attempt to model unobserved heterogeneity,

which cannot be detected by Kolmogorov’s GOF test.
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A Appendix: Proofs

Proof of Theorem 1: To show the weak convergence, we verify the conditions of theorem 6(a)

of Cho and White (2007). Our assumptions on IID condition and the model and the null Ho are

sufficient for their assumption A1, A2(i, iii), and A3. Second, we note that for each (π, p1, p2) ∈

[0, 1]×P×P and y = 1, 2, · · · , πp1(1−p1)
y−1+(1−π)p2(1−p2)

y−1 ≤ (1−p∗)
(y−1)/2{πp1+(1−

π)p2} ≤ (1−p∗)
(y−1)/2, so that we obtain that E{log[πp1(1−p1)

Yt−1 +(1−π)p2(1−p2)
Yt−1]} ≤

log(1−p∗)(1−p∗)/(2p∗) < ∞ because p∗ ∈ (0, 1). Further, for each y = 1, 2, · · · , and p1, p2 ∈ P,

πp1(1 − p1)
y−1 + (1 − π)p2(1 − p2)

y−1 ≥ pp̄y−1, implying that E{log[πp1(1 − p1)
Yt−1 + (1 −

π)p2(1− p2)
Yt−1]} ≥ log(p) + (1− p∗) log(1− p̄)/p∗ > −∞. This verifies their assumption A4.

Third, we verify their assumption A5(ii). For this, we can let their δ be zero as our data is identi-

cally and independently distributed. We note that some tedious but simple algebras show that all

|∂ log fu(Yt; π, p1, p2)/∂π|, |∂ log fu(Yt; π, p1, p2)/∂p1|, and |∂ log fu(Yt; π, p1, p2)/∂p2| are uni-

formly bounded by
Yt + 1

p(1− p̄)

(
1− p

1− p̄

)Yt−1

with respect to (π, p1, p2). Further,

E

[
(Yt + 1)2

(
1− p

1− p̄

)2(Yt−1)
]

= p∗

∞∑
y=1

(y + 1)2

{(
1− p

1− p̄

)2

(1− p∗)

}y−1

< ∞, (11)

because of the assumption that (1− p)2(1− p∗)/(1− p̄)2 < 1. Using Cauchy-Shwarz inequality,

it straightforwardly follows that

E

[
sup
i,j

∣∣∣∣ ∂

∂i
log fu(Yt; π, p1, p2)

∂

∂j
log fu(Yt; π, p1, p2)

∣∣∣∣] < ∞,

where i, j ∈ {π, p1, p2}. Also, we note that for every i, j ∈ {π, p1, p2}, similar simple and tedious

algebras show that ∣∣∣∣ ∂2

∂i∂j
log fu(Yt; π, p1, p2)

∣∣∣∣ ≤ 2(Yt + 1)2

p2(1− p̄)4

(
1− p

1− p̄

)2(Yt−1)

uniformly with respect to (π, p1, p2). The given bound also has a finite first moment by (11). Thus,

E

[
sup
i,j

∣∣∣∣ ∂2

∂i∂j
log fu(Yt; π, p1, p2)

∣∣∣∣] < ∞,
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and we can let their Mt be defined as

Mt ≡
2(Yt + 1)2

p2(1− p̄)4

(
1− p

1− p̄

)2(Yt−1)

.

This verifies their condition A5(ii). Fourth, we verify their assumption A5(iii) and let their δ be

zero using the fact that our data are identically and independently distributed as before. Note that

1

f(Yt; p)

∂

∂p
f(Yt; p) =

(Ytp− 1)

p(1− p)
;

1

f(Yt; p)

∂2

∂p2
f(Yt; p) =

(Yt − 1)(Ytp− 2)

p(1− p)2
;

1

f(Yt; p)

∂3

∂p3
f(Yt; p) =

(Yt − 1)(Yt − 2)(Ytp− 3)

p(1− p)3
; and

1

f(Yt; p)

∂4

∂p4
f(Yt; p) =

(Yt − 1)(Yt − 2)(Yt − 3)(Ytp− 4)

p(1− p)4
,

so that

sup
p∈P

∣∣∣∣ 1

f(Yt; p)

∂

∂p
f(Yt; p)

∣∣∣∣4 ≤ {αYt}4; sup
p∈P

∣∣∣∣ 1

f(Yt; p)

∂2

∂p2
f(Yt; p)

∣∣∣∣2 ≤ {α(Yt + 1)}4;

sup
p∈P

∣∣∣∣ 1

f(Yt; p)

∂3

∂p3
f(Yt; p)

∣∣∣∣2 ≤ {α(Yt + 2)}6; and sup
p∈P

∣∣∣∣ 1

f(Yt; p)

∂4

∂p4
f(Yt; p)

∣∣∣∣ ≤ {α(Yt + 3)}4

respectively, where α = 1/p(1− p̄). Noting that

E[Y 6
t ] = {720− 2520p∗ + 3360p2

∗ − 2100p3
∗ + 602p4

∗ − 63p5
∗ + p6

∗}/{p6
∗(1− p∗)} < ∞,

it is not hard to obtain Mt given in their assumption A5(iii). Finally, their assumption A6(iv) is

not necessary for the weak convergence of the LR test. Instead, after letting

rt(p) ≡ f(Yt; p)

f(Yt; p∗)
; r

(1)
t (p) ≡ 1

f(Yt; p∗)

∂

∂p
f(Yt; p); and r

(2)
t (p) ≡ 1

f(Yt; p∗)

∂2

∂p2
f(Yt; p),

we show that for every ε > 0, λmin{C(u)(p, p)} > 0 and λmin{C(u)(p, p)} < ∞ uniformly in

p ∈ {p ∈ P : |p− p∗| ≥ ε}, where

C(u)(p, p′) ≡


E[r

(2)
t (p∗)

2] −E[r
(2)
t (p∗)rt(p)] E[r

(2)
t (p∗)r

(1)
t (p)]

−E[r
(2)
t (p∗)rt(p

′)] E[(1− rt(p))(1− rt(p
′))] E[(1− rt(p))r

(1)
t (p′)]

E[r
(2)
t (p∗)r

(1)
t (p′)] E[(1− rt(p

′))r
(1)
t (p)] E[r

(1)
t (p)r

(1)
t (p′)]

 .
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For this, we let C
(u)
1 (p) ≡ E[r

(2)
t (p∗)

2],

C
(u)
2 (p) ≡

 E[r
(2)
t (p∗)

2] −E[r
(2)
t (p∗)rt(p)]

−E[r
(2)
t (p∗)rt(p)] E[(1− rt(p))(1− rt(p))]

 ,

and note that

det[C
(u)
1 (p)] = {(1− p∗)

2p4
∗}−14(2− p∗);

det[C
(u)
2 (p)] =

4{4p3p3
∗ − p4

∗ + 2pp3
∗(1 + p∗)− p2p3

∗(5 + p∗)− p4[2 + p∗(−5 + 4p∗)]}
p4p5

∗(p− p∗)−2(1− p)4[(−2 + p)p + p∗]
;

and det[C(u)(p)] is identical to

4{4p4
∗ − 4pp3

∗(3 + p∗) + p2p2
∗[6 + 17p∗ + p2

∗] + 2p3p∗[2− 7p∗ − 3p2
∗] + p4[2− 7p∗ + 9p2

∗]}
p6p6

∗(p− p∗)−6(1− p∗)4[(−2 + p)p + p∗]4
.

All these are strictly greater than zero and less than infinity uniformly on {p ∈ P : |p − p∗| ≥ ε}.

Thus, the LR statistic satisfies the conditions sufficient for the stated weak convergence.

Next, we derive the covariance structure (7). For this, we use the formula given in lemma 1(b)

of Cho and White (2007). For each p and p′,

E[rt(p)rt(p
′)]− 1 =

(p− p∗)(p
′ − p∗)

p∗{(1− p∗)− (1− p)(1− p′)}
,

E[rt(p)st] =
p∗ − p

pp∗(1− p∗)
, and E[sts

′
t] =

1

p2
∗(1− p∗)

,

where st = (Ytp∗ − 1)/[p∗(1 − p∗)]. Also, E[rt(p)rt(p
′)] cannot be computed without having

1 − p <
√

1− p∗, which is assumed by our condition that p > 1 −
√

1− p∗. Plugging these into

ρ(p, p′) ≡ E[rt(p)rt(p
′)]− 1− E[rt(p)st]

′{E[sts
′
t]}−1E[rt(p

′)st] yields

ρ(α, α′) ≡ (p− p∗)
2(p′ − p∗)

2

pp′p∗(1− p∗){(1− p∗)− (1− p)(1− p′)}
,

which implies the standardized covariance structure

ρ(p, p′)√
ρ(p, p)

√
ρ(p′, p′)

=
[(1− p∗)− (1− p)2]1/2[(1− p∗)− (1− p′)2]1/2

(1− p∗)− (1− p)(1− p′)
.

Note that this is now identical to (7). This completes the proof. �
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Proof of Theorem 2: (i) We verify that for each p, p′ ∈ P, E[G(p)G(p′)] = E[Ḡ(p)Ḡ(p′)]. Note that

E[Ḡ(p)Ḡ(p′)] =
∞∑

k=0

γk(p)γk(p
′)E[Z2

k ]

=

[
(1− p∗)− (1− p)2

1− p∗

]1/2 [
(1− p∗)− (1− p′)2

1− p∗

]1/2 [
1− p∗

(1− p∗)− (1− p)(1− p′)

]
=

[(1− p∗)− (1− p)2]1/2[(1− p∗)− (1− p′)2]1/2

(1− p∗)− (1− p)(1− p′)
= E[G(p)G(p′)],

where γk(p) ≡
{

(1−p∗)−(1−p)2

1−p∗

}1/2 {
1−p√
1−p∗

}k

for each k and p, so that Ḡ(p) =
∑∞

k=0 γk(p)Zk, and

the second equality follows from the fact that

∞∑
k=0

{
(1− p)(1− p′)

1− p∗

}k

=
1− p∗

(1− p∗)− (1− p)(1− p′)

using the formula for infinite sum of geometric series and inf P > 1−
√

1− p∗. From the Gaussian

process property, their identical covariance structure shows their equivalence in distribution. �

Proof of Equation (9): From that (1−p)2(1−p∗)/(1− p̄)2 < 1, we note that 1−
√

1− p∗(1−p) >

p̄ > p∗, where the last inequality follows from the given assumption. Therefore, p > 1−
√

1− p∗

as desired. �
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